

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Implementation of Hardware Accelerators on Zynq

Toft, Jakob Kenn; Nannarelli, Alberto

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Toft, J. K., & Nannarelli, A. (2016). Implementation of Hardware Accelerators on Zynq. Technical University of
Denmark. DTU Compute Technical Report-2016 No. 7

https://orbit.dtu.dk/en/publications/cb6ecf31-d421-41f6-b39b-b76a553a0019

Technical report - Implementation of Hardware

Accelerators on Zynq

Jakob Toft

September 14, 2016

Supervisor: Alberto Nannarelli

Abstract

In the recent years it has become obvious that the performance of general pur-
pose processors are having trouble meeting the requirements of high perfor-
mance computing applications of today. This is partly due to the relatively
high power consumption, compared to the performance, of general purpose pro-
cessors, which has made hardware accelerators an essential part of several data-
centres and the worlds fastest super-computers.

In this work, two different hardware accelerators were implemented on a
Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two ac-
celerators are based on two different benchmarks, a Monte Carlo simulation of
European stock options and a Telco telephone billing application. Each of the
accelerators test different aspects of the Zynq platform in terms of floating-point
and binary coded decimal processing speed. The two accelerators are compared
with the performance of the ARM Cortex-9 processor featured on the Zynq SoC,
with regard to execution time, power dissipation and energy consumption.

The implementation of the hardware accelerators were successful. Use of the
Monte Carlo processor resulted in a significant increase in performance. The
Telco hardware accelerator showed a very high increase in performance over the
ARM-processor.

ii

Contents

1 Introduction 1

2 Platform 3
2.1 Xilinx Zynq . 3
2.2 AXI interfaces . 3
2.3 ZedBoard power measurements 5

3 Implementation 7
3.1 Monte Carlo processor . 7

3.1.1 Hardware implementation 7
3.1.2 Software implementation 8

3.2 Telco processor . 9
3.2.1 Hardware implementation 9
3.2.2 Software implementation 12

3.3 Hardware for software execution 13

4 Results 14
4.1 Monte Carlo benchmark . 14

4.1.1 Implementation . 14
4.1.2 Functionality . 14
4.1.3 Execution time . 15
4.1.4 Energy consumption . 17

4.2 Telco benchmark . 18
4.2.1 Implementation . 18
4.2.2 Functionality . 18
4.2.3 Execution time . 18
4.2.4 Energy consumption . 20

5 Discussion 22
5.1 Power measurements . 22
5.2 Monte Carlo processor . 23
5.3 Telco processor . 24

6 Conclusion 26

List of Figures

1 The three general hardware accelerator structures (source: [6]) . 3
2 System diagram of the Zynq SoC with the dual-core ARM pro-

cessor and the programmable logic (source: [8]) 4
3 Types of AXI-interfaces available when creating a new peripheral

in Xilinx Vivado . 5
4 Location of ’J21’ on the Zedboard 6
5 Top-level system overview of the Monte Carlo implementation on

Zynq as seen in Vivado . 9
6 Pseudo-code for running the Monte Carlo accelerator 9
7 System diagram of data loop-back on Zynq using DMA, source [4] 10
8 Vivado design of data loop-back on Zynq using DMA, source [4] 10

iii

9 Implementation of Telco processor in an AXI4-peripheral IP . . . 11
10 Waveforms of AXI-stream signals during a transfer, source [9] . 11
11 System design of the Telco hardware accelerator on Zynq, as seen

in Vivado . 12
12 Pseudo-code for running the Telco accelerator 13
13 System design of a pure processor system (no programmable

logic), as seen in Vivado . 13
14 Execution time of the Hardware accelerated Monte Carlo bench-

mark as a function of no. of iterations 16
15 Execution time per phone call as a function of total no. of phone

calls, on the Telco processor. 19
16 Correlation between Energy usage ratio and speed-up of the Telco

ASP . 21
17 Interpretation of ZedBoard power consumption during SW bench-

mark, 1. Zynq SoC is idling, 2. SoC is programmed with exe-
cutable for the CPU, 3. execution of benchmark, 4. card returns
to idling . 23

List of Tables

1 Allocation of registers in the Monte Carlo IP 8
2 ARM processor specifications for every implementation 14
3 Monte Carlo processor programmable logic resource utilization . 14
4 Execution time for different number of iterations on the Monte

Carlo processor and the software implementation 15
5 Execution time for 2.65 · 108 iterations in the HW driven Monte

Carlo benchmark as a function of the difference between two dif-
ferent benchmark runs. 16

6 Instantaneous power consumption for the Monte Carlo ASP and
software driven test, based on the average power consumption for
the longest run of each implementation 17

7 Energy per element for the Monte Carlo ASP and software driven
test . 17

8 Telco processor utilization of programmable logic resources . . . 18
9 Execution time for the Telco benchmark for both the Telco ASP

and software driven test . 18
10 Rate of elements processed per second in the Telco processor. . . 19
11 Power consumption for both the Telco ASP and software driven

test . 20
12 Energy usage per element processed in the Telco benchmark for

both the Telco ASP and software driven test 20

iv

1 Introduction

Nowadays High Performance Computing (HPC) is being used for a wide range
of applications, ranging from weather forecasts, scientific simulations etc. to
financial calculations. In financial applications there IS often a need for the cal-
culations to be finished fast and/or precise, having the results of a simulation of
a stock before competitors can give a firm an advantage on the stock market, and
in the banking sector precision is important. For simulations to be processed
fast they are often done in large data-centres, which in return have a large power
consumption. The power consumption is a significant problem and an impor-
tant part of the design considerations of data-centres, as even the local price on
electricity may decide whether or not a data-centre can be a profitable opera-
tion. The goal is thus both a high performance and a low power-consumption.
Achieving this can be hard, if not impossible, if only general-purpose processors
are used [2].

