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ABSTRACT 

 

Precipitation constitutes a major contribution to the flow in urban storm- and wastewater systems. 

Forecasts of the anticipated runoff flows, created from radar extrapolation and/or numerical weather 

predictions, can potentially be used to optimize operation in both wet and dry weather periods. 

However, flow forecasts are inevitably uncertain and their use will ultimately require a trade-off 

between the value of knowing what will happen in the future and the probability and consequence 

of being wrong. 
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In this study we examine how ensemble forecasts from the HIRLAM-DMI-S05 numerical weather 

prediction (NWP) model subject to three different ensemble post-processing approaches can be 

used to forecast flow exceedance in a combined sewer for a wide range of ratios between the 

probability of detection (POD) and the probability of false detection (POFD). We use a 

hydrological rainfall-runoff model to transform the forecasted rainfall into forecasted flow series 

and evaluate three different approaches to establishing the relative operating characteristics (ROC) 

diagram of the forecast, which is a plot of POD against POFD for each fraction of concordant 

ensemble members and can be used to select the weight of evidence that matches the desired trade-

off between POD and POFD. In the first approach, the rainfall input to the model is calculated for 

each of 25 ensemble members as a weighted average of rainfall from the NWP cells over the 

catchment where the weights are proportional to the areal intersection between the catchment and 

the NWP cells. In the second approach, a total of 2825 flow ensembles are generated using rainfall 

input from the neighbouring NWP cells up to approximately 6 cells in all directions from the 

catchment. In the third approach, the first approach is extended spatially by successively increasing 

the area covered and for each spatial increase and each time step selecting only the cell with the 

highest intensity resulting in a total of 175 ensemble members. While the first and second 

approaches have the disadvantage of not covering the full range of the ROC diagram and being 

computationally heavy, respectively, the third approach leads to both a broad coverage of the ROC 

diagram range at a relatively low computational cost. A broad coverage of the ROC diagram offers 

a larger selection of prediction skill to choose from to best match to the prediction purpose. 

 

The study distinguishes itself from earlier research in being the first application to urban hydrology, 

with fast runoff and small catchments that are highly sensitive to local extremes. Furthermore, no 

earlier reference has been found on the highly efficient third approach using only neighbouring cells 
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with the highest threat to expand the range of the ROC diagram. This study provides an efficient 

and robust approach to using ensemble rainfall forecasts affected by bias and misplacement errors 

for predicting flow threshold exceedance in urban drainage systems. 

KEYWORDS 

Urban hydrology; Numerical Weather Prediction (NWP); Ensemble Prediction System (EPS); 

Probability of Detection (POD); Probability of False Detection (POFD); Relative operating 

characteristic (ROC) 

1 INTRODUCTION 

Knowledge about the future generally allows for better decisions in the present, even when the 

knowledge about the future is uncertain. Weather forecasts are e.g. increasingly used as input to 

hydrological hazard warning systems (e.g.(Cloke and Pappenberger, 2009; Demeritt et al., 2013)). 

Within urban hydrology, rainfall forecasts are used as input to hydrologic and hydrodynamic 

models to predict combined sewer overflows (CSOs) and flooding, and they are used to trigger 

warnings and to optimize urban stormwater and wastewater systems in real time. Radar 

extrapolation is e.g. often used to forecast flow (Rouault et al. 2008; Thorndahl & Rasmussen 2013; 

Vezzaro & Grum 2014). However, radar forecast are limited by their prediction horizon of 1 to 3 

hours and by the need to dynamically calibrate the radar images to ground observations from rain 

gauges (Thorndahl and Rasmussen, 2012). Real time control of urban drainage systems can 

potentially benefit from longer lead times, e.g. to improve actions towards reducing combined 

sewer overflow pollution for combined rain events where the optimal management of an event 

depends on antecedent event characteristics (Courdent et al., 2015), to prepare wastewater treatment 

plants (WWTPs) for wet-weather conditions (Thorndahl et al. (2013)), and to minimise the energy 

consumption of WWTPs based on the Smart-Grid control concept (Bjerg et al., 2015). The latter 
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utilises the storage volume in the drainage system upstream the WWTP to detain water during hours 

with high electricity prices and releases the water when the price is low, which is the case when e.g. 

wind or solar energy is available. Smart-grid control is, like e.g. initiation of maintenance and 

rehabilitation works, only feasible when the system is not under hydrologic stress, i.e. when the 

discharge is close to the dry weather flow or at least below a defined threshold. The emptying time 

of urban drainage systems in large cities can easily be in the order of 1-2 days, and therefore there is 

a need to look for other tools to supplement the radar extrapolation forecasts. Accurate and precise 

rainfall forecasts several days ahead would be ideal, but distinguishing between high-flow and low-

flow domains in selected locations of an urban drainage system is actually sufficient information for 

some of the above mentioned purposes. This means that weather forecasts may be useful even when 

associated with a substantial uncertainty. 

Numerical Weather Prediction (NWP) models can be used to increase the prediction horizon by 

generating Quantitative Precipitation Forecasts (QPF) and this potential has been studied in the 

context of urban hydrology by several authors. Thorndahl et al. (2013) compared NWP and radar 

extrapolation models for urban runoff forecasting and showed that the weather model performed 

better predicting the rainfall with lead times from 6 to 12 h than with shorter lead times, because of 

inadequate initial conditions. Liguori et al. (2012) merged radar extrapolation data and high-

resolution NWP forecast data for urban runoff flow prediction purposes (6 hours lead time) and 

concluded that the overall performance of their rainfall forecasting system decreased with 

increasing rainfall intensities. NWPs have also been used for forecasting/prediction in other fields: 

from frost prediction used for optimising road salting and prediction of power production from wind 

and solar energy (Bacher et al., 2009; Giebel et al., 2005) to streamflow forecasting (Cuo et al. 

