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1. Introduction 

One of the most important factors for  passengers’ perception of railway 

transport is the reliability and punctuality of the service, strictly connected to 

operation stability. In order to measure and evaluate this, several indices and 

evaluation methods have been proposed in scientific research (f. i. [1], [2], [3]). 

The present paper reveals these methods, and present a new closed-form 

analytic expression that can be used for fast analyses in the initial strategic 

planning phases of railway operations. 

Stability of railway operation is defined as the ability of a plan to withstand 

unexpected events that generate delays. It can be described by different 

comparisons between the magnitude of the disruptive events and the 

disturbance that they generate. For this reason, it is necessary to introduce a 

classification for delays. In the literature [4], train delays are usually classified 

into primary and secondary delays. 

The primary delays are unexpected extensions of the planned times of the 

individual processes included in the scheduled. Rolling stock and infrastructure 

failures can be the causes of primary delay, as well as large passenger flows 

at the platform that require longer dwelling times than scheduled. Causes can 

also be operations related, e.g. a train driver arriving too late after a break.  

The secondary delays, on the other hand, are delays generated by operation 

conflicts, which are themselves due to primary delays. When a train is delayed, 

it needs to use infrastructure elements like switches, crossovers, track sections, 

and platforms at different times than planned. A conflict arises when two or 

more trains request to use the same element at the same time: they will be 

queued by dispatching decisions, since each item can only be used by one train 

at a time. The delay that is generated because of the queuing is called 

secondary delay. The secondary delays include the delays that propagate from 

one train to the following ones on railway lines, because each blocking section 

of the line can only be occupied by one train at a time. This effect is called 
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propagation of delays and is the subject of several scientific studies ( [5], [6], 

[7]). 

The stability of a timetable can be addressed by comparing some given primary 

delays with their effect on the whole operation [8]. The total delay is then the 

sum of the delays of all the trains on a line and it is used as an overall measure 

of the disruption. The timetable stability is described by the comparison 

between the amount of primary delays and the total delay generated because 

of the propagation and other conflicts in operation. The timetable robustness is 

the ability to withstand variations in design parameters, and changes in 

operational conditions. It is meant to minimize primary and secondary delays, 

and can be studied by means of the time needed to absorb given disruptions 

[4]. This time is called recovery time or settling time [3]. 

The relation between primary and total delays is one of the key characteristics 

of a timetable that planners take it into account when creating the schedules. 

This is why methods for the estimation of the total delay are important for 

railway timetabling. Stability and robustness analysis of timetables can be 

conducted, studying the total delay on railway lines as a function of the primary 

delay. 

The present paper derives the total delay as a polynomial function of the 

primary delay, under a set of assumptions. The relation is derived from a 

theoretical formulation of the delay propagation between consecutive trains. 

The individual delay of trains is computed at each station of a railway line, as a 

function of the primary delay assigned to a train at a station. The individual 

delays of the train sum up to the total delay on the line. We used the micro-

simulation of a suburban railway line in Denmark to validate the model 

proposed. 

The importance and contribution of this finding is, that costly and time 

consuming simulation model runs can be fitted with a close-formed analytic 

expression in the initial planning phases of railway projects, making it possible 

to proceed faster and evaluate more alternatives. The formulation can also be 
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used for “backward engineering, e.g. to assess what level of time table 

supplements you need to obtain a desired reliability of the service. 

1.1. Reading guideline and notation 

The paper is organized as follows: previous approaches are listed in the 

literature in section 3. A delay propagation model is proposed in section 4, 

followed by the mathematical formulation of the individual and total delay as 

functions of the primary delay. A micro-simulation model of a suburban railway 

line north of Copenhagen was used to validate the model, and the results are 

presented alongside a numerical example in section 5. A discussion is 

presented, finally, in section 6. A table of abbreviations is presented here below 

to summarize the terms used in the mathematical formulation. 