Achieving a high performance and maintaining a low power consumption can
in many cases be done by using a system utilizing hardware accelerators, as the
primary computing load can be transferred to faster and more power efficient
specialized processing cores. Several different hardware accelerator technologies
are already in use and available on the commercial market, the three most
common types are Graphical Processing Units (GPUs), Application Specific
Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs),
each technology has its own pros and cons. The advantage of ASICs and FPGAs
is that they can implement fine-tuned algorithms on a hardware level, and even
implement the algorithms in parallel if the applications allows it, which in return
makes it possible for them to obtain an even higher performance [1]. An
advantage of FPGAs is that they have a relatively low cost compared to ASICs
when operating on a small scale, and are very flexible compared to GPUs.

Most hardware accelerators are connected to Central Processing Units (CPUs)
through general bus’ such as the PCIe-bus. This connection can be restrictive
on the performance of hardware accelerators that process large amounts of data,
due to the bus between accelerator and CPU being unable to deliver data at
high enough rates. Other methods to connect CPU and accelerator exists, such
as special bus’ and placing the CPU and accelerator on the same silicon die,
one thing these share is an increased cost and a reduced customizability of the
accelerator. The fastest connection between a hardware accelerator and CPU
can be achieved when both are placed on the same silicon die, minimizing the
distance between the two, making it easier to maximize the bandwidth between
the two. This implementation method has until now made the hardware of the
final system non-reconfigurable, the rather new Xilinx Zynq SoC does however
overcome this problem, as it features a dual-core ARM CPU and programmable
logic on the same silicon die [8], giving the pros of using an FPGA as hardware
accelerator while achieving a better bus-connection between CPU and FPGA.

In this report the implementation of two different hardware accelerators on
the Xilinx Zynq SoC platform is documented. The hardware accelerators are
two different ASPs each designed for a different benchmark, each benchmark
have different requirements with regard to data throughput and type of calcula-
tions. The two benchmarks used is a Monte Carlo simulation of european stock
option prices and a Telco benchmark simulating a telephone billing application.
The hardware accelerators is implemented on the programmable logic of the

1

Xilinx Zynq SoC and controlled from an application running on the ARM pro-
cessor. Finally the execution time and power consumption of the two hardware
accelerators is presented and compared to a software execution of the same test-
cases. The software execution is performed on the ARM processor of the Xilinx
Zynq SoC. The results demonstrates that the hardware accelerators achieve a
much faster execution time than the software execution and that a reduction in
energy consumption is obtained.

2

2 Platform

For this project the Zedboard platform [10] was used. The main features of
this board, with regard to this project, is the Xilinx Zynq-7000 SoC xc7z020
and 512MB of DDR3 memory mounted on the board, as well as a current-sense
resistor on the power supply.

2.1 Xilinx Zynq

Zynq SoC is a product line from Xilinx where a processor and programmable
logic is implemented on the same silicon die. More specifically it is an ARM
Cortex-9 dual-core processor connected to various sized amounts of programmable
logic dependent on the chip model. In addition to the ARM Dual-core processor
there is also an ARM NEON unit, which is a general-purpose Single-Instruction-
Multiple-Data(SIMD) engine.

The combination of a general-purpose processor and programmable logic on
the same silicon die allows realization of hardware accelerators with at higher
data-throughput, as the communication bus between the two units is as short
as possible.

The three most common types of hardware accelerator architectures are
depicted in Figure 1. Each of these have their own pros and cons, with type
’C’ being the fastest architecture due to the communication bus between CPU
and accelerator being physically short. Reducing the length of a bus reduces
the capacitance of the bus, which in return makes it easier to obtain a higher
data throughput on the bus. A normal computer would allow implementation
of the type ’a’ architecture through the PCIe-bus while the Zynq SoC makes a
type ’c’ architecture implementation possible.

Figure 1: The three general hardware accelerator structures (source: [6])

The Zynq SoC system diagram is depicted in Figure 2. As it can be observed
the ARM Cortex-9 processor is connected to the programmable logic of the Zynq
SoC through AXI-interconnects and Extended Multi-use I/O (EMIO). EMIO
will not be used in this project, but is useful if one want to use some of the built-
in communication modules such as SPI, I2C etc. to communicate with external
hardware or hardware implemented in the programmable logic. AXI-interfaces
are described in section 2.2.

2.2 AXI interfaces

The Xilinx Vivado software package from Xilinx is the recommended develop-
ment environment when working with the Zynq SoCs. The Vivado environment
is highly geared towards using Intellectual Property (IP) and block-based design

3

Figure 2: System diagram of the Zynq SoC with the dual-core ARM processor
and the programmable logic (source: [8])

to increase productivity and lower development time. Vivado features several
necessary IP blocks and templates for Zynq- and FPGA-designs, several of these
blocks are related to or used for implementation of Xilinx’s AXI-bus and con-
figuration of the ARM processor.

Adding custom RTL to a project is done by creating IP-blocks from tem-
plates and using these in the block design of the project. As mentioned in
section 2.1 the Zynq SoC is internally using Xilinx’s AXI-bus to connect the
ARM processor with the programmable logic of the Zynq SoC, and as such it
is preferable to use the AXI-bus to connect the custom RTL to the processor
of the system using the AXI-bus. Other connection possibilities exists though,
these are however not as fast as the AXI-bus and it is thus up to the developer
to choose a suitable bus for communication between the RTL and the ARM
processor.