2011; Shrestha et al. 2013), reservoir inflow prediction (Collischonn et al., 2007) and flood 

forecasting (Damrath et al., 2000). 
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The development of high-resolution limited area NWP models have led to improved and more 

realistic-appearing forecasts, describing mesoscale atmospheric processes including convective rain 

in an explicit and more detailed way (Sun et al., 2014). This does however not necessarily improve 

the forecast grid point accuracy, as inevitable errors in timing and position of rain cells are 

amplified with the increase in spatial resolution. (Walser et al., 2004) demonstrated that the 

uncertainties in Limited Area Model (LAM) precipitation forecasts increase rapidly with decreasing 

scale, and that traditional skills scores based on point-to-point comparison at fixed locations or grid 

points therefore are profoundly degraded by small errors in timing and spatial position (Mass et al., 

2002). If the magnitude of a weather event is correctly forecasted but slightly displaced in space 

then the model will be penalized twice: once for missing the observations and once again for giving 

a false alarm; this is known as the ‘‘double penalty’’ (Michaelides, 2008). Hence the value of using 

a finer spatial resolution may be underestimated when using traditional verification procedures, and 

two overall categories of new performance evaluation methods have therefore been developed: 

filtering methods and displacement methods (Gilleland et al., 2009). 

The fuzzy verification, also known as the neighbourhood approach developed by (Ebert, 2008), is 

an example of a filtering method. ‘Fuzzy’ verification techniques require that the forecasts are in 

approximate agreement with the observations, meaning that forecasts are close in space, time and 

intensity. These techniques typically measure the strength of the agreement as the closeness 

requirements are varied. Displacement methods such as the object-based approach developed by 

(Johnson and Wang, 2012) identify and compare features of weather events.  

NWP models are highly nonlinear and chaotic and a tiny difference in initial states may thus be 

amplified into large differences in future states. Hence without notifying the uncertainty of NWP 

forecasts they may be considered incomplete, especially regarding precipitation which is one of the 
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most difficult variables to forecast on an urban scale due to its large variability in space, time and 

intensity (Du, 2007).  

Forecast uncertainty is commonly described by meteorologist using Ensemble Prediction Systems 

(EPS) that are based on a set of deterministic forecasts. Multiple simulations are run with different 

initial conditions and/or numerical representations of the atmosphere, thereby addressing the two 

major sources of weather forecast uncertainty (Du, 2007; Gneiting and Raftery, 2005). In 

comparison, in Climatology, major sources of forecast uncertainty of Global Climate Model (GCM) 

are model structure, emission scenario and natural uncertainty (Woldemeskel et al., 2012), and 

GCM EPS are therefore generated based on those parameters. 

The motivation of EPS is to use the ensemble spread to characterize the forecast uncertainty, but 

EPS are generally unable to incorporate all sources of uncertainty. They are generally under 

dispersive and exhibit systemic biases and therefore EPS do not produce Probabilistic Quantitative 

Precipitation Forecast (PQPF) directly. Ensemble post-processing methods (sometimes called pre-

processing from a hydrological modelling point of view) are necessary to obtain reliable 

probabilistic forecast as explained in (WWRP/WGNE 2009), and an overview of ensemble post-

processing techniques was given by (Wilks, 2011). The neighbourhood method (Theis et al., 2005) 

and the time-lagged approach (Mittermaier, 2007) were combined by (Ben Bouallègue et al., 2013). 

Ensemble Model Output Statistics (EMOS) were further developed by (Scheuerer, 2014) using a 

distribution to characterize the uncertainty and similar approaches have also been developed by 

(Bentzien and Friederichs, 2012; Kleiber et al., 2011; Sloughter et al., 2007). 

It is common meteorological practice to analyse forecasts based on thresholds of precipitation (e.g. 

exceedance of 1 mm/24 h). However, from a hydrological viewpoint these thresholds are rather 

arbitrary. To distinguishing high-flow and low-flow domains as mentioned above, a hydrologically 
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focused evaluation based on coupling of meteorological and hydrological forecast models in a 

cascade as suggested by (Pappenberger et al., 2008) will give more useful information. The 

prediction skills can then be assessed based on the modelled catchment discharge, which will 

however be affected both by the hydrological model uncertainty and the weather forecast 

uncertainty. 

In this article we evaluate the feasibility of using forecast data from a NWP EPS in combination 

with different ensemble post-processing approaches and a simple hydrological model to distinguish 

high-flow and low-flow domains in an urban drainage system up to two days ahead. Particular focus 

is in quantifying the relative operating characteristic (ROC) diagram, which illustrates the 

probability of detection (POD) against the probability of false detection (POFD) of high-flow 

events for different fractions of concordant ensemble members.  In section 2 we describe the 

coupled meteorological and hydrological model used, starting with the NWP EPS data, then the 

study case and the hydrological model developed for the purpose of this study. The performance 

evaluation methods based on contingency tables and ROC diagrams are explained in section 3 

together with the NWP EPS post-processing approaches. Section 4 finally presents and discusses 

the results and section 5 contains the conclusions. 

