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Dansk sammenfatning 
 

Den hurtigst flydende gletsjer på jorden, Jakobshavn Isbræ (JI) i Vestgrønland, 

indeholder nok vand til at øge havniveauet med ~0.7 m, og er derfor blevet studeret 

nøje igennem det seneste årti. Dynamikken bag JI er grundigt undersøgt, hvorimod 

gletsjerens længerevarende respons på klimaforandringer stadig er ukendt. Ved at 

kombinere historiske data med 3-D modellering har vi her fundet ud af, at gletsjerens 

tunge kollapsede i 1930’erne, efterfulgt af en moderat tilbagetrækning i de følgende 

årtier og endnu et omfattende kollaps i 2003, efter hvilket gletsjeren har befundet sig 

i en periode med konstant massetab.  

Siden 1840 har JI mistet 1214.5 Gt, svarende til en havniveaustigning på omtrent 3.3 

mm eller 12 % af den totale masse af Grønlands ismasse. Klimamodeller forceret 

med realistiske klimafluktuationer samt gletsjergeometrier forudsiger endnu et 

markant kollaps resulterende i en tilbagetrækning på op til 40 km langs gletsjerens 

fæste på den nedadskrånende havbund. Destabiliseringen styres primært af 

gletsjergeometrien og tyder på at massetabet når at blive tredoblet inden år 2100 i 

forhold til det forrige århundrede. Klimamodellerne viser endvidere, at for at 

modvirke den nuværende tilbagetrækningshastighed af gletsjeren, er det nødvendigt 

at temperaturen i det omkringliggende hav varigt falder med 0.9 °C. Såfremt 

temperaturen igen stiger vil tilbagetrækningen genoptage. Studiet indikerer desuden 

et uundgåeligt kollaps af gletsjeren selv for klimascenarier med beskedne 

temperaturstigninger, hvilket vil resultere i en acceleration af den globale 

vandstandsstigning. 
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Abstract 
 

The rate of net ice mass loss from Greenland’s marine terminating glaciers has more 

than doubled over the past two decades highlighting their importance for future sea-

level rise.  Current projections are built upon observations from a short term record 

spanning only from several years to a decade. However, the last decade is dominated 

by anomalous dynamic changes and is therefore not representative of multi-decadal 

behaviour of glacier dynamics.  

A regional three-dimensional outlet glacier model developed as part of the PISM is 

used to simulate the behaviour of Jakobshavn Isbræ (JI; located in west Greenland) 

since the end of the Little Ice Age (LIA). The model is forced with different climate 

variables: near-surface air temperature, surface mass balance (SMB), sea-surface 

temperature and salinity. In order to accurately simulate and understand the longer-

term controls of dynamic changes, the model is constrained by observed terminus 

positions (1900-2014) and mass change estimates (1997-2014). The present study is 

the first that successfully simulated JI’s behaviour over the last century. For the 

period 1990-2014, the model simulated two major accelerations in 1998 and 2003 

that are consistent with observations of changes in glacier terminus. An initial, and 

most probably the first significant acceleration of JI after the end of LIA was 

modelled in ~1930. Overall, I found that the ocean influence in JI’s behaviour over 

the last century is significant and most of the JI retreat during 1840–2014 is driven 

by the ocean parametrization and the glacier’s subsequent response, which was 

largely governed by its own bed geometry. In my simulations, the retreat of the front 

reduced the buttressing at the terminus and generated a dynamic response in the 

upstream region of JI which finally led to flow acceleration. This buttressing effect 

tends to govern JI’s behaviour. Consequently, the results showed that the dynamic 

changes modelled at JI are triggered at the terminus. 

In a final phase, using this model that has been adjusted to the longer-term record, I 

performed experiments to the near future (i.e., 2013-2100) using five ocean 

temperature scenarios and two atmospheric scenarios (RCP 4.5 and RCP 8.5) as 

climate forcing. In terms of mass change,  I found that from the end of the LIA until 

the end of the 21st century JI’s mass change was and will remain predominately 

dynamically controlled (between 74 % and 86 % of the mass change is dynamic in 

origin). The study further indicates that the change in mass loss at JI is already 

triggered and that an eminent collapse of the terminus by the end of the century with 

retreat of up to 40 km along JI’s downward-sloping, marine-based bed is inevitable. 

A cooling experiment suggested that 0.9 °C of ocean cooling is needed to reverse the 

current retreat trend which however, will restart once cooling stops. The modelled 
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cumulative mass change for the period 1840-2012 is ~1215 Gt or 3.4 mm SLR 

equivalent. For the 21st century, the best case scenario with regards to future 

warming (i.e., no increase in surface ocean temperature relative to present day) 

suggested mass loss estimates amount to ~1860 Gt by the year 2100 (67 % increase 

relative to 1840-2012) or 5.2 mm SLR equivalent.  In the worst case scenario with 

regards to future warming expected mass loss of JI amounts to 3275 Gt by the year 

2100 (192 % increase relative to 1840-2012) or 9.1 mm SLR equivalent.   

Overall, the study is unique both in approach and results obtained, and shows 

significant progress in modelling the temporal variability of the flow at JI. The study 

improves our quantitative understanding of the past and future of JI’s dynamics. 
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SLR – Sea Level Rise 

SIA – Shallow Ice Approximation 

SMB – Surface Mass Balance 

SSA – Shallow Shelf Approximation 

SST – Sea Surface Temperature  

T – Surface Air Temperature 
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CHAPTER 1 

    Introduction 
 

 

he recent rapid dynamic mass loss of tidewater outlet glaciers in Greenland 

through acceleration of ice discharge highlights their importance for sea-level 

rise, but the controlling processes are not well understood and have been 

identified in the 5th IPCC-report as a major uncertainty in our ability to predict 

future sea-level. Recent studies (Rignot et al., 2008; Moon et al., 2012; Shepherd et 

al., 2012; Enderlin et al., 2014) suggest that the rate of net ice mass loss from 

Greenland’s marine terminating glaciers has more than doubled over the past two 

decades. Jakobshavn Isbræ (JI), located mid-way up on the west side of Greenland 

(Fig. 1), is one of the largest outlet glaciers in terms of drainage area as it drains ~6 

% of the Greenland Ice Sheet (GrIS) (Krabill et al., 2000). JI terminus retreated ~30 

km from 1850 to 1964, followed by a stationary front for 35 years (Csatho et al., 

2008). Following initial glacier acceleration in 1998, JI retreated over 15 km between 

2001 and 2007. Due to its consistently high ice flow rate and seasonally varying flow 

speed and front position, the glacier has received much attention over the last two 

decades (Thomas et al., 2003; Luckman and Murray, 2005; Holland et al., 2008; 

Amundson et al., 2010; de Juan et al., 2010; Khan et al., 2010; Motyka et al., 2011; 

Joughin et al., 2012; Gladish et al., 2015a; Gladish et al., 2015b). Measurements 

from synthetic aperture radar suggest that the ice flow speed of JI doubled between 

1992 and 2003 (Joughin et al., 2004). More recent measurements show a steady 

increase in the flow rate over the glacier’s faster-moving region of ∼5 % per year 

(Joughin et al., 2008). The speedup coincides with thinning of up to 15 m a
-1

 between 

T 
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2003 and 2012 near the glacier front (Krabill et al., 2004; Nielsen et al., 2013) as 

observed from airborne laser altimeter surveys. The steady increase in the flow rate 

and the glacier thinning suggest a continuous dynamic drawdown of mass, and they 

highlight JI’s importance for the GrIS mass balance and future sea-level rise.

  

 

Figure 1: (A) Landsat 8 image of Ilulissat fjord and part of Disko Bay acquired in 

August 2014. The dark orange triangles indicate the locations of the GPS 

stations shown in Fig. 32. The rectangle defined by light orange borders 

outlines the location of Fig. 1C. (B) Grey filled Greenland map. The black 

filled rectangle highlights the JI basin used to compute the mass loss and is 

identical to Khan et al. (2014). The rectangle defined by red borders 

indicates the computational domain.  The light blue border rectangle 

represents the location of Fig. 1A. (C) Coloured circles indicate the 
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locations plotted in Fig. 28. The thick black line denotes the JI terminus 

position in the 1990s. The dotted black line represents the flow-line 

location plotted used in Sect. 6. (D) The dotted black line represents the 

flow-line location used in Sect. 5. The long dashed black line represents 

the flow-line location used in Sect. 7. The solid dark red lines denote the JI 

terminus positions in 1880 and 2012. The coordinates given in (A) are in 

polar-stereographic projection units (km). 

This thesis focuses on numerically modelling Jakobshavn Isbræ constrained to a 

variety of observations. Numerical ice sheet models provide quantitative insights on 

the four-dimensional distribution of stresses and allow us to reconstruct past and 

future ice mass changes and glacier dynamics which cannot be inferred from, e.g. 

satellite and airborne data or geological evidence. Several processes have been 

identified as controlling the observed speedup of JI (Nick et al., 2009; Van der Veen 

et al., 2011; Joughin et al., 2012). One process is enhanced sliding at the glacier bed 

due to increased lubrication from surface melt water reaching the bed, as indicated 

by correlations between enhanced flow and increased surface melt. A second process 

is a reduction in resistance (buttressing) at the marine front through thinning and/or 

retreat of the glacier termini. Recent findings indicate that the first explanation is 

relevant on relatively short time-scales (days to weeks). The second process, reduced 

buttressing at the marine terminus, seems to more likely explain the recent dynamic 

changes observed in Greenland (Nick et al., 2013) but the details of the processes 

triggering and controlling thinning and retreat remain elusive. Accurately modelling 

complex interactions between thinning, retreat, and acceleration of flow speed as 

observed at JI, still remains challenging.  

Furthermore - and crucially - our current understanding of these processes is almost 

entirely based on observations from a short-term record, spanning only from a year 

to a decade (i.e., mostly starting 2000; Vieli et al., 2000; Nick et al., 2009; Vieli et 

al., 2011), and which are characterized by short-term fluctuations and therefore not 

representative for longer-term trends of decade-to-century time scales. The initial 

speedup of JI occurred at a time when the satellite and airborne observations were 

unavailable (i.e., sometime at the end of the Little Ice Age, LIA) and it is these 

longer-term trends that are relevant for a robust assessment of present and future sea-

level. The unique years to multi-decadal timescale dataset of outlet glacier changes 

acquired with an existing specifically designed fully 3-D dynamic numerical model 

for outlet glacier flow allows us to investigate and quantify in detail the longer-term 

controls of such dynamic changes. Understanding the sensitivity of dynamic thinning 

to climate forcing beyond the last decade is crucial for accurately projecting the GrIS 

contributions to global sea level change. 
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Here, I used a high-resolution, three-dimensional, time-dependent regional outlet 

glacier model that has been developed as part of the Parallel Ice Sheet Model (PISM; 

see Sect. 3) (The PISM Authors, 2014) to investigate the dynamic evolution of JI 

between 1840-2014. The model is forced with different climate variables: near-

surface air temperature, surface mass balance (SMB), sea-surface temperature and 

salinity. My modelling approach is based on regional equilibrium simulations and a 

time-integration over the period 1840 to 2014. Overall, I perform over 200 

experiments which I divide in Study 1, Study 2, and Study 3. These experiments 

range between simulations with fixed terminus positions (i.e., Study 1) to simulations 

that allow the grounding lines and the calving fronts to evolve freely under the 

applied ocean parametrization and monthly atmospheric forcing (i.e., Study 2 and 3).  

In general, reproducing past and present-day observations of the dynamical 

behaviour of Greenland’s outlet glaciers is the key for developing realistic 

projections of future changes in the GrIS (IPCC, 2013). In a final phase, using this 

model that has been adjusted to the longer-term record, I will run experiments to the 

near future (i.e., 2013-2100) using five different ocean temperature scenarios and 

two different RCP (Representative Concentration Pathways) scenarios (RCP 4.5 and 

RCP 8.5) as climate forcing (i.e., Study 4).  

1.1   Existing literature  

Over the past decade, we have seen significant improvements in the numerical 

modelling of glaciers and ice sheets (e.g. Price et al., 2011; Vieli and Nick, 2011; 

Winkelmann et al., 2011; Larour et al., 2012; Pattyn et al., 2012; Seroussi et al., 

2012; Aschwanden et al., 2013; Nick et al., 2013; Mengel and Levermann, 2014; 

Aschwanden et al., 2016) and several processes have been identified as controlling 

the observed speedup of JI (Nick et al., 2009; Van der Veen et al., 2011; Joughin et 

al., 2012). Some regional scale glacier models are based on a flow-line approach 

(Nick et al., 2009; Parizek and Walker, 2010), which models the one- or two-

dimensional dynamic behaviour of the glacier under consideration. Flow-line models 

are computationally efficient and valuable for understanding basic processes. 

However, three-dimensional models are more appropriate in areas of flow 

divergence/convergence and/or where lateral stresses are important. All the existing 

literature on modelling and projecting JI dynamics and mass changes using forward 

simulations is mostly based on flow-line models (Vieli et al., 2000; Nick et al., 2009, 

Vieli et al., 2011, Nick et al., 2013), where the model is calibrated only on the last 

decade. The last decade, however, is not necessarily representative for typical glacier 

behaviour and as discussed by Bevan et al. (2012), this period is most probably 

dominated by anomalous dynamic signal. On the other hand, previous 3-D modelling 

studies have mostly concentrated on modelling individual processes using stress 
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perturbations (e.g. Van der Veen et al., 2011, Joughin et al. 2012). The present study 

is the first that aims to model the behaviour of JI since the end of the Little Ice Age 

(LIA) with a 3-D process-based model.  

The 3-D regional glacier model used here has been developed by Della-Giustina 

(2011) and it is now fully available in PISM. The regional model is capable of 

simulating an outlet glacier, and its associated drainage basin using an approach that 

is very similar to a one-way nested model. In such a model the coarse domain 

provides the initial and the boundary conditions for the nest domain (i.e., the high 

resolution regional domain) and feedbacks between the coarse domain and the nest 

are not included. PISM does not perform the actual grid nesting but allows the user 

to specify the initial and the boundary conditions provided by the whole ice sheet 

initialization simulation in an approach similar with the one-way nested model 

(Della-Giustina, 2011). PISM and its underlying equations and theory are further 

detailed in Sect. 3.  

An initial parameter study for JI was performed by Della-Giustina (2011) using the 

regional model on 2 km and 1 km grids. The goal of that particular study was not to 

reproduce observations but rather to find sets of parameters that produce certain 

behaviours within the model, to define grid size sensitivity and to evaluate the 

temporal resolution for which model results are still relevant after initialization. Her 

experiments suggest that for JI, the modelled results are relevant for ~1000 model 

years after initialization and increasing the resolution from 2 km to 1 km does not 

result in model improvement with respect to ice thickness or horizontal surface 

velocities. 

1.2   Overview 

Overall, this study aims to improve our quantitative understanding of the past, 

present and future JI dynamics and mass change estimates, as well as to constrain 

JI’s contribution to sea-level rise over 260 years. The study shows significant 

progress in modelling the decadal and temporal variability of the flow at JI. 

The thesis is organized as follows. Chapter 2 provides an overview of the overall 

data used in the thesis.  I describe both data used as an input in PISM, such as 

atmospheric and oceanic forcing or observed terminus positions, but also data used in 

the validation of the model, such as ice thickness changes or horizontal velocities.  

 In Chapter 3, I describe PISM, its underlying physics and equations.  The 

initialization procedure and the regional modelling approach are also detailed in this 

chapter.   
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In Chapter 4 (Study 1), I focus on finding a suitable initialization method for my 

further studies, as well as to define atmospheric forcing and bed topography 

sensitivities, and evaluate if the regional model is able to realistically transform 

climate forcing into simulate mass change. 

Chapter 5 (Study 2) describes regional JI simulations performed from the end of the 

LIA until 2012. Here, I focus on modelling the terminus advance and/or retreat and 

the speed fluctuations observed at JI during the period 1840-2012. Relative to 

Chapter 6, I am mostly interested in the overall modelled 20th century retreat and 

mass change.  

Chapter 6 (Study 3) focuses mainly on simulations performed from 1990 until 2014. 

Relative to Chapter 5, here I focus more on the seasonal driven terminus advance 

and/or retreat and speed fluctuations of JI during the period 1990-2014. The period 

1990-2014 is abundant in observations and ensures better constrains for the model. In 

the same chapter, I present the regional model sensitivity to parameters controlling 

ice dynamics, basal processes, ice shelf melt, and ocean temperature.  

Chapter 7 (Study 4) presents projections (prognostic modelling) for the period 2013-

2100 using two RCP scenarios (i.e., RCP 4.5 and RCP 8.5) as atmospheric forcing 

and five ocean temperature scenarios as oceanic forcing. Each study (Chapter 4 to 

Chapter 7) ends with its own Discussion section.  

Chapter 8 highlights the main findings of the thesis and brings together the 

discussion performed at the end of each study.  

Chapter 9 provides the overall conclusion and outlook of the thesis.  

The Appendix sections A to F include additional figures and tables. Appendix G 

introduces teaching activities and conferences attended during the Ph.D. period.  

Additional to the main text presented here, the Ph.D. dissertation consists of the 

following papers: 

i. Khan, S. A., K. H. Kjær, M. Bevis, J. L. Bamber, J. Wahr, K. K. 

Kjeldsen, A. A. Bjørk, N. J. Korsgaard, L. A. Stearns, M. R. van den 

Broeke, L. Liu, N. K. Larsen, and I. S. Muresan. 2014. “Sustained mass 

loss of the Northeast Greenland Ice Sheet triggered by regional 

warming.” Nat. Clim. Change 4: 292–299. doi:10.1038/nclimate2161. 

 

ii. Muresan, I. S., S.A. Khan, A.  Aschwanden, C.  Khroulev, T.  Van Dam, 

J. Bamber, M. V. D. Broeke, B. Wouters, P. Kuipers Munneke, and K. H. 

Kjær. 2016. “Modelled glacier dynamics over the last quarter of a 
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century at Jakobshavn Isbræ”. The Cryosphere 10(2): 597-611. doi: 

10.5194/tc-10-597-2016. 

 

iii. Muresan, I. S., S. A. Khan, A. A. Bjørk, K. K. Kjeldsen, K. H. Kjær, A. 

Aschwanden, P. Langen, T van Dam, C Gladish, D Holland , J. E. Box 

and Michiel van den Broeke. 2016. “Eminent and inevitable terminus 
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CHAPTER 2 

 

  Data 
 

 

 

2.1   Atmospheric input 

2.1.1  Surface mass balance and air temperature for the period 1840-2014 

s most of the ice sheet models are run offline, the required atmospheric 

forcing includes only the surface mass balance (SMB; the net balance 

between accumulation (snowfall) and ablation (melt and subsequent 

runoff)), and surface air temperature or precipitation and surface air temperature, if a 

PDD scheme is employed. The first option, also my choice for the outlet regional 

glacier model, is often the preferred one, especially if the climate model in use has 

high quality surface mass and energy sub-models. Therefore, HIRHAM5 and 

RACMO2 and a climate reconstruction after Box et al. (2013), Box (2013), Box and 

Colgan (2013), hereafter "BOX" are used in this thesis. 