When creating a new IP peripheral in the Vivado design suite, the user have
the choice of adding AXI-connections of three types, Full, Lite and Stream,
these can be added either as a slave or master connections. When creating the
peripheral a template is given to the user with the basic control logic for the
added AXI-bus’. The three different AXI-bus types available to the peripheral
is shown in Figure 3.

In this project the AXI-lite and AXI-stream bus’ were used. The periph-

4

Figure 3: Types of AXI-interfaces available when creating a new peripheral in
Xilinx Vivado

eral template provided with the AXI-lite slave interface is a simple register
style interface, where the user upon creation of the peripheral can specify how
many registers should be available, limited to the range of 8-512. In a slave-
configuration of the AXI-lite interface, the registers in the template can be
written to and read from by both the master and slave, but reset and the clock
is provided by the master.

Only the connections of the template for the AXI-stream interface were used
in this project, the control logic was not necessary in the implementation, but
was provided upon generation of the peripheral with the AXI-stream interface.

2.3 ZedBoard power measurements

For power measurements a shunt-resistor, mounted on the power supply of the
ZedBoard, will be used. The shunt-resistor is a 10mΩ resistor in series with
the input supply line to the board, this resistor can be used to measure the
current draw of the whole board. The current draw can be used to calculate the
power consumption of the board using Ohm’s law and the supply voltage. As
the power supply voltage is 12V, the power consumption of the board can be
obtained by measuring the voltage over the current sense resistor, and inserting
the measured value into equation 1.

P =
Vmeasured

10mΩ
· 12V (1)

The shunt-resistor is connected in parallel with header ’J21’ allowing easy mea-
surement of the voltage over the resistor. The location of ’J21’ is shown in
Figure 4.

5

Figure 4: Location of ’J21’ on the Zedboard

6

3 Implementation

In this project two different hardware accelerators based on previous work [5]
were implemented, a Telco processor and a Monte Carlo processor. The main
difference between these two accelerators is that the Telco processor requires a
stream of data while the Monte Carlo processor simply need some initial values
and a go-signal. This requires two widely different implementations on the
Zynq platform, which will be shown in the following subsections. Furthermore
the configuration of the ARM processor is also explained, as the ARM-processor
was used for both the hardware and software execution of each benchmark.

Implementation of both processors was done in the Xilinx Vivado develop-
ment environment [7], as this is the intended development environment for the
Zynq SoC. The Vivado software package is shipped with several Intellectual
Property packages for development on different FPGAs, but most importantly
several IPs related to AXI-bus communication. In the implementation of both
hardware accelerators, AXI-related IP was used for connecting the CPU and
accelerator, as well as connecting the Telco processor with the external RAM.

The implementation of each of the hardware accelerators consists of a hard-
ware implementation of the specific ASP and an embedded software application
running on the ARM processor controlling the accelerator.

3.1 Monte Carlo processor

The Monte Carlo processor is in terms of interface with the ARM CPU the more
simple of the two ASPs to implement. This is due to the Monte Carlo processor
only requiring an initial set of parameters and a go-signal to be run, and thus
the Monte Carlo processor can be controlled though use of a relatively small set
of registers.

In the following subsections the hardware implementation and software ap-
plication development for the Monte Carlo accelerator will be described.

3.1.1 Hardware implementation

Implementation of the Monte Carlo processor was split up into three tasks;
packaging the Monte Carlo processor into an IP package with an AXI-interface,
configuration of the ARM processor system, and connection of the Monte Carlo
IP and the processor system.

Creating the Monte Carlo IP was done in the Vivado design suite, where
Vivado was used to generate a template for an AXI4-peripheral with an AXI-
lite interface operating in slave-mode. The AXI-lite interface was configured
to have 16 32-bit registers, this amount of registers is sufficient for control of
the Monte Carlo processor. After this the top-level module of the Monte Carlo
ASP was implemented into the peripheral, where the input clock to the ASP
was connected to the global clock of the programmable logic, the reset of the
ASP was connected to a register in the peripheral. The reset was connected to
a register instead of the global reset, such that the ASP can be reset without
resetting the entire programmable logic fabric on the Zynq SoC. The seeds for
the random generator in the Monte Carlo ASP was connected to a range of
registers. Then the output and status signals of the Monte Carlo ASP was
connected to a different set of registers, for the processor to read from, and the

7

logic controlling the registers was modified to update correctly when status and
result signals changed. Of the 16 32-bit registers, 9 was used, the allocation of
these are depicted in table 1.

Register Application
0 Control signals
1 Result out from ASP
2 Status signals from ASP
3 HI 32-bit of no. iterations
4 LO 32-bit of no. iterations
5 Seed 1 for random number generator
6 Seed 2 for random number generator
7 Seed 3 for random number generator
8 Seed 4 for random number generator

Table 1: Allocation of registers in the Monte Carlo IP

As it can be observed from table 1, the constants used for the simulation is not
included, only the seeds for the random generator is, there is however plenty of
registers available to re-wire the constants into registers.

Finally the Monte Carlo peripheral was synthesized and packaged into an
IP entity.

Configuration of the ARM processor system was done by creating a new
project in Vivado and adding an instance of the processor system IP to the
system design. The processor IP was then configured to have only the necessary
modules to connect with the generated Monte Carlo IP. This means that the
processor system was configured to have a single AXI-bus connection to the
programmable logic, and to provide a clock running at 50MHz (this was the
highest frequency achievable without timing errors) to the programmable logic.

After this the Monte Carlo IP was added to the design, and connected to
the processor system and some external pins on the Zynq SoC. An automatic
connection wizard of Vivado was run, this added a couple of AXI related IP
blocks to the system, blocks which synchronize the reset signals and connect
the IP AXI bus the AXI bus of the processor system. The external pins used
by the Monte Carlo IP are connected to the LEDs of the Zedboard and used as
status indicators. The system overview as seen in Vivado is depicted in Figure
5.