2. MATERIAL: NWP DATA AND HYDROLOGICAL MODEL  

As underlined by (Shrestha et al., 2013) the evaluation of NWP model output for streamflow 

forecasting purposes should be done with a hydrological perspective, and we thus wish to do the 

same for urban drainage flow forecasting. Hence as suggested by (Pappenberger et al., 2008), we 

based the forecast evaluation on a coupled meteorological and hydrological model, using discharge 

predictions and discharge observations (rather than precipitation forecasts and observations). The 

methodology respects the importance of dominant hydrological processes and the non-linear error 
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transformation by the hydrological model. It should be noted that this approach has two main 

drawbacks: (i) the hydrological model is often calibrated based on rain gauge observation data 

which have a different error structure than that of the forecasts of the meteorological model, and (ii) 

the uncertainty of the hydrological model itself has to be acknowledged in this model cascade. 

This section describes the Numerical Weather Prediction (NWP) model ensemble rainfall forecast 

data used. Then the urban catchment used for the study case is presented and the hydrological 

model is described. Finally outputs from the coupled model are presented. 

2.1. The HIRLAM-DMI-S05 ensemble prediction system (EPS) 

The international research program HIRLAM (HIgh Resolution Limited Area Model) is a research 

cooperation of European meteorological institutes, amongst those the Danish Meteorological 

Institute (DMI). The aim of this consortium is to develop and maintain up-to-date NWP systems for 

1- and 2-day forecasts within a limited area. The HIRLAM model is a hydrostatic grid-point model 

for short-range weather forecasting at synoptic scale (5 - 15 km horizontal resolution). 

This study uses the HIRLAM Ensemble Prediction System (EPS) run by DMI: DMI-HIRLAM-S05. 

This system covers the Scandinavian countries and north Europe, see Figure 1, with a horizontal 

resolution of 0.05° (approx. 5.6 km). To estimate boundary conditions this model is nested into the 

coarser (0.15° horizontal resolution) and larger DMI-HIRLAM-T15 model (Mahura et al., 2006), 

which is itself nested into the global ECMWF IFS model (http://www.ecmwf.int). 

FIGURE 1 APPROX. HERE 

The DMI-HIRLAM-S05 ensemble is a 2-dimensional EPS (i.e. considering both different initial 

conditions and different physical processes (Du, 2007)) comprising 25 members as described in 

Table 1. The different initial conditions are generated using the most recent atmospheric 



  

9 
 

measurements analysis which is then perturbed based on previous 6h and 12h old forecasts from the 

model. 

Each of the five initial conditions is run with different model structures, using either the STRACO 

or the Kain-Fritsch/Rasch-Kristjansson schemes to model convection and condensation processes 

with or without the inclusion of stochastic physics resulting in a total of twenty ensemble members. 

The five remaining ensemble members are dedicated to study the impact of perturbing the 

roughness lengths for urban areas, which are parameters describing the surface fluxes (interaction 

between the land cover and the atmosphere); the roughness lengths is randomly chosen in the range 

0.05-1.1 m (Feddersen, 2009). For further description of the processes and parameters mentioned 

above, see the HIRLAM technical documentation (Unden et al., 2002) and the HIRLAM website 

(http://www.hirlam.org/). 

TABLE 1 

Ensemble 

members 

STRACO KF/RK STRACO 

 Stoc. Phys.  Stoc. Phys. Pert. Roughn. 

Ini. cond. 1 1 6 11 16 21 

Ini. cond. 2 2 7 12 17 22 

Ini. cond. 3 3 8 13 18 23 

Ini. cond. 4 4 9 14 19 24 

Ini. cond. 5 5 10 15 20 25 

 

It is important to underline that the perturbations of the initial conditions are not random and they 

do not sample the (unknown) observation uncertainty. Hence the ensemble members are not equally 

likely. Indeed, the perturbations tend to maximize the ensemble dispersion, and so the individual 

ensemble members will be, in general, less likely but closer to more extreme outcomes than the 

random approach. Nevertheless, experience has shown that ensemble forecasts tend to be 
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underdispersive in the sense that (too) many verifying observations fall outside the ensemble range 

(Feddersen, 2009). 

The DMI-HIRLAM-S05 model is run every 6 hours and generates output with hourly time steps 

over a 54h forecast horizon. Ensemble data from June 2014 to January 2016 (20 months) were used 

in this study. Figure 2 gives an example of the spatial discrepancy among ensemble members at a 

given time step. Major dissimilarities are observed between the localisation as well as the intensity 

of rain of the individual ensemble members. 

FIGURE 2 APPROX. HERE 

2.2. Catchment, urban drainage system and hydro-meteorological observations 

The Damhuså urban drainage catchment (Copenhagen, Denmark) was used for this study. The 

catchment covers a highly urbanised area with compact residential housing and some industrial 

activity and is equipped with a combined sewer system which conveys wastewater, rainfall runoff 

from paved surfaces and infiltration inflow especially in the winter months. Modern urban drainage 

systems are often equipped with various flow control infrastructures (e.g. detention basins and 

pumping stations implemented to improve the UDS management, e.g. (Vezzaro and Grum, 2014). 

The Damhuså catchment was chosen for the absence of flow control infrastructures affecting the 

catchment response, in order to simplify the modelling approach. 

 FIGURE 3 APPROX. HERE 

Precipitation is measured using tipping bucket rain gauge stations placed at several locations in the 

catchment (blue circles on Figure 3). These rain gauges are part of the national Danish SVK rain 

gauge network which is operated by the Danish Meteorological Institute (DMI) and the Water 

Pollution Committee of the Danish Engineers Society (SVK - Spildevandskomiteen in Danish) 
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since 1979, and the recorded data has a 1 minute temporal resolution (Jørgensen et al., 1998). The 

rainfall events labelled “defect” by the SVK system were removed with the exception for the defect 

event affiliated to temperature below 3°. The catchment outlet, represented by the red hexagon on 

Figure 3, is a combined sewer pipe with a maximum capacity of 10,000 m
3
/h. This outlet is 

monitored by the utility company HOFOR using an electromagnetic flow meter, and the flow data 

has a 2 minutes temporal resolution.  