Table 1 - Table of abbreviations 

𝑑 Total delay measured on the line 

𝑖 Train index 

𝑠 Station index 

𝑑𝑖,𝑠 Individual delay of train i at station s 

𝑡𝑑 Delay threshold  

𝑎𝑖,𝑠 Running time supplement of train i between stations s-1 and s 

𝑎 Running time supplement of every train between any pair of stations 

𝑏𝑖,𝑠 Buffer time at station s between trains i-1 and i 

𝑏 Buffer time at any station between any pair trains 

𝑝 Primary delay  

𝑛𝑠 Number of stations of a railway line 

𝑣 Traffic volume, number of trains in a timetable 

𝑠∗
𝑖 Recovery station for train i 

𝑖∗
𝑠 First train on-time at station s 
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2. Categorization of railway simulation models 

Simulation models are used to simulate real processes in a computer 

environment in order to understand and predict the phenomenon in focus. Rail 

traffic simulation represents the complex railway system with the interaction 

between trains, infrastructure, plans of operation and complex operational 

rules. Train movements are constrained by the infrastructure since trains can 

only overtake each other at designated points in the network, that usually 

require one of the two trains to stop, waiting to be passed. Such a highly 

constrained operation generates the phenomenon of delay propagation, due to 

the peculiar interaction between different trains, and between the infrastructure 

and the trains. Railway simulation models can thus be used to understand and 

predict the railway operation. The models can be classified by scale, approach 

and process. 

Scale-wise, a simulator can be classified into microscopic, mesoscopic, or 

macroscopic, according to the amount of detail included in the model. 

Macroscopic models only include aggregate information about the topology of 

the network, representing the stations as nodes and the lines as edges in 

between. Only few details are incorporated, including the minimum headways 

between trains at stations and fixed running time on the edges. Microscopic 

models, on the other hand, represent the railway system in much more detail, 

including the topology of each track section represented, together with the 

signaling system and the blocking sections. The train running times are 

computed by means of integration of the motion equations of the trains, given 

the tractive effort, the resistances and the instructions from the signaling system 

at every instant of time. Mesoscopic models are a compromise between Micro- 

and Macroscopic models, and contain selected details, like the tracks schemes 

without the single blocking sections. Macroscopic models are lean, fast and not 

detailed, whereas microscopic models usually require hard computation and 

give detailed results. This makes the first suitable for large network simulation, 

while the latter fit better with the simulation of short lines or stations. 
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Approach-wise, simulation models can be stochastic or deterministic, according 

to the analysis to perform. Deterministic simulation is used to study the 

timetables as they are or with determined operational conditions. A conflict-free 

timetable is the result of a deterministic design with no stochasticity in process 

times. Stochastic models include delay distributions, variations in process times 

and are used to design stable timetables. 

Process-wise, the simulation models can be classified into Asynchronous and 

Synchronous. The difference is the processing order of train paths. An 

asynchronous model typically elaborates entire train paths and computes the 

interactions between trains after a priority order. Trains that are elaborated first 

have the highest priority and are not affected by trains that are elaborated later. 

Synchronous models, on the contrary, elaborate all the train paths at the same 

time, following time steps at which each path is computed according to the 

operation conditions. 

The model introduced in this paper an estimation method of the total delay on 

a railway line as a function of the primary delay given to a train. It can be seen 

as a macroscopic model, with no detail on the tracks layout and only information 

about buffer times between trains and running time supplements available. It 

may be used on simple railway lines to overcome the high computational load 

typical of microsimulation models and hence as a fast tool for the purpose of 

initial strategic analyses. This paper characterizes a clear relation between 

primary delay given to trains and the resulting total delay on a line as a cubic 

parabola. The model is validated by analyzing the results of a complete micro-

simulation of delay propagation on a suburban railway line in Denmark. 

3. Literature Survey 

Traffic density and occurrence of disturbances in railway operation are often 

positive correlated [9], and the extent of disruptions is also strongly affected by 

the traffic intensity relative to capacity consumption. The planned operation 

(published time-table) needs some buffer times to be capable to absorb 

disturbances. A timetable and railway system that can cope with disruptions 
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and unexpected events without significant modifications to the operation is 

referred to as robust [10]. Some of the tools to gain stability in timetables are 

the running time supplements and the buffer times in headways between trains; 

the reduction of heterogeneity in trains’ characteristics is also indicated as a 

method to increase robustness [3]. 

Many techniques to evaluate railway stability and robustness have been 

proposed in the last ten years, some of them based on analytical approaches, 

others based on empirical models and what-if analysis. Vroman, Dekker, & 

Kroon [1] propose the relation between timetable homogeneity and the 

propagation of delays due to interdependencies between trains, while the 

inequality of headway time dispersion is investigated by Carey & Carville [11]. 

Salido, Barber, & Ingolotti [3] assess robustness in terms of average delay per 

train and settling time, to evaluate different solutions of their rescheduling 

model. 