3.1.2 Software implementation

The software application developed for controlling the Monte Carlo processor
was based on work from [3], which shows how to write to and read from registers
in an AXI4-lite peripheral. The pseudo-code of the final application is shown in
Figure 6.

As it can be observed from the pesudo-code, the software application is
polling the status register of the Monte Carlo processor to determine whether
the calculations are done or not. Not shown in the pseudo-code is the functions
responsible for measuring execution time of the application. The time-taking
is however started just before the go-signal is given and stopped right after the
done-signal is received.

8

Figure 5: Top-level system overview of the Monte Carlo implementation on
Zynq as seen in Vivado

i n i t p l a t f o r m () ;
r e s e t h a r d w a r e a c c e l e r a t o r () ;
w r i t e v a l u e s t o c o n t r o l r e g i s t e r s () ;
s e n d g o s i g n a l () ;
whi l e (! done){

done = r e g i s t e r 2 ;
}
pr in t (r e s u l t) ;
c l eanup p la t fo rm () ;
r e turn 0 ;

Figure 6: Pseudo-code for running the Monte Carlo accelerator

3.2 Telco processor

As the Telco Processor in other works [5] is constrained by the data transfer
rate, the implementation of the Telco processor is focused on implementing
Direct Memory Access (DMA) in order to obtain a high data-transfer rate.

In the following subsections the hardware implementation and software ap-
plication development will be described.

3.2.1 Hardware implementation

The hardware implementation of the Telco processor was done in roughly four
stages; first the processor system was defined, afterwards DMA-transfer capabil-
ity was added, then the Telco processor was implemented into an IP peripheral,
finally the Telco IP was integrated into the system design.

First off a new project was created in Vivado, and a processor system IP
was added and configured. The processor system was configured to have a High

9

Performance AXI slave and a normal AXI master connection, and a 100MHz
clock for the programmable logic (the clock frequency was later reduced due to
unmet timing constraints).

When the processor had been defined, DMA capability was implemented as
described in [4], where data in the external memory simply, using DMA, is
looped back to the memory through a FIFO. A system diagram is shown in
Figure 7 and the Vivado design is shown in Figure 8.

Figure 7: System diagram of data loop-back on Zynq using DMA, source [4]

Figure 8: Vivado design of data loop-back on Zynq using DMA, source [4]

The Telco processor was implemented as a peripheral IP like the Monte Carlo
processor but with a different set of input and outputs. An AXI4 peripheral was
generated, but instead of a single AXI-lite interface, two AXI-stream interfaces
was added instead, one slave and one master. A top-level HDL file of the
peripheral was generated by Vivado along with the control logic of the two
interfaces. In this implementation the control logic was however bypassed, and
the Telco processor was implemented directly between the stream data input
and data output of the peripheral.

This implementation scheme circumvent the need to edit and/or create con-
trol logic in the IP and lets the AXI IP on either end of the Telco IP block
control the transfer.

The AXI control signals were wired directly from input to output of the
peripheral. The clock and reset signal to the Telco processor was wired to the
clock and reset signal of the AXI slave interface. Finally the clock enable signal
to the Telco processor was wired to a logic ’AND’ of the valid signal from the

10

AXI master interface and the ready signal from the AXI slave interface. This
configuration is depicted in Figure 9.

Figure 9: Implementation of Telco processor in an AXI4-peripheral IP

The logical ”AND” of the valid and ready signal is used due to how the
AXI-stream bus works. It is not enough to use just a single one of the signals
as the data on the data line only gets updated when both signals are valid. If
one were to use the valid signal only, one might process the same data twice,
this will introduce an error in the final result of the Telco processor as there is
an accumulator in the last stages of the pipeline. The waveforms of AXI-stream
signals are illustrated in Figure 10, where it can be observed how data on the
TDATA line only change on rising edge of the clock when both valid and ready
are asserted.

Figure 10: Waveforms of AXI-stream signals during a transfer, source [9]

Because the Telco ASP is pipelined, the data being processed will be delayed
an amount of transfers equal to the depth of the pipeline. The pipeline depth
of the Telco ASP is 11, which results in that the last 11 data instances of a data
set never would be fully processed nor transmitted back to the system memory,
if the application running does not take this into account. This problem in
the implementation is handled by software through the use of zero-padding of
the data-set, more precisely zero-padding by 11 instances. Finally, the Telco
peripheral was synthesized and packaged into an IP instance for use in the
top-level design of the project.

In the final stage of implementing the Telco processor, the Telco IP was
inserted on the output of the FIFO instead of replacing the FIFO as originally
intended with the design from [4]. This will create a buffer for the system,

11

allowing continued transmission of data even when either the transfer to or
from the external memory is not ready, but only as long it is only one of the
instances being occupied and the FIFO not being full. The depth of the FIFO
was set to 1024. The final design in Vivado with the Telco IP between the FIFO
and DMA unit is shown in Figure 11.

Figure 11: System design of the Telco hardware accelerator on Zynq, as seen in
Vivado

As it can be observed from the final system design in Figure 11, DMA
capability introduces more complexity to the system design, as a DMA controller
and a memory interconnect must be included in the design, Xilinx does however
provide these blocks for easier development of DMA capable systems.

3.2.2 Software implementation

The software used to control the Telco processor was developed using the work
in [9]. This work provides a sample application which uses DMA to send and
receive data. A few functions were slightly modified and a few lines of code were
added to the application, in order to increase the amount of transactions and
to modify what data was sent, as well as addition of the time-taking code. The
pesudo-code for the final application is depicted in 12.