Monthly average potential evaporation data were calculated based on a historical (from 1989 to 

2010) time series covering the Damhuså catchment (20x20 km grid cell), see (Scharling and Kern-

hansen, 2012) for further description of the data. 

2.3 Model description 

The hydrological model is composed of 3 main conceptual parts describing wastewater flow from 

households, fast rainfall-runoff from impervious areas and slow runoff caused e.g. by infiltration-

inflow and correlated to the potential evaporation (Figure 4). 

FIGURE 4 APPROX. HERE 

2.3.1. Household waste water flow variations 

The wastewater pattern was assumed to be constant throughout the year and was modelled using a 

second order Fourier transform, which is common practice in this field e.g. (Carstensen et al., 1998; 

Langergraber et al., 2008; Talebizadeh et al., 2016), see equation (1) where   ,   ,   ,    and    

are the Fourier series, parameters and   the frequency of the pattern. 

                                                             (1) 
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2.3.2. Fast and slow rainfall-runoff processes 

The rainfall-runoff process was modelled using a lumped conceptual model based on the Nash 

linear reservoir cascade concept (Nash, 1957). Hence, the catchment response was represented by a 

set of reservoirs in series with a linear relationship between the reservoir outflow, Q(t), and the 

amount of water stored, S(t), as shown in equation (2). 

                (2) 

Assuming continuity, the Instantaneous Unit Hydrograph (IUH) is described by equation (3) with 

two hydrologic parameters: the number of linear reservoirs,  , and the storage coefficient,  . 

       
 

   
 

    
            

 

 
       (3) 

where      is the gamma function defined by                   
    

 
. If   is an integer the 

equation can be simplified to              

Different runoff patterns were observed during winter and summer months. During the summer 

period, the discharge reverts to the dry weather condition only few hours after the rainfall event (up 

to 10 hours), we call this process fast runoff. Whereas during winter period a rainfall event impacts 

the discharge during several days (up to 10 days), we called this process slow runoff.  

The fast runoff is assumed to have a constant pattern through the year, whereas the slow runoff is 

assumed to be connected to a wetness index which is calculated based on potential evaporation and 

previous rain events (catchment’s memory). The monthly average potential evaporation was 

calculated based on the historical (from 1989 to 2010) time series covering the Damhuså catchment 

(20x20 km grid cell), see (Scharling and Kern-hansen, 2012) for further description of the data. 

2.3.3. Parameter estimation 
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The wastewater flow parameters were estimated first, using flow observations from summer periods 

without rainfall to avoid influence from the two other processes. Using fixed wastewater 

parameters, the fast runoff process parameters were then estimated based on rain and flow data for 

rain events during summer months to avoid influence from the slow runoff process, which was 

calibrated last using rainfall, flow and potential evaporation data for the all period (from November 

2012 to November 2014).  In all cases calibration was conducted using the Differential Evolution 

Adaptive Metropolis (DREAM) method (Laloy and Vrugt, 2012) considering the root mean square 

error as objective function. 

2.3.4. Coupled meteorological and hydrological model output 

Figure 5 shows example output from the coupled meteorological and hydrological model for a day 

in August 2015. The top figure shows the expected rainfall over the catchment (using the first NWP 

post-processing method (3.2.1)), and the bottom figure shows the output from the hydrological 

model based on this rainfall input. The flow ensembles appear to embrace the flow observations to a 

larger extent than rainfall ensembles embrace the averaged rain gauges measured rainfall. The 

hydrological model was initialised using measured rain gauge data prior running the NWP model. 

FIGURE 5 APPROX. HERE 

Table 2 displays the performance of the ensemble forecast from the hydrological model for different 

flow domains (<3,000 m
3
/h, …, >9,500 m

3
/h). The first section of Table 2 shows the performance 

of the ensemble spread, i.e. the percentage of observation that are either below, contained within or 

above the ensemble spread, as well as the average band wind (ABW), i.e. the average distance 

between the lower (5%) and upper (95%) prediction quantile. The second section of Table 2 shows 

measures of performance for the median of the ensemble. The mean absolute error from the EPS 

median (         ) is the average of the absolute error between the EPS median and the 
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observation. The bias from the EPS median (          ) is the average distance between the 

ensemble median and the observation. 

TABLE 2 

 Observed flow [ m
3
/h ] 

 < 3000 3000-4000 4000-5000 5000-7500 7500-9500 > 9500 

Below EPS spread 59 % 31% 18% 9% 5% 4% 

Contained within the EPS spread  31% 47% 58% 55% 43% 48% 

Above EPS spread 10 % 22% 24% 35% 52% 48% 

ABW [ m
3
/h ] 1,022 1,883 2,766 3,193 3,115 3,565 

          [ m
3
/h ] 661 1,129 1,517 2,104 3,382 2,954 

            [ m
3
/h ] 594 315 4 - 1,180 - 3,052 - 2,792 

ABW: Average band width; MAE: Mean absolute error 

 

The ensemble spread is generated by routing the rainfall through the runoff model whereas the 

wastewater from households is based on a deterministic model (2.3.1) without contributing to the 

spread. Hence for the low flow domain (< 3000 m
3
/h), which is mainly driven by the wastewater  

process, the ensemble spread shows poor quality and has lower ABW than the other flow domains. 