Mattson [2] studies the interferences between trains under different capacity 

utilization values through a micro-simulation tool: Mattson finds this to be the 

most precise way to analyze secondary delays, but it needed very detailed input 

and is a time consuming process. The detailed input and output give flexibility 

to the method, making it adaptable to different contexts: signaling systems, 

operation rules, rolling stocks, and infrastructure alignments can be modelled 

through the micro-simulation of any guided transport system. Pellegrini, 

Marlière, & Rodriguez [12] concluded that the simulation of speed variation 

dynamics is too hard to compute in re-scheduling problems, compared to the 

accuracy gain. Nevertheless, it is effective for estimation of actual train 

interactions through the signaling system: the robustness increment given by 

better acceleration and braking performance can be investigated though micro-

simulation to compare different kinds of rolling stock. 

Several delay propagation models for railway networks have been presented in 

the literature. Goverde [5] represents the timetables in timed event graphs to 

model the delay propagation in a  macroscopic algorithm based on max-plus 

algebra. Hasegawa et al. [6] uses a hydrodynamic model to train traffic: they 
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modelled the delay propagation as a shock wave in a compressible fluid and 

appraised the total delay as a cubic function of the primary delays by means of 

propagative velocity. Stochastic models have also been introduced to predict 

the total expected delay from the passenger point of view [13]. Meester and 

Muns [7] derive the distributions of secondary delays from the primary delay 

distributions using phase-type distribution, to formulate a model between a 

general queuing model and a very detailed simulation model. 

4. Model derivation 

The purpose of the model development is to derive a close-form analytical 

expression that explains the total delay on a railway line, as a function of the 

primary delay of a train. The total delay is computed as the sum of the delays 

of individual trains at each station, which is the result of the propagation of the 

delay from the previous train to the following ones. The development of the 

delay of a train throughout the line and between consecutive trains is studied 

by means of buffer times and timetable allowance. The summation of the 

individual delays is developed under different hypothesis in this paragraph and 

two different polynomial relations are presented between the primary delays 

and the total delay. 

4.1. Total delay and individual delay 

The total delay d represents the magnitude of the disruption impact on the line: 

it is the total deviation from the scheduled timetable and can be calculated as 

the sum of every train’s delay 

𝑑 = ∑ (𝑑𝑖,𝑠 | 𝑑𝑖,𝑠 ≥ 𝑡𝑑)𝑖,𝑠 , (1) 

with di,s being the delay of train i registered at station or timing point s (difference 

between real and scheduled time), and td being the delay threshold, under 

which we considered the train punctual. It is important to emphasize that every 

train’s delay is recorded at all the timing points: this means that the same delay 

record is repeated several times for every train, reduced by the supplement of 

running time included in the schedule between two consecutive timing points 
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(timetable allowance). For a simpler formulation, the delay threshold will be 

omitted in the rest of the paper. 

The delay of a train at one station is the result of the propagation of the delay 

from previous trains and the recovery of its own delay in the previous segment 

of line. The timetables include two different elements to reduce the delay 

propagation between trains and to increase each train’s ability to recover delays 

along their paths, both of which have impact on punctuality, capacity and total 

travel time. 1) The timetable allowance, also called slack or running time 

supplement, is the difference between the minimum running time of a train on 

a given railway segment and the scheduled time. This supplementary time can 

be used to recover train runs from delays. The distribution of the supplement 

times along the train paths often follows the guidelines from the International 

Union of Railways (UIC) or by the national Railway Infrastructure Managers 

rule-of-the-thumb guidelines. A large amount of supplement time improve the 

overall punctuality of trains, but it also increases the scheduled travel times, 

reducing the attractiveness of the railway system. 2) Another element to cope 

with delays is the buffer time between trains, defined as the difference between 

the minimum time headway between trains at a given timing point and the 

scheduled interval. This prevents small delays from spreading to the following 

trains and increases the punctuality as well, but it also consumes capacity, as 

it decreases the number of trains that can be run in a given time interval [4]. 

4.2. Notation and problem formulation 

The notation to describe the propagation of delays among trains is described in 

the following. ai,s is the timetable allowance, also called running time 

supplement, of train i between stations s-1 and s. bi,s is the buffer time at station 

s between trains i-1 and i. These introduced variables are useful to describe 

how the delay is propagating to consecutive trains and how every train recovers 

over the stations. 