The timer measuring the processing time of the Telco accelerator is begun
before the initialization of the platform and the DMA, and ended after all the
data have been received. The test of the Telco processor was done by generation
of test-data instead of reading test-data from a file. The time-taking includes
the generation of test-data to compensate for the lack of reading test-data, this
design choice will be explained further in the discussion.

3.3 Hardware for software execution

In order to quantify the performance of the Telco and Monte Carlo processors,
a software execution was to be made as well, even though no hardware was

12

i n i t p l a t f o r m () ;
init DMA () ;
b u i l d t x d a t a b u f f e r () ;
start DMA () ;
whi l e (! tx done){

tx done = s t a t u s () ;
}
r e c e i v e d a t a t o d a t a b u f f e r () ;
whi l e (! rx done){

rx done = s t a t u s () ;
}
c h e c k r e s u l t () ;
c l eanup p la t fo rm () ;
r e turn 0 ;

Figure 12: Pseudo-code for running the Telco accelerator

necessary to do this the processor system still needed to be defined. This was
done in Vivado as well, where the processor system IP was added to a design,
and an automatic connection wizard was run to connect the external reset, clock
and memory signals to the correct pins on the Zynq SoC. The final design as
seen in Vivado is depicted in Figure 13.

Figure 13: System design of a pure processor system (no programmable logic),
as seen in Vivado

13

4 Results

For each of the benchmarks the accelerator was compared with a software exe-
cution on the ARM processor on the Zynq SoC. On all of the runs only a single
core of the dual-core processor was utilized. The specifications for the processor
are listed in table 2.

Name Value
CPU frequency 666.667MHz
No. of cores used 1 (core 0)
Memory 512MB DDR3

Table 2: ARM processor specifications for every implementation

Common for all of the benchmarks is that only the execution time was
measured, the time and energy used to program the Zynq SoC is not included
in the measurements.

In the following subsections the results for the two hardware accelerators
will be listed and explained.

4.1 Monte Carlo benchmark

In this subsection the results from the implementation of the Monte Carlo pro-
cessor will be presented and compared to the results from the software driven
benchmark.

4.1.1 Implementation

The Monte Carlo processor was implemented to run on the programmable logic
at a frequency of 50MHz, in order not to violate timing constraints. The im-
plementation utilized only a few resources on the programmable logic available,
the amount of utilized resources are listed in table 3.

Resource Utilized units Utilization [%]
FF 3043 2.85%
LUT 3436 6.45%
Memory LUT 89 0.51%
I/O 8 4.00%
DSP48 8 3.63%
BUFG 2 6.25%

Table 3: Monte Carlo processor programmable logic resource utilization

4.1.2 Functionality

The Monte Carlo processor was successfully implemented and performed the
number of iterations that it was instructed to.

There is however a minor flaw in the developed software. The flaw is that
the go-signal for the Monte Carlo processor is issued before the time-taking
procedure is begun, resulting in that a number of iterations are run without

14

being timed. The effect of this error is that in order to measure the execution
time, a very large number of iterations have to be performed, such that the
computation time surpasses the time it takes for the software to reach the point
where the time-taking procedure is begun.

This way of measuring execution time may appear to be inaccurate, this was
accounted for by taking several measurements of the same number of iterations
and observing how much the measurements deviated, the deviation from run to
run was 2, 200ns at most.

4.1.3 Execution time

The total execution time and execution time per element for different amounts
of iterations is listed in table 4.

Platform No. iterations ttot[s] telement[ns]

ASP
< 1.68E+07 0.00 0.00

8.05E+08 7.10 8.81
1.61E+08 23.20 14.40
2.68E+08 44.68 16.60
4.03E+08 71.52 17.80

SW
10,000 0.0021 209.20

100,000 0.0216 216.20
1,000,000 0.2160 216.00

10,000,000 2.1600 216.00

Table 4: Execution time for different number of iterations on the Monte Carlo
processor and the software implementation

As it can be observed in table 4 the execution time for anything less than
16 million iterations on the hardware accelerator yields an execution time of 0s.
The actual time measured was ∼ 650ns regardless of whether it was for 10 or
10,000,000 iterations. The 650ns is way too little for the Monte Carlo processor
being able to compute 1.68 million iterations, as the Monte Carlo processor has a
clock-frequency of 50MHz and should need 1.68 million clock cycles to compute
all the iterations (plus a few clock cycles to fill up and empty the pipeline). 16.8
million iterations should yield a theoretical minimal execution time of:

16, 800, 000

50MHz
= 0.336s

The reason for these numbers is that the go-signal is issued before the ex-
ecution time measurements begin. The fact that the go-signal is issued before
measurements begin was deducted from the plot in Figure 14, where the exe-
cution time for small numbers of iterations is near zero; At larger numbers of
iterations the execution time scale as expected, e.g. linear.

15

Figure 14: Execution time of the Hardware accelerated Monte Carlo benchmark
as a function of no. of iterations

The expected execution time of the Monte Carlo processor was:

texec = tinit + telement · nelements (2)

Where:

telement = 1/frequency

.
The first many iterations is completed before time measurements is begun and
is thus not included in the measurements. Because the execution time seem
to scale correctly at a number of iterations larger than 600 million, it is pos-
sible to approximate the execution time by using the difference between two
measurements.
Using the difference between two measurements of different amounts of itera-
tions provide the expected increase in execution time. As an example the num-
ber of iterations and execution time of two executions as well as the difference
between them is listed in table 5.