The large ABW of the EPS and MAE of the median quantile underline the substantial prediction 

uncertainty and support flow domains prediction rather than quantitative prediction.  A shift in the 

bias is observed between low and high flow thresholds, low flows are over estimated while high 

flows are under estimated. This can be related to the rainfall prediction skill of NWP, which tend to 

over predict small rain events and miss high intensity rain events (Feddersen, 2009). The large 

percentage of the observations above the ensemble spread and the large negative bias for the high 

flows underlines the need for approaches to limit the missing/underestimation of events. 
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3. METHODOLOGY 

This section is separated into two parts. The first part describes the prediction performance 

evaluation methods. The second part describes NWP post-processing strategies developed to 

enhance flow domain prediction skills. 

3.1. Forecast performance evaluation methods 

Weather forecast evaluations are most often conducted on variables and methods of meteorological 

relevance. To match our model purpose, distinguishing urban flow domains, we have chosen to use 

a hydrologically focused evaluation of meteorological forecasts based on a coupled (meteorological 

& hydrological) model as suggested in (Pappenberger et al., 2008). Thus, the prediction skill is 

assessed directly on the basis of the catchment outlet discharge. Using this approach, the 

hydrological model structure uncertainty is added to the overall prediction uncertainty. 

3.1.1. Contingency table 

The distinction between 2 flow domains based on a given flow threshold generates binary outputs. 

Hence each time step only has 2 outcomes: either an event occurs if the flow is above the threshold 

or no-event occurs if the flow is below the threshold. The occurrence/non-occurrence of an event 

are represented using the binary notation     and         . Similarly the prediction/non-prediction of an 

event are noted     and           . Comparing the predictions and the observations leads to 2 x 2 possible 

outcomes (contingencies) as shown in Table 3. The “Hits” represents the number of high-flow 

events that were correctly forecasted, i.e. both the forecast and the observation exceeded the flow 

threshold (       ). The “Misses” represents the number of high-flow events that were not 

forecasted (              ). The “False Alarms” represents the number of occurrences that were 

forecasted to be high but which turned out not to be high (            ) and the “Correct Negatives” 
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represents the number of occurrences where high flow was neither forecasted nor observed (         

          ). Those contingency table outputs are used to define prediction skill scores in Table 4. 

TABLE 3 

Forecast 

exceeding a given 

threshold 

Observation exceeding a given 

threshold 

Yes No 

Yes Hits (H) False Alarms (FA) 

No Misses (M) Correct Negatives (CN) 

 

The probability of detection (POD) measures the fraction of observed events that were correctly 

forecasted and the probability of false detection (POFD) gives the fraction of observed non-events 

that were forecasted to be events: these two key quantities are used to generate relative operating 

characteristic (ROC) curves as described below (3.2.1). The POD represents a major objective: to 

correctly predict high flow periods, whereas the POFD considers the false alarms and represents the 

cost of being too conservative when aiming to avoid missing high flow periods. An overview of 

criteria and verification methods can be found in meteorological literature (WWRP/WGNE, 2009) 

and (Wilks, 2011). 

TABLE 4 

Score Formula Detailed Formula Range Perfect 

POD H/(H + M)      
                  

         
   

         
   

          
         
   

         
   

 [0,1] 1 

POFD FA/(FA + CN)       
                                   

         
   

         
   

                           
   

         
   

 [0,1] 0 

 

Contingency tables, as well as the prediction skill scores introduced in Table 3, can be computed for 

a single/fraction of ensemble member(s) and a selected forecast horizon (thus allowing to 

distinguish the forecast skill for different forecast horizons), or a for single/fraction of ensemble 
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member(s) and a range of forecast horizons as a whole (thus evaluating the average forecast skill 

across forecast horizons). 

3.1.2. Relative operating characteristic (ROC) 

The relative operating characteristic (ROC) is the graph of the probability of detection (POD) 

against the probability of false detection (POFD) that is mapped out as the decision threshold varies, 

Figure 6. In our case the decision threshold corresponds to the fraction of ensemble members (     

that predict an event and which is used to trigger a decision. In order to avoid confusion with the 

flow threshold, this decision threshold is called thereafter “weight of evidence”. The ROC diagram 

illustrates the ability of the forecast to discriminate between the occurrence and the non-occurrence 

of an event. A perfect forecast lies at the point (POFD, POD) = (0, 1), in the top left corner point as 

shown by the red line in Figure 6.  The point (0, 0) corresponds to never forecasting an occurrence, 

while the point (1, 1) corresponds to constantly (and wrongly) forecasting occurrences. 

The ROC diagram of an EPS can be plotted by generating 2x2 contingency table and values for 

POD and POFD through each weight of evidence possible (   , which ranges from 1/N to N/N 

with N the size of the EPS). The point on the furthest left corresponds to the prediction skill for a 

decision requiring all ensemble members to predict an event (high weight of evidence (    

       ), while for the point on the furthest right only a single positive ensemble member is 

required to trigger a decision (low weight of evidence (        ). The selection of a given 

weight of evidence converts the EPS to a single deterministic prediction as shown by eq. (4).  

              
            
 
     

 
         (4) 

The expressions of POD and POFD for a given weight of evidence are shown by eq. (5) and (6) 

which combine formula of table 3 and the eq. (4). 
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The score skill of a ROC diagram is calculated based on the area under the curve (ROCA). The 

ROCA ranges from 0 to 1 where a score of 1 corresponds to a perfect forecast and a score of 0.5 

corresponds to a random forecast (i.e. no skill). 

