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Abstract 

A mechanistic model-based soft sensor is developed and validated for 550L filamentous 

fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a 

parameter estimation block based on a stoichiometric balance, coupled to a dynamic process 

model. The on-line parameter estimation block models the changing rates of formation of 

product, biomass, and water, and the rate of consumption of feed using standard, available on-

line measurements. This parameter estimation block, is coupled to a mechanistic process 

model, which solves the current states of biomass, product, substrate, dissolved oxygen and 

mass, as well as other process parameters including kLa, viscosity and partial pressure of CO2. 

State estimation at this scale requires a robust mass model including evaporation, which is a 

factor not often considered at smaller scales of operation.  

The model is developed using a historical dataset of eleven batches from the fermentation 

pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L 

fermentation processes operated at Novozymes A/S in order to validate the state estimator 

model on fourteen new batches utilizing a new strain. The product concentration in the 

validation batches was predicted with an average root mean sum of squared error (RMSSE) of 

16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a 

suitably calibrated model. The robustness of the model prediction is assessed with respect to 

the accuracy of the input data. Parameter estimation uncertainty is also carried out. The 

application of this on-line state estimator allows for on-line monitoring of pilot scale batches, 

including real-time estimates of multiple parameters which are not able to be monitored on-

line. With successful application of a soft sensor at this scale, this allows for improved 

process monitoring, as well as opening up further possibilities for on-line control algorithms, 

utilizing these on-line model outputs. This article is protected by copyright. All rights reserved 

Keywords: fermentation, modelling, monitoring, pilot scale, filamentous fungus, soft 

sensor  
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Introduction 

Pilot scale fermentation activities surround the development of fermentation processes which 

are applicable to industrial scale. The aim is to develop understanding surrounding a strain 

and a process, in order to optimize the system, and facilitate the translation of this knowledge 

into a high productivity production process. This requires fast and efficient process 

development and an understanding of the system. Bioprocess monitoring and control are 

therefore two key areas of interest at this scale of operation.  

Bioprocess monitoring 

Monitoring of bioprocesses requires reliable on-line measurements, however there is a lack of 

on-line sensors for key parameters of interest in the field, such as substrate, product and 

biomass concentration (Alves-Rausch et al., 2014; Assis and Filho, 2000; Sonnleitner, 2013), 

which are applicable to pilot and production scale. There are challenges specific to the 

development of in-line sensors for industrial fermentation systems. These include the need for 

the probe to be robust to sterilization, and to be stable over long operation times (Alford, 

2006). In addition, there is also the issue of regulation, and the need to obtain approval for 

changes made to the hardware used in a process operating under good manufacturing 

practices (GMP) (Gernaey, 2015). A practical issue is also the limited number of ports for in-

line probes on the stainless steel vessels. This lack of on-line state measurement limits the 

ability to monitor the progression of fermentation systems.  

There are many causes of batch-to-batch variation in biological systems based on 

physiological differences, metabolic shifts, or disturbances, for example small differences in 

raw materials (Villadsen et al., 2011). If on-line estimates of key performance indicators, such 

as product concentration, were available, it allows for better process monitoring, and also 

allows for implementation of advanced control. With the process analytical technology (PAT) 
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guidelines being introduced (FDA, 2004), there is also an additional drive towards increasing 

process knowledge and monitoring capabilities (Gernaey et al., 2010).  

Soft sensors applied to fermentation systems 

Due to the common limitations in process monitoring, there is an interest in soft sensors, 

which utilize on-line measured variables to predict the unknown states in real-time (Luttmann 

et al., 2012; Sagmeister et al., 2013). However, a report by Luttman et al. (2012) states that 

there is limited application of soft sensors in industry, despite the advantage of real-time 

process understanding, and the fact that there is no need for investment in additional 

hardware. Some of the challenges associated with implementation of a soft sensor in an 

industrial context are cited in the report. These include data availability for model 

development at industrial scales, and data quality, which may contain outliers or have issues 

with sensor drift. Another challenge is the requirement for additional computer hardware 

where there is connectivity to the on-line measured data. Finally, the need for re-calibration of 

the model is perceived as limiting the practical applicability. These factors must be considered 

in the development of a soft sensor if it is to be applied in practice.  