No. of iterations Execution time
8.05 · 108 7.10s
1.07 · 109 12.46s

Difference 2.65 · 108 5.36s

Table 5: Execution time for 2.65 · 108 iterations in the HW driven Monte Carlo
benchmark as a function of the difference between two different benchmark runs.

The time per iteration for the two individual executions would result in that
the Monte Carlo processor ran faster than the clock it was provided with, while
the time per iteration from the difference in no. of iterations and execution
time, results in a frequency a little less than the one provided to the Monte

16

Carlo processor. More precisely the frequency of iterations when using the
difference between two simulations is:

fiterations = 1/titeration = 1/20.23ns = 49.43MHz

49.43MHz is a little less than the frequency of the clock provided to the
Monte Carlo processor, the deviation from the clock frequency is low enough
to be due to rounding of measurements. Using 1/49.43MHz as the execution
time per element, the achievable speed-up for the Monte Carlo processor can be
approximated to be:

Speed− up =
216ns

1
49.43MHz

=
216.0ns

20.23ns
= 10.68

4.1.4 Energy consumption

Power consumption of the Zedboard was measured during the hardware accel-
erated and software driven Monte Carlo benchmarks. The measured power con-
sumption and difference between the hardware accelerated and software driven
benchmarks is listed in table 6, the power measurement for the longest runs
were used to compute the average power consumption.

PASP [W] PSW [W] Pdiff [W] Pratio

3.819 3.784 0.035 1.009

Table 6: Instantaneous power consumption for the Monte Carlo ASP and soft-
ware driven test, based on the average power consumption for the longest run
of each implementation

As it can be observed from the last column of table 6 the difference in power
consumption is very low, thus the difference in energy consumption rely heavily
on the execution time for the Monte Carlo benchmark. Using the time per
iteration for the SW and HW implementation of the Monte Carlo benchmark
allow comparison of energy consumption. The energy per iteration is given by
the equation:

Eiteration = P · titeration
Energy usage per iteration for the SW and HW implementation is listed in

table 7, along with the difference and ratio of energy consumption between the
two implementations.

Eiteration,ASP [nJ] Eiteration,SW [nJ] Ediff [nJ] Eratio

77.26 817.34 740.08 10.58

Table 7: Energy per element for the Monte Carlo ASP and software driven test

As expected the ratio in energy consumption is very close to the ratio for
execution time. Slightly lower due to the slightly higher power consumption.

17

4.2 Telco benchmark

The following subsections will present and explain the results from the hardware
implementation of the Telco processor, and the measurements of execution time
and power consumption of the Telco ASP and the software execution.

4.2.1 Implementation

The Telco processor was implemented to run on the programmable logic at a
frequency of 58.824MHz as higher frequencies led to violation of timing con-
straints. The Telco processor utilized only a fraction of the available resources
on the programmable logic, the amount of utilized resources are listed in table
8.

Resource Utilization Utilization [%]
FF 5953.0 5.59%
LUT 5916.0 11.12%
Memory LUT 242.0 1.39%
I/O 4.0 2.00%
DSP48 3.5 2.50%
BUFG 1.0 3.12%

Table 8: Telco processor utilization of programmable logic resources

4.2.2 Functionality

The implementation of the Telco processor was working as intended with correct
calculations. As expected the returned results was in a delayed fashion, such
that the first 11 results was zeros due to the empty pipeline, this was expected
and thus compensated for by letting the Telco processor process 11 additional
calls of zero call length.

4.2.3 Execution time

The execution time for the Telco processor and the software driven test is listed
in table 9 for different amounts of calls.

No. of calls Telco ASP Software Speed-up
10,000 0.00058 s 0.61 s ∼ 1,060

100,000 0.00411 s 6.15 s ∼ 1,495
1,000,000 0.03448 s 61.39 s ∼ 1,555

Table 9: Execution time for the Telco benchmark for both the Telco ASP and
software driven test

As listed in table 9, the Telco ASP achieve a very significant speed-up as it
in all three test-cases is more than a thousand times faster than the software-
driven benchmark. The execution time per element on the ASP is depicted as
a plot in Figure 15, with execution time per element as a function of number of
calls.

18

Figure 15: Execution time per phone call as a function of total no. of phone
calls, on the Telco processor.

The plot reveals a decrease in execution time per phone call on the Telco pro-
cessor, when processing larger amounts of phone calls. The decrease is however
at a decreasing rate, indicative of that there is a limit for minimum achievable
execution time per phone call or the existence of a point of diminishing returns.

From the execution time per element the frequency of processed elements
per second can be derived and compared to the frequency of the Telco processor,
this will indicate the how much of the time is spent on calculations 3.

fcalculations =
1

telement
(3)

The resulting frequencies of calculations are listed in table 10.

No. of calls fcalc[MHz] % of fPL

10,000 17.27 29.36%
100,000 24.32 41.34%

1,000,000 25.33 43.06%

Table 10: Rate of elements processed per second in the Telco processor.

From table 10 it can be observed that the Telco-pipeline is active for less
than half of the clock-cycles during computing, which is indicative of that the
Telco accelerator is limited by the DMA, external memory or the ARM processor
system.

4.2.4 Energy consumption

Power consumption of the Zedboard was measured while the Telco benchmarks
ran in order to determine the amount of energy used by the Telco ASP and the

19

ARM-processor. The measured power and energy consumptions of the Telco
ASP and the software run benchmark is listed in table 11.

No. of calls PASP [W] PSW [W] Pdiff [W] Pratio

10,000 3.719 3.778 0.059 1.016
100,000 3.716 3.779 0.063 1.017

1,000,000 3.723 3.781 0.058 1.016

Table 11: Power consumption for both the Telco ASP and software driven test

The last column of the table shows the difference in average power con-
sumption of the ASP and CPU driven benchmarks. These numbers indicate
that there is a small, but rather consistent, difference in power consumption
between running the benchmark on the ASP and the CPU. From the execu-
tion time and power consumption, the energy usage by the benchmarks can be
derived, energy consumption for each phone call processed is listed in table 12.