FIGURE 6 APPROX. HERE 

3.2 NWP EPS post-processing  

We investigated three NWP post-processing approaches. The first approach, which is used as a 

reference point for the two others, considers the intersection of the catchment with the NWP model 

grid cells directly above the catchment. The two other approaches explore how inclusion of 

forecasts from neighbouring grid cells can improve the prediction characteristics by compensating 

for inherent spatial misplacement of the rainfall predictions. In these approaches we included 

neighbouring grid cells up to a radius of six cells from the centre of the catchment. Those two 

methods are more “conservative” than the first one, as they attempt to minimize the occurrence of 

missed events. 

3.2.1. Weighted areal overlap method 

In the first approach, only the rainfall predictions from the grid cells overlapping the catchment 

were considered (Figure 7). The predictions from these grid points were lumped into one rainfall 

intensity input to the hydrological model based on their percentage of overlap with the hydrological 
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catchment. The percentages of areal overlap of each grid points were 5% (1966 and 2080), 10% 

(1965), 15% (2024), 30% (2022 and 2081) and 90% (2023). Based on these percentages of areal 

overlap, each grid cell was associated with a weight to calculate the mean rainfall intensity value 

predicted over the catchment.  Similarly, (Johnson et al., 1999) used mean areal estimate from radar 

data as input for the 8 hydrological basins implemented in their hydrological model.  

FIGURE 7 APPROX. HERE 

3.2.2. Neighbourhood inclusion methods 

The aim of this second approach is to investigate to what extent inclusion of rainfall predictions 

from neighbouring grid cells is able to compensate for the spatial errors of the NWP model and, 

thus, improve the ROC. Our expectation that this will improve the ROC is motivated by the 

observation that location errors dominate precipitation forecast errors when compared to errors in 

forecasted volume and pattern (Ebert and McBride, 2000). Simulated convective storm are often a 

few hours off, or a few tens of kilometres away from the observed one (Bernardet et al., 2000).  

This approach was first developed by (Theis et al., 2005) as a pragmatic, low-budget post-

processing procedure that derives probabilistic precipitation forecasts from deterministic NWP 

model output by creating a “pseudo ensemble”. The concept was further developed by (Schaffer et 

al., 2011) and (Ben Bouallègue et al., 2013) to expand EPS generating a ‘‘super-ensemble’’. This 

concept has also been used for forecast verification purposes, e.g. (Ebert, 2008), (Gilleland et al., 

2009) and (Ebert, 2009). 

The surrounding areas used for the neighbourhood ensemble expansion method were defined based 

on a circle centred in the catchment. Figure 1 displays the scope of the neighbourhood, from the 

smallest vicinity in dark grey to the largest vicinity (radius of 6 grid cells) in light grey. The radii 

and corresponding number of ensemble members are shown in Table 5 below. Note that, whereas 
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we in the first approach (3.2.1) created a weighted average of the overlapping cells and thus left the 

ensemble size unchanged, we here pooled all the ensemble members within the considered radius 

and simulated a flow forecast for each ensemble member individually. 

FIGURE 8 APPROX. HERE 

TABLE 5 

Inclusion radius 1 2 3 4 5 6 

EPS size 125 325 625 1225 1825 2825 

 

3.2.3 Maximal Threat EPS 

To limit the ensemble size, considering that a hydrological simulation needs to be run for each 

ensemble member, a different post-processing strategy was defined based on the worst case 

scenario within the area defined by the inclusion radius. For each ensemble member and at each 

time step the highest rainfall intensity with the considered area was selected. The aim was here not 

to produce QPF but to assess the maximal threat within a given surrounding in order to avoid miss 

predicted event. This approach is increasingly conservative with the increase of the encompassed 

area’s radius. 

4. RESULTS AND DISCUSSION 

This section presents the prediction skill of the coupled meteorological and hydrological model to 

distinguish between flow domains, in terms of POD, POFD and ROC diagrams. In addition to the 

NWP post-processing method presented in the previous section, we investigated how the prediction 

skill depends on various parameters such as the forecast lead time, the fraction of ensemble 

members (EMs) predicting an event, and the selected high flow threshold.  
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4.1. Variation of POD and POFD with forecast lead time 

The predictions were assessed based on the Probability of Detection (POD) and the Probability of 

False Detection (POFD) as descripted in Table 4. These two parameters are often in competition as 

a conservative approach improves the detection but generates more false alarms. 

 

FIGURE 9 APPROX. HERE 

The general tendency is for the prediction skills to degrade (POD decreases and POFD increases) 

with increasing lead time, Figure 9. However, in the case of the conservative strategies, maximal 

threat EPS within a radius of 3 (dotted line on the right Figures) and 5 grid cells (dot-dashed line on 

the right Figures), there is no significant decrease of the POD with lead time (according to the Mann 

Kendall trend test). The improved detection performance comes at the expense of large increase of 

their POFD. In contrast, the POFD does not show a significant increase with lead time for the 

weighted areal overlap method with a number of EMs of 16 (dot-dashed line on the left Figures). 

The choice of NWP post-processing method, the chosen inclusion radius, and the fraction of EMs 

predicting high-flow all impact the variation of the prediction skill with lead time. Strategies can be 

selected to avoid the degradation of one criterion at the expense of the other. 

It is noteworthy that initial prediction skills are alike for all prediction strategies (Figure 9). This 

similarity originates from the hydrological model initialisation using measured rain gauge data and 

the response time of the hydrological catchment. Despite being driven by measurement data those 

first time steps do not achieve perfect prediction. Indeed rain gauge measurements using a zero 

forecast horizon has an almost  perfect POFD of 0.1% but scores only 80.1% for its POD, as shown 

on the ROC diagrams of Figure 10 by the purple asterisk. The missed high flow events result from 

measurement errors of the rain gauges used (Jørgensen et al., 1998) and from processes that are not 
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included in the hydrological model (e.g. snow melt, higher groundwater table and infiltration). 