The regional climate model RACMO2 (Ettema et al., 2009) is a high-resolution 

limited area model with physical processes adopted from the global model of the 

European Centre for Medium-Range Weather Forecasts (ECMWF). Its adaptation 

for the GrIS, including the treatment of meltwater percolation and refreezing, as well 

as the evaluation of the modelled SMB, is described by Ettema et al. (2009) and 

A 
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Ettema et al. (2010). The lateral boundary conditions are provided by ECMWF 

reanalyses, notably ERA-40 and ERA-Interim, and the model is run at a spatial 

resolution of ~11 km over the period 1958 to 2014. Based on a comparison with 

observations, Ettema et al. (2009) concluded that the model performs very well in 

simulating accumulation (N = 265, r = 0.95), yielding a 14 % uncertainty in ice-sheet 

integrated SMB. The model provides monthly means of near-surface air temperature, 

climatic mass balance, and the individual subcomponents, i.e., precipitation, 

evaporation/sublimation, run-off, melting, and re-freezing (Fig. 2).  

The hydrostatic atmospheric regional climate model HIRHAM is based on 

HIRLAM7 dynamics (Eerola, 2006) and ECHAM5 physics (Roeckner et al., 2003). 

HIRHAM5 is run at a spatial resolution of ~5.55 km and provides monthly mean 2 m 

air temperature and climatic mass balance for the period 1989-2012 (Fig. 2; 

Christensen et al., 2006). HIRHAM5 is forced at the lateral boundaries based on the 

ERA-Interim product (Dee et al., 2011). Error estimates for HIRHAM are based on 

comparison with ice cores for the 1989-2010 period to assess annual accumulation 

accuracy and with PROMICE automated weather station ablation rate observations 

(Ahlstrøm et al., 2008; Fausto et al., 2012) for June, July, and August (JJA) in the 

2007-2013 period. The HIRHAM data have a ~-3.5 % accumulation rate bias and a 

38 % RMS error. HIRHAM SMB data have an average 0.714 correlation with 

monthly PROMICE data, a bias of +0.07 m water equivalence (w.e.), and an absolute 

RMS error of 42 % (Jason Box, personal communication). 

The BOX climate reconstruction (Box et al., 2013; Box, 2013; Box and Colgan, 

2013) is based on monthly meteorological stations air temperatures, ice cores, and 

regional climate model outputs combined to develop a continuous 172 yr (1840-

2012) monthly reconstruction of ice sheet SMB, accumulation rate, and near surface 

air temperatures (Fig. 2). The BOX reconstruction is produced at a resolution of ~5 

km, providing near surface air temperature, climatic mass balance and its individual 

subcomponents, i.e. run-off and internal accumulation. In the version used here, 

several refinements are made to the Box (2013) temperature (T) and SMB 

reconstruction. Multiple station records now contribute to the near surface air 

temperature for each given year, month and grid cell in the domain, while in Box 

(2013), data from the single highest correlating station yielded the reconstructed 

value. The estimation of values is made for a domain that includes land, sea, and ice. 

Box (2013) reconstructed T over only ice. A physically-based meltwater retention 

scheme of Pfeffer et al. (1990, 1991) replaces the simpler approach used by Box 

(2013). The RACMO2 data have a higher native resolution of 11 km as compared to 

the 24 km Polar MM5 data used by Box (2013) for air temperatures. The revised 

surface mass balance data end two years later in year 2012. The annual accumulation 

rates from ice cores are dispersed into a monthly temporal resolution by weighting 
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the monthly fraction of the annual total for each grid cell in the domain evaluated 

using 1960-2012 RACMO2 data. In an identical error assessment as with HIRHAM, 

for BOX, the accumulation rate has a -6.3 % bias and a 32 % RMS error. For SMB, 

using 20 station years of PROMICE data, the BOX JJA SMB has a correlation with 

independent observations of 0.650, an average bias of +0.10 m water equivalence, 

and an absolute RMS error of 40 % (Jason Box, personal communication). 

 

Figure 2: (A) Surface air temperatures anomalies relative to the period 1960-1990 

for BOX (1840-2012; blue) and RACMO2 (1958-2014; red), and relative 

to the period 1989-1990 for HIRHAM5 (1990-2011; green). The mass 

change due to SMB for BOX (B), RACMO2 (C) and HIRHAM5 (D), 

computed for the whole computational domain is shown with dashed line 

and in the mask from Fig. 1B with solid line. For BOX and RACMO2, I 

removed the 1960-1990 baseline. 

Mean summer (June, July, August (JJA)) and mean winter (December, January, 

February (DJF)) 1990-2012 temperature and SMB for the three datasets used as 

atmospheric forcings are introduced for JI in Fig. 3.  

2.1.2  Surface mass balance and air temperature for the period 2010-2100 

The Representative Concentration Pathways (RCP) scenarios are four greenhouse 

gas concentration trajectories developed for IPCC (2013). The RCP 4.5 was 

developed by the MiniCAM modeling team at the Pacific Northwest National 

Laboratory's Joint Global Change Research Institute (JGCRI) and assumes 
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employment of a range of technologies and strategies for reducing greenhouse gas 

emissions. Generally, RCP 4.5 is known as a stabilization scenario, where the total 

radiative force is stabilized before 2100. The resulting development path is detailed 

 

Figure 3: Mean summer (June-August) 1990-2012 air temperature (A) and SMB (B) 

and mean winter (December-February) air temperature (C) and SMB (D) 

for HIRHAM5, RACMO2 and BOX for my regional Jakobshavn Isbræ 

domain (Fig. 1B). The JJA temperature is similarly represented by all three 

datasets with more accentuated differences in the interior part of the 

domain, while the JJA SMB is characterized by large fluctuations in the 

proximity of the coastline. The DJF mean temperature and SMB are 

characterized by large fluctuations among the three datasets, both near the 

coast and in the interior parts of the domain (note BOX DJF temperature). 

All three datasets are presented on a 5 km grid. 

in Clarke et al. (2007).  The RCP 8.5 was developed by the MESSAGE modeling 

team and the Integrated Assessment Framework at the International Institute for 

Applies Systems Analysis (IIASA), Austria. Generally, the RCP 8.5 is characterized 

by increasing greenhouse gas emissions and by the end of 2100 results in high 

greenhouse gas concentration levels. The resulting development path is detailed in 

Riahi et al. (2007). 
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The RCP 4.5 and RCP 8.5 derived SMB and surface air temperature scenarios for my 

regional JI domain were computed by Peter Langen at the Danish Meteorological 

Institute (DMI). The 5 km HIRHAM5 regional model (Lucas-Picher et al., 2012) was 

driven with updates to the snow-ice-subsurface scheme (Langen et al., 2015) into the 

future using output from the EC-Earth atmosphere-ocean general circulation model. 

Six-hourly fields of SST and sea ice concentration as well as temperature, humidity 

and winds on the lateral boundaries of the HIRHAM5 domain were used. 

 

Figure 4: (A) Surface air temperatures anomalies (i.e., relative to 2000-2010) for the 

period 2016-2100 for RCP 4.5 (green) and RCP 8.5 (red).  (B) The mass 

change due to SMB (i.e., after the 2000-2010 baseline is removed) for 

RCP 4.5 and RCP 8.5 for the whole computational domain (dashed line) 

and in the mask shown in Fig. 1B (solid line). 

The daily SMB calculations from the HIRHAM5 were performed after an update to 

the subsurface model employed by Langen et al. (2015). The EC-Earth simulation 

supplied a reference period historical simulation up to 2010, and continued into the 

future along the RCP 4.5 and RCP 8.5 scenarios for atmospheric composition. As it 

was too computationally demanding to run the HIRHAM5 for the full century-long 

duration using two different scenarios, two 20-year time slices with a total of 5×20 

HIRHAM5 simulations for each scenario were selected (Peter Langen, personal 

communication). Having T and SMB from these 100 years of simulation, an 

interpolation to produce continuous driving fields for the PISM experiments to 2100 
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with both the RCP 4.5 and RCP 8.5 scenarios was performed. The difference in SMB 

between RCP 4.5 and RCP 8.5 for the whole computational domain is ~1355 Gt (Fig. 

1B), while relative to the JI drainage basin mask (Fig. 1B), the difference decreases 

to only ~62 Gt. 

The RCP 4.5 and RCP 8.5 derived air temperature and SMB for the period 2010-

2100 are further used in Study 4.  

2.2   Ocean input 

           2.2.1  Ocean water salinity and temperature for the period 1840-2014 

From the ocean side, I used a parametrization for ice shelf melting where the melting 

effect of the ocean is based on both ocean temperature and salinity (Martin et al., 

2011). This ice shelf melting parametrization is described in detail in Sect. 3.6.  

A previous study conducted by Mengel and Levermann (2014) using the same ice 

shelf melting parametrization established that the sensitivity of the melt rate to 

salinity is negligible. Therefore, I chose to keep the ocean water salinity (35 psu) 

constant in time and space as the model does not capture the salinity gradient from 

the base of the ice shelf through layers of low and high salinity. Regarding the ocean 

temperature, whenever the parametrization for ice shelf melting was used, I always 

started the simulations with a constant ocean water temperature of -1.7 °C, which I 

considered to be the surface ocean temperature in the grid cells adjacent to the JI 

terminus (i.e., Study 2 and 3). I have also computed (i.e., relative to this starting 

temperature) 10 year intervals of sea surface temperature anomaly changes (SST; 

10×17), which I then used as an input to the meting parametrization (Sect. 3.6) in 

Study 2. To obtain these anomalies, I removed the 1961–1990 mean annual SST 

(Fig. 5). The SST data have been extracted from the HadISST1 Met Office Hadley 

Centre dataset (MET
1
).  

2.2.2  Ocean water salinity and temperature for the period 2013-2100 

For ocean projections (Study 4), I used a similar approach with the one presented in 

Sect. 2.2.1, where I kept the ocean water salinity constant (35 psu)  and I computed 

10 year intervals (10×9) based on a linear increase in ocean surface temperature 

which I divided in intermediate (Scenario B, 1 °C) and harsh (Scenario C, 3°C). The 

magnitude of the ocean temperature increase is in agreement with projected ocean 

warming around Greenland (e.g. Yin et al. 2011; IPCC, 2013).  Additionally, I 

considered a scenario with 0 °C increase in ocean temperatures relative to the 

reference period 2000-2012 (i.e., -1.3 °C, see Fig. 5) which I denoted as Scenario A. 

                                                           
1
 http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html 
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Figure 5: Surface ocean temperature used as an input in the historical simulations 

(top) and in the prognostic simulations (bottom). The light blue line and 

the olive-yellow line (top) are superimposed over the period 1845-1915. 

“SST, 1840-2012” refers to temperature changes as extracted from the 

original MET data set. “Adjusted SST, 1840-2012” represent temperatures 

that have been adjusted such that the model accurately matched the 

observed trend in mass change for the period 1997-2012. 

The period 1970-1992 is known as a cooling period, where low temperatures are 

characteristic for the GrIS. This cooling period is mostly attributed to an increase in 

atmospheric aerosols (Schlesinger 1994, Chylek et al. 2004). According to Liepert et 

al. (2002) a global reduction of ~4 % in incoming solar radiation reaching the ground 

between 1961 and 1990 was observed. The cooling episodes in 1983-1984 and 1991-

1992 are related with major volcanic eruptions (i.e., Mt. Pinatubo eruption in June 

1991 followed by two years of cooling, 1991-1992). Some researchers have also 

attributed the cooling/warming phase to changes in the North Atlantic Oscillation 

(NAO) (IPCC, 2013). To include such a cooling period in my simulations, I further 

designed two additional scenarios (Scenario D1 and Scenario D2; Fig. 5). Both 

scenarios assume an ocean cooling period between 2020-2040. While Scenario D1 

assumes a decrease in surface ocean temperatures similar in magnitude with the 

“MET SST changes” for the period 1970-1990 (~0.9°C; Fig. 5), Scenario D2 
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assumes a decrease similar with the “Adjusted SST” (~0.5°C; Fig. 5 and Sect. 5). 

Over the period 2041-2060, both scenarios assume a linear increase in SST of 1.1 °C. 

Starting 2060, both scenarios include the SST changes used in Scenario C (~0.37 °C; 

Fig. 5).  Regarding the atmospheric forcing, during the cooling period, I used mean 

1960-1990 air temperature and SMB.  

2.3   Bedrock topography and surface elevation 

I used the bed topography from Bamber et al. (2001) and Bamber et al. (2013). The 1 

km bed elevation dataset for all of Greenland (Bamber et al., 2013) was derived from 

a combination of multiple airborne ice thickness surveys and satellite-derived 

elevations during 1970–2012. In comparison with the compilation published in 2001, 

the 2013 dataset has an improved resolution, particularly along the ice sheet margin. 

In the region close to the outlet of JI, data from an 125 m CReSIS DEM (that 

includes all the data collected in the region by CReSIS between 1997 and 2007) have 

been used to improve the accuracy of the dataset.  Errors in bed elevation are known 

to range from 10 m to 300 m, depending on the distance from an observation and the 

variability of the local topography (Bamber et al., 2013). At the continental margin,  

 

 

 

 

the basal geometry was improved with the aid of bathymetric data that extends out to 

the continental shelf (i.e., as far as the maximum glacial extent) (Bamber et al., 

2013). The bathymetry was taken from the International Bathymetric Chart of the 

Figure 6: (left) Airborne radar flightlines showing the coverage over the GrIS used 

in Bamber et al. 2001. (right) RMS error in bed elevation from Bamber et 

al. (2013). Note that the smallest errors (blue) are in the proximity of the 

flightlines. The figures are adopted from Bamber et al. (2001) and Bamber 

et al. (2013). 
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Arctic Ocean (IBCAO) v3 (Jakobsson et al., 2012) and represents an interpolation of 

various bathymetric data from the entire Arctic Ocean. Further, in the Jakobshavn 

region, the bathymetry was supplemented with additional data from soundings made 

in the Jakobshavn fjord by CReSIS (Bamber et al., 2013). 

 

 

 

 

 

In Study 2 and 3, I computed the ice thickness as the difference between surface 

and bedrock elevation. Further, for Study 2 the terminus position and surface 

elevation in the Jakobshavn region (i.e., from Bamber et al. (2013)) have been 

adjusted to simulate 1840 terminus and surface elevation based on “historical 

moraines” (fresh non-vegetated moraines in the proximity of the present glacier 

ice terminus) and fresh trimlines (pronounced boundaries between abraded and 

less abraded bedrock on valley sides) (Fig. A2; Csatho et al., 2008; Khan et al. 

2014). According to Csatho et al. (2008) these marks were formed at the end of 

LIA and correspond to the culmination of LIA glacier advances. An identical 

approach has been used for Study 3 where the terminus position and surface 

elevation is adjusted to simulate 1990 conditions based on 1985 aerial 

photographs (Fig. A2; Csatho et al., 2008). 

 Study 1 is based on the bed topography from Bamber et al. (2001) and Bamber et 

al. (2013), while Study 2, Study 3 and Study 4 use solely the bed topography from 

Bamber et al. (2013). 

Figure 7: (left) Bedrock topography in the Jakobshavn region according to 

Bamber et al. (2001a,b) and (right) Bamber et al. (2013).  The bed 

topography from Bamber et al. (2013) provides an improved 

resolution and better defined troughs for the Jakobshavn region. The 

black polygon represents the drainage basin mask for JI as computed 

from the surface DEM. 
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2.4   Observed ice mass change 

I estimated the rate of ice volume change using 1997–2014 NASA’s Airborn 

Topographic Mapper (ATM) flights (Krabill, 2014) derived altimetry, supplemented 

with Ice, Cloud and land Elevation Satellite (ICESat) data (Zwally et al., 2012) for 

2003–2009 and Land, Vegetation and Ice Sensor (LVIS) data (Blair and Hofton, 

2012) for 2007–2012, CryoSat-2 data (Wouters et al., 2015) for 2010–2014, and 

European Remote-Sensing Satellite (ERS-2) data during 1997-2003. ATM flight 

lines in the JI region between 1993 and 1996 cover only a minor transect, and are 

therefore not used. The procedure for deriving ice surface elevation changes is 

identical to that  presented in Khan et al. (2013) and is similar to the method used by, 

for example, Ewert et al. (2012) and Smith et al. (2009). However, ice surface 

elevation changes from cryostat-2 data were derived as described by Wouters et al. 

(2015) and Helm et al. (2014).  

 

Table 1: Estimated ice mass change rates in Gt a
-1

 from airborne and satellite laser 

altimetry for 1997– 2014 

Time span Mass change [Gt a
-1

] 

1997–2003 -5.9 ± 2.7 

2003–2006 -10.4 ± 1.4 

2006–2009 -18.7 ± 1.2 

2009–2012 -27.4 ± 1.6 

2012–2014 -33.1 ± 2.2 

  

I converted the volume loss rate into a mass loss rate and took firn compaction into 

account as described by Kuipers Munneke et al. (2015). Further, corrections were 

made for bedrock movement caused by elastic uplift from present-day mass changes 

(Khan et al., 2010) and long-term past ice mass changes, Glacial Isostatic 

Adjustment (GIA), (Peltier, 2004). Table 1 shows the ice mass change rates in Gt a
-1

 

during 1997-2014. 

2.5 Observed elastic uplift  

To estimate site coordinates from GPS measurements, I followed the procedure of 

Khan et al. (2010). In order to focus on elastic displacements caused by present-day 

mass variability of the JI, I removed bedrock displacements due to ice mass loss 

outside JI using load estimates from satellite altimetry (Nielsen et al., 2013) and I 

removed the GIA based on the deglaciation history ICE-5G (VM2 L90) Version 1.3 

estimated by W. R. Peltier. 
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2.6 Observed horizontal velocities 

The observed surface speeds (Joughin et al., 2010) had been derived using 

Interferometric Synthetic Aperture Radar (InSAR) data from the RADARSAT-1 

satellite, Advanced Land Observation Satelitte (ALOS) and TerraSAR-X data. Prior 

to 2010, the dataset provides annual ice-sheet wide horizontal velocity maps for 

Greenland for the winters of 2000-2001, 2005-2006, 2006-2007, 2007-2008, and 

2008-2009. The mean measurement and processing errors are within 2 m a
-1

 in areas 

with low surface slope (Joughin et al., 2010). After 2010, almost monthly horizontal 

velocities are available for the JI region (Joughin et al., 2010).  

2.7 Observed terminus positions 

The observed terminus positions are from Csatho et al. (2008) (Fig. 8). The terminus 

history back to LIA was reconstructed from historical records, satellite and aerial 

imagery, ground surveys, airborne laser altimetry and field mapping of lateral 

moraines and trimlines (Csatho et al. 2008; Khan et al. 2014). Essentially, the period 

1990 to 2012 was mapped from satellite and aerial imagery, ground surveys and 

airborne laser altimetry. The period prior to 1990 was reconstructed using historical 

aerial imagery (i.e., 1944, 1953, 1959, 1964 and 1985) and field mapping of lateral 

moraines and trimlines. The method is detailed in Csatho et al. 2008 and is similar 

with Khan et al. 2014. 

 

Figure 8: Observed front positions (Csatho et al., 2008) for the period 1840-2012 at 

JI (Courtesy of Abbas Khan). 

2.8 Other data 

The model of the geothermal flux was adopted from Shapiro and Ritzwoller (2004). 