State estimator models may be developed based on first principle understanding, data-driven 

methods or by hybrid modelling. Data driven methods do not require an understanding of the 

system, and may therefore be considered a faster approach to model development. Data-

driven methods may, for example, be based upon artificial neural networks (Chen et al., 2004; 

Linko et al., 1999), fuzzy logic (Araúzo-Bravo et al., 2004; Luttmann et al., 2012), or 

multivariate statistical modelling approaches (Yuan et al., 2014; Zhang and Lennox, 2004). 

These methods have the disadvantage that they are unreliable when extrapolating outside the 

range of the data used to develop the model. For production scales this may be less of a 

problem, where process conditions are generally defined. For application at pilot scale 

however, this is undesirable since new processing conditions are investigated. The 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

development of a data-driven model also provides little insight into the process, since the 

model parameters have no physical meaning. Hybrid modelling approaches combine some of 

the benefits of data driven models, with the more robust basis of a mechanistic model. It is not 

necessary to have a full understanding of the process of interest and therefore the model 

development is faster, and the resulting model may have enhanced extrapolation capabilities 

(von Stosch et al., 2014). 

In contrast, first principle soft sensor models are based on a fundamental understanding of the 

system (Sagmeister et al., 2013; Sundström and Enfors, 2008). Their development is based on 

existing process understanding, and the model parameters have a physical meaning. 

Parameter values therefore provide information about the process of interest, for example 

yield coefficients, which may be used to compare between strains. Soft sensor models 

incorporating stoichiometric balances are valuable, since they are scale independent, and 

based on the fundamental biochemical reactions. Since it is observed that yield coefficients 

change over the course of a fermentation (Golabgir et al., 2015; Jenzsch et al., 2006), this 

method is interesting as it allows for this adaption within a mechanistic model structure. In 

addition, stoichiometric balances utilize flow rates as input variables, which then avoids the 

need for in-line probe measurements, which may be highly dependent on their position in the 

vessel, and the calibration accuracy. The mechanistic model approach also has the benefit of 

being more generic to new processes which may require a small adaption to the model, but in 

general should be applicable to different strains and processes. The method is equally relevant 

for fungal systems such as in this work, and also bacterial systems (Sagmeister et al., 2013; 

Sundström and Enfors, 2008). 

This work discusses the application of a first principle soft sensor model to pilot scale (550L) 

filamentous fungal fermentation systems operated at Novozymes A/S. The model comprises 

of an on-line parameter estimation block, coupled to a dynamic model of the system. The 
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parameter estimation block is based on a stoichiometric balance, where the current rates of 

product and biomass and water formation and feed consumption are identified from available 

off gas measurements and ammonia addition. This parameter estimate is then used as an input 

to a mechanistic process model, which describes the mass transfer capabilities of the system 

based on the operating conditions, including stirrer speed, aeration rate, headspace pressure 

and temperature. The model is developed and calibrated using a historical pilot scale data set 

as described by Albaek et al. (2011). The model is then implemented at the fermentation pilot 

plant of Novozymes A/S and validated on-line using fourteen new batches at the same 550L 

pilot scale, but utilizing a different host strain and product. With implementation of a robust 

soft sensor, it is possible to incorporate the state estimate into a control structure, and open up 

possibilities for more advances process control.  

Materials and methods 

A model is developed to describe a filamentous fungal fermentation process operated at 

Novozymes A/S. The process is operated as fed-batch, in pilot scale fermenters, as described 

by Albaek et al (2011). The model structure is shown in Figure 1. 