Indeed, those are mainly winter processes and Table 6 shows lower prediction skill during the 

winter period. 

TABLE 6 

 Full period Winter Spring Summer Autumn 

POD 0.80 0.70 0.83 0.89 0.86 
POFD 0.010 0.009 0.003 0.013 0.013 

 

4.2. Using ensembles to compute the ROC diagram 

The prediction consistency among ensemble members (EMs) determines the weight of evidence of 

a prediction, i.e. a larger number of EMs predicting an event leads to a stronger evidence for an 

event to occur. Hence low weights of evidence lead to more conservative predictions. Table 7 

shows an extract of the contingency table and skill scores for different fractions of ensemble 

members that predict an event, calculated as an average across the 48 hours forecast horizon and 

using the weighted areal overlap post-processing method and a flow threshold of 4,000 m
3
/h. 

TABLE 7 

 
Hit False Alarm Miss 

Correct 

Negative 
POD POFD 

Average of individual 

EMs 
4.8 % 4.8 % 3.8 % 86.6 % 58.3 % 4.5 % 

Forecast at least by 1 

Ensemble Member 

(EM1) 

7.1 % 16.3 % 1.6 % 75.0 % 81.9 % 17.9 % 

EM2 6.7 % 12.6 % 1.9 % 78.8 % 77.3 % 13.8 % 

… … … … … … … 

EM10 5.3 % 4.9 % 3.3 % 86.5 % 61.5 % 5.4 % 

… … … … … … … 

EM20 3.6 % 1.5 % 5.0 % 90.0 % 42.3 % 0.17 % 

… ... … … … … … 
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The range of the available prediction skills are displayed on the ROC diagram, Figure 10a. Each 

triangle represents a fraction of EMs predicting a high flow event. The point furthest to the left 

corresponds to a fraction of 25/25, i.e. all EMs are predicting a high flow. Correspondingly, the 

triangle furthest to the right corresponds to a fraction of 1/25, i.e. only one of the EMs is predicting 

a high flow event. The skill scores of individual EMs, blue circles in Figure 10a, are gathered in the 

same area with an average POD of 58.3% and an average POFD of 4.5% (Table 6). This result 

underlines the benefit of EPS compared to individual EMs. Indeed, using ensembles gives the 

opportunity to select the weight of evidence the (i.e. fraction of EM predicting an event) that most 

appropriately balances POD against POFD for the prediction purpose at hand. 

As displayed in Table 6 and on Figure 10a, the approach considering the areal intersection between 

the catchment and the NWP grid cells as input to the hydrological model (weighted overlap 

method) leads to a maximal POD of 81.9%. Hence a significant proportion of high flow events are 

missed by the predictions using this approach, which suggests that more conservative approaches 

are employed to complete the ROC diagram. 

FIGURE 10 APPROX. HERE 

4.3. Neighbourhood Ensemble Expansion 

The nearest neighbourhood approach was performed for different inclusion areas, Figure 10b shows 

the ROC curve for the largest inclusion area tested, a radius of 6 grid cells (approx. 33.6 km), which 

generates an ensemble with 2825 members. This method provides a large and dense range of 

prediction skills, with a maximal POD of 94.3% that is significantly higher than when using rain 

EM25 2.3 % 0.4 % 6.3 % 91.0 % 27.3 % 0.005 % 
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gauge measurement as input: 80.1% (purple star). This result suggests that the precaution on the 

NWP input partly compensates for hydrological model errors. 

4.4. Maximal Threat EPS 

In this approach, for each of the 25 EMs, the highest threat within the given vicinity is used. The 

ROC diagram, Figure 10c, was created by merging predictions strategies using increasingly larger 

vicinity areas. This method generated a large range of prediction skills. Figure 10c shows that the 

variation of the prediction skills generated with different radii are complementary and gave a 

similar but scarcer ROC diagram than the neighbourhood ensemble method. The most conservative 

prediction has a POD of 97.0% for a POFD of 42.3%. Despite this extremely high rate of false 

alarms such prediction can still prove to be useful, e.g. for energy optimisation and maintenance 

purposes which require high POD to avoid jeopardizing the system. Furthermore as mentioned in 

section 4.1 part of the prediction error comes from the hydrological model and could be improved. 

4.5. Influence of the discharge threshold 

The methods developed in this article were evaluated using three different flow thresholds (Figure 

11): 

FIGURE 11 APPROX. HERE 

• 2,500 m
3
/h which is close to the highest discharge during dry periods. 

• 4,000 m
3
/h which is used as distinction between low and high flow domains. 

• 9,500 m
3
/h which is close to the pipe maximal capacity (approx. 10,000 m

3
/h). 

The high threshold can be used for CSO prediction, whereas the medium and low threshold can be 

used for maintenance planning or energy consumption optimisation.  
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The ROC diagram in Figure 11 is generated by joining 2 prediction strategies, the weighed areal 

overlap (circles) and the maximal threat method with a radius of 6 grid cells (triangles). The skills 

shown in grey colour correspond to Figure 10 a and c (4,000 m
3
/h threshold). The prediction of 

exceeding the low flow threshold (in blue) shows lower performance than the two other thresholds. 

Its higher POFD may be explained by the tendency of NWPs to over-predict small rain events, 

whereas the lower POD may be explained by the simplicity of the hydrological model, which 

represents the tail of the hydrograph poorly during the winter period. Medium (in grey) and high (in 

black) thresholds demonstrate similar prediction skills but the prediction of the high threshold fails 

to reach high POD with a maximum of 89.3%. This limitation may be explained by the difficulties 

of the NWP model to accurately predict high intensity events. 