No. of calls EASPelement
[µJ] ESWelement

[µJ] Ratio
10,000 0.215 231.48 1076.65

100,000 0.153 232.41 1519.02
1,000,000 0.147 232.08 1578.78

Table 12: Energy usage per element processed in the Telco benchmark for both
the Telco ASP and software driven test

The energy usage ratio between the ASP and CPU is highly correlated to
the speed-up gained by the ASP. This is also shown by the plot in Figure 16.

Figure 16: Correlation between Energy usage ratio and speed-up of the Telco
ASP

20

5 Discussion

5.1 Power measurements

In order to measure the energy usage of the different implementations, the
power consumption of the Zynq SoC was to be measured during the runs, this
is however not possible without modifying the ZedBoard, and thus the measured
power consumption is of the entire board. This introduces a couple of problems,
one being that the measurements are more receptive to noise, a second problem
is that the difference in power consumption between implementations is diffi-
cult to asses, as the contribution from peripherals to the power consumption is
unknown.

One known error in the measurements from the implementations in this
work, is that some of the user-controllable LEDs on the board was used in the
hardware implementations but not in the software implementations, giving a
difference in power consumption, this difference is expected to be in the range
of tens of mW.

Another factor affecting the power consumption measurements is the multi-
meter used to measure the current draw of the ZedBoard. The used multimeter
was an Agilent 34461A. This multimeter is able to filter the noise if the sampling
rate is one Power Line Cycle (50Hz) or less, but as the execution time of the
benchmarks are rather small a higher sampling rate was used to measure the
current draw, resulting in that the measurements are affected by noise. The
interpretation of a measurement is depicted in Figure 17, where the noise can
be observed as well.

21

Figure 17: Interpretation of ZedBoard power consumption during SW bench-
mark, 1. Zynq SoC is idling, 2. SoC is programmed with executable for the
CPU, 3. execution of benchmark, 4. card returns to idling

Energy usage was calculated by taking the mean power consumption dur-
ing the execution of the benchmarks and multiplying it by the execution time
measured by the software application, as the software application has a higher
resolution in time(nanoseconds opposed to milliseconds).

5.2 Monte Carlo processor

The Monte Carlo processor was implemented successfully on the Zynq platform
and performed the Monte Carlo simulations as instructed. There was a minor
flaw in the software, which had an effect on the measurements of the execu-
tion time. The go-signal for the Monte Carlo processor was issued before the
time-taking procedure is begun, resulting in that the measurements of execution
time does not directly represent the actual execution time. Taking the differ-
ence between two sets of measurements of sufficient size allows determination
of execution time for each element.

The Monte Carlo processor had a computation time per iteration that was
10.68 times less than that of the software driven benchmark. The energy con-
sumption per iteration with the Monte Carlo processor was 10.58 times less than
that of the SW driven benchmark. The energy consumption ratio is highly cor-
related to the execution time, as the difference in power consumption between
the HW and SW implementation was very small.

Worth noting is that only one of the cores on the ARM processor was used
for calculations and the SIMD floating-point NEON unit of the ARM CPU was
not utilized, therefore the achievable speed-up with the single core Monte Carlo

22

processor may be much smaller, or non-existent. There is however plenty of
space on the Zynq PL to implement a multi-core Monte Carlo processor; A
multi-core Monte Carlo hardware accelerator may be able to sustain a speed-up
against the NEON module of the ARM processor.

As the power consumption of the Monte Carlo processor and the software
implementation was very small (0.9%), the difference in energy consumption is
highly dependent on the execution time of the benchmarks. This was confirmed
by the results, and the energy consumption ratio only deviated a very little from
the execution time ratio.

5.3 Telco processor

The Telco processor was successfully implemented on the Zynq platform and
worked as intended on the hardware side, but left room for a few improvements.
The constants used in the Telco processor were fixed in the implementation
done in this work, but it would be rather simple to make a new implementation
where an AXI-lite slave connection on the Telco IP peripheral would be used
to control the processor. The software did not achieve the desired functionality,
as the intention was that the calls to be processed by the processor should be
read from a file and the cost of the calls written back, this was not achieved,
instead a set of test-data was generated and loaded into the memory and read
back to the memory. This was however the solution for both the Telco processor
driven and software driven benchmark, and therefore the Telco processor and
software executed benchmarks can be compared to each other, as the reading
and writing of files must be expected to be similar in both instances.

The execution time ratio between the ARM-processor and the Telco-processor
was quite substantial, as the Telco processor achieved a speed-up of a 1,000 to
1,550, dependent on the amount of phone calls processed.

Whether the full data-bandwidth between memory, CPU and PL was fully
utilized is unknown as the bandwidth was not measured, but results were in-
dicative of that either the DMA, external memory or ARM CPU was limiting
the performance of the Telco accelerator.

The power consumption of the Zedboard during the Telco processor driven
and software driven benchmarks were really close. The lowest power consump-
tion was achieved with the Telco processor implemented, the difference was
however in the range of a mere 0.058− 0.063W or 1.6− 1.7%. It must however
again be remarked that the power measurements were of the entire Zedboard
and not only the Zynq chip, so as mentioned a rather large bias may be present.

The difference in energy usage between the Telco processor and software
driven benchmarks is highly correlated to the execution time, due to the rather
small difference in power consumption. The result of this is that the Telco
processor is between 1, 076−1, 578 times more energy efficient than the software
execution for the tested amounts of phone calls.