The individual train delay di,s can be either the result of hindrance from previous 

trains or residual delays that have only partially been recovered after its 
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generation. In the first case, the delay of the previous train exceeds the buffer 

time and the exceeding part is transfer to the following train. In the latter case, 

the delay of a train at a station exceeds the amount of delay that a train could 

recover. Both the cases can be modelled in the following equation, where di,s-1 

is the delay of the same train at previous stations and di-1,s is the delay of 

previous trains at the same measuring station: 

𝑑𝑖,𝑠 = 𝑚𝑎𝑥{(𝑑𝑖,𝑠−1 − 𝑎𝑖,𝑠), (𝑑𝑖−1,𝑠 − 𝑏𝑖,𝑠), 0} (2) 

ai,s represents the timetable allowance scheduled for train i from station s-1 to 

station s; bi,s is the buffer time scheduled between trains i-1 and i at station s. 

The total delay is the sum of the individual train delays over the stations. The 

individual train delays, formulated as above, are non-linear functions of 

previous delays. A delayed train that is recovering its delay along the way could 

be hindered by the previous train at any station, depending on the different 

timetable allowance and buffer times of both trains at every station. For this 

reason, we introduce two assumptions here, with the aim to formulate the 

individual delay of any train i at any station s, as a function of the primary delay 

given to the first train. 

The model assumes that the timetable allowance is equally spread over the 

train paths and that all the paths are identical. This simplified assumption is 

reasonable in suburban railway lines, if trains run with the same stop pattern, 

the train paths are the same for each train run, and the train paths are repeated 

over time at a given frequency. It is further assumed that the buffer times 

between trains are equal between any given pair of train at every point along 

the line. With these two assumptions, both the timetable allowance and the 

buffer time can be written as train- and station-independent, and the indices i 

and s can be omitted. Therefore, a is the timetable allowance of every train 

between any pair of stations and b is the buffer time at every point between any 

pair of trains. 

We define p the primary delay of the first train at the first station, that means 

that d1,1=p. This delay will propagate to the following trains through the 
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expression of individual delay given in (2). The expression can be rewritten as 

follows, based on the primary delay and the unique values of a and b: 

𝑑𝑖,𝑠 = 𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏, (3) 

Subject to 𝑑𝑖,𝑠 ≥ 0 ∀ 𝑖, 𝑠. 

For a better comprehension, the table below summarizes the modelled 

individual train delay at the stations. The table includes a finite line with a given 

number of stations ns and a finite number of train, namely the traffic volume v. 

Table 2 - Individual train delay at each station under the hypothesis of equal running time supplements 
and buffer times. 

Station  

Train 

1 2 … s … ns 

1 p p-a … p-(s-1)a … p-( ns -1)a 

2 p-b p-a-b … p-(s-1)a-b … p-( ns -1)a-b 

… … … … … … … 

i p-(i-1)b p-a-(i-1)b … p-(s-1)a-(i-1)b … p-( ns -1)a-(i-1)b 

… … … … … … … 

v p-(v-1)b p-a-(v-1)b … p-(s-1)a-(v-1)b … p-( ns -1)a-(v-1)b 

 

In the following two situations, the total delay is modelled as the summation of 

the individual train delays under the separate hypotheses of no recovery or total 

recovery of the delay on the line. The two situations differ with regard to the 

domain of summation of the individual elements. 

4.3. The total delay without recovery 

Table 2 shows a linear relation between the primary delay p and any non-

negative individual train delay. If the primary delay is big enough, no train will 

completely recover its delay before the last station ns is reached. The total delay 

under this assumption can be computed summing the individual train delays, 

with the summation extended to all the trains and all the stations: 
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𝑑 = ∑ 𝑑𝑖,𝑠

𝑖,𝑠

= ∑ ∑(𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏)

𝑛𝑠

𝑠=1

𝑣

𝑖=1

= 

= 𝑝 𝑛𝑠 𝑣 +
1

2
( +𝑛𝑠 𝑣 (𝑎 + 𝑏) − 𝑎 𝑣 𝑛𝑠

2 − 𝑏 𝑛𝑠 𝑣2). 

(4) 

This equation expresses the total delay as a linear function of the primary delay, 

given the number of trains and stations, the timetable allowance and the buffer 

time. 