Parameter estimation 

The parameter estimation is based on stoichiometric balances using reliable on-line 

measurements of the carbon evolution rate (qc), oxygen uptake rate (qo) and ammonia 

addition rate (qn), as shown in equation 1. These measurements were chosen as they are not 

subject to deviations between batches, as would be the case for substrate feed rate for 

example, which has batch-to-batch variations in concentration. A stoichiometric balance is 

implemented in MATLAB (MATLAB, 2013) to solve the unknown rate parameters based on 

equation 2, where E refers to the matrix of stoichiometric coefficients for C, H, N and O, and 

the subscripts refer to measured and calculated values. The concept of using stoichiometric 

balances to solve formation rates is well documented in literature (Fordyce et al., 1990; Van 
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Der Heijden et al., 1994). In this case the production of by-product is neglected, and assumed 

to be negligible.  

qgCH2O + qoO2 + qnNH3 = qxCHXHOXONXN + qpCHPHOPONPN + qcCO2 + qhH2O (1) 

Emeasqmeas + Ecalqcal = 0  (2) 

Dynamic model 

A dynamic process model describes both the evolution of the system states, and additional 

physical process parameters. All states are defined on a mass basis, rather than a volume 

basis, and this factor is considered important to the model accuracy at this scale. Modern 

processes in industrial biotechnology cannot be treated as dilute systems. Fungal fed batch 

systems are reported to produce up to 30g/L biomass (Riley et al., 2000; Tolan and Foody, 

1999), and may also produce 100g/L product, in the example of Trichoderma reesei 

producing cellulases (Cherry and Fidantsef, 2003; Schuster and Schmoll, 2010). In 

addition, gas hold up changes with time in a process (Hofmeester, 1988). These factors 

make estimates of density and volume somewhat difficult; with densities in the range 1.05 

to 1.3 kg/L there is the potential for errors in concentration in the range 5 to 30%. This 

means that estimates of state based on volume measures can only be validated by accurate 

measurements of broth density or gassed hold up, the latter being far from trivial. Based on 

these factors it is considered that modelling of concentrations on a unit mass basis instead 

of volume is a more accurate approach, as it is independent of system density or gas hold 

up. 

In equations 3 and 4, the relevant formation rates from the parameter estimation are used to 

solve for the current concentrations in the system, accounting also for the changing mass in 

the fed-batch system. This method avoids the need for fixed model yield parameters or 

growth rates, which are typically incorporated in unstructured fermentation models. 
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Similarly, the substrate concentration is calculated based on the feed added, and the 

estimated consumption rate from the state estimator. This requires a known substrate 

concentration in the feed.  

The mass prediction accounts for the feed added, as well as the evaporation rates, which are 

significant in a pilot scale system of over 0.5m
3
. The rate of evaporation, Fevap, is calculated 

as shown in equation 8, where the saturation pressures at the inlet (P
*

in) and outlet (P
*

out) 

are calculated as in Bolton (1980), where P
*

in is then a function of the air humidity and air 

temperature (Bolton, 1980). For a given batch, the evaporation rate is therefore dependent 

on the air humidity and air temperature, as well as the processing conditions for aeration 

rate, headspace pressure and temperature. For batches where multiple samples are taken 

over the course of the batch, the volume of sample removed for analytical purposes should 

also be included in the mass balance. 

In order to calculate the dissolved oxygen concentration, a log-mean concentration 

difference is used in order to define the driving force for oxygen transfer (Doran, 2013). 

The driving force and the oxygen mass transfer coefficient, kLa, define the oxygen transfer 

rate. There are a range of correlations available in literature for the calculation of the 

oxygen mass transfer coefficient (Garcia-Ochoa and Gomez, 2009). In this work the 

correlation shown in equation 9 is applied, as it has been shown previously in Albæk et al. 

(2011) to describe the pilot scale data set well. In equation 9, Ptotal accounts for power input 

by both mixing and power dissipation due to aeration. The apparent viscosity used in 

equation 9 is calculated as described in Albaek et al. (2012), where the values of the 

constants are also provided. The partial pressure of CO2 is also calculated from the 

estimated CO2 molar fraction in the outlet gas and the headspace pressure. 

 
dX

dt
=

(𝐪𝐱Mrx)

M
− X 

dM
dt
M

 
(3) 
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dP

dt
=

(𝐪𝐩Mrp)

M
− P 

dM
dt
M

 
(4) 

 
dG

dt
=

 (𝑆𝑓  Ffeed  −𝐪𝐠Mrg)