Any ice thickness changes data used in the thesis are from Krabill (2014). In general, 

any further grid refinements were performed using bilinear interpolation. A second 

order conservative remapping scheme (Jones, 1999) was used for bed topography 

data. 
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CHAPTER 3 

 

              Scientific approach 
 

 

he ice sheet model used in this thesis is PISM (stable version 0.6
2
). PISM is 

an open source, parallel, three-dimensional, thermodynamically coupled and 

time dependent ice sheet model (Bueler and Brown, 2009; The PISM 

Authors, 2014). The field equations and the shallow approximations are solved 

numerically in PISM by finite differences. The spatial domain is covered by a 3-D 

rectangular grid which is always divided in equal sized grid cells. In each grid point 

the differentials are approximated based on differences of the field variables between 

neighbouring cells. In solving the differences, the size of the grid cells determines the 

local error and hence, the overall accuracy of the approximation. 

PISM core is centred on ice dynamics and lithospheric deformations, where the 

atmosphere and the ocean can affect the ice dynamics only through well-defined 

interfaces. At each time step PISM computes the thermal and dynamic state of the ice 

sheet, and the response of the lithosphere. For computing the ice dynamics and the 

lithospheric deformations, PISM requires input fields of bed topography, ice 

thickness, surface elevation and geothermal heat flux. The bed deformation model is 

based on Lingle and Clark (1985) and Bueler et al. (2007). The model represents a 

generalized and improved version of the widely used bed deformation model, the flat 

                                                           
2
  Except Study 1 (Sect. 4) where PISM v0.5-88-gc24f74b has been used. 

T 
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earth Elastic Lithosphere Relaxing Asthenosphere (ELRA) model. Regarding the 

atmospheric input, I used a one way forcing approach where the ice dynamics model 

is forced with high quality surface mass balance and air temperature fields (i.e., from 

BOX, RACMO2 or/and HIRHAM5; Sect. 2.1). From the ocean side, I used a 

parametrization for ice shelf melting (Sect. 3.6) that requires input fields of surface 

ocean temperature (Sect. 2.2).  

 

Figure 9: Sketch showing PISM view centred on ice dynamics and lithospheric 

deformations together with the well-defined interfaces for atmosphere 

(red) and ocean (blue).  

Further, I introduce the main equations that define PISM and that I consider 

meaningful for understanding the modelling approach and at a later stage, the results 

obtained. The full description of PISM is available online
3
.  Largely, the following 

sections are based on Greve and Blatter (2009), Paterson and Cuffey (2010) and The 

PISM Authors (2014). 

3.1 Field equations 

We treat ice in glaciers as a fluid and therefore, the glacier motion is described by a 

velocity field. First, we considered ice to be an incompressible fluid (i.e., its density 

is assumed constant; incompressibility condition): 

∇ ∙ 𝒗 = 0         (1) 

where 𝑣(𝑡, 𝑥, 𝑦, 𝑧), 𝑡 represents the time, (𝑥, 𝑦) define the horizontal dimensions, and 

𝑧 defines the vertical dimension.  

                                                           
3
 http://www.pism-docs.org/ 
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Secondly, ice is a shear-thinning fluid, where the viscosity depends on the shear rate 

(i.e., large strain rates imply low viscosity) and thus, the ice flow has a non-

Newtonian behaviour. Generally, viscous fluid motion is described by the Navier-

Stokes equations.  However, ice flow is slow and therefore the forces of inertia (i.e., 

left hand side of the Navier-Stoke equation) are negligible:  

0 = −∇𝑝 + ∇ ∙ 𝜏𝑖𝑗 + 𝜌𝑖𝑔       (2) 

where 𝑝 is the pressure, 𝜏𝑖𝑗 is the deviatoric stress tensor, (𝑖, 𝑗) define the two 

horizontal components, 𝜌𝑖  is the density of ice, and 𝑔 is the acceleration due to 

gravity. 

Thirdly, the viscosity is not constant, so an empirical flow law for ice (Nye, 1953) 

derived based on laboratory experiments is needed (Glen, 1952): 

𝜖𝑖̇𝑗 = 𝐸𝑆𝐼𝐴𝐴𝜏𝑛−1𝜏𝑖𝑗                      (3) 

where 𝜖𝑖̇𝑗 is the strain rate tensor, 𝐸𝑆𝐼𝐴 is the flow enhancement factor, 𝐴 is the ice 

softness term in the Glen flow law, 𝜏 is the magnitude of 𝜏𝑖𝑗, and 𝑛 is the exponent in 

Glen flow law (n=3). The deviatoric stress tensor can be expressed as: 

            𝜏𝑖𝑗 = 𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗                   (4) 

with 𝜎 being the full stress tensor, 𝑝 the pressure of the isotropic part of 𝜎 and 𝛿𝑖𝑗 the 

Kronecker delta. 

The ice softness coefficient, 𝐴, is further calculated based on an Arrhenius-type law 

and holds the form (Paterson and Budd, 1982; Aschwanden et al., 2012): 

𝐴 = {
𝐴𝑐(1 + 𝑓𝜔)𝑒

−𝑄𝑐
𝑅𝑇𝑝𝑎                    𝑖𝑓 𝑇 <  𝑇𝑐 ,

𝐴𝜔(1 + 𝑓𝜔)𝑒
−𝑄𝜔
𝑅𝑇𝑝𝑎                  𝑖𝑓 𝑇 ≥  𝑇𝑐 ,

      (5)     

where 𝐴𝑐, 𝐴𝜔, 𝑄𝑐 and 𝑄𝜔, are constant parameters corresponding to values measured 

below and above a critical temperature threshold 𝑇𝑐 = −10 °C (Paterson and Budd, 

1982), 𝑇 represents the ice temperature, 𝜔 represents the water content, 𝑅 is the ideal 

gas constant, and 𝑇𝑝𝑎 is the pressure-adjusted temperature calculated using the 

Clapeyron relation. 

The empirical flow law for ice, Eq. 3, can be rewritten in an inverted form as: 

𝜏𝑖𝑗 = 𝐵𝜖𝑒̇

(
1

𝑛
)−1

𝜖̇           (6) 
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where 𝐵 = 𝐴−
1

𝑛  and  𝜖𝑒̇
2 =

1

2
𝑡𝑟(𝜖𝑖̇𝑗

2 ), with 𝑡𝑟 representing the trace of the tensor.  

While form (3) holds for grounded and slowly moving ice, for ice shelf and ice 

stream flow a “viscosity” form of the flow law is needed. Knowing that 𝜏𝑖𝑗 = 2𝜈𝜖𝑖̇𝑗 , 

the viscosity, 𝜈, can be expressed as:  

𝜈 = 𝐵𝜖𝑒̇

(
1
𝑛

)−1
.          (7) 

For conservation of energy (i.e., the evolution of temperature within the ice), PISM 

uses an enthalpy scheme (Aschwanden et al., 2012) that accounts for changes in 

temperature in cold ice (i.e., ice below the pressure melting point) and for changes in 

water content in temperate ice (i.e., ice at the pressure melting point): 

𝜕𝑇

𝜕𝑡
+ 𝒗 ∙  𝛁𝑇 =  

𝑘

𝜌𝑐
∆𝑇 +

𝜈 𝜖𝑒̇
2

4𝜌𝑐
         (8) 

where 𝑘 denotes the thermal conductivity of ice and 𝑐 represents the ice specific heat 

capacity.  

Solving Eqs. 1, 2, 3 and 7 will provide a full thermodynamic Stoke solution to the 

problem. However, solving the full Stoke problem generally results in extensively 

large computational times. Therefore, shallow approximations are employed and 

widely assumed by ice sheet models, including PISM. 

3.2 Shallow Approximations 

To approximate the Stokes stress balance (Greve and Blatter, 2009), PISM uses the 

superposition of the non-sliding shallow ice approximation (SIA; Morland and 

Johnson, 1980; Hutter, 1983) and the shallow shelf approximation (SSA; Weis et al., 

1999) for simulating slowly moving grounded ice in the interior part of the ice sheet, 

and the SSA for simulating fast-flowing outlet glacier and ice shelf systems 

(Winkelmann et al., 2011). This superposition of SIA and SSA (the “SIA+SSA” 

hybrid model)  sustains a smooth transition between non-sliding, bedrock frozen ice 

and sliding, fast-flowing ice, and has been shown to reasonably simulate the flow of 

both grounded and floating ice (Winkelmann et al., 2011).  

 

I chose not to provide here the whole ensemble of derivations behind the SIA and the 

SSA, but interested readers can refer to Greve and Blatter (2009) for more details 

(i.e., Chapter 5 for SIA and Chapter 6 for SSA).  
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3.2.1  Shallow Ice Approximation (SIA) 

To make the problem solvable, the Stoke equations introduced above needed suitable 

boundary conditions. Boundary conditions for the free surface and the ice base can 

be computed as detailed in Chapter 5, from Greve and Blatter (2009) (see Eq. 5.21 

for the free surface and Eq. 5.31 for the ice base). Based on the hydrostatic 

approximation (Eq. 5.56 in Greve and Blatter (2009)), the stress balance equation 

(i.e., Eq. 2) in its tensor component form can be expressed as: 

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+  

𝜕𝜏𝑥𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
                   (9𝑎) 

𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+  

𝜕𝜏𝑦𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑦
                  (9𝑏) 

 
𝜕𝜏𝑧𝑥

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑦
+  

𝜕𝜏𝑧𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑧
− 𝜌𝑖𝑔.        (9𝑐) 

 

 

Figure 10: Sketch that shows part of the stress acting on the columns. Adopted from 

Paterson and Cuffey (2010). 

The SIA holds for those regions of the ice sheet where bottom friction is high enough 

(i.e., such that the vertical shear stresses dominate the horizontal shear and the 
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longitudinal stresses). Therefore, all the normal stresses, 𝜏𝑥𝑥, 𝜏𝑦𝑦 and 𝜏𝑧𝑧, as well as 

the shear stress in the vertical planes, 𝜏𝑥𝑦, are negligible: 

 
𝜕𝜏𝑥𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
               (10𝑎) 

𝜕𝜏𝑦𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑦
               (10𝑏) 

0 =
𝜕𝑝

𝜕𝑧
− 𝜌𝑖𝑔.          (10𝑐) 

Integrating Eq. 10c gives the pressure distribution: 

𝑝 = 𝜌𝑖𝑔 (ℎ − 𝑧)     (11) 

where ℎ represents the upper surface elevation (Fig. 9). 

Introducing Eq. 11 in Eq. 10a and in Eq. 10b holds the expression for the horizontal 

driving stresses: 

𝜏𝑥𝑧 = −𝜌𝑖𝑔(ℎ − 𝑧)
𝜕ℎ

𝜕𝑥
       (12𝑎) 

𝜏𝑦𝑧 = −𝜌𝑖𝑔(ℎ − 𝑧)
𝜕ℎ

𝜕𝑦
 .      (12𝑏) 

Inserting Eq. 13a and Eq. 13b in the generalized form of Eq. 3 allows us to connect 

the horizontal shears stress with the horizontal velocities as following: 

1

2
(

𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
) =  𝐸𝑆𝐼𝐴𝐴𝜏𝑛−1𝜏𝑥𝑧 = − 𝐸𝑆𝐼𝐴𝐴 [𝜌𝑖𝑔(ℎ − 𝑧)]𝑛|∇ℎ|𝑛−1

𝜕ℎ

𝜕𝑥
      (13𝑎) 

1

2
(

𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
) =  𝐸𝑆𝐼𝐴𝐴𝜏𝑛−1𝜏𝑦𝑧 = − 𝐸𝑆𝐼𝐴𝐴 [𝜌𝑖𝑔(ℎ − 𝑧)]𝑛|∇ℎ|𝑛−1

𝜕ℎ

𝜕𝑦
      (13𝑏) 

where 𝜏 = √𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 = 𝜌𝑖𝑔(ℎ − 𝑧) [(
𝜕ℎ

𝜕𝑥
)

2

+ (
𝜕ℎ

𝜕𝑦
)

2

]

1

2

= 𝜌𝑖𝑔(ℎ − 𝑧)|∇ℎ|. 

The horizontal derivatives of the vertical velocity are negligible and integrating Eq. 

14a and 14b from the ice base (b) to an arbitrary position (z) in the ice sheet holds: 

𝑣𝑥 =  − 2(𝜌𝑖𝑔)𝑛 (∇ℎ)𝑛−1
𝜕ℎ

𝜕𝑥
∫ 𝐸𝑆𝐼𝐴𝐴(ℎ − 𝑧̅)𝑛

𝑧

𝑏

𝑑𝑧̅         (14𝑎) 



                                                                                Chapter 3. Scientific approach 

27 
 

𝑣𝑦 =  − 2(𝜌𝑖𝑔)𝑛 (∇ℎ)𝑛−1
𝜕ℎ

𝜕𝑦
∫ 𝐸𝑆𝐼𝐴𝐴(ℎ − 𝑧̅)𝑛

𝑧

𝑏

𝑑𝑧̅.          (14𝑏) 

Consequently, the SIA velocity of ice, 𝑣𝑆𝐼𝐴, follows : 

𝜈𝑆𝐼𝐴 = −2(𝜌𝑖g)𝑛|∇ℎ|𝑛−1 [∫ 𝐸𝑆𝐼𝐴𝐴(ℎ − 𝑧̅)𝑛𝑑𝑧̅
𝑧

𝑏

] ∇ℎ .       (15) 

Therefore, for SIA, and opposite to SSA (Sect. 3.2.2), the stresses follow directly 

from the geometry of the ice sheet.  

3.2.2  Shallow Shelf Approximation (SSA) 

The SSA, as the name suggests, is applied to ice shelves or in regions of the ice sheet 

where the grounded ice is sliding over a weak base. The dynamics of an ice shelf are 

relatively different than that of the ice in the interior part of the ice sheet. The first 

obvious difference is that an ice shelf is characterized by an ice to ocean boundary 

where the basal friction should be approximately 0, i.e. 𝜏𝑏 ≈ 𝜏𝑠𝑒𝑎 ≈ 0.  Therefore, 

the basal friction is low enough such that the ice deforms uniformly within the entire 

ice column: 

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+ 

𝜕𝜏𝑥𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
               (16𝑎) 

𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+  

𝜕𝜏𝑦𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑦
               (16𝑏) 

𝜕𝜏𝑧𝑧

𝜕𝑧
=

𝜕𝑝

𝜕𝑧
− 𝜌𝑔.                                   (16𝑐) 

Furthermore, the horizontal velocities are independent of depth, and so they only 

depend on the horizontal coordinates and the time: 

𝑣𝑥 = 𝑣𝑥(𝑥, 𝑦, 𝑡), 𝑣𝑦 = 𝑣𝑦(𝑥, 𝑦, 𝑡).       (17) 

or 

𝜕𝑣𝑥

𝜕𝑧
= 0               (18𝑎) 

 
𝜕𝑣𝑦

𝜕𝑧
= 0.              (18𝑏) 

The result is a two-dimensional model with a membrane-type of flow (i.e., 𝑣𝑥 and 

𝑣𝑦  are depth-independent). Integrating Eq. 16c gives the pressure distribution: 
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𝑝 = 𝜌𝑖𝑔 (ℎ − 𝑧) − 𝜏𝑥𝑥 − 𝜏𝑦𝑦 .   (19) 

Inserting Eq. 19 in Eq. 16a and 16b holds: 

2
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑥
+  

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 𝜌𝑖𝑔

𝜕ℎ

𝜕𝑥
               (20𝑎) 

2
𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+  

𝜕𝜏𝑥𝑥

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
= 𝜌𝑖𝑔

𝜕ℎ

𝜕𝑥
.               (20𝑏) 

From Eq. 6 and Eq. 7, Eq. 20a and Eq. 20b can be written based on their velocity 

components: 

𝜕

𝜕𝑥
[2𝜈̅  (2

𝜕𝜐𝑥

𝜕𝑥
+

𝜕𝜐𝑦

𝜕𝑦
)] +

𝜕

𝜕𝑦
[𝜈̅  (

𝜕𝜐𝑥

𝜕𝑦
+

𝜕𝜐𝑦

𝜕𝑥
)] +

𝜕𝜏𝑥𝑧

𝜕𝑧
= 𝜌𝑖𝑔

𝜕ℎ

𝜕𝑥
           (21a)  

𝜕

𝜕𝑥
[𝜈̅  (

𝜕𝜐𝑥

𝜕𝑦
+

𝜕𝜐𝑦

𝜕𝑥
)] +

𝜕

𝜕𝑦
[2𝜈̅  (

𝜕𝜐𝑥

𝜕𝑥
+ 2

𝜕𝜐𝑦

𝜕𝑦
)] +

𝜕𝜏𝑦𝑧

𝜕𝑧
=  𝜌𝑖𝑔

𝜕ℎ

𝜕𝑦
 .         (21b) 

where  𝜈̅ represents the vertical-averaged viscosity. The vertical-averaged viscosity is 

calculated as: 

𝜈̅ =
𝐵̅

2
 (𝐸𝑆𝑆𝐴)−

1
𝑛 [

1

2
𝜖𝑖̇𝑗𝜖𝑖̇𝑗 +

1

2
𝜖𝑖̇𝑗

2 ]

1−𝑛
2𝑛

             (22) 

where 𝐵̅ is the vertically-averaged ice hardness, and 𝐸𝑆𝑆𝐴 is the flow enhancement 

factor for the SSA. 

Integrating over the entire column, the stress balance for the SSA is obtained:  

𝜕

𝜕𝑥
[2𝜈̅ 𝐻 (2

𝜕𝜐𝑥

𝜕𝑥
+

𝜕𝜐𝑦

𝜕𝑦
)] +

𝜕

𝜕𝑦
[𝜈̅ 𝐻 (

𝜕𝜐𝑥

𝜕𝑦
+

𝜕𝜐𝑦

𝜕𝑥
)] + 𝜏𝑏𝑥

=  𝜌𝑖𝑔𝐻
𝜕ℎ

𝜕𝑥
      (23a)  

𝜕

𝜕𝑥
[𝜈̅ 𝐻 (

𝜕𝜐𝑥

𝜕𝑦
+

𝜕𝜐𝑦

𝜕𝑥
)] +

𝜕

𝜕𝑦
[2𝜈̅ 𝐻 (

𝜕𝜐𝑥

𝜕𝑥
+ 2

𝜕𝜐𝑦

𝜕𝑦
)] + 𝜏𝑏𝑦

=  𝜌𝑖𝑔𝐻
𝜕ℎ

𝜕𝑥
    (23b) 

where 𝐻 represents the ice thickness and (𝜏𝑏𝑥
, 𝜏𝑏𝑦

) = 𝜏𝑏 define the basal shear stress. 

Finally, the horizontal velocities, 𝒗, are computed in PISM as the sum of 𝝂𝑆𝐼𝐴 and 

𝝂𝑆𝑆𝐴: 

𝒗 =  𝝂𝑆𝐼𝐴 + 𝝂𝑆𝑆𝐴.      (24) 
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In a nutshell, the SIA describes the vertical shear stress as a local function of the 

driving stress and is known to perform relatively well for grounded parts of the ice 

sheet that have a strong connection with the bed, and that are characterized by planar 

bed topography. The SSA describes a membrane-type flow, that performs relatively 

well for those regions of the ice sheet that are floating, or where the grounded ice is 

sliding over a weak base (i.e., 𝜏𝑏 ≈ 0 ). 

3.3 Basal sliding 

The basal shear stress is related to the sliding velocity by a nearly-plastic power law 

(Schoof and Hindmarsh, 2010): 

𝜏𝑏 = −𝜏𝑐
𝒖

𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑞

 |𝒖|1−𝑞
            (25)          

where 𝜏𝑐 is the till yield stress, 𝒖 is the model sliding velocity, 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑= 100 m a
-1

 

represents the velocity threshold, and 𝑞 is the exponent of the pseudo-plastic basal 

resistance model. This nearly-plastic power law is most useful at the basal boundary, 

where the geothermal flux varies in space (Shapiro and Ritzwoller, 2004). 