4.4. The total delay with recovery 

The formulation becomes more complicated when trains are able to recover 

from their delay before the end of the line. As opposite to the previous case, the 

primary delay is small enough to allow even the first train to recover completely 

before the end of the line; it can also be so small that it does not propagate to 

the last train a the first station, where the primary delay occurs. In this case, 

there will be at least one train that is not subject to secondary delays. 

The summation domain should be, therefore, limited to the train and stations 

with non-negative delay, as follows: 

𝑑 = ∑ 𝑑𝑖,𝑠

𝑖,𝑠|𝑑𝑖,𝑠>0

= ∑ 𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏

𝑖,𝑠|𝑑𝑖,𝑠>0

. (5) 

We can approach the summation in two different ways. The first consists of 

finding the total delay at each station, and summing the individual delays from 

the first train to the last train delayed at the station. The general total delay is 

the sum of the total delays at stations, from the first station to the last station 

with at least one train delayed, which is the last station where the first train is 

delayed. The opposite approach sums first the total delay of individual trains at 

all the stations, from the first station to the last station where that train is 

delayed. In this case, the general total delay results from the summation of the 

individual trains total delay, from the first train to the last train that is delayed at 

the first station. For this reason, the recovery station and the first train on time 

are defined hereunder. 
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We define the recovery station of each train, the first station where the train 

recovers completely its delay. The recovery station of the first train results from 

its timetable allowance that reduces the initial delay at every section between 

stations. 

𝑠∗
1 =

𝑝

𝑎
+ 1, (6) 

For each train i, the recovery station s*i can be found by rounding up to the next 

unit the result of the generic equation 

𝑠∗
𝑖 =

𝑝−(𝑖−1)𝑏

𝑎
+ 1. (7) 

At the same way, the first train running on time at the first station is the result of 

only the initial delay propagation to the following trains, reduced by the buffer 

time at every step. It is expressed by the equation 

𝑖∗
1 =

𝑝

𝑏
+ 1. (8) 

For any given station s, the first train on time i*s can be calculated by the generic 

equation below 

𝑖∗
𝑠 =

𝑝−(𝑠−1)𝑎

𝑏
+ 1  (9) 

and rounding up the result to the next unit. 

These values set the new boundary of the summation to find the total delay: the 

individual delay should only sum trains at stations which individual delay is not 

negative. The grand total delay can be computed either summing the total delay 

at individual stations or summing the total delay of individual trains. The two 

approaches described above will provide the same result. We give hereunder 

only the formulation of the first approach, which first takes into account the 

delayed trains at every station, and then sums the total delays at every station. 

The summations should only be extended to the last delayed train at each 

station, and to the last station where the first train is delayed with non-negative 

delay, i.e. (𝑖∗
𝑠 − 1) =

𝑝−(𝑠−1)𝑎

𝑏
 and (𝑠∗

1 − 1) =
𝑝

𝑎
. 

Equation (5) can be written as 
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𝑑 = ∑ 𝑑𝑖,𝑠

𝑖,𝑠|𝑑𝑖,𝑠>0

= ∑ ∑ 𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏 =

𝑝−(𝑠−1)𝑎
𝑏

𝑖=1

 

𝑝
𝑎

𝑠=1

 

=
1

12𝑎𝑏
(𝑎2𝑝 + 3𝑎𝑏𝑝 + 3𝑎𝑝2 + 3𝑏𝑝2 + 2𝑝3). 

(10) 

The result is a polynomial relation of third degree between the primary delay 

and the total delay. The total delay can hence be expressed as a cubic parabola 

function of the primary delay. Contrary to the previous formulation, the total 

delay in the case with recovery does not depend either on the number of 

stations on the line or on the traffic volume. This characteristic is intuitively 

understandable: the delay does not propagate to the last train, so additional 

trains would not be included in the summation of the total delay; similarly, the 

delay is recovered by all the trains before the last station, so additional stations 

would not be included in the summation. 

This formulation introduces an approximation given by the discrete nature of 

the quantities. Both the upper limits of the summations are given by a ratio and 

should be rounded up to the unit. The summation is solved considering the 

upper limits as continuous, assuming that the error is small enough. The error 

can be computed numerically comparing the actual summation of the individual 

delays and the modelled summation, as presented in the numerical example in 

section 5.1, case with recovery. 