M
− G 

dM
dt
M

 (5) 

 dM

dt
= Ffeed − Fevap − F𝑠𝑎𝑚𝑝𝑙𝑒 + 0.001 𝐪𝐨Mro − 0.001 𝐪𝐜Mrc  (6) 

 
dDO

dt
= kLa 

(𝐷𝑂𝑖𝑛
∗ − 𝐷𝑂) − (𝐷𝑂𝑜𝑢𝑡

∗ − 𝐷𝑂)

𝑙𝑜𝑔
(𝐷𝑂𝑖𝑛

∗ − 𝐷𝑂)
(𝐷𝑂𝑜𝑢𝑡

∗ − 𝐷𝑂)

− 𝐪𝐨 − DO 

dM
dt
M

 (7) 

 
Fevap =   

Pout
∗ Mrh

RT
   

Patm

Patm +  HSP
 −  

Pin
∗ Mrh

RT
   Qair  (8) 

 
kLa = C  

𝑃𝑡𝑜𝑡𝑎𝑙

𝑣𝐿
 
𝑎

𝑣𝑔
𝑏𝜇𝑎𝑝𝑝

𝑐  (9) 

 ppCO 2 = HSP 𝐶𝑂2𝑜𝑢𝑡
 (10) 

 

Implementation algorithm 

Figure 2 shows a detailed description of the online implementation algorithm. The on-line 

data is read directly from the OPC server every 30 seconds using MATLAB® timer objects. 

The parameters are updated every 5 minutes, using the input data which is simply averaged, 

assuming Gaussian noise. The updated parameters are input to the dynamic model which is 

then also solved using ode23s in Matlab over the 5 minute window. The new state estimate is 

then overwritten as the initial condition for the next modelling iteration. This results in a low 

computational demand, by only modelling at five minute intervals. The user may plot the 

results at any time, and the results will be updated to within a five minute sampling interval. 

For model calibration, a data set was used whereby the online data was available at one hour 
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intervals. This means that the same implementation algorithm was applied, except for the 

parameter update occurring once every hour instead of once every five minutes. 

Off-line sample analysis 

The biomass concentration is measured by dry mass determination, by drying at 105°C for 48 

hours. The biomass sample is washed twice with deionised water to remove soluble media 

components. The product concentration is determined based on a generic protein assay used at 

Novozymes A/S. Viscosity is measured off-line in an AR-G2 rheometer from TA instruments 

using a vane-and-cup geometry. The vane consists of four blades at right angles (14 mm x 42 

mm), the cup had a 15 mm radius, and the gap between the vane and cup was 4000 µm. 

Measurements were taken in the interval of 10 to 600 1/s and the bingham plastic model was 

applied to describe the rheological behaviour (Bingham, 1916). The shear rate for apparent 

viscosity determination is found by the approach of Metzner and Otto, ksN, where ks is 11 

(Metzner and Otto, 1957). The kLa is determined by the direct method (Villadsen et al., 2011) 

also assuming a log mean driving force, as described in equation 7. 

The historic data set 

The stoichiometric model parameters (XH, XO, XN, PH, PO, PN) are obtained by least 

square fitting to a historical data set of eleven batches, where biomass concentration, product 

concentration, dissolved oxygen concentration and mass are fitted. This dataset is designed as 

a full factorial design including two levels for three process variables, namely specific power 

input (1.5-15kW/m
3
), aeration rate (96-320NL/min) and headspace pressure (0.1-1.3 bar) as 

described by Albaek et al. (2011). The processing conditions affect the biomass concentration 

and product concentration achievable, due to oxygen mass transfer limitations. This makes 

this dataset ideal for calibration of the model parameters, as there is significant deviation in 

these states between the batches.  
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The on-line process 

The model is then validated on-line for fourteen new batches. These batches are also operated 

at different stirrer speeds (200-400 rpm), aeration rate (200-400NL/min) and headspace 

pressure (0.7-1.3 bar) which is the reason for the different biomass and product concentrations 

achieved. In this newer process, media optimisation has led to the inclusion of partially 

soluble compounds in the media. Due to the solid content in the media, it has not been 

possible to quantify biomass concentration in these batches. Off-line analysis includes product 

concentration, off-line viscosity, and kLa.  