The yield stress is determined by models of till material property (the till friction 

angle, ϕ) and is based on the effective pressure on the saturated till. The Mohr-

Coulomb criterion (Cuffey and Paterson, 2010) is used to relate the saturation, yield 

stress (𝜏𝑐 ), and the model liquid water within the till: 

𝜏𝑐 = 𝑐0 + tan (𝜙)𝑁𝑡𝑖𝑙𝑙            (26) 

where 𝑐0=0 kPa is the till cohesion, 𝜙 is the till fraction angle and 𝑁𝑡𝑖𝑙𝑙 is the 

effective pressure. The till fraction angle (ϕ) is computed as a piecewise-linear  

function of the bed elevation, with ϕ = 15° for bed elevations lower than 300 m 

below sea level, with ϕ = 40° for bed elevations higher than 700 m above sea level, 

and in between values with a linear change:  

𝜙(𝑥, 𝑦) = {

𝜙𝑚𝑖𝑛,              𝑏(𝑥, 𝑦) ≤ 𝑏𝑚𝑖𝑛

𝜙𝑚𝑖𝑛 + [𝑏(𝑥, 𝑦) − 𝑏𝑚𝑖𝑛] ∙ 𝑀,

𝜙𝑚𝑎𝑥,              𝑏𝑚𝑎𝑥 ≤ 𝑏(𝑥, 𝑦).
     𝑏𝑚𝑖𝑛 < 𝑏(𝑥, 𝑦) < 𝑏𝑚𝑎𝑥         (27) 

The effective pressure on the till is determined by the modelled amount of water in 

the till: 

𝑁𝑡𝑖𝑙𝑙 = 𝛿𝑃𝑜10(𝑒0/𝐶𝑐)(1−(𝑊𝑡𝑖𝑙𝑙/𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥))                  (28) 

where 𝛿 is the till effective fraction overburden, 𝑒0 = 0.69 is the till reference void 

ratio, 𝐶𝑐 = 0.12 is the till compressibility coefficient, 𝑃𝑜 is the ice overburden 

pressure, 𝑊𝑡𝑖𝑙𝑙 is the effective thickness of water in the till computed by time-
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integrating the basal melt rate and  𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥 = 2 m is the maximum effective thickness 

of the water stored in the till. In this subglacial hydrology model the water is not 

conserved and the excess water drains when the effective thickness of the water 

stored in till exceeds  𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥. This model is based on the “undrained plastic bed” 

concept of Tulaczyk et al. (2000). The ice flow therefore develops in PISM, as a 

consequence of plastic till failure, i.e. where the basal shear stress exceeds the yield 

stress, and is influenced by the thermal regime and the volume of water at the ice-

sheet bed.  

Changes in mass balance are communicated to the ice flow through the mass 

continuity equation: 

𝜕𝐻

𝜕𝑡
= 𝑀 − 𝑆 − ∇𝑸             (29) 

where 𝐻 is the current modelled thickness, 𝑡 is the current time, 𝑀 and 𝑆 are the 

surface and basal mass balance, and 𝑸 is the flux. 

Table A2, Table A3, Table A5, Table A6, Table A11, Table A12 and Table A14 

provide values of the parameters altered from the default PISM values during the 

different studies performed.  

3.4 Calving  

The physics at the calving front are boundary condition modifications to the mass 

continuity and to the SSA stress balance equations. Three types of calving were used 

in my simulations. For whole GrIS runs and in Study 1, I removed ice in the open 

ocean according to the present-day thickness. Any ice shelf that developed during the 

simulations in ocean grid cells marked as ice free at the beginning of the run was 

calved.  In general, when this simple calving condition is used, the terminus position 

remains fixed to the present-day position. 

In Study 2, 3 and 4, I used a more physically based approach, where I applied the 

superposition of a physically based calving (eigencalving) parametrization 

(Winkelmann et al., 2011; Levermann et al., 2012) and a basic calving mechanism 

(Albrecht et al., 2011) that removes at a rate of at most one grid cell per time step, 

any floating ice at the calving front thinner than a given threshold. The benefit of 

using such a combination of calving laws is that it can evolve the terminus position 

with time under the applied forcings and thus, potential calving feedbacks are not 

ignored.  
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The average calving rate (𝑐) is calculated as the product of the principal components 

of the horizontal strain rates (𝜀±̇), derived from SSA velocities, and a proportionality 

constant parameter (𝑘) that captures the material properties relevant for calving: 

 

𝑐 = 𝑘𝜀+̇𝜀−̇      for  𝜀±̇ > 0.      (30) 

 

The strain rate pattern is strongly influenced by the geometry and the boundary 

conditions at the ice shelf front (Levermann et al., 2012). The proportionality 

constant, 𝑘, is chosen such that the ice front variability is small (Leverman et. al., 

2012). This physically based calving law appears to yield realistic calving front 

positions for various types of ice shelves being successfully used for modelling 

calving front positions in whole Antarctica simulations (Martin et al., 2011) and 

regional east Antarctica simulations (Mengel and Levermann, 2014) but has never 

been used with success for the GrIS. In contrast to Antarctica, known for its large 

shelves and shallow fjords, the GrIS is characterized by narrow and deep fjords, and 

JI makes no exception. The strain rate pattern in the eigen calving parametrization 

performs well only if fractures in glacier ice can grow, and calving occurs only if 

these rifts intersect (i.e., possible only for relatively thin ice shelves). In my model, 

the eigen calving law has priority over the basic calving mechanism. That is to say, 

the second calving law used (the basic calving mechanism) removes any ice at the 

calving front not calved by the eigen calving parametrization, overall thinner than 

500 m.  Therefore, the creation of the conditions under which calving can occur with 

the subsequent calving mechanism (e.g. a floating ice shelf) relies solely on the 

parametrization for ice shelf melting (Sect. 3.6).  

 

A partially-filled grid cell formulation (Albrecht et al., 2011), which allows for sub-

grid scale retreat and advance of the ice shelf front is used to connect the calving rate 

computed by the calving parametrizations with the mass transport scheme at the ice 

shelf terminus. This sub-grid scale retreat and advance of the shelf allows for 

realistic spreading rates, important for the eigen calving parametrization. The sub-

grid interpolation is performed only when a floating terminus exists. In both 

situations (i.e., floating ice or grounded terminus) the stress boundary conditions are 

applied at the calving front and in the discretization of the SSA equations 

(Winkelmann et al., 2011).  The retreat and advance of the front through calving 

(valid for both calving mechanisms) is restricted to at most one grid cell length per 

adaptive time step.  

3.5 Parametrization for grounding line migration 

The parameterization of the grounding line position is based on a linear interpolation 

scheme (the “LI” parameterization; Gladstone et al., 2010) extended to two 
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horizontal dimensions (𝑥, 𝑦).  This sub-grid treatment of the grounding line 

interpolates the basal shear stress in 𝑥, 𝑦 based on the spatial gradient between cells 

below and above the grounding line, and allows for a smooth transition of the basal 

friction from grounded to floating ice (Feldmann et al., 2014). At each time step the 

grounding line position is determined by a mask that distinguishes between grounded 

and floating ice using a flotation criterion based on the modelled ice thickness 

(Winkelmann et al., 2011): 

𝑏(𝑥, 𝑦) = −
𝜌𝑖

𝜌𝑜
𝐻(𝑥, 𝑦)      (31) 

where 𝜌𝑖 is the density of the ice, 𝜌𝑜 is the density of the ocean water and 𝐻 

represents the ice thickness. Therefore, the grounding line migration is influenced by 

the ice thickness evolution, which further depends on the velocities computed from 

the stress balance. The superposition of SIA and SSA (Eq. 24), ensures that the stress 

transmission across the grounding line is continuous and that buttressing effects are 

included. 

3.6 Parameterization for ice shelf melting 

I used a parametrization for ice shelf melting where the melting effect of the ocean is 

based on both sub-shelf ocean temperature and salinity (Martin et al., 2011). To 

accommodate this parametrization several changes have been made in PISM at the 

sub-shelf boundary (Winkelmann et al., 2011). First, the ice temperature at the base 

of the shelf (the pressure-melting temperature) is calculated based on the Clausius-

Clapeyron gradient and the elevation at the base of the shelf, and is applied as a 

Dirichlet boundary condition in the conservation of energy equation: 

𝑇𝑝𝑚 = 273.15 + β𝑐𝑐𝑧𝑏         (32) 

where β𝑐𝑐 =  8.66 × 10−4  K m
−1 

represents the Clausius-Clapeyron gradient and 

𝑧𝑏 represents the elevation at the base of the ice shelf. 

Second, basal melting and refreezing is incorporated through a sub-shelf mass flux 

used as a sink/source term in the mass-continuity equation. This mass flux from shelf 

to ocean (Beckmann and Goosse, 2003) is computed as a heat flux between the ocean 

and ice, and represents the melting effect of the ocean through both temperature and 

salinity (Martin et al., 2011): 

𝑆 =
𝑄ℎ𝑒𝑎𝑡 

𝐿𝑖𝜌𝑖
              (33) 

𝑄ℎ𝑒𝑎𝑡 = 𝜌𝑜𝑐𝑝𝑜
𝛾𝑇𝐹𝑚𝑒𝑙𝑡(𝑇𝑜 − 𝑇𝑓)            (34) 

where 𝐿𝑖 = 3.35 × 105 J kg
−1 

is the latent heat capacity of ice,  𝑐𝑝𝑜
= 3974  J (kg 

K)
−1

 is the specific heat capacity of the ocean mixed layer,  𝛾𝑇 = 10−4 m s
−1

 is the 
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thermal exchange velocity, 𝐹𝑚𝑒𝑙𝑡 is a model parameter, 𝑇𝑜 is the ocean water 

temperature (here equivalent with the SST introduced in Sect. 2.2 and Fig. 5) and 

𝑇𝑓 is the virtual temperature. This virtual temperature represents the freezing 

temperature of ocean water at the depth 𝑧𝑏 below the ice shelf and has the form: 

𝑇𝑓 = 273.15 + 0.0939 − 0.057𝑆𝑜 + 7.64 × 10−4 𝑧𝑏         (35) 

where  𝑆𝑜 is the salinity of the ocean. In the heat flux parametrization, the ocean 

temperature at the ice shelf base is computed as the difference between the input 

ocean temperature and a virtual temperature that represents the freezing point 

temperature of ocean water below the ice shelf (Eq. 34).  The freezing point 

temperature is calculated based on the elevation at the base of the shelf and the ocean 

water salinity (Eq. 35). 

Figure 11 shows possible ice shelf temperatures as a function of the elevation at the 

base of the shelf. 

 

Figure 11: Ocean temperatures at the ice shelf base illustrated for different possible 

elevations at the base of the shelf and different surface ocean temperature 

scenarios (i.e., (A) Constant -1.7 °C, (B) Scenario A, (C) Scenario B, and 

(D) Scenario C). In (C) and (D) the colour scale denotes the 10 year 

intervals (10×9) used between 2010 (blue) and 2100 (red; Sect. 2.2). 

In consequence, as the glacier retreats and/or advances, both the pressure-melting 

temperature and the heat flux between ocean and ice evolve alongside the modelled 

glacier ice shelf geometry. The ocean water salinity (𝑆𝑜 = 35 psu) is kept constant in 
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time and space as the model does not capture the salinity gradient from the base of 

the ice shelf through layers of low and high salinity. A previous study conducted by 

Mengel and Levermann (2014) using the same model established that the sensitivity 

of the melt rate to salinity is negligible.  

Following this melting parametrization, the highest melt rates are modelled in the 

proximity of the glacier grounding lines and decrease with elevation (Fig. 11) such 

that the lowest melt rates are closer to the central to frontal area of the modelled ice 

shelf. At the grounding line, PISM computes an extra flotation mask that accounts 

for the fraction of the cell that is grounded by assigning 0 to cells with fully 

grounded ice, 1 to cells with ice-free or fully floating ice, and values between 0 and 1 

to partially grounded grid cells. The basal melt rate in the cells containing the 

grounding line is then adjusted based on this flotation mask as follows (the PISM 

Authors, 2014): 

𝑀𝑏,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝜆𝑀𝑏,𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑 + (1 − 𝜆)𝑀𝑏,𝑠ℎ𝑒𝑙𝑓−𝑏𝑎𝑠𝑒            (36) 

where 𝑀𝑏 refers to the basal melt rate and 𝜆 is the value of the flotation mask. At the 

vertical ice front, I do not apply any melt. 

3.7   Initialization procedure and regional modelling 

In my model, the three-dimensional ice enthalpy field, basal melt, modelled amount 

of till-pore water, and lithospheric temperature are obtained from an ice-sheet-wide 

paleo-climatic spin-up. At this initialization stage, I considered a paleo-climatic spin-

up and a “force to thickness” (FTT) spin-up. Disregarding the method used, I chose 

to spin-up for 125 kyr in order to provide my regional Jakobshavn regional model 

with stress boundary and thermodynamic initial conditions dependent on the long-

term memory of the ice sheet (Huybrechts and de Wolde, 1999; Rogozhina et al., 

2011). In Study 1, I spin-up with yearly mean 1960-1990 climate for RACMO2 and 

BOX, and mean 1989-1990 climate for HIRHAM5. In Study 2, I spin-up with yearly 

mean 1840-1900 climate, while in Study 3, I spin-up with yearly mean 1960-1990 

climate (Table 2). While the paleo-climatic spin-up follows closely the SeaRISE 

initialization procedure described by Bindschadler et al. (2013), the FTT spin-up is 

based on the same procedure except that, additionally, the modelled ice thickness is 

constrained during the last 5000 years of the simulation to the present-day thickness. 

The mass balance correction procedure is described in Aschwanden et al. (2013). 

Both methods are detailed in the above mentioned citations and I invite the readers to 

read additional information therein (see also Appendix B1). As a rule of thumb, I 

start the spin-up on a 10 km grid, and then I refine to 5 km at -5ka. It is important to 

note that during the paleo-climatic and the “FTT” initialization the terminus is 

always held fixed to the observed position from Bamber et al. (2013).  
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To identify the Jakobshavn glacier drainage basin (DB) and its corresponding 

regional domain, I used the Python drainage-basin-delineation tools developed in 

PISM for this purpose. The algorithm is based on a simple concept: ice flows down 

the surface gradient. To identify the drainage basin, the user is required to supply a 

Digital Elevation Model (DEM) and to select a rectangle that approximates the 

glacier terminus. The basin drainage mask for JI is included in Fig. 1B. In order to 

isolate the dynamics of a single glacier from other fast flowing basins nearby, PISM 

applies a mass balance correction outside of the drainage basin mask (The PISM 

Authors, 2014). This way, the area, and thus the dynamics inside the drainage basin 

mask, will be able to evolve freely in time, while the area outside the drainage basin 

will be kept near the present-day geometry (Figs. 1B and 12).  

 

 

Figure 12: A regional model domain in PISM. Adopted from Della-Giustina (2011). 

In the regional outlet glacier model of PISM, the boundary conditions are handled in 

a 10 km strip positioned outside of the JI’s drainage basin and around the edge of the 

computational domain (Figs. 1B and 12). In this strip, the input values of the basal 

melt, the amount of till-pore water, ice enthalpy, and lithospheric temperature from 

the paleo-climatic spin-up are held fixed and applied as Dirichlet boundary 

conditions in the conservation of energy model (The PISM Authors, 2014). I started 

my regional JI runs with an equilibrium simulation on a 125 × 86 horizontal grid 

with 5 km spacing. The enthalpy formulation modelled the mass and energy balance 

for the three-dimensional ice fluid field based on 200 regularly spaced layers within 

the ice. The temperature of the bedrock thermal layer was computed up to a depth of 

1000 m with 50 regularly spaced layers. The first step was to obtain a 5 km regional 

equilibrium model for JI using constant mean climate (i.e., repeating the 1960-1990 
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or 1989-1990 mean air temperature and SMB for Study 1, repeating the 1840-1900 

mean air temperature and SMB for Study 2, and repeating the 1960-1990 mean air 

temperature and SMB for Study 3). I considered that equilibrium has been 

established when the ice volume in the regional domain changed by less than 10 % in 

the final 100 model years. Grid refinements are made from 5 km (125×86) to 2 km 

(310×213) after 3000 years.  In Study 1, the simulations reached equilibrium after 

200 years with an ice volume increase that varies from 1 % and 10 % between the 

different simulations. In Study 2 and 3, the 2 km simulations reached equilibrium 

after 200 years with ~4 % increase relative to the input dataset from Bamber et al. 

(2013) adjusted to simulate 1840 and 1990 terminus positions and surface elevation, 

respectively. Further, using my equilibrium simulations with a 2 km horizontal grid 

and 400 regularly spaced layers within the ice, I simulated forward in time (hindcast) 

from 1840 or/and 1990 to 2012 or/and 2014 by imposing monthly fields of SMB and 

2 m air temperatures through a one-way forcing scheme. For simulations performed 

on a 1 km horizontal grid, the exact same procedure was used with the mention that 

in the regional equilibrium run an additional grid refinement from 2 km to 1 km was 

made after 200 years. The length of the 1 km regional equilibrium simulation was 

100 years. 

The prognostic simulations (projections) were performed for the period 2013-2100 

on a 2 km grid and were built as a continuation of the historical simulations 

performed in Study 2 (Sect. 5), both for constant and varying ocean temperature. To 

ensure a smooth transition in air temperature and SMB between the BOX climate 

used in Study 2 and the RCP projections (Sect. 2.1.2) used in Study 4, I computed 

and forced the latter as anomalies with respect to the mean 2000-2010 BOX air 

temperature and SMB (Peter Langen, personal communication). 

In Study 1, I allowed only the upper and lower surfaces to evolve. In Study 2, 3 and 4 

all the boundaries (calving fronts, grounding lines, upper and lower surfaces) were 

free to evolve in time both during the regional equilibrium and the forward 

simulations. 

3.8 Summary 

Overall, I performed a wide range of simulations from whole GrIS paleo-climate 

spin-ups that provided boundary conditions for my regional simulations, to regional 

JI runs that included equilibrium, forward and prognostic simulations.  I started my 

simulations with a calving criterion that favoured a fixed terminus position and 

ended by using the superposition of two calving mechanisms that allowed the 

terminus to advance and/or retreat under the applied climate forcing. I performed 
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well over 200 simulations which I further divided in Study 1, Study 2, Study 3 and 

Study 4. A summary of these simulations is introduced in Table 2.   
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Table 2: Summary of simulations for Jakobshavn Isbræ. The bed topography from Bamber et al. (2001) is abbreviated with v1 and the bed 

topography from Bamber et al. (2013) with v2. The forward simulations are performed only on a 2 km grid unless otherwise indicated by 

asterisks (*). The simulations signalized with “*” are performed both using 1 km and 2 km grids. The initialization, equilibrium and 

forward simulations are detailed in Sect. 3.7. “FTT” refers to the “force to thickness” mechanism (see Sect. 3.7). 

Study 
no. 