An important thing to note is that only one core of the ARM-processor was
utilized in the measurements, thus the speed-up may be closer to half of the
measured speed-up, as it is very likely that the processor is limited by it is
processing power and not by bandwidth to the memory. The impact on power
consumption of using both cores of the ARM processor is unknown, but it is
certain that the power consumption of the entire board won’t be doubled, due
to the bias in present measurements.

23

6 Conclusion

In this work two different hardware accelerators were to be implemented on a
Zynq SoC using a ZedBoard as the platform. The execution time and power
consumption of the two hardware accelerators were to be measured and com-
pared to a software execution performing the same task, in order to quantify
the performance of the hardware accelerators.

The implementation of the Telco and Monte Carlo processors were both
successful, and they performed calculations as instructed.

The Telco processor implementation was based on previous work [5], and
only few modifications were made for the processor to work with the Zynq SoC
and the Xilinx Vivado development environment.

The comparison between the Telco processor and ARM CPU, showed that
the Telco processor was much faster with regard to execution time as it achieved
a speed-up of up to 1550. The speed-up in execution time also made the Telco
processor much more energy efficient as the difference in power consumption
between the Telco processor and ARM CPU was very small. It should however
be noted that the power measurements are biased and that the Telco processor
may not be 1580 times as energy efficient as the ARM CPU, which was the
highest energy per element ratio achieved for the Telco processor.

The achieved step-up in performance of the Telco processor compared to
the CPU is much larger in this work than in previous work with the Telco
processor [5], but the platform is also different and the programming time of
the FPGA was not included in the measurements of this work. Which opens
up for some topics that was not investigated in this work, it would for example
be interesting to find out what the restricting factor is on the Zynq platform,
as the hardware accelerator structure is different than the one in [5], where
the bus data-bandwidth between CPU and RAM was the restricting factor.
Furthermore, it would be interesting to measure the time it takes to program
the FPGA, as this was a very restricting factor for the achievable speed-up in
[5].

The Telco processor implementation in this work have some room for im-
provement, as the call-rates in the used implementation is fixed, and a real
application would like to be able to change these rates using the software in-
stead of compiling a new bit-stream. Also the software application responsible
for running the Telco processor could be improved, right now the data sent to
the Telco processor is generated by the application, the data should be read from
a file in order to be usable in a real-life application. The current implementation
is however good enough for benchmarking the system performance.

The implementation of the Monte-Carlo processor was successful as the pro-
cessor ran as intended. The measurements in execution time revealed a minor
flaw in the software controlling the processor, as the go-signal was issued before
the time measurements were begun. However, taking the difference in itera-
tions and execution time between two runs of sufficient size on the Monte Carlo
processor, revealed that the processor ran the iterations at a rate close to the
expected frequency.

The point with the Monte Carlo benchmark is however to test the floating-
point performance of a system, and as the NEON unit of the ARM processor
was not utilized for the benchmarking, the comparison of the speed of the Monte
Carlo processor and the speed of the software execution of the benchmark in

24

this work does not represent the full capability of the ARM CPU.
From the results achieved in this work it can be concluded that, on the

Zynq platform, BCD applications can benefit extensively from being run on
a hardware accelerator, both in terms of execution time and energy usage per
calculation, even though the power consumption was not lowered. For the Monte
Carlo processor it is limited what can be concluded as NEON unit in the ARM
CPU was not utilized. With the implementation in this work the single core
Monte Carlo processor out-performs a single core on the ARM CPU by a factor
of 10.6.

In future work the performance of the Zynq SoC and ZedBoard should be
investigated in depth, in order to determine the data bandwidth between the
ARM processor, external memory (RAM) and the programmable logic, as well
as the dual-core and NEON unit performance. This should make it possible to
determine how well the hardware accelerators utilizes the available resources.

25

Bibliography

[1] Adrian Bot, Sergiu Pogacian, and Bogdan Belean. Fpga based hardware
architectures for high performance computing applications. Proceedings -
2012 5th Romania Tier 2 Federation Grid, Cloud and High Performance
Computing Science, RQ-LCG 2012, pages 11–14, 2012.

[2] Altera Corporation. Accelerating high-performance computing with fpgas.
N/A, pages 1–8, 2007.

[3] Jan Gray. How to design and access a memory-mapped device in pro-
grammable logic from linaro ubuntu linux on xilinx zynq on the zedboard,
without writing a device driver – part one. http://fpga.org/2013/05/

28/how-to-design-and-access-a-memory-mapped-device-part-one/,
2013.

[4] Jeff Johnson. Using the axi dma in vivado. http://www.fpgadeveloper.

com/2014/08/using-the-axi-dma-in-vivado.html. [Online; accessed
06-November-2015].

[5] Jakob Kenn Toft and Alberto Nannarelli. Energy efficient fpga based hard-
ware accelerators for financial applications. Proceedings of 32nd Norchip
Conference, 2014.

[6] Sanjay Patel and Wen Mei W. Hwu. Accelerator architectures. IEEE
Micro, 28(4):4–12, 2008.

[7] Xilinx. Xilinx vivado Product page. http://www.xilinx.com/products/

design-tools/vivado.html. [Online; accessed 03-November-2015].

[8] Xilinx. Xilinx Zynq SoC. http://www.xilinx.com/publications/prod_
mktg/zynq-7000-generation-ahead-backgrounder.pdf. [Online; ac-
cessed 03-November-2015].

[9] Xilinx. Ug761 - axi reference guide. PDF, 2011.

[10] ZedBoard. Zedboard Product page. http://zedboard.org/product/

zedboard. [Online; accessed 03-November-2015].

26