Intermediate cases between the two presented bounds are also possible. In 

particular, the combination of primary delay, timetable allowance and buffer 

time can be so that the first train is able to recover before the last station, but 

the delay is anyway propagated to the last train at the first station. Similarly, a 

situation can occur in which the first train is not able to recover before the last 

station, but the delay at the first station is not transmitted to the last train, so 

that there is still at list one train that is not delayed at all. 
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4.5. The total delay in the general case 

The two cases above describe the total delay in the boundary cases of no 

recovery or total recovery before the end of the line. They can also be seen as 

two different sections of the same curve; if we fix the buffer time and the 

timetable allowance, the total delay as a function of the primary delay becomes 

a composite curve that builds up from polynomials of different degree. A third 

degree function describes the first section of the curve, while a linear function 

characterizes the last segment. The borders of the first section are the null 

primary delay and such a value corresponding to either the first train not being 

able to recover completely its delay before the end of the line, or the last train 

being delayed at the first station. The more restrictive value is given by the ratios 

between the timetable allowance and the buffer time, and between the number 

of stations and the traffic volume. 

The conditions mentioned above can be written as 

(𝑠∗
1 − 1) ≤ 𝑛𝑠 → 𝑝 ≤ 𝑎 𝑛𝑠, (11) 

(𝑖∗
1 − 1) ≤ 𝑣 → 𝑝 ≤ 𝑏 𝑣. (12) 

Therefore, the total delay is a cubic function of the primary delay in the interval 

𝑝 ∈ [0, min(𝑎 𝑛𝑠, 𝑏 𝑣)]. 

On the other hand, the total delay becomes a linear function of the primary 

delay when no train is able to recover the delay before the end of the line. This 

condition is formalized by the inequality 

𝑑𝑣,𝑛𝑠
= 𝑝 − (𝑛𝑠 − 1)𝑎 − (𝑣 − 1)𝑏 > 0, (13) 

where dv,ns is the individual delay of train v at station ns. The inequality is 

respected for values of primary delay greater than 

𝑝 > (𝑛𝑠 − 1)𝑎 + (𝑣 − 1)𝑏, (14) 

It is reasonable to state that within the segment between the cubic and the linear 

sections there is a sub-segment with a quadratic dependency between the total 

delay and the primary delay. In the first segment both i*s and s*i depend on the 
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primary delays, whereas in the linear segment they are fixed at i*s= v and s*i=ns. 

In the section in between, either of the two is fixed and the other sill depend on 

the primary delay. 

5. Case studies 

In this section, we present numerical examples of the cases formulated above 

and the simulation of a real suburban railway in Denmark to show the relation 

between the primary delay given to a train and the total delay generated on the 

line. 

5.1. Numerical examples on a short corridor 

A case without recovery 
A timetable with v=6 trains is operated on a railway line with ns=8 stations. The 

timetable includes the same supplementary time between all stations a=2 

minutes, while the buffer time between consecutive trains is b=6 minutes 

everywhere. With primary delays over p=44 minutes (14), all the individual 

delays of every train at each station of the line will be non-negative, as shown 

in the table below. The total delay on the line is computed numerically by means 

of the summation of all the individual delays on the line. All the individual delays 

are computed by equation (3), subject to non-negativity. 

Table 3 - Individual delays [min] on a railway line, given a primary delay [min]. Positive delays are bolded; 
colour intensity proportional to cell values. Stations are also given a letter ID. 

  STATION 

  1 2 3 4 5 6 7 8 

  A B C D E F G H 

TR
A

IN
 

1 44 42 40 38 36 34 32 30 

2 38 36 34 32 30 28 26 24 

3 32 30 28 26 24 22 20 18 

4 26 24 22 20 18 16 14 12 

5 20 18 16 14 12 10 8 6 

6 14 12 10 8 6 4 2 0 

 

The total delay measured at different values of primary delay is reported in the 

following chart: it represents a linear relation, with the specific formulation. 
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Figure 1 - Total delay measured on the line as a function of the primary delay given to the first train at the 
first station 

A case with recovery 
The same example as before can represent the case with complete recovery 

for primary delays up to p=14 minutes. This case is represented in the table 

below. 

Table 4 - Individual delays [min] on a railway line, given a primary delay [min]. Positive delays are bolded; 
colour intensity proportional to cell values. Stations are also given a letter ID. 

  STATION 

  1 2 3 4 5 6 7 8 

  A B C D E F G H 

TR
A

IN
 

1 14 12 10 8 6 4 2 0 

2 8 6 4 2 0 0 0 0 

3 2 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

 

The following chart represents the total delay computed both as the numerical 

summation of the individual delays and through the analytical formulation (10). 
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Figure 2 - Total delay measured as the numerical summation and estimated through the analytical 
formulation. 