Initialization 

Regional Jakobshavn Isbræ simulations 

Bedrock 
topography 

Equilibrium 
simulations 

(mean climate) 

Forward simulations   

Year Terminus Ocean forcing HIRHAM5 RACMO2 BOX 

Study 1 

(I) paleo climatic 
FTT spin-up 

v1 1989-1990 
or 

1960-1990 
1990-2012 

Fixed No Rv1FTT-H90-12 Rv1FTT-R90-12 Rv1FTT-J90-12 

v2 Fixed No Rv2FTT-H90-12 Rv2FTT-R90-12 Rv2FTT-J90-12 

(II) paleo climatic 
spin-up 

v1 1989-1990 
or 

1960-1990 1990-2012 

Fixed No Rv1-H90-12 Rv1-R90-12 Rv1-J90-12 

v2 Fixed No Rv2-H90-12 Rv2-R90-12 Rv2-J90-12 

v2 1990-2000 Fixed No Rv2-H90-12* - - 

Study 2 
(II) paleo climatic 

spin-up 
v2 1840-1900 1840-2012 Movable Constant+Variable1 - - 1840-2012 

Study 3 
(II) paleo climatic 

spin-up 
v2 1960-1990 1990-2014 Movable Constant1 - 1990-2014 - 

  
  

Projections 

  
  

Year Terminus 
 

Climate RCP Abreviation 

  
 

Study 4 
2010-2100 Movable Constant+Variable1 HIRHAM 4.5 

1840-
2100BH4.5 

  
 

2010-2100 Movable Constant+Variable1 HIRHAM 8.5 
1840-

2100BH8.5 

                  1 Please refer to Sect. 2.2 for ocean water temperature scenarios.
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CHAPTER 4 

 

Study 1: Paleo spin-up and 

initial simulations 

with the regional 

model 
 

 

n this first study, I performed a suite of simulations which include paleo-

climatic and “FTT” spin-ups, regional equilibrium and forward simulations 

using RACMO2, HIRHAM5 and BOX as climate forcing. I spin-up for 125 kyr 

using yearly mean 1960-1990 climate for RACMO2 and BOX, and 1989-1990 

climate for HIRHAM5. Along the ice shelf calving front, I applied a calving 

condition that removed ice in the open ocean according to the present-day thickness 

(Bamber et al., 2013). When this simple calving condition is used, the terminus 

remains fixed to the position from Bamber et al. (2013) both during the paleo 

climate, regional equilibrium and forward simulations. Therefore, the study allowed 

only the upper and lower surfaces to evolve freely. Please note, that my purpose 

here was neither to study initialization methods sensitivities nor to find limitations 

of these methods but rather to find a suitable initialization method for my regional 

domain based on the existing literature. Previous studies (e.g. performed with 

PISM) have already largely addressed these points and interested readers can refer 

I 
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to Aschwanden et al. (2013) and Aðalgeirsdóttir et al. (2014) for more details. The 

values of the ice sheet model parameters used (see Sect. 3 for the underlying 

equations) are included in Table A2 and Table A3. 

4.1   Paleo and “FTT” spin-ups 

As seen in Fig. 13, the paleo-climatic spin-up tends to overestimate the ice 

thickness near the coastline for each of the three atmospheric forcings used, while 

the “FTT” mechanism, as expected, provides a better agreement with observed ice 

thickness. Nonetheless, the general modelled ice thickness pattern seems to remain 

widely unchanged, except maybe the very proximity of the coastline where the 

paleo-climatic spin-up tends to overestimate the ice thickness. Differences in ice 

thickness are also modelled in NE Greenland, where BOX tends to overestimate the 

ice thickness, and SE Greenland where both RACMO2 and BOX overestimate the 

ice thickness.  

 

The observed and modelled velocities (Fig. 14) look similar: the model seems to 

capture the ice divides in the central region of the GrIS but generally 

underestimates the fast flow in the main outlet glaciers. In the north eastern side of 

the GrIS (NEGIS) the magnitude of the flow is better captured when BOX is used 

as atmospheric forcing (over 1500 m a
-1

 of increase in the terminus area relative to 

HIRHAM5). Changes in SMB affect both the SIA (Eq. 15) and the SSA (Eq. 23) 

but the effect in the SIA is very weak as the driving stresses are not affected by a 

few meters of difference in thickness induced by SMB variability. In the SSA, the 

coupling is done via the effective pressure term in the definition of the yield stress 

(Eq. 26).  In my model, the effective pressure is determined by the ice overburden 

pressure (i.e., ice thickness) and the effective thickness of water in the till. Relative 

to SIA, this effect is much stronger and favours the idea that in this particular model 

some velocity peaks could potentially be influenced by changes in SMB (e.g. 

potentially larger changes in BOX relative to RACMO2 and HIRHAM5). Further, 

the air temperatures represent boundary conditions for the enthalpy equation 

(Aschwanden et al., 2012). The long time span covered by the paleo simulations 

can allow advection/diffusion to propagate down into the column and to reach the 

high shearing layer at the base of the ice. Consequently, higher air temperatures 

(e.g. in BOX relative to RACMO2 and HIRHAM5; Fig. 3) could potentially soften 

the ice and enhance sliding. 

 

Overall, in the JI region, both methods and all atmospheric forcings used seem to 

generate, at least from a large scale perspective, the same behaviour with respect to 

modelled ice thickness and horizontal velocities. Nonetheless, as my region of 

interest is Jakobshavn glacier, I chose to further investigate more closely 

atmospheric forcing sensitivities for the JI region only.  
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4.2   Initial Jackobshavn Isbræ regional runs 

In this section, I introduce some results obtained in the initial runs performed with 

the regional model. The purpose of these runs is to provide an insight in the 

regional model performance with and without the “FTT” mechanism and define 

atmospheric forcing and bed topography sensitivities, if any. Throughout these 

simulations, as in case of the whole GrIS spin-ups, I used the simple calving 

mechanism, which keeps the terminus stable to the present day position. 

Consequently, only the upper and lower surfaces are free to evolve in time both 

during the regional equilibrium and the forward simulations, and there is no input 

from the ocean side. 

Figure 13: Differences in ice thickness for HIRHAM5 (HO=modelled HIRHAM5-

observations), RACMO2 (modelled RACMO2 - observations - HO) and 

BOX (modelled BOX - observations - HO) at the end (~1989) of the 

paleoclimate spin-up (top row) and FTT paleo-climate spin-up (bottom 

row) on a 5 km grid. The initializations without the FTT mechanism 

overestimate the ice thickness at the margins of the ice sheet. The observed 

ice thickness is from Bamber et al. (2013). 
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My overall goal here was to evaluate the modelled present-day JI sensitivity to 

three climatology datasets (i.e., RACMO2, HIRHAM5 and BOX), two bedrock 

topographies (Bamber et al. (2001) and Bamber et al. (2013)) and assess the ability 

of the regional outlet glacier model to realistically transform atmospheric forcing 

into simulated mass loss. For this purpose, I designed an ensemble of 14 

simulations based on common spin-up methods (with and without FTT), bed 

topographies, and widely used climatic datasets for modelling and projecting the 

GrIS and JI mass loss. A summary of these simulations is given in Table 2 (see 

Study 1). I validated the model by comparing model results for horizontal surface 

velocities, ice thickness, and mass loss time series with existing observations (Sect. 

2). 

Figure 14: Differences between modelled and observed surface velocities for 

HIRHAM5 (HO=modelled HIRHAM5-observations), RACMO2 (modelled 

RACMO2 - observations - HO) and BOX (modelled BOX - observations - 

HO) at the end (~1989) of the paleoclimate spin-up (top row) and FTT paleo-

climate spin-up (bottom row) on a 5 km grid. The observed surface velocities 

are from Joughin et al. (2010). 
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Figure 15 shows differences in ice thickness between the model and the 

observations on a 2 km grid at the end of the forward simulation, which for this 

particular runs correspond to 2012.  Overall, a better agreement with observations is 

obtained when the bed geometry from Bamber et al. (2013) is used (note that “bed 

geometry” refers here to both bed topography and ice thickness; Table A4). The 

best fit with the observed ice thickness is achieved with the bed geometry from 

Bamber et al. (2013) and HIRHAM5 as climate forcing in experiment Rv2-H90-11 

(RMSE 93 m, AMD 60, 𝑜̅ = 1997, 𝑚̅ = 1980). Differences in ice volume between 

the model and the observations reach up to 10 % in the experiments that are using 

the bed from Bamber et al. (2001), for example in experiment Rv1-J90-11 (with a 

modelled ice volume of 0.6 [10
6
 km

3
] and an observed ice volume of 0.55 [10

6
 

km
3
]). When the bed geometry from Bamber et al. (2013) is used, the differences 

are reduced and range between 1 % - 5 %.  

FFigure 15: Differences in ice thickness on a 2 km grid at the end of a forward 

simulation (1990-2012) for bedmap v.1 (rows A and C) and bedmap v.2 

(rows B and D), without (rows A and B) and with (rows C and D) the 

FTT mechanism for HIRHAM5 (model-observation), RACMO2 and 

BOX.  
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Figure 16: Differences in horizontal surface velocities on a 2 km grid at the end of 

a forward simulation (1990-2012) for (rows A and C)  the bed 

topography from Bamber et al. (2001) and for (rows B and D) the 

bedrock topography from Bamber et al. (2001), without the FTT 

mechanism (rows A and B) and with the FTT mechanism (rows C and D) 

for HIRHAM5 (model-observation), RACMO2 and BOX. 

Overall, when the “FTT” mechanism is used, a better agreement with observations 

is obtained.  In the experiments without the “FTT” mechanism, the overall trend is 

to overestimate the ice thickness towards the end of the domain. In general, both 

with and without the “FTT” mechanism, two distinct patterns can be observed in 

my simulations: when the bed geometry from Bamber et al. (2001) is used, the 

trend is to underestimate the ice thickness in the main channel of JI and 

overestimate the ice thickness elsewhere in the domain, while for the bed geometry 

from Bamber et al. (2013), the trend is to underestimate the thickness for the entire 

terminus region and overestimate the ice thickness in some of the troughs that 

extend deep into the ice sheet (Fig. 15). The terminus region and the narrow and 

deep troughs that define JI represent the area where the two bed datasets are most 

different (Fig. 7). While the bed geometry from Bamber et al. (2001) 

underestimates the depth in these troughs, the dataset from Bamber et al. (2013) 

provides an improved and more recently mapped bed topography and ice thickness 

of JI. This bed geometry (i.e., Bamber et al. (2013)) is overall characterized by 

better defined troughs and consequently ice thickness slopes.  
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In terms of velocities (Figs. 16, 17 and 18), similar behaviours are modelled with 

and without the “FTT” mechanism. However, I should stress here that with the 

“FTT” on, the mean modelled velocities (𝑚̅) are 40 % to 50 % smaller than the 

mean observed velocities (𝑜̅). Overall, the trend is to underestimate the velocities in 

the terminus region when the bed from Bamber et al. (2001) is used, and 

overestimates the velocities in the main troughs when the bed from Bamber et al. 

(2013) is employed. The best agreement with observed surface velocities was 

obtained in experiment Rv2-R90-11 with the bed from Bamber et al. (2013) and 

RACMO2 as the climate forcing (RMSE 155 m a
-1

, AMD 35, 𝑜̅ = 53, 𝑚̅ = 49). All 

the simulations performed with the bed from Bamber et al. (2001) tend to 

underestimate the high velocities close to the terminus area. Overall, a better 

agreement with the observed horizontal velocities is obtained when the bed 

geometry from Bamber et al. (2013) is used (Table A4). 

 

 

 

 

 

The sensitivity of the modelled horizontal velocities and ice thickness relative to the 

three climate dataset used (i.e., HIRHAM5, RACMO2, and BOX) is not as 

significant as for the bedrock geometry or the spin-up method used. However, both 

Figure 17: Distribution of modelled and observed surface velocities on a 2 km grid 

at the end of the forward simulation (~2012) for HIRHAM5 (green), 

RACMO2 (red) and BOX (blue) for the two bed topographies used, with 

and without the FTT mechanism. The observed velocities are for the 

winter of 2008-2009 and are based on the ice-sheet wide horizontal 

velocity map (Joughin et al., 2010). 
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RACMO2 and HIRHAM5 are forced at the lateral boundaries based on the ERA-

Interim product and the BOX reconstruction is further correlated with RACMO2. 

Overall a better agreement with the observed behaviour is obtained when the 

regional outlet glacier model is forced with RACMO2. 

 

 

 

 

 

Figure 18: Simulated flow-line ice divide to terminus on a 2 km grid at the end of 

the forward simulation (~2012) for the bed topography from Bamber et 

al. (2001)  (A, C) and Bamber et al. (2013) (B, D) without FTT (A, B) 

and with the FTT mechanism (C, D) for HIRHAM5 (green), RACMO2 

(red) and BOX (blue). The observed TSX 18-29 Nov 2011 horizontal 

velocities are produced from TerraSAR-X (TSX) image pairs collected 

between 18 and 29 November 2011 (Joughin et al., 2010). 
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Figure 19 shows observed versus modelled monthly cumulative mass change time 

series for the period 1997-2012 on a 2 km grid. 

 

 

 

 

 

 

 

As a rule of thumb, I always removed the drift by subtracting the mass loss 

modelled during the control simulation (i.e., where a constant 1960-1990 or 1989-

1990 climate is used) from the forced simulation (forward runs) mass loss on a 

Figure 19: Simulated monthly cumulative mass loss (1997-2012) on a 2 km grid 

with their respective trend lines versus observed cumulative mass loss 

(1997-2012) for the bed geometry from Bamber et al. (2001) (A, C) and 

for Bamber et al. (2013)(B, D), without FTT (A, B) and with the FTT 

mechanism (C, D) for HIRHAM5 (green), RACMO2 (red) and BOX 

(blue). The dark green line (1 km, Rv2-H90-12*) represents the 

modelled cumulative mass loss where yearly mean 1990-2000 climate 

for HIRHAM5 was used during the regional equilibrium simulation. 

Note that Rv2-H90-12* performed on 1 km and Rv2-H90-12* 

performed on 2 km are superimposed over the period 1997-2012 (Table 

A4). 
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time-step (monthly) basis (Gupta et al., 2012). The simulated cumulative mass loss 

after drift removal is presented in Table A4. 

4.3   Discussion 

The approach used allowed me to evaluate the three climatic datasets from a glacier 

internal dynamic perspective. For these initial set of experiments, the terminus 

positions remained fixed and in consequence the modelled dynamic response of JI 

due to advance and/or retreat of the front was negligible. Consequently, the 

modelled ice thickness, horizontal velocities and mass loss estimates were solely 

influenced by glacier internal dynamics and the atmospheric forcing applied (Sect. 

2). I found large variations in the simulated mass loss relative to the climate model 

used (up to ~155 Gt, simulations Rv2-H90-12 and Rv2-R90-12), the spin-up 

method (up to ~67 Gt, simulations Rv2-R90-12 and Rv2FTT-R90-12) but also 

relative to the bed topography used (up to ~112 Gt, simulations Rv1-R90-12 and 

Rv2-R90-12).   

 

Figure 20: The mass change due to SMB for BOX (blue line), RACMO2 (red line) 

and HIRHAM5 (green line) for the whole computational domain 

(dashed line) and in the mask showed in Fig. 1B (solid line). For BOX 

and RACMO2, I removed the 1960-1990 baseline. 

In terms of simulated mass loss, the modelled results versus observations agree well 

until 2000 (Fig. 19). Starting in 2001, the simulations with HIRHAM5 tend to 

underestimate the mass loss trend. The same trend is better captured when 

RACMO2 is used and overestimated when the model is forced with BOX (Fig. 19). 

The differences in mass loss become evident mainly after 2000, when according to 

observations an increase in mass loss caused by surface processes is reported (i.e., 

22 % increase for the period 2009-2012 relative to period 2003-2006; Khan et al., 

2014). Therefore, this disagreement between the three climatic datasets modelled 
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after 2000 could be potentially generated by differences in the absolute values for 

precipitation and surface melting with the subsequent run-off.  This hypothesis 

seems plausible as all the models (HIRHAM5, RACMO2 and BOX) are able to 

capture the temporal behaviour before 2000, when the mass loss was dominated by 

dynamically driven discharge (Nick et al., 2013).  However, when analysing the 

SMB forcing used for the period 1990-2014, HIRHAM5 and BOX present similar 

trends (see Fig. 20, i.e. the solid lines), while RACMO2 suggests up to 20 Gt less 

SMB loss.    

I could reduce the uncertainty by building anomalies with respect to the reference 

period 1961–1990, as a 30 year average is considered a meaningful climatology 

(van den Broeke et al., 2009), but this is not possible for my experiments, as 

HIRHAM5 covers only the period 1989–2012. Further, I ran two additional 

simulations with a 1 km and a 2 km grid using HIRHAM5 as the climate forcing, 

but this time using a mean 1990–2000 climate for my initial and regional 

equilibrium simulations. The results are presented in Fig. 19B. I found that by 

integrating forward in time using an initial state and regional equilibrium 

simulation based on a 10 year average HIRHAM5 climate, I am able to increase the 

simulated mass loss by 29 Gt (from 88.29 Gt to 116.89 Gt). Therefore, I am 

inclined to suggest that the mismatch in the modelled mass loss relative to BOX 

and RACMO2, may be caused by the different input climatic data used in the 

initialization (i.e., mean 1961-1990 climate for RACMO2 and BOX, and mean 

1989-1990 climate for HIRHAM5). Alternatively, the mismatch may also be 

generated by the different distribution of SMB loss within the domain (see Figs. 2 

and 3) or due to the fact that the model (i.e., the parameters) was initially calibrated 

based on simulations performed with BOX. BOX and RACMO2 are correlated 

(Fig. 20), and therefore the good agreement between the two is expected. However, 

the uncertainty involved in estimating the mass balance components (van den 

Broeke et al., 2009) for 1990–2012 and the different formulations of the models is 

generally the reason for the differences observed in the simulated mass loss 

estimates. 

The difference between modelled and observed behaviour varies significantly 

between the experiments (Table A4). My simulations show a large sensitivity of the 

modelled horizontal surface velocities and ice thickness to the bed topography used 

and less significant to the climate forcing applied (Figs. 15, 16, 17 and 18). An 

improvement for all the experiments is observed when the bed from Bamber et al. 

(2013) is used. Even in this relatively simple model, where any buttressing effects 

due to advance and retreat of the terminus are neglected as the terminus remains 

fixed, the influence of bed topography and improved ice thickness can be easily 

acknowledge. In terms of the spin-up method used, the prediction errors are 

reduced when the “FTT” mechanism is used. However, the tendency with the 

“FTT” is to underestimate the surface velocities and the ice thickness, which may 
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finally lead to an underestimation of the ice discharge (Figs. 15 and 16). In terms of 

the grid resolution used, I did not found differences in the modelled mass loss 

between simulations performed with a 1 km and a 2 km grid (Fig. 19B). 

Based on the above results, I chose to perform all my further simulations without 

the “FTT” mechanism and to use the bed topography from Bamber et al. (2013). 

The benefits for using the “FTT” mechanism are not enough to sustain its further 

use. The “FTT” mechanism introduces a series of limitations e.g. at each time step 

the ice thickness is forced to the present day thickness without a legitimate physical 

reason. Therefore, I found the “FTT” mechanism unsuitable for modelling past 

temporal variability or for performing prognostic runs that allow the advance and/or 

retreat of the terminus.  

Previous studies, but based on a flowline approach (Vieli et al., 2011; Nick et al., 

2013), have suggested that representing the processes that act at the marine 

boundary (i.e., calving and ocean melt) are important for understanding and 

modelling the retreat and/or advance of marine terminating glaciers like JI. 