Statistical assessment of model fit 

𝑅𝑀𝑆𝑆𝐸 (%) =
 1
𝑛
   𝒚𝒎𝒆𝒂𝒔,𝒊 − 𝒚 𝒊 

2𝑛
𝑖

1
𝑛

   𝒚𝒎𝒆𝒂𝒔,𝒊 
𝑛
𝑖

 (11) 

𝐽2 =

1
𝑛𝑣𝑎𝑙

  𝒚𝒎𝒆𝒂𝒔,𝒊 − 𝒚 𝒊 
2𝑛𝑣𝑎𝑙

𝑖

1
𝑛𝑐𝑎𝑙

  𝒚𝒎𝒆𝒂𝒔,𝒊 − 𝒚 𝒊 
2𝑛𝑐𝑎𝑙

𝑖

 (12) 

When assessing the goodness of fit for the model, the root mean sum of squared errors 

(RMSSE) is applied, as defined in equation 11, where 𝑦𝑚𝑒𝑎𝑠 ,𝑖  is one of, n, measurement 

points, and 𝑦  is a model prediction of the same variable. This is expressed as a percentage of 

the average measured value, for confidentiality reasons. In addition, to assess the validation 

model fit compared to the calibration model fit, the Janus coefficient, 𝐽2, is used, as discussed 

in Sin et al. (2008). In this work, the model prediction of product concentration is the primary 

focus, as this is a key process performance indicator which otherwise takes considerable time 

to obtain analytically.  

Parameter estimation uncertainty 

In order to conclude on the uncertainty of the fitted stoichiometric parameter values, bootstrap 

sampling is applied (Efron, 1979). In this method, the residuals between the model and the 
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data are sampled in order to create simulated data sets for fitting. The errors are sampled from 

the biomass concentration, the product concentration, the dissolved oxygen concentration and 

the mass. The method for sampling is random sampling of 100 residuals with replacement. By 

fitting to each of the simulated data sets, a distribution of parameter values is identified, 

which provides an indication of the parameter uncertainty. The parameter uncertainty in this 

work is provided as two standard deviations as a percentage of the mean.  

Results and discussion 

State estimator development based on historic dataset 

The soft sensor model is applied off-line to an eleven batch pilot scale data set, as described in 

the Materials and Methods. The purpose is to fit the model parameters for the stoichiometric 

model (XH, XO, XN, PH, PO, PN). The measured on-line data for carbon evolution rate (qc), 

oxygen uptake rate (qo) and ammonia addition rate (qn) are used as input to the parameter 

estimation block in order to simulate the system as would be done on-line. The parameter 

update occurs every hour.  

Figure 3 shows the results of the dynamic model for one batch of data, where the model fit is 

representative of all eleven batches. This batch was chosen as it shows measured data which 

has previously been published (Albaek et al., 2011). There is a very good agreement between 

the model prediction and the measured data for all variables. The dynamics in the dissolved 

oxygen profile as shown in Figure 3 are due to the oxygen uptake rate. This measured oxygen 

uptake rate has fluctuations corresponding to the feed rate applied, however in the real system 

this direct impact is not seen. This suggests a limitation in the model description which should 

be considered when the model is applied. In addition, the final substrate concentration is seen 

to go negative, which may be explained by uncertainty in the initial substrate concentration in 

the batch phase, variations in the feed concentration between batches, as well as consumption 

of additional media components which are not considered in the stoichiometric balance 
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methods. This is a limitation in the model, as of course this is not physically possible. The 

consumption rate of substrate is independent of the substrate concentration, as it is entirely 

based on the stoichiometric balance. The substrate balance is certainly an area of future work 

for the model. Overall, the qualitative trends are captured well in the model, and the 

prediction accuracy is considered acceptable. 

The product prediction for all eleven batches is shown in Figure 4. Across the eleven batches, 

the mean deviation between the model prediction and the data for product concentration 

ranges from 4.3% to 26.2%, and a summary of the results for all 11 batches is shown in Table 

I. In addition, Figure 5 shows the biomass concentration model prediction for the same eleven 

batches. The mean deviation between the model prediction and the data for biomass 

concentration ranges from 6.2% to 21.8%. The model results are considered robust to the 

different operating conditions, and the accuracy of the model prediction across the batches 

operated in such different physical conditions is very encouraging for future application as a 

process monitoring tool. 