The numerically computed total delay is regressed to a cubic polynomial 

expression, given in the chart, along with the R² index, which shows a high 

quality regression. The equation of the analytical total delay is given as well. 

The general case 

The results of previous examples are part of a composite function, which 

borders are be defined here below. 

The cubic section extends in the range of primary delay 𝑝 ∈ [0,16]. The linear 

range, on the opposite side, starts at the value 𝑝 > 44 minutes. 

It is worth to notice that the intermediate range can be regressed perfectly to a 

quadratic parabola, consistently with the assumed shape in the theoretical 

explanation. The regression is shown in the picture below. 
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Figure 3 - The total delay numerically summed in the example. Partial recovery range. 

The chart below shows the three segments of the total delay as a function of 

the primary delay with the equations and coefficients of the regressed 

polynomial functions. 

 

Figure 4 - Total delay summed in the numerical example. 
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5.2. A real large scale case: the Nordbane in Copenhagen 

The numerical examples above were subject to a number of assumptions that 

could be too strong in some cases. The assumption of uniform timetable 

allowance and buffer time, in particular, could be unrealistic for some railway 

lines. This is compared with a real case in the following, where measurements 

of the total delay on a simulated railway line, with no information about the 

supplement times and the buffer between trains. 

To validate the polynomial shape of the total delay against the primary delay 

we simulated the operation of a suburban railway line in Denmark. The 

suburban railway network in Copenhagen is a very densely occupied network 

with 2 minutes headway in the busiest section. Six different lines operate on the 

network, five out which run through the same central section. The suburban line 

is operated by uniform rolling stock in cyclic timetable. The selected section of 

the suburban network is the line from Hellerup to Hillerød. Overtakes in this 

section are prevented. Though it is theoretically possible at selected stations, it 

hardly occurs in real operation, due to the very high frequency of the train 

service. 

The micro-simulation software RailSys by Rail Management Consultants GmbH 

(RMCon) was used for the simulation. This micro-simulation uses continuous 

computation of train motion equations and simulates the interaction between 

trains through discrete processing of signal box states. Given user defined 

infrastructure, rolling stock, and timetable databases, it is possible to calibrate 

the train paths defining the running time supplements; moreover, different 

driving behaviors can be modelled for on time trains and delayed ones. 

The model formulated in the paper can, on the other hand, be interpreted as a 

macroscopic simulation tool, which only has basic information on the link 

between two stations and the constraints in operation. The only pieces of 

information required in this model are the buffer times and the timetable 

allowance. We used a microsimulation tool to validate this in a more detailed 

model, which includes details about the geometry of the infrastructure and the 

actual separation of trains through the signaling system. 



  

 

 

Final Project Page 20 

 

Two different train paths run every ten minutes on the line between Hellerup 

and Lyngby with two different stopping patterns: 

 Line A: runs throughout the entire line, skipping 5 stops in the first stretch 

 Line E: only runs the first stretch, stopping at all the stations. 

The line stationing and stopping patterns are summarized below: 

Table 5 - Stopping patterns of each train path. X = Stop, | = pass 

Station Code km A E 

Hellerup Hl 7,8 X X 

Bernstorffsvej Btf 9,3 | X 

Gentofte Gj 10,9 | X 

Jægersborg Jæt 12,6 | X 

Lyngby Ly 13,9 X X 

Sorgenfri Stf 15,9 | X 

Virum VG 17,7 | X 

Holte Hot 19,0 X X 

Birkerød BG 23,8 X  

Allerød LG 29,3 X  

Hillerød HG 36,5 X  

 

We Monte Carlo sampled of n=100 values of primary delay from a uniform 

distribution between 0 and 10 minutes and measured the related total delay 

developed on the line. Delays up to ten minutes were completely recovered by 

all the trains before the end of the line, meaning that this case is with complete 

recovery. The resulting shape of the total delay against the primary delay is a 

cubic parabola. 

The same primary delay given to trains from different lines resulted in different 

values of total delay. The graph below collects the total delay values for primary 

delays given to either line A or E. The graph shows that there is not a unique 

curve that represents the total delay for any train delayed in the timetable. The 

total delay keeps cubic against primary delay given to individual lines, and two 

different regressions are applied to the results. 
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Figure 5 - Measured total delay on the suburban railway line Hellerup - Hillerød, as a function of the 
primary delay. Each curve represents the total delay generated delaying either railway line of the 
timetable. 