Therefore, all further simulations include the superposition of two calving 

mechanisms (Sect. 3.4) that allow for glacier terminus advance and retreat due to 

calving. 
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CHAPTER 5 

 

Study 2: Jakobshavn Isbræ 

numerical simulations 

(1840-2012) 
 

 

he goal of this study is to model the behaviour of JI since the end of the Little 

Ice Age (LIA; 1840-2012). I forced the model with yearly atmospheric 

forcing (i.e., air temperature and SMB from BOX; Fig. 2) and I used both 

constant (i.e., -1.7 °C) and variable surface ocean water temperature (see Sect. 2, Fig. 

5). The input surface ocean water temperature represents here (Sect. 3.6) the mean 

surface ocean temperature in the grid cells adjacent to the JI terminus (i.e., To in Eq. 

34). In this regional model, all boundaries (calving fronts, grounding lines, upper, 

and lower surfaces) were free to evolve in time both during the regional equilibrium 

and the forward simulations. Along the ice shelf calving front, I superimposed a 

physically based calving (eigen-calving) parametrization (Winkelmann et al., 2011; 

Levermann et al., 2012) and a basic calving mechanism (Albrecht et al., 2011) that 

allowed the glacier terminus to advance and retreat under the applied forcings. The 

values of the ice sheet model parameters used (see Sect. 3 for the underlying 

equations) are included in Table A5 and Table A6. 

I started my simulations with a constant surface ocean temperature and I altered 

parameters controlling the ice dynamics in the regional equilibrium simulations (e.g. 

the flow enhancement factor, the exponent of the pseudo-plastic basal resistance 

T 
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model, the till effective fraction overburden, etc.) and parameters related with ice 

shelf melt, ocean temperature, and calving (i.e., the ice thickness threshold in the 

basic calving mechanism) in the forward simulations. Consequently, these 

parameters were modified only during the regional JI runs. In order to reproduce 

observed frontal positions (~15 positions for the period 1900-2012), I performed 

approximately 100 regional JI simulations.   

I further performed additional simulations with variable surface ocean temperature as 

taken from the Met Office Hadley Centre dataset (Sect. 2.2), which I then adjusted 

(see Fig. 5) to accurately match the observed trend in mass change for the period 

1997-2012.  At this stage, I did not altered any parameters (i.e., all the parameters 

have the same values as used in the constant ocean forcing simulations). 

From these results, I will present here the two simulations (i.e., with constant and 

variable surface ocean temperature) that best captured (i.e., I estimated the residual 

between modelled and observed ice mass change and selected the smallest residual 

signal) the full observed evolution of JI during the period 1840–2012 (see Fig. A10).  

I validated the model by comparing model results for horizontal surface velocities, 

ice thickness changes, and mass loss time series with existing observations (Sect. 

2.4). However, it should be considered that before the ‘90s the available observations 

are relatively sparse in time and space, and often uncertain, making the validation of 

the model difficult. 

This is the first study, to my knowledge, that aims and succeeds to capture with a 3-

D dynamic numerical model the temporal behaviour of JI since the end of the LIA. 

The study is unique both in approach and results obtained. The study is associated 

with Paper iii (manuscript) attached in Appendix H. 

5.1   Observations vs. modelling results 

5.1.1  1902-1946 

Observations suggest that the terminus of JI retreated significantly from 1850. The 

observations available during this period are based on trimlines and field campaigns 

made to the glacier by early Danish explorers (e.g. Engell). Engell, which visited the 

glacier several times, suggests thinning over the period ~1850-1902 (Csatho et al., 

2008). These observations are in agreement with my modelling results (see Figs. 21 

and 22B). During this period, the ocean forcing that I used at the terminus is constant 

and leads in my model to gradual thinning of JI and terminus retreat without any shift 

(i.e., increase) in ocean temperature. In my model, the terminus continues to retreat 

until  ~1915 when the retreat is halted and the terminus remains relatively stable for 

the next ~10 years. The available scientific literature for this period is relatively 

limited but does suggest large surface lowering that increases towards the interior of 

the ice sheet (e.g. Csatho et al., 2008). Starting in 1920, the modelled terminus retreat 

and modelled flow speed of JI accelerates (Figs. 21 and 22). During this period (i.e., 
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1925-1932), JI develops in my simulations a larger ~2-4 km floating tongue, which is 

calved off by the end of 1932. Thereafter, only a small floating ice tongue is 

modelled. Following the retreat of the terminus, the simulation produces speeds high 

as 20 km a
−1

. This first modelled terminus retreat (~8 km) and flow acceleration of JI 

that occurs in ~1930 is triggered as the grounding line retreated over a reversed bed 

slope (Fig. 21A,C). The magnitude of this modelled flow acceleration is similar with 

that of modelled present day accelerations of JI (e.g. 2003; Figs. 21, A6 and A7). 

 

Figure 21: Modelled surface elevation (> 50 m) and grounding line position (A) and 

modelled horizontal velocities (B) at JI along the dotted flowline shown 

in Fig 1D in a simulation with variable surface ocean temperature for the 

period 1900-2012. The black line represents the bedrock topography 

from Bamber et al. (2013) and the grey line represents a smoothed 

version of the same bed topography. Modelled surface elevation (> 50 m) 

and grounding line position (C) and modelled horizontal velocities (D) at 
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JI in a simulation with constant surface ocean temperature (i.e., -1.7 °C) 

for the period 1900-2012. The colour scale ranges from dark blue (1900), 

light blue, green (1960), yellow, orange to red (2012) (see the legend). 

The dots represent modelled grounding line positions where the colours 

follow closely the colour scale presented above. Note the acceleration in 

speed between 1925-1930 and between 1998-2003 corresponding to the 

final breakup of the floating tongue.   

However, and in contradiction with present day JI flow accelerations, this 

acceleration is short lived and once the grounding line reached higher ground 

(~1935), the modelled velocities decreased but still remained slightly larger than 

those simulated before the acceleration (~50 % increase in point S1; Fig. 22). In my 

simulations, this initial acceleration of JI is responsible for large surface lowering 

(Fig. 22B), and may explain the surface lowering documented by Weidick (1969) 

and Csatho et al. (2008) during this period. Although, there is observational evidence 

to confirm the large terminus retreat (e.g. terminus positions for 1931 and 1946; 

Csatho et al. (2008)), this initial flow acceleration of JI is not documented in any 

other scientific publication.  

Weidick (1969) suggests based on observations of lichen colonies and moraines near 

the lake Nunatap Tasia (i.e., close to JI’s 1930 terminus) that the surface lowering 

was intermittent and stops once JI enters its cooling phase (~1950; Figs. 2 and 5). In 

agreement with Weidick, after 1940, the modelled terminus remains relatively stable 

with no episodes of modelled terminus retreat, thinning or flow acceleration (Figs. 21 

and 22). A similar behaviour is modelled in the simulation performed with constant 

ocean forcing suggesting that most probably, in my model, calving at the terminus is 

reduced because JI grounding line reached a pinning point (see Fig. 21). These model 

results agree well with observations (e.g. Csatho et al. (2008)), which suggest that 

this location (i.e., near the Ice Rumple, Fig. 11 in Csatho et al. (2008)) represents a 

pinning point for JI until 1998.  

5.1.2  1946-1997 

After 1940s, the modelled terminus positions remain relatively stable (Figs. 21 and 

22) but JI continues to lose mass until the 70’s when the climate begins to cool (Figs. 

2, 5, 22B and 26). As a result of colder climatic conditions (i.e., 0.5 °C decrease in 

ocean temperature; Fig. 5), in the simulation with variable ocean forcing, the glacier 

is slightly thickening and the terminus advances by ~2-4 km between 1980 and 1990. 

In agreement with my modelling results, observations (Csatho et al., 2008) suggest 

that thickening started at JI most probably in mid-1980s. Overall, during the period 

1946-1997, the modelled frontal extent and the grounding line position remain 

relatively stable (Figs. 21 and 22), a result that is consistent with observations 

(Csatho et al., 2008). Similarly, this behaviour remains unchanged even if a constant 

ocean forcing is applied at the terminus suggesting that most probably the bed 

geometry played an essential role during this period.   



                                 Chapter 5. Study 2                                                                                                                                                                                 Chapter 4. Study 1 

57 
 

Figure 23 shows observed and modelled horizontal velocities for 1985, 1988 and 

1989. Although, the modelled horizontal velocities for this period are slightly larger 

than the observed horizontal velocities (e.g. RMSE 2988.6 m a
-1 

for 1985), the 

difference in speed is significant only in the grid cells adjacent to JI’s terminus (see 

Fig. A6).  

 

Figure 22: (A) Modelled grounding line and terminus position (floating ice tongues 

thinner than 50 m are not shown). (B) Modelled horizontal velocities and 

ice thickness changes at the point location S1 shown in Fig. 1C. (C) 

Modelled calving rates in km a
-1

 for the period 1840-2012. 

Csatho et al. (2008) suggested that JI’s terminus may have become afloat sometimes 

after 1946. A larger floating ice tongue starts to develop in my simulations in ~1870, 

~1920 and ~1980. Generally, these modelled ice tongues are shorter lengthwise than 

those suggested by observations (Csatho et al., 2008). Beside the 1870 floating ice 

tongue which is calved only in ~1915, the 1920s and 1980s ice tongues are calved 

within several years after their development (Fig. 21). After 1990, only a small 

floating ice tongue is modelled (<2 km; Figs. 21 and 22) and the simulated terminus 

retreat tends to follow closely the modelled grounding line retreat. 
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5.1.3  1998-2012 

According to observations (Joughin et al., 2004; Luckman and Murray, 2005; 

Motyka et al., 2011; Bevan et al., 2012), the first post-1990 acceleration of JI 

occurred in 1998, which coincides with my modelled results. In my simulation, the 

acceleration, starts a year later, in 1999, and is sustained until 2003. 

 

Figure 23: (A) Observed horizontal velocities at JI along the dotted flowline shown in 

Fig 1D for July-August 1985, July-August 1988, and July 1989. (B) 

Modelled yearly mean horizontal velocities in a simulation with variable 

surface ocean temperature for 1985, 1988 and 1989. (C) Modelled yearly 

mean horizontal velocities in a simulation with constant surface ocean 

temperature for 1985, 1988 and 1989. 

The acceleration occurs as the terminus retreats from a basal high through an 

overdeepening. During this period, modelling results suggest a retreat of the southern 

tributary by ∼8-10 km, which correlates with existing observations (Thomas, 2004). 

A retreat of a similar magnitude is modelled for the grounding line position. In my 

model, a floating ice tongue starts to develop in 1998, however this ice tongue is 

rapidly calved and generally the modelled terminus retreat tends to follow closely the 

modelled grounding line retreat, i.e. only a small floating ice tongue is modelled. 

During the 1998-2003 flow acceleration, the simulation produces speeds high as 16 

km a
−1

 (∼ 220 % increase relative to 1997). The modelled velocities decreased to 12 

km a
−1

 (∼ 140 % increase relative to 1997) in the subsequent years and remained at 

the same magnitude with the sparse observations from that time (e.g. Joughin et al., 

2012). Figure 24 shows observed and modelled horizontal velocities for 2000-2001, 

2005-2006, 2006-2007 and 2008-2009. Overall, a good agreement is obtained with 

RMSE values that range between 90.8 m a
-1

 to 802.2 m a
-1

 (Table A7). Similarly, Fig. 

25 shows observed and modelled ice thickness changes at points S1, S3 and S6 (see 

Fig. 1C) with RMSE values that range over the period 2003-2012 between 3 m and 33 

m (Table A8). Further, and similarly with Vieli et al. (2001), I am not able to simulate 

the observed retreat of the southern tributary after 2010. Observed front positions 
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(Joughin et al., 2014) suggest that by the summer 2010 JI was already retreating over 

the sill and on the over deepening indicated by the red star in Fig. 29. This recent 

behaviour of JI is, in fact, the topic of Study 3.  

 

Figure 24: (A) Observed horizontal velocities at JI along the dotted flowline shown in 

Fig 1D for 2000-2001, 2005-2006, 2006-2007 and 2008-2009. (B) Modelled 

yearly mean horizontal velocities at JI along the dotted flowline shown in 

Fig 1D in a simulation with variable surface ocean temperature and (C) a 

simulation with constant surface ocean temperature for 2000-2001, 2005-

2006, 2006-2007 and 2008-2009.  

5.1.4  Modelled ice mass change 

The mass loss begins in my model in 1870 and correlates with the sustain terminus 

retreat and thinning discussed in Sect. 5.1.1. Following the initial acceleration of JI 

which starts in 1920, the modelled mass change accelerates thereafter. Mass change 

estimates of 437.6 Gt or 10.6 Gt a
-1

 are modelled in the simulation with variable 

ocean forcing between 1920-1960. Although, the modelled terminus positions remain 

relatively stable (Fig. 21 and 22A), after late 1940’s, JI continues to lose mass until 

the 70’s when the climate begins to cool (Figs. 2, 5 and 26). Overall, the period 

1970-1997 is characterized in my model by a slowdown in mass change. 

Observational data (e.g. atmospheric and oceanic temperature in the JI region; Sect 

2) suggest that during this period the observed mass change slows as a consequence 

of colder climate conditions (see Fig. 5). Similarly, in my simulation the slowdown 

in mass is triggered by a decrease in ocean temperature of 0.5 °C (Fig. 5). After 

1997, JI’s mass change starts to accelerate again as a consequence of warmer climate 

conditions (i.e., 0.8 °C increase in ocean temperature; Fig. 5). Consequently, the 

constant ocean forcing simulation failed to capture the observed variability in mass 

during the period 1970-2012. In the simulation with variable ocean forcing the mass 

change for the period 1990-2012 is 253.2 Gt or 11 Gt a
-1

.  Table A9 and Table A10 
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summarizes mass loss estimates and major terminus collapses at JI for the period 

1840-1880, 1880-1920, 1920-1960, 1960-1990, and 1990-2012. 

 

Figure 25: Time series of modelled (filled circles) versus observed (empty circles 

with light green edges) ice thickness changes (Krabill, 2014) (for the 

period 1990–2012 at the locations (S1, S3, and S6) shown in Fig. 1C) in 

the simulation with variable ocean surface temperature (A) and constant 

ocean surface temperature (B). 

Figure 26 shows observed and modelled mass change for the simulations that include 

variable and constant ocean forcing.  The observed rate of ice volume changes are 

estimated from airborne and satellite altimetry over the period 1997-2012 and are 

converted to rates of mass change as detailed in Sect. 2.4. For the period 1997-2012, 

I found a good agreement between modelled and observed mass change (see Fig. 26). 

The modelled cumulative mass loss for the period 1840-2012 is 1214.5 Gt (~3.4 mm 

SLE), of which 77 % (∼937.3 Gt) is dynamic in origin while the remaining 23 % (∼ 

271 Gt) is attributed to a decrease in SMB (Fig. 26). For the period 1990-2014 

dynamically driven discharge has been shown to control Jakobshavn’s mass loss 

(Nick et al., 2013). Similarly, here I found that dynamical driven discharge 

controlled JI mass loss since the end of the LIA. 

5.2   Discussion 

The present study is the first that aimed and succeeded to capture reasonably well 

JI’s behaviour in the last century. This longer-term reconstruction of glacier 

behaviour back to the end of the Little Ice Age provides new insight in understanding 

JI’s behaviour over more than 100 years and has the capability to ensure long term 
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calibrated projections. During the period 1900-2012, I calibrated the model to match 

the observed terminus positions available at JI (~15) as well as observed mass 

change estimates for the period 1997-2012. Overall, I obtained a good agreement 

between observed and modelled time series of horizontal velocities and ice thickness 

changes (e.g. Fig. 24). In agreement with Csatho et al. (2008), I identified three 

major periods of rapid thinning: 1902–1913, 1930–1959 and 1999–present (Figs. 21, 

22 and 26). 

 

Figure 26: Modelled and observed cumulative mass change for Jakobshavn Isbræ. 

The blue curve represents the mass change due to SMB (Box et al., 2013) 

after the 1960–1990 baseline is removed (~271 Gt). The “golden olive” 

curve represents the total modelled mass change in a simulation with 

variable atmospheric forcing and no ocean forcing.  The green curve 

represents the total modelled mass change including both SMB and ice 

dynamic changes modelled in the simulation with constant ocean 

temperature (1228.3 Gt). The red curve represents the total modelled 

mass change including both SMB and ice dynamic changes in the 

simulation with variable ocean temperature (1214.5 Gt). The black curve 

represents the total observed mass change including both SMB and ice 

dynamic changes. The modelled mass change for the period 1997–2012 

in a simulation with variable ocean forcing is ~209 Gt and ~307 Gt in a 

simulation with constant ocean forcing. The observed mass change is ∼ 

200 Gt (Krabill, 2014). 

The first modelled acceleration of JI is in 1930 when the grounding line retreated 

over a reversed bed slope. In my simulations, this initial acceleration of JI is 

responsible for large surface lowering, and may explain the surface lowering 

observed by Weidick (1969) and Csatho et al. (2008) during this period. The 1930 
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acceleration in terminus retreat and flow speed is captured even in a simulation with 

constant ocean forcing (with one year delay), suggesting that the acceleration is 

probably not triggered by an increase in ocean temperature (e.g. warm ocean waters 

entering the Ilulissat fjord that could destabilize JI). This first modelled retreat and 

flow acceleration of JI illustrates that the dynamic response to a loss of buttressing is 

transient and it is largely topographically controlled. 

Further, according to observations, JI started to float sometime around 1946 and by 

1990 the glacier is characterized by a large floating tongue (> 10 km; e.g. Motyka et 

al., 2011) that I am not able to simulate during the forward simulations. Although, in 

my model (Figs. 21 and 22A), the glacier develops larger floating tongues in ~1870 

(∼4-6 km), in 1920 (∼4 km) and 1980 (~4 km), they are rapidly calved. Generally, 

the tendency in my simulations is for the modelled terminus retreat to follow the 

modelled grounding line retreat, i.e. each year only a small floating ice tongue (e.g. 

<2 km) is modelled (Fig. 22A). The mismatch between the observed and the 

modelled floating ice tongue may represent an incomplete modelling of the physics 

at the terminus (e.g. I do not take into account seasonal fluctuations in ocean surface 

temperature) or other various limitations (e.g. bed topography model constraints). 

Alternatively, it may also represent a limitation of the melting parametrization used 

that for my choice of parameters (I remind here Fmelt) could just not favour the 

development of very large floating ice tongues, limitations of the calving 

mechanisms used, or a combination of both. Following the melting parametrization, 

the highest melt rates are modelled in the proximity of the glacier grounding lines 

and decrease with elevation such that the lowest melt rates are closer to the central to 

frontal area of the modelled ice shelf. In my model, the eigencalving parametrization 

cannot resolve individual calving events, and, thus, the introduction of the basic 

calving mechanism was necessary in order to accurately match observed front 

positions. The basic calving mechanism, which drives most of the calving modelled 

in my simulations (over 90 %; see Sect. 6.3), removes any ice at the calving front not 

calved by the eigen-calving parametrization thinner than 400 m in the forward runs. 

The physical concept behind this basic calving mechanism is that generally, ice shelf 

calving fronts are thicker than 150–300 m (The PISM Authors, 2014). Therefore, 

large melt rates at the grounding line (see Sect. 6.3) as produced by the ice shelf 

melting parametrization can accelerate the grounding line retreat and increase 

calving through the basic calving mechanism. Remember, that I calibrated the model 

such that it matches observed terminus positions, and so my choice for the basic 

calving mechanism thickness threshold (e.g. 400 m) could directly affect my choice 

of the melting parameter, Fmelt.  