State estimator applied on-line in Novozymes A/S fermentation pilot plant 

Once the model parameters have been fitted to the calibration batches, it is possible to 

implement the model on-line. Focussing on the product concentration as the fundamental 

measure of process performance, it is shown that the model predicts the current product 

concentration well, with an average RMSSE of 16.6% in fourteen new validation batches. 

Table I summarises the assessment of model fit for the validation batches. It is seen from 

Table I that the Janus coefficient is close to one for all batches, which suggests that the model 

accuracy in the validation batches is comparable to that of the calibration batches, with an 

average Janus coefficient of 1.5. Batches 8 and 11 show the greatest Janus coefficient, due to 

a significant underprediction of the product concentration at the end of the batch. The high 

Janus coefficient in Batch 6 may be partly due to measurement error, as it is seen one data 
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point does not follow the trend. The greatest RMSSE is in Batch 2. Although the absolute 

error of the prediction is comparable to the other batch predictions as shown by the Janus 

coefficient, the percentage error is greater due to the lower average product concentration. 

This shows the importance of utilising more than one assessment of model fit, where in this 

case the Janus coefficient shows that the model fit is no worse based on absolute errors.  

Overall the results show that the model provides acceptable prediction accuracy of product 

concentration, and that the model is calibrated successfully, such that the model errors seen in 

the validation batches are of a similar degree to those obtained from the calibration set. An 

on-line measure of product concentration is a valuable monitoring parameter which allows 

operators to compare between batches on-line, and intervene in the case of poor performance. 

The ultimate goal of introducing soft sensors is to incorporate the knowledge obtained from 

the state estimation into an on-line control algorithm. 

The complete model output is shown in Figure 7 for one of the fourteen additional batches, 

which was selected since the results are comparable to the results reported in the calibration 

batch. This full model output provides important monitoring information to operators, in 

particular the viscosity measurements, which are of high importance in industrial filamentous 

fungal processes (Olsvik and Kristiansen, 1994). 

It is also important to note that the mass prediction model is accurate, utilising the evaporation 

term in the model. This is an important addition to a pilot scale fermentation model, which is 

not often discussed in literature focussed on smaller scale experimentation. The evaporation 

rates calculated are significant, when considering fungal fermentation processes are operated 

for approximately one week. At the maximum rate of 40 kg/week, this equates to roughly 

10% of the final mass at this scale over a week operation. The complication of implementing 

an evaporation model is that it depends on the relative humidity and temperature of the 

incoming air, as this defines the water content incoming to the system, in addition to the air 
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flow rate, headspace pressure and temperature of the system, which defines the rate of water 

stripping. The environmental conditions are seen to vary significantly over a year period, as 

shown in Figure 8, and this fact must be accounted for in the model. Currently this is done by 

manually changing air inlet conditions, but this could become integrated as a measured 

parameter also, which is part of the future work for this model. 

It is also seen in Figure 8 that the temperature of the air and the humidity of the air are 

correlated, with a correlation coefficient of -0.53. With this understanding of the expected 

variation in inlet conditions, it is possible to simulate the range of expected evaporation rates 

over a year period. Latin Hypercube Sampling (Helton and Davis, 2003) is used to simulate 

250 data points which represent this year of data, taking into consideration the correlation in 

input variables using the method of Iman and Conover (Iman and Conover, 1982; Sin et al., 

2009). These 250 sample points are then simulated by Monte Carlo simulations in order to 

show the variation in evaporation rate, for a fixed set of processing conditions, as shown in 

Figure 9. 

This shows the importance of accounting for evaporation in this pilot scale model, and further 

work will include validating the different evaporation rates over the year by applying the state 

estimator and assessing the mass prediction.  

Model uncertainty assessment 

In order to understand the uncertainty of the model prediction we assess to scenarios: The 

effect of measurement quality on the model prediction, and an assessment of model parameter 

uncertainty. 