5. CONCLUSION  

In this paper the prediction of flow domains for an urban catchment using EPS NWP data was 

assessed. In order to be purpose oriented the predictions were evaluated using a hydrological 

perspective focusing on catchment discharge rather than the rainfall intensity. Hence a hydrological 

rainfall-runoff model was developed and coupled with output from the DMI-HIRLAM-S05 NWP 

ensemble prediction system (EPS).  

This coupled model was run first using the weighted overlap method where rainfall was post-

processed considering the areal overlap between the hydrological catchment and the NWP grid 

cells. Forecasting using a single deterministic NWP output provides a specific prediction skill, i.e. a 

single combination of POD and POFD. However, ensembles provide a large range of prediction 

skill more or less conservative depending on the fraction of ensemble members used to trigger an 

event. Hence an optimal weight of evidence can be selected to match the prediction purpose. 
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The ensemble approach showed limitations, failing to reach high probabilities of detection (POD), 

which may be explained by the spatial uncertainty of rainfall prediction. Indeed, urban scale 

applications require weather models with fine resolution and this accentuates the problematic of 

rainfall forecast misplacement. In order to cope with this limitation, two EPS post-processing 

methods were implemented to incorporate the predictions from surrounding grid cells. The (i) 

neighbourhood ensemble expansion method increases the EPS dimension by adding predictions 

from the surrounding grid cells, whereas (ii) the maximum threat EPS method selected the worst 

case scenario within the inclusion area. Both approaches improved the scope of the prediction skills 

available and increased the maximal value POD available. Thereby NWP post-processing is 

necessary to improve the scope of conservative approach, avoiding missed events by accounting for 

misplaced rainfall prediction.  

The three approaches were tested for different flow thresholds: low to medium flow thresholds can 

e.g. provide information for maintenance planning or energy consumption optimisation, whereas a 

high flow threshold can be used for predicting e.g. CSO events. Low threshold prediction showed 

inferior prediction skill due to limitations of the used hydrological model.  Indeed, using a coupled 

meteorological and hydrological model lead to an overall prediction skill is influenced by both 

models performance. Hence the predictions skills might be improved using a more advanced 

hydrological model with e.g. data assimilation and snowmelt processes incorporated. 

Additional NWP post-processing methodologies could be assessed and applied to improve the 

prediction even more: The neighbourhood method could be extended to the temporal dimension to 

account for mistiming. Consistency between consecutive and overlapping NWP model runs could 

be included as well. 
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Caption Figures 

Figure 1: Geographical domains of the DMI-HIRLAM T15 and S05 models (Feddersen, 2009). 

Figure 2: Spatial distribution and intensity of forecasted total precipitation [mm/h] in each of the 25 

ensemble members of the HIRLAM-S05 NWP EPS generated the 31
st
-August 2014 at midnight 

with a lead time of 18 hours. The area covered is a 80 km square with 0.05˚ grid cells (North 

Zealand). An animation is available in the supplementary material. 

Figure 3: The Damhuså urban drainage catchment, Copenhagen, Denmark (contributing area, green 

area on the map, 67 km2). 

Figure 4: Overall scheme of the conceptual hydrological model. 

Figure 5: Predicted rainfall intensity (top) and flow (bottom) through the 48 hours forecast horizon. 

The blue plumes show different quantiles and the red dots show measurements. 

Figure 6: Relation operating characteristic (ROC) diagram with examples of random prediction as 

well as predictions with some, better and perfect skill. 

Figure 7: Damhuså catchment overlap with DMI-HIRLAM-S05 grid. 

Figure 8: Illustration of the grid cells used for the smallest expansion (dark grey) and the largest 

expansion (light grey) in the neighbourhood ensemble expansion approach. 

Figure 9: Variation of prediction skill with forecast lead time for a flow threshold of 4,000 m
3
/h. 

Left: POD and POFD for different fractions of ensemble members (iEM) predicting an event using 

the weighted aerial overlap method. Right: POD and POFD for the weighted aerial overlap method 

and the Maximal Threat EPS method with different radii based on the same fraction of ensemble 

members (4EM). 

Figure 10: ROC diagram for the different NWP post-processing strategies. 

Figure 11: ROC diagram, constructed with different NWP post-processing, for different flow 

thresholds. 
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Caption Tables 

 

Table 1: Configuration of DMI-EPS ensemble members 1-25 (Feddersen 2009). 

Table 2: Performance scores for the flow prediction ensemble spread and median quantile. 

Table 3: Contingency table of binary events for categorical verification scores. 

Table 4: POD and POFD verification skill scores for deterministic forecasts (nForecast represents 

the number forecast generations and nTimeStep represents the number of time steps of one 

forecast). 

Table 5: Variation of EPS size with neighbourhood radius in grid cell (the spatial resolution is 0.05˚ 

i.e. approx. 5.6 km).  

Table 6: Skills of the flow domain distinction including the entire forecast horizon for the different 

seasons using rain gauge measurements. 

Table 7: Contingency table and skill scores for different fractions of ensemble members predicting 

an event using the weighted aerial overlap method and a flow threshold of 4,000 m
3
/h. All time 

steps within the forecast horizon are included  
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Highlight 

 Weather models provide uncertain but valuable urban scale discharge predictions  

 Flow threshold exceedance can be predicted with some confidence two days ahead  

 Ensemble predictions allow computing the relative operating characteristic (ROC) 

 Spatial misplacement errors may be compensated through ensemble post-processing  

 The optimal prediction skill can be selected based on the prediction purpose  

 

 

 

 