Finally, the modelled cumulative mass loss for the period 1840-2012 is ~1214.5 Gt, 

of which 77 % is dynamic in origin and 23 % is attributed to a decrease in SMB (Fig. 

26). Therefore, in the last century, and similarly with the period 1990-2014, JI’s mass 

change was predominately dynamically controlled. Dynamic losses are caused by 
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outlet glacier terminus retreat and are closely related to the bed geometry. They 

usually occur after the terminus retreated from a basal high through an 

overdeepening (Nick et al., 2013). In my simulations, and similarly with Nick et al. 

(2013), these episodes of rapid retreat occur at different time intervals but generally 

at the same location (see the location for the 1930 and 2003 accelerations in the 

simulation with variable ocean forcing vs. the simulation with constant ocean 

forcing; Fig. 21). Although, the constant ocean forcing simulation succeeds to 

reasonably simulate the overall observed terminus retreat and mass loss magnitude, 

my simulations show that is not able to capture the observed JI variability in mass 

change, especially over the last 30 years. Furthermore, in a simulation with variable 

atmospheric forcing and no ocean forcing, the terminus remains relatively stable in 

the proximity of the 1880 observed terminus position. Therefore, the ocean influence 

in JI’s behaviour over the last century is significant and most of JI’s retreat during 

1840–2012 is driven by the ocean parametrization used and the glacier’s subsequent 

response, which is largely governed by bed geometry (Fig. 26).  

Further, and similarly with Vieli et al. (2001), I am not able to simulate the observed 

retreat of the southern tributary after 2010. This relatively recent behaviour of JI (i.e., 

1990-2014) as well as the seasonal driven terminus advance and/or retreat and its 

correlation with speed fluctuations and glacier dynamics are further investigated in 

Study 3. 
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CHAPTER 6 

 

Study 3: Jakobshavn Isbræ 

numerical simulations 

(1990-2014) 
 

 

 

he goal of this study is to model the recent behaviour of JI (i.e., 1990-2014). 

Relative to Study 2, here, I wish to focus more on the yearly to seasonal 

driven terminus advance and/or retreat and speed fluctuations of JI during the 

period 1990-2014. The period 1990-2014 is abundant in observations and ensures 

better constrains for the regional model. As a novelty, here I validated the model for 

the period 2006-2014 using measurements of GPS derived uplift. I forced the model 

with monthly atmospheric forcing (i.e., air temperature and SMB from RACMO2; 

Fig. 2) and I used a constant surface ocean water temperature (To) of -1.7 °C, which 

here represented the mean surface ocean temperature in the grid cells adjacent to the 

JI terminus (Fig. 5). In this regional model, all boundaries (calving fronts, grounding 

lines, upper, and lower surfaces) were free to evolve in time both during the regional 

equilibrium and the forward simulations. Along the ice shelf calving front, I 

superimposed a physically based calving (eigen-calving) parametrization 

(Winkelmann et al., 2011; Levermann et al., 2012) and a basic calving mechanism 

(Albrecht et al., 2011) that allowed for glacier terminus advance and retreat. 

T 
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I performed (on a 2 km grid) a total number of fifty simulations with different sets of 

parameters (excluding preparatory and additional experiments on the 1 km). During 

these simulations I altered the parameters obtained in Study 2 controlling the ice 

dynamics (e.g. the flow enhancement factor, the exponent of the pseudo-plastic basal 

resistance model, the till effective fraction overburden, etc.) but also parameters 

related with ice shelf melt, ocean temperature, and calving (i.e., the ice thickness 

threshold in the basic calving mechanism). These parameters are modified only 

during the regional JI runs such that the model reproduced the frontal positions and 

the ice mass change observations at JI during the period 1990-2014 (Fig. 27) and 

1997-2014 (Fig. 31), respectively. From these results, I present here the simulation 

that best captures the full observed evolution of JI during the period 1990–2014 (Fig. 

33). I further performed a model sensitivity analysis to parameters controlling ice 

dynamics, basal processes, ice shelf melt, atmospheric conditions and the ocean 

parametrization. The values of the ice sheet model parameters used (see Sect. 3 for 

the underlying equations) are included in Table A11 and Table A12. 

In general, the study shows significant progress in modelling the temporal variability 

of the flow at JI. The study is associated with Paper ii (see Sect. 1.2). 

6.1   Observations vs. modelling results 

I investigate the processes driving the dynamic evolution of JI and its variation in 

velocity between 1990 and 2014 with a focus on the first post-1990 speedup of JI 

(1998) and the 2003 breakup of the ice tongue. I present modelled vs. observed 

behaviour of annual scale variations in velocities, terminus and grounding line 

positions. The overall results from the simulations suggest a gradual increase in 

velocities that agree well with observations (Joughin et al., 2014) (Fig. 28). Three 

distinct stages of acceleration are identified in Fig. 28 and discussed in detail below. 

6.1.1  1990–1997 

The first speedup produced by the simulation is caused by a retreat of the front 

position by approximately 2 to 4 km between 1990 and 1991. There is no 

observational evidence to confirm that this retreat actually occurred.  The simulated 

retreat is probably a modelling artefact as the geometry obtained during the regional 

equilibrium simulation is forced with monthly atmospheric forcing and new oceanic 

conditions. This simulated acceleration (Figs. 28 and 30) is caused in my model by a 

reduction in buttressing due to a reduction in lateral resistance (Van der Veen et al., 

2011), which is generated by the gradual retreat of the front and which triggers a 

dynamic response in the upstream region of JI.  

Starting in 1992, the modelled and observed terminus positions agree. Apart from the 

acceleration in 1991–1992, no significant seasonal fluctuations in flow rate are found 

in my simulations for this period, a result that is consistent with observations 

(Echelmeyer et al., 1994). From 1993 a stronger sub-annual velocity signal begins to 
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emerge in my simulation that continues and intensifies in magnitude during 1994 and 

1995. 

 

Figure 27: Modelled velocities at Jakobshavn Isbræ for December are shown for 

eight different years. The black line represents the modelled front 

positions, the black dotted line denotes the observed front position and 

the thick black dashed line represents the modelled grounding line 

position. The velocities are superimposed over a Landsat 8 image 

acquired in August 2014. 

Modelled mean-annual velocities for 1992 and 1995 are consistent with observed 

velocities for the same period (Joughin et al., 2008; Vieli et al., 2011).  In 1996 and 
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1997, the frontal extent and the grounding line position remain relatively stable 

(Figs. 27, 29 and 30), and no significant seasonal fluctuation in ice flow rate is 

observed in the simulation. These model results agree well with observations, which 

indicate that the glacier speed was relatively constant during this period (Luckman 

and Murray, 2005). 

6.1.2  1998–2002 

According to observations (Joughin et al., 2004; Luckman and Murray, 2005; 

Motyka et al., 2011; Bevan et al., 2012), the initial acceleration of JI occurred in 

May-August 1998, which coincides with my modelled results. In my simulation, the 

1998 acceleration is generated by a retreat of the ice tongue’s terminus in 1997-1998, 

which may be responsible for reducing buttressing (Fig. 30). Thinning, both near the 

terminus and inland (up to 10 km away from the 1990 front position), starts in my 

model in the summer of 1995 and continues to accelerate after 1998 (Figs. 28, 29 and 

30). The modelled behaviour agrees well with the observed behaviour (Krabill et al., 

2004). 

Although thinning appears to have increased in my model during three continuous 

years, it produced only minor additional speedup during the period prior to 1998 

(Figs. 27, 29 and 30).  In my simulation, JI’s speed increased in the summer of 1998 

by ~80 % relative to the summer of 1992 (Fig. 28), at which time the grounding line 

position starts to retreat thereafter (Figs. 27, 29 and 30). Observations (Luckman and 

Murray, 2005) do not show this level of speedup, and there are no observations of the 

grounding line position at this time with which to assess my model performance. 

Overall, modelling results suggest an advance of the terminus between 1999 and 

2000 and a retreat of the southern tributary between 2000 and 2002 by ∼4 km, which 

correlates with existing observations (Thomas, 2004). In my simulation, this retreat 

of the terminus triggers a decrease of resistive stresses at the terminus (Fig. 30). 

Concurrent with the 1998-2002 terminus retreat, the grounding line retreats in my 

model by ~6 km (Figs. 27, 29, and 30).  

6.1.3  2003–2014 

In the late summer of 2003, the simulated flow velocity increases (Fig. 28). This 

acceleration of JI is driven in my simulations by the final breakup of the ice tongue 

(see Figs. 27 and 29).  The period 2002-2003 is characterized in my model by 

substantial retreat of the front (∼4-6 km) and the grounding line (∼4 km), which 

starts in June 2002 and continues throughout 2003. The simulated retreat that 

occurred in 2003 and the loss of large parts of the floating tongue (Figs. 27 and 29) 

caused a major decrease in resistive stresses near the terminus (Fig. 30). 
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Figure 28: Time series of modelled (filled circles) versus observed (filled circles with 

black edges) velocities (Joughin et al., 2010) (top figure) and ice thickness 

changes (Krabill, 2014) (bottom figure) for the period 1990-2014 at 

locations (S1 to S7) shown in Fig. 1C. The same colour scheme is used for 

the modelled and the observed data. The observed velocities prior to 2009 

are mean winter velocities and are largely consistent with my modelled 

winter estimates for the same period. The observed thickness has been 

adjusted to match the model thickness at the first available observation 

(i.e., by summing the modelled ice thickness corresponding to the first 

available observation with the observed thickness changes). 
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Figure 29: Modelled evolution of surface elevation (floating ice tongues thinner than 

50 m are not shown) and horizontal velocities of Jakobshavn Isbræ for 

December along the flow-line shown in Fig. 1C. Note the acceleration in 

speed between 1994-1998 and between June 2003 and September 2003 

corresponding to the final breakup of the floating tongue. The red star 

denotes the observed 2012 terminus position. 

By 2004, the glacier had thinned significantly (Figs. 28 and 29) both near the front 

and further inland in response to a change in the near-terminus stress field (Fig. 30). 

During the final breakup of the ice tongue, the simulation produces speeds high as 20 

km a
-1

 (~120 % increase relative to 1998). The modelled velocities decreased to 16 

km a
-1

 (~80 % increase relative to 1998) in the subsequent months and remained 

substantially higher than the sparse observations from that time (e.g. Joughin et al., 

2012).  

The high velocities modelled at JI after the loss of its floating tongue are further 

sustained in my simulation by the thinning that occurred after 2003 (Fig. 28), which 

continues to steepen the slopes near the terminus (Fig. 29), and is accompanied by a 

seasonal driven (sub-annual scale) retreat and advance of the front. This simulated 

thinning is combined in the following years with a reduction in surface mass balance 

due to increased melting and runoff (van den Broeke et al., 2009; Enderlin et al., 

2014, Khan et al., 2014). The period 2004-2014 is characterized in my simulation by 

relatively uniform velocity peaks with strong sub-annual variations (Fig. 28). During 
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this period, only a small floating ice tongue is modelled and the terminus remained 

relatively stable, with no episodes of significant retreat. 

 

 

 

 

In agreement with previous studies (e.g. Joughin et al. 2012), my results suggest that 

the overall variability in the modelled horizontal velocities is a response to variations 

in terminus position (Fig. 30). In my simulation, the retreat of the front reduced the 

buttressing at the terminus and generated a dynamic response in the upstream region 

of JI which finally led to flow acceleration. In contrast, when the front advanced the 

modelled flow slowed as the resistive stresses at the terminus were reinforced.  This 

Figure 30: (A) Modelled grounding line and terminus position (floating ice tongues 

thinner than 50 m are not shown). (B) Modelled horizontal velocities and 

ice thickness changes at the point location S1 shown in Fig. 1C. (C) 

Modelled 2-D deviatoric stresses (in the X direction, the Y direction, and 

the shear stress) at the point location S1 shown in Fig. 1C. 
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buttressing effect tends to govern JI’s behaviour in my model. Regarding the overall 

terminus retreat, my simulations suggest that it is mostly driven by the sub-shelf 

melting parametrization applied (Fig. 34). Although, the heat flux supplied to the 

shelf evolves in time based on the modelled terminus geometry, the input ocean 

temperature is kept constant throughout the simulations. This constant ocean forcing 

at the terminus leads, in my simulation, to gradual thinning of JI and favours its 

retreat without any shift (e.g. increase) in ocean temperature. In terms of seasonality, 

the only seasonal signal in the model is introduced by the monthly atmospheric 

forcing applied (Sect. 2.1).  However, the modelled sub-annual variability in terms of 

terminus retreat and velocities does not always follow the seasonal signal (Fig. 28). I 

investigate this higher than seasonal variability in Sect. 6.3. 

6.1.4  Ice mass change 

Figure 31 shows observed and modelled mass change for the period 1997 to 2014. 

The observed rate of ice volume changes is estimated from airborne and satellite 

altimetry over the same period and is converted to rates of mass change as detailed in 

Sect. 2.4. Overall I found good agreement between modelled and observed mass 

change (Fig. 31), and my results are in agreement with other similar studies (Howat 

et al., 2011; Nick et al., 2013).  Dynamically driven discharge is known to control 

Jakobshavn’s mass loss between 2000 and 2010 (Nick et al., 2013). The modelled 

cumulative mass loss is 269 Gt, of which 93 % (~251 Gt) is dynamic in origin while 

the remaining 7 % (~18 Gt) is attributed to a decrease in SMB (Fig. 31). Further, the 

present-day unloading of ice causes the Earth to respond elastically. Thus, I can use 

modelled mass changes to predict elastic uplift. I compared modelled changes of the 

Earth’s elastic response to changes in ice mass to uplift observed at four GPS sites 

(Fig. 32). Both model predictions and observations consistently suggest large uplift 

rates near the JI front (20 mm a
1
 for station KAGA) and somewhat minor uplift rates 

(~5 mm a
-1

)  at distances of >100 km from the ice margin.  

Although the terminus has ceased to retreat in my simulations after 2009 (Figs. 29 

and 30), the modelled mass loss, and more importantly the dynamic mass loss, 

continues to accelerate (Fig. 31). My results show (Fig. 30) that during this period, 

the mass change is mostly driven by the sub-annual terminus retreat and advance, 

which continues to generate dynamic changes at JI through seasonal (sub-annual 

scale) reductions in resistive stresses (Fig. 30).  

6.2   Ice sheet model sensitivity analysis 

This section focuses on the ice sheet model sensitivity to parameters controlling ice 

dynamics, basal processes, ice shelf melt, atmospheric conditions and the ocean 

parametrization. The values of the ice sheet model parameters used (see Sect. 3 for 

the underlying equations) are included in Table A11 and Table A12. The 

parameterization that best captures the full evolution of JI during the period 1990–
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2014 is further referred as the reference run (red line in Fig. 33). The parameter 

values used during this simulation are included in Table A12 (3rd column). 

 
 

 

 

 

 

 

 

6.2.1  Sensitivity to parameters controlling ice dynamics, basal processes, 

and ice shelf melt 

The evolution in time of the cumulative mass change for different values of the 

flow enhancement factor is shown in Fig. 33 (top-left). The figure shows that for 

smaller values of the ESIA (i.e., smaller than the reference run) the flow slows 

overall and therefore the modelled mass loss decreases as discharge decreases. 

The opposite behaviour, i.e. flows accelerates and mass loss increases is seen for 

larger values of the ESIA. A small delay in the terminus retreat (~1 year relative to 

the 2003 retreat from the reference run) is observed for ESIA=1. The timing of the 

retreat is therefore sensitive to changes in ESIA, while magnitude wise, it seems  

Figure 31: Modelled and observed cumulative mass change for Jakobshavn Isbræ. 

The blue curve represents the mass change due to SMB (Noël et al., 

2015) after the 1960-1990 baseline is removed. The green curve 

represents the modelled ice dynamics mass change (i.e., modelled mass 

change minus SMB change). The red curve represents the total modelled 

mass change including both SMB and ice dynamic changes. The black 

curve with grey error limits represents the total observed mass change 

including both SMB and ice dynamic changes. The modelled mass 

change for the period 1997-2014 is ~269 Gt and the observed mass 

change is ~296 Gt. 
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that the peaks and the flow accelerations modelled in the reference run (see Fig. 

33) are mostly controlled by the bed geometry and remain unaltered by changes in 

ESIA. 

 
 

Figure 32: Observed versus modelled uplift in mm for the stations KAGA (A), 

ILUL (B), QEQE (C) and AASI (D). The positions of the four GPS 

stations are presented in Fig. 1A. 

In my model, the ice deforms as a result of basal shear stress and therefore, for 

values of 𝑞 smaller than the reference run (see Fig. 33. top-right), the basal shear 

stress decreases making the mass loss and the terminus retreat to slow (e.g. +4 

years relative to the 2003 retreat observed in the reference run). For values of 𝑞 

larger than the one used in the reference run, the basal shear stress increases 

making the mass loss and the terminus retreat accelerate (e.g. -4 years relative to 

the 2003 retreat observed in the reference run).   

As seen in Fig. 33 (bottom-left), the model shows a high sensitivity relative to the 

value of the till effective fraction overburden used. The figure shows that for smaller 

values of 𝛿 (i.e., smaller than the reference run), the glacier grows in size and no 

retreat of the front is observed, while for larger values of 𝛿, the terminus retreat 

accelerates holding by 1998 the 2003 position observed in the reference run (i.e., -4 

years relative to the 2003 reference run retreat). 
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Figure 33: Sensitivity experiments for parameters controlling ice dynamics, basal 

processes and ice shelf melt. In the right bottom plot, the curves for 

Fmelt=0.01 and Fmelt=0.1 are superimposed. 

Fmelt is a model parameter used in the heat flux equation and included in the 

parameterization for ice shelf melting  (see Eq. 34).  Fmelt plays an important role in 

the terminus and groundling line retreat and/or advance. As shown in Fig. 33 

(bottom-right), smaller values of  Fmelt  (i.e., smaller than in the reference run) result 

in low magnitude melt rates leading to a decrease in mass loss. The opposite 

behaviour is encountered for larger values of Fmelt  (i.e., larger than the reference 

run). The magnitude of the melt rates increases and therefore, the terminus and the 

grounding line retreat accelerate resulting in a mass loss increase. 

6.2.2  Atmospheric forcing and ocean parametrization 

Figure 34 shows the cumulative mass change at JI during the period 1990–2014 

for different forcing combinations. I studied the sensitivity of the model to 

atmospheric forcing by performing a simulation where I kept the atmospheric 

forcing constant (mean 1960-1990 temperature and SMB). By comparing this 

with a simulation that includes full atmospheric variability (monthly temperature 

and SMB), I see that in terms of terminus retreat and velocities the modelled sub-

annual variability does not always correlate with the observed seasonal signal 

(Fig. 35). 
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Figure 34: Cumulative mass change at JI during the period 1990–2014 for different 

forcing combinations. Monthly climate refers to a forcing with 1990-

2014 monthly temperature and SMB as taken from RACMO2.3 (Noël 

et al., 2015). During the so called “constant climate” run (blue line) the 

monthly atmospheric forcing consists of mean 1960-1990 temperature 

and SMB (RACMO2.3, Noël et al., 2015). During the “no ocean” runs 

the parameterization for ice shelf melting is turned off (yellow and 

green lines). During the fixed terminus run (light pink line) the front is 

held fixed to the 1990 observed position. The cumulative mass change 

at JI for different ocean temperatures is shown with brown (-1.5 °C), 

red (-1.7 °C) and purple (-1.9 °C) lines. The reference run (red line) 

refers to the simulation that best captures the full evolution of JI 

between 1990-2014. 