Since this modelling method relies on process measurements as input parameters it is 

important to understand how the accuracy of these measurements affects the model 

prediction. In Table II, a constant 5% deviation is applied to the input measurements, and the 

effect on the model output is shown, for the same batch as shown in Figure 7. Table II shows 
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the results for the relative change in the final model prediction compared to the base case for 

four scenarios; 5% increases are applied in each of the input parameters individually, as well 

as a simultaneous 5% error in both the CER and OUR. This is also assessed since these off 

gas measurements are utilizing the same equipment, and therefore it is likely that there could 

be an equal error in both measurements. This may for example be due to an incorrect gas flow 

rate measurement, which affects both the OUR and CER calculation equally. The results 

show that the balance between the OUR and the CER is very important for the prediction, 

meaning that if there is an error in both CER and OUR, then the prediction is not significantly 

affected, however an error in only one means that unacceptable errors are observed. This 

shows the importance of the respiratory quotient (RQ=CER/OUR) for the model prediction, 

especially for the biomass prediction. The ammonia flow rate affects both the biomass and 

product predictions by less than 10%.  

In addition to the model sensitivity to the input measured data, it is also important to assess 

the confidence in the fitted parameter values. In this case, the bootstrap method was chosen in 

order to provide an indication of model parameter uncertainty. The parameter uncertainty can 

be analysed by the distribution of the parameter values, where in this case we consider two 

standard deviations as a percentage of the mean, for confidentiality. This provides an 

indication of the percentage uncertainty in the parameter values. In this case, when all six 

stoichiometric parameters are fitted simultaneously, it is found that the parameter 

uncertainties for parameters XH, XO, XN, PH, PO, and PN are 16.6%, 15.6%, 41.4%, 7.2%, 

16.6%, and 5.9% respectively. The relatively high uncertainties are due to high correlation 

between the parameter values, which is expected in this simple stoichiometric model. If for 

example, the product stoichiometry is fixed, and only the stoichiometric parameters for the 

biomass are fitted, the uncertainty is below 5.5% for all parameters. The correlation matrices 

may be found in the supplementary material for both of these scenarios. 
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Conclusion 

In this work, a soft sensor is developed for 550L filamentous fungal fermentations operated at 

Novozymes A/S. The parameter estimation uses only standard on-line measurements, of 

oxygen uptake rate, carbon dioxide evolution rate and ammonia flow rate, which are 

considered robust measurements, not subject to drift, and without the need for calibration. It is 

therefore considered that the model should be applicable to other strains, other scales, and 

other processes, and this provides an area for future work. The flexibility of the method and 

the simplicity of implementation make this a valuable tool for industrial application. Due to 

the scale of operation, it is considered important to introduce the evaporation term into the 

model, and define the states on a mass basis, rather than a volume basis. This accuracy in the 

mass prediction avoids large errors propagating to the state estimates, and aids prediction 

accuracy.  

 In order to apply more advanced optimization and control strategies to industrial 

fermentation processes there is a need for robust state estimators in order to identify key 

performance indicators in real time. The future work for this project is to further develop this 

monitoring tool, and work towards on-line control and optimization at pilot and production 

scales. 
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Nomenclature 

𝐶𝑂2𝑜𝑢𝑡
= CO2 molar ratio in outlet gas  

CER= Carbon Evolution Rate (mol/h) 

DO= Dissolved O2 (mol O2/kg) 

Fevap= Evaporation rate (kg/h) 

Ffeed= Feed flowrate (L/h) 

HSP= Headspace pressure (bar) 

KLa= Mass transfer coefficient (h
-1

) 

M= Mass (kg) 

Mr= Molecular mass (kg/mol) 

N= Stirrer speed (RPM) 

OUR= Oxygen Uptake Rate (mol/h) 

P= Product concentration (g/kg) 

P*= Saturated vapour pressure (bar)  

ppCO2 = Partial pressure CO2 (mbar) 

Qair = Aeration rate (m
3
/h) 

R= Gas constant (J/mol.K) 

RH= Relative humidity (%) 

Sf = Feed substrate concentration (g/L) 

T = Temperature (°C) 

vg = Superficial gas velocity (m/s) 

X= Biomass concentartion (g/kg) 