5.3 Discussion 

The numerical examples revealed a high accuracy of the model for both the 

linear segment and the cubic one. The estimation of the total delay in the case 

with no recovery is exact, and shows the linear relation with the primary delay. 

The estimation of the total delay presents, on the other hand, an approximation 

in the range with total recovery. This is due to the upper bound of the 

summation, which is integer by nature but is approximated continuous in the 

summation solution.  

The microsimulation of a suburban railway line revealed that the proposed 

model is not limited to simplified theoretical lines. The simulated railway line is 

characterized by non-uniform timetable allowance and stations not equally 

spread along the line. Moreover, we simulated heterogeneous stopping pattern 

and non-uniform buffer time between trains on the line. The trains also had 

different scheduled running times in the segments Hellerup-Lyngby and 

Lyngby-Holte. Nevertheless, the total delay shape against the primary delay is 

still close to a cubic parabola. Delays up to 10 minutes were completely 
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recovered by all the trains before the end of the line, in accordance with the 

model developed. This shape validates the polynomial expression of the total 

delay as a function of the primary delay for small primary delays. 

It is worth to notice that the graph also shows some phenomenon that is not 

fully explained by this paper. The total delay generated by the same amount of 

primary delay is different, depending on the first train delayed. This is due to 

the different interactions that are generated. The primary delay is generated at 

the first station. When the delay is given to a train from line A, it propagates to 

both the following stations and the following train. The A line is faster than the 

E line, so the buffer time between a train A and a train E is minimum at the first 

station and increases on the way. The opposite is valid in the opposite 

sequence: the buffer time between a train E and a train A is maximum at the 

first station and decreases to the minimum at Holte, which is the last station of 

line E. Delays given to a train A do not propagate to the following train until a 

value that is big enough, so that the train A hinders the following train E at Holte 

station. This value equals the total timetable allowance of train E from Hellerup 

to Holte, increased by the buffer time between line E and line A at Holte. This 

phenomenon is the reason why the total delay values related to primary delays 

given to line E are smaller than line A. 

6. Conclusions and contributions 

The paper presented a model of the total delay on railway lines as a composite 

polynomial function of the primary delay given to one train. The function can be 

divided into three sections, which boundaries are specific values of the primary 

delay.  The values can be computed under the assumption of uniform timetable 

allowance and buffer time, and given the number of stations on the line and the 

traffic volume of the timetable. 

The estimation method presents an approximation, due to the discrete nature 

of the upper boundaries in the summations. This approximation leads to a small 

underestimation of the total delay in the cubic section, and further research 

development is needed to estimate an expression for the error. The 
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approximation expires in the linear section of the total delay, which is computed 

exactly. 

The paper validates the theoretical model through a numerical example with 

ideal conditions: equal train paths, uniform timetable allowance and buffer times 

over trains and station. The case study demonstrated that even in real 

conditions that differ from the hypothesis of the model, the total delay is still a 

cubic function of the primary delay. 

This model lays the basis for future development of stability analysis of 

suburban railway line without micro-simulation, as well as metro-like systems, 

which typically have homogenous timetables and rolling stock. The estimation 

of the total delay, given the value of primary delay gives a measure of the effect 

related to a disruption, which is namely the stability. The model can be extended 

to railway networks, linking different suburban railway lines together. The 

linkage should be the objective of studies to set the validity limits of the 

extension from lines to networks. 

The advantage of such a model in railway networks and hence the contribution 

of this paper is in its simplicity and analytic formulation and closed form 

expression, compared to micro-simulation models, yet giving and accurate 

estimation of the total delay. Stability analyses typically deal with small amount 

of primary delays, so only the cubic section of the model is needed, as shown 

in the case study Hellerup – Hillerød. Nevertheless, the intermediate segment 

could still be formulated from a theoretical point of view: a quadratic polynomial 

regression resulted in the numerical example.This will make it possible to make 

much faster initizl analyses of punctuality of timetable in the initial strategic 

planning phases when desining new timetables. 

The average timetable allowance and buffer time can also be computed by 

reversing the total delay formulation, due to the close-form expression of the 

model. This means that with a given desired punctuality of the railway line, the 

needed timetable supplement can be estimated by the function. This would also 
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ease the planning process compared to a try-and-correct approach using 

microsimulation. 
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