Rate Subscripts 

g = Glucose 

o = Oxygen 

n = Ammonia 

x =Biomass 

p = Product 

c = Carbon dioxide 

h = Water 

Model terms 

U= [Ffeed, HSP, N, Qair] 

qm= [ qo, qc, qn] 

qc = [ qx, qp, qw, qg]  

x  = [X, P, G, DO, M]  

y  = [kLa, µ , Fcon] 

E = Stoichiometric matrix of coefficients 

C, H, N, O 
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List of tables 

 

Table I: Statistical analysis of model fit of product concentration for 11 calibration batches, 

and 14 on-line validation batches. Root mean sum of squared errors, RMSSE (%), and the 

Janus coefficient, J
2

 is shown. 

Calibration     1 2 3 4 5 6 7 8 9 10 11 mean 
   % RMSSE 21.8 6.4 6.0 26.2 10.7 8.7 10.3 11.8 24.4 4.3 14.5 13.2 

   

Validation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean 

% RMSSE 20.5 48.4 8.8 9.3 14.5 18.3 11.9 16.6 12.1 16.7 23.3 15.5 5.4 11.4 16.6 

Janus coefficient 1.3 1.1 0.4 0.5 2.0 2.7 0.7 3.5 1.7 1.5 3.5 1.5 0.1 0.6 1.5 

 

  

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Table II: Sensitivity analysis of the model prediction to process measurement errors. The 

results are given for the batch shown in Figure 7. The table provides the relative change in the 

model prediction for biomass concentration and product concentration compared to when no 

measurement error is applied. 

 
 +5% NH3  +5% CER  +5% OUR  +5% CER +5% OUR 

Change in final 

biomass prediction 3.1% 63.8% -58.4% 5.5% 

Change in final 

product prediction 9.3% -10.7% 8.9% -1.3% 
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List of Figures 

Figure 1: Model structure: On-line parameter estimation block, coupled to a dynamic process 

model.  

Figure 2: Implementation algorithm 

Figure 3: Coupled parameter estimator and dynamic model applied to pilot scale batch data. 

Batch data obtained from Novozymes A/S. Model prediction (grey), off-line measured data 

(black). Scaled axis labels for confidentiality reasons. 

Figure 4: Product concentration prediction for 11 historical pilot scale batches. Batch data 

obtained from Novozymes A/S with different conditions for headspace pressure, aeration rate 

and stirrer speed. Model prediction (grey), off-line measured data (black). Scaled axis labels 

for confidentiality reasons. 

Figure 5: Biomass concentration prediction for 11 historical pilot scale batches. Batch data 

obtained from Novozymes A/S with different conditions for headspace pressure, aeration rate 

and stirrer speed. Model prediction (grey), off-line measured data (black). Scaled axis labels 

for confidentiality reasons. 

Figure 6: Product concentration prediction for fourteen validation pilot scale batches. Batches 

were performed using different operating conditions for headspace pressure, aeration rate and 

stirrer speed, resulting different levels of product formation. Model prediction (grey), off-line 

measured data (black). Scaled axis labels for confidentiality reasons. The y-axis scaling is the 

same as in Figure 4. 

Figure 7: Coupled parameter estimator and dynamic model applied on-line in Novozymes A/S 

fermentation pilot plant. Model prediction (grey), off-line measured data (black). Scaled axis 

labels for confidentiality reasons. The y-axis scaling is the same as in Figure 3. 
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Figure 8: Temperature and relative humidity data obtained from the 2001-2010 Design 

Reference Year for Denmark dataset from the Danish Meteorological Institute (Wang et al., 

2013). The correlation coefficient is -0.53. 

Figure 9: Evaporation rate model, for a pilot scale process operated at 300NL/min and 0.7 bar 

headspace pressure. Effect of the inlet air relative humidity and temperature is shown. The 

Monte Carlo simulations are applied to 250 sample points, which are generated using Latin 

Hypercube Sampling (Helton and Davis, 2003) taking into consideration the correlation 

coefficient of -0.53 which is obtained from the data in Figure 8. Coloured surface plot of the 

results is shown, with colours corresponding to evaporation rate (kg/week). 
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