In particular, the simulations suggest that to only a relatively small degree some of 

the variability appears to be influenced by the atmospheric forcing applied (Fig. 35), 

which also represents the only seasonal input into the model. Compared with a 

simulation with ocean and monthly atmospheric forcing, in a simulation with 

constant climate (Figs. 34 (blue line) and 35), the retreat of the terminus relative to 

the 2003 retreat observed in the reference run is delayed by 1 year. Overall, my 

results suggest that the atmospheric forcing (see Fig. 34, yellow, blue and red lines) 

plays a secondary role in JI’s retreat (i.e., relative to the oceanic forcing). As shown 

in Fig. 34, the overall oceanic contribution to JI’s retreat is significant and a 

simulation with no oceanic forcing results in a small growth of the glacier (see 

yellow line in Fig. 34) rather than a retreat. 
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Figure 35: Time series of modelled velocities for the period 1990-2014 at the point 

location S1 shown in Fig. 1C with monthly climate forcing (i.e., monthly 

1990-2014 SMB and temperature) (A) and constant monthly climate 

forcing (i.e., mean 1960-1990 SMB and temperature) (B). (C) Modelled 

grounding line and terminus position (ice thickness > 50 m) with constant 

climatic forcing. 

As depicted from Fig. 34 the model is sensitive to changes in ocean temperature. In 

my model, a decrease in ocean temperature of 0.2 °C is equivalent to a decrease in 

mass loss of ~70 Gt as the magnitude of the melt rate decreases and the retreat of the 

terminus slows (e.g. in the simulation with To= -1.9 °C (see Fig. 34), the 2003 retreat 

modelled in the reference run occurs only in 2014). On the other hand, an increase in 

ocean temperature is equivalent to an increase in mass loss (see Fig. 34) as the retreat 

of the terminus accelerates. 

6.2.3  Grid resolution 

Some of the greater than seasonal frequency could be an issue with resolution in the 

model. I examined this sensitivity by performing additional runs at a higher spatial 
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resolution. Simulations on a 1 km grid did show some improvement with respect to 

surface speed sub-annual variability (Fig. 38), suggesting that in my model the stress 

redistribution might be sensitive to the resolution of the calving event (i.e., 2x2 km or 

1x1 km). However, given the short period spanned by these simulations, the stress 

redistribution does not change the overall modelled results, as seen in Figs. 36 and 

37. Although, I acknowledge that some of this variability is due to the grid 

resolution, part of it may also be related to unmodeled physical processes acting at 

the terminus.  

I suggest that additional contributions to the seasonality, e.g. from ice mélange or 

seasonal ocean temperature variability, which are not included in my model could 

potentially influence the advance and retreat of the front at seasonal scales (Fig. 35). 

Furthermore, simulations performed on a 1 km grid showed similar ice thickness 

(Fig. 36) and surface speed (i.e., shape of the flow; Fig. 37) trends and patterns. 

6.3   Discussion 

Representing the processes that act at the marine boundary (i.e., calving and ocean 

melt) are important for understanding and modelling the retreat/advance of marine 

terminating glaciers like JI. Determining terminus positions by using the 

superposition of a physically based calving (eigencalving) parametrization 

(Winkelmann et al., 2011; Levermann et al., 2012) and a basic calving mechanism 

(Albrecht et al., 2011) is motivated by the model’s ability to maintain realistic 

calving front positions (Levermann et al., 2012). The eigen calving style cannot 

resolve individual calving events, and, thus, the introduction of the basic calving 

mechanism was necessary in order to accurately match observed front positions. 

Preparatory experiments have shown that overall calving is mostly driven in my 

model by the basic calving mechanism used, and that the eigen calving 

parametrization is more important in modelling sub-annual to seasonal fluctuations 

of the terminus.  My simulations suggest that the superposition of these two calving 

mechanisms performs well for relatively narrow and deep fjords as those 

characterized by JI. The benefit of using such a combination of calving laws is that it 

can evolve the terminus position with time and thus calving feedbacks are not 

ignored.  As the terminus retreats, the feedback between calving and retreat generates 

dynamic changes due to a reduction in lateral shear and resistive stresses (Fig. 30). In 

a simulation in which the terminus position is kept fixed to the 1990s position, the 

velocity peaks are uniform (i.e., no acceleration is modelled except for some small 

seasonal related fluctuations generated by the atmospheric forcing applied), and the 

mass loss remains relatively small (~70 Gt). Consistent with Vieli et al. (2011), I 

found that the feedback between calving and retreat is highly important in modelling 

JI’s dynamics. As introduced in Sect. 2, my approach here was to adjust the terminus 

in the JI region to simulate the 1990s observed front position and surface elevation 

based on 1985 aerial photographs (Csatho et al., 2008). The glacier terminus in 
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1990s was floating (Csatho et al., 2008; Motyka et al. 2011). Motyka et al. (2011) 

calculated the 1985 hydrostatic equilibrium thickness of the south branch floating 

tongue from smoothed surface DEMs and obtained a height of 600 m near the 

calving front and 940 m near the grounding zone. 

 

 

Figure 36: Modelled ice thickness at JI on a 2 km (left) and a 1 km (right) grid. The 

solid red lines represent the observed positions of the terminus for the 

different years plotted. 

In this study, however, I computed the thickness as the difference between the 

surface elevation and the bed topography, and allow the glacier to evolve its own 

terminus geometry during the equilibrium simulation. Preparatory experiments have 

shown that in my model (disregarding its initial geometry floating/ grounded 

terminus) JI attains equilibrium with a grounding line position that stabilizes close to 

the 1990s observed terminus position. According to observations, JI is characterized 

in 1990 by a large floating tongue (> 10 km; e.g. Motyka et al., 2011) that I am not 



                                 Chapter 6. Study 3                                                                                                                                                                                 Chapter 4. Study 1 

80 
 

able to simulate during the equilibrium runs. In my model (Figs. 29 and 30), the 

glacier starts to develop a large floating tongue (~10 km) in 1999. Starting in 2000, 

the floating tongue is comparable in length and thickness with observations and the 

model is able to simulate, with a high degree of accuracy, its breakup that occurred in 

late summer 2003 and the subsequent glacier acceleration.  

 

 

Figure 37: Modelled horizontal surface velocities at JI on a 2 km (left) and a 1 km 

(right) grid. The solid black lines represent the observed positions of the 

terminus for the different years plotted. 
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Figure 38: Time series of modelled horizontal velocities on a 2 km and a 1 km grid 

for the period 1990-2014 at the point location S2 shown in Figure 1C. 

The geometry of the terminus plays an important role in parameterizing ice shelf 

melting, and therefore my pre-1999 geometry will influence the magnitude of the 

basal melt rates (Sect. 3.6).  The difference in geometry results in modelled basal 

melt rates that are larger for the period 1999-2003, when JI begins to develop a large 

floating tongue and when the calving front was already largely floating. Relative to 

other studies, e.g. Motyka et al. (2011), my melt rate for 1998 is ~2 times larger (Fig. 

39 and Table A13). While I choose here to compare the two melt rates in order to 

offer a scale perspective, I acknowledge the difference in geometry between the two 

studies.  

 

Figure 39: Calving rates versus basal melt rates for the period 1994-2014 in km a
-1

. 

Note the 1995 and 2010 accelerations in calving rate which do not 

correlate with an increase in basal melt rates. 
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Starting in 2010, the retreat of the terminus modelled in my simulations did not 

correlate well with observations (Fig. 27). The observed terminus and the grounding 

line retreat do not cease after 2010.  Furthermore, observed front positions (Joughin 

et al., 2014) suggest that by the summer 2010 JI was already retreating over the sill 

and on the over deepening indicated by the red star in Fig. 29.  The observed retreat 

is not reproduced in my simulations suggesting that additional feedbacks and/or 

forcings most likely affect the glacier. Alternatively, the mismatch between 

observations and simulation results may represent an incomplete modelling of the 

physics, inaccuracies in atmospheric/oceanic conditions, or other various limitations 

(e.g., bed topography model constraints and grid resolution issues). The particular 

influence of these potential issues on my model is detailed below.  

The basal topography of JI’s channels represents a large source of uncertainty. JI is a 

marine terminating glacier whose bedrock topography is characterized by a long and 

narrow channel with deep troughs (Fig. 7) that contribute to its retreat and 

acceleration, e.g. once the grounding line starts to retreat on a down-sloping bed, the 

flow increases, leading to further retreat and acceleration (Vieli et al., 2011). The 

timing and the magnitude of these retreats depend on bed topography and the glacier 

width changes (Jamieson et al., 2012; Enderlin et al., 2013).  Accurate modelling of 

the grounding line behaviour is, therefore, important for JI’s dynamics as its retreat 

removes areas of flow resistance at the base and may trigger unstable retreat if the 

glacier is retreating into deeper waters. In my simulation, the grounding line position 

stabilizes downstream of the sill after 2005 (Figs. 27 and 29), which is in accordance 

with previous modelling studies (Vieli et al., 2001; Vieli et al., 2011). Vieli et al. 

(2011) found that, by artificially lowering the same bed sill by 100 m, the grounding 

line eventually retreats and triggers a catastrophic retreat of 80 km in just over 20 

years. In an equivalent experiment with Vieli et al. (2011) but performed with my 

model, lowering the bed sill by 100 m, did not result in a retreat of the grounding line 

over the sill. Regarding the grid resolution, simulations performed on a 1 km grid did 

not improve my simulations of ice thickness (Fig. 36) or surface speed (i.e., trend, 

overall magnitude, and shape of the flow; Fig. 37).  

From a climatic perspective, the summer of 2012 was characterized by exceptional 

surface melt covering 98 % of the entire ice sheet surface, including the high 

elevation Summit region (Nghiem et al., 2012; Hanna et al., 2014). Overall, the 2012 

melt-season was two months longer than the 1979–2011 mean and the longest 

recorded in the satellite era (Tedesco et al., 2013).  Furthermore, the summer of 2012 

was preceded by a series of warm summers (2007, 2008, 2010 and 2011) (Hanna et 

al., 2014). Surface melt above average was already recorded in May-June 2012 (see 

Fig. 3 from NSIDC (2015)) when most of the 2011-2012 winter accumulation melted 

and over 30 % of the ice sheet surface experienced surface melt. An intense and long 

melt year leads to extensive thinning of the ice and has the potential to enhance 

hydrofracturing of the calving front due to melt water draining into surface crevasses 
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(MacAyeal et al., 2003; Joughin et al., 2013; Pollard et al., 2015) resulting in greater 

and/or faster seasonal retreat and an increase in submarine melt at the terminus and 

the sub-shelf cavity (Schoof, 2007; Stanley et al., 2011; Kimura et al., 2014; Slater et 

al., 2015).  

The seasonal retreat of JI’s terminus started relatively early in 2012, with a large 

calving event having already occurred in June. While it seems difficult to attribute 

this particular calving event solely to processes related to the 2012 melt season, it 

does seem probable that the series of warm summers (2007-2011) together with the 

2012 exceptional melt season could have enhanced hydrofracturing of the calving 

front. In turn, this could have induced a retreat of the terminus that cannot be 

captured by my model (i.e., in its present configuration the model does not account 

for the influence of meltwater runoff and its role in the subglacial system during 

surface melt events). In my model, the atmospheric forcing applied (Sect. 2.1) can 

influence JI’s dynamics only through changes in surface mass balance (SMB) (i.e., 

accumulation and ablation).  While these changes in ice thickness affect both the SIA 

and the SSA (Sect. 2.1), the effect in the SIA is very weak as the driving stresses are 

not affected by a few meters of difference in thickness induced by SMB variability. 

In the SSA, the coupling is achieved via the effective pressure term in the definition 

of the yield stress (see Sect. 3 for detailed equations).  The effective pressure is 

determined by the ice overburden pressure (i.e., ice thickness) and the effective 

thickness of water in the till, where the latter is computed by time-integrating the 

basal melt rate. Compared with SIA, this effect is stronger and may explain why in 

my model some seasonal velocity peaks could potentially be influenced by the 

atmospheric forcing applied (Fig. 35).  

Finally, regarding the ocean conditions, warm water temperatures in the fjord were 

recorded in 2012. Besides a cold anomaly in 2010, which was sustained until early 

2011, the period 2008-2013 is characterized by high fjord waters temperatures - 

equal to or warmer than those recorded in 1998-1999 (Gladish et al., 2015). In my 

model, the ice melt rates are determined from the given conditions in temperature (-

1.7 °C), and salinity (35 psu) of the fjord waters, and the given geometry (Sect. 3.6). 

The fact that I am able to model JI’s retreat with a constant ocean temperature 

suggests that the retreat and acceleration observed at JI are not likely to be controlled 

by the year to year variability in ocean temperatures. This conclusion agrees with the 

observational study of Gladish et al. (2015) who analysed ocean temperature 

variability in the Ilulissat fjord with JI variability and who found that after 1999 there 

was no clear correlation. My results do not, however, imply that the ocean influence 

in JI’s retreat is negligible (Fig. 34), but rather that the glacier most likely responds 

to changes in ocean temperature that are sustained for longer time periods, e.g. 

decadal time scales. 



                                 Chapter 6. Study 3                                                                                                                                                                                 Chapter 4. Study 1 

84 
 

 

Figure 40: Cumulative mass change at JI for different ocean temperature 

experiments. In the experiment indicated by a dark green line, the 

reference ocean temperature (-1.7 °C) is adjusted from 2007-2014 with 

+1.1 °C, where +1.1 °C represents the mean surface ocean temperature 

between 2007 and 2014 (Gladish et al. 2015). In the experiment 

represented by the light blue line, the reference ocean temperature (-1.7 

°C) is adjusted from 2010-2014 with +0.7 °C. In the remaining two 

experiments the input ocean temperature is adjusted starting 1997 (dark 

purple line) and 2010 (dark yellow line) with ocean temperature change 

calculated relative to 1990s (Gladish et al. 2015). These two experiments 

are consistent with observations of ocean temperature at the mouth of the 

Ilulissat fjord (Gladish et al. 2015). The curves for the reference run (red 

line), the “2010-2014, -1°C” experiment (light blue) and the “2010-2014, 

-0.3°C” experiment (dark yellow) are superimposed for the period 1990-

2010. Note the large mass loss modelled in the experiment “1997-2014, -

1°C” (dark purple line). 

Two additional experiments, where the input ocean temperature (𝑇𝑜) was increased to 

-1 °C indicate that higher melt rates beneath the grounding line could potentially 

explain the retreat observed after 2010. In my first experiment, the input 𝑇𝑜  was 

increased from -1.7 °C to -1 °C starting 1997 (~0.7 °C relative to 1990). This 

temperature increase is consistent with observed ocean temperatures at the mouth of 

the Ilulissat fjord (Gladish et al., 2015) and generated in my simulation, for the 

period 1997-2014, an accelerated retreat of the front that does not correlate with 

observations (Fig. 41). Similarly, mass loss estimates from the simulations are 

significantly larger (by ~50 %; Fig. 40) than those calculated from airborne and 

satellite altimetry observations (Sect. 2.4).  
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Figure 41: Terminus positions at the end of the forward run corresponding to 

December 2014 for the experiments introduced in Fig. 40 above. The red 

line represents the observed 2014 terminus position. Note the large 

terminus retreat for the experiment “1997-2014, -1°C” (top-right). 

 

Overall, the experiment shows that an increase in ocean temperature that starts in 

1997 and is sustained until 2014 generates modelled estimates for the period 1998-

2014 that do not agree with observations. In the second experiment, 𝑇𝑜 was increased 

to -1 °C starting in 2010 (~+0.7°C at the base of the shelf in 2010). For the period 

2010-2014, my model predicted a faster retreat of the front that correlated well with 

observations (Fig. 41), and an increase of mass loss by ~7 Gt (Fig. 40). This 

experiment shows that an increase in ocean temperature beginning in 2010 could 

potentially explain the retreat observed thereafter. 
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CHAPTER 7 

 

Study 4: Jakobshavn Isbræ 

prognostic simulations 

(2013-2100) 
 

 

he goal of this study is to perform prognostic simulations (projections) of JI’s 

behaviour in the 21st century. Using my historic simulation (i.e., Study 2; 

Sect. 5) I projected forward in time for the period 2013-2100. The results 

obtained in Study 2 and Study 3, suggested that the ocean influence in JI’s behaviour 

over the last century is significant. Therefore, for the 21st century runs, 2013-2100, 

the model is forced by two climate projection scenarios, RCP 4.5 and RCP 8.5 (Fig. 

4), and five SST scenarios (Fig. 5). I forced the model with yearly atmospheric 

forcing (i.e., air temperature and SMB from HIRHAM5, Sect. 2.1.2) and I used both 

constant (i.e., -1.3 °C) and variable surface ocean water temperature (Fig. 5). To 

ensure a smooth transition in air temperature and SMB between the BOX climate 

used in Study 2 and the RCP scenarios (Sect. 2.1.2), I computed and forced the latter 

as anomalies with respect to the mean 2000-2010 BOX air temperature and SMB 

(Peter Langen, personal communication).  

For the input surface ocean temperature used (which represents the mean surface 

ocean temperature in the grid cells adjacent to the JI terminus), I computed (i.e., 

relative to a starting temperature of -1.3 °C; see Fig. 5) 10 year intervals of SST 

T 
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changes, which I then used as an input to the meting parametrization (Sect. 3.6).  The 

10 years intervals of SST (10×9) were obtained by considering a linear increase in 

ocean surface temperature (Yin et al., 2011) and are divided in mild (Scenario A, 0 

°C increase), intermediate (Scenario B, 1 °C increase), and harsh (Scenario C, 3°C 

increase) (see Sect. 2.2.2). Additionally, I performed two simulations where I 

assumed for the period 2020-2040 a decrease in surface ocean temperatures similar 

with the period 1970-1990 (Sect. 2.2.2; Scenario D1 and Scenario D2). 

Similar with Study 2 and Study 3, in this regional model, all boundaries (calving 

fronts, grounding lines, upper, and lower surfaces) were free to evolve in time both 

during the regional equilibrium and the forward simulations. Along the ice shelf 

calving front, I superimposed a physically based calving (eigen-calving) 

parametrization (Winkelmann et al., 2011; Levermann et al., 2012) and a basic 

calving mechanism (Albrecht et al., 2011) that allowed the glacier terminus to 

advance and retreat under the applied forcings. The values of the ice sheet model 

parameters used (see Sect. 3 for the underlying equations) are included in Table A14. 

In this study, I would like to focus on modelling the terminus advance and/or retreat 

and the speed fluctuations observed at JI during the period 2013-2100. First and 

foremost, the study wishes to experiment if any major collapses should be expected 

at JI in the next century and their relation with an increase/decrease in surface ocean 

temperatures, especially as JI is known to retreat after 2012 on a downward-sloping, 

marine-based bed. Secondly, the study wishes to constrain the previous modelled 

mass loss estimates (e.g. Nick et al., 2013) that should be expected from the JI basin 

in the next century and hence, the contribution to the SLR. 

For this purpose, I performed 10 regional JI simulations (excluding any preparatory 

and additional experiments).  The simulations are summarized in Table 2.  

This is the first study, to my knowledge, where the prognostic simulations are built 

on a numerical model that has been calibrated for more than 100 years (i.e., Study 2). 

The study is unique both in approach and results obtained.  The study is associated 

with Paper iii (manuscript) attached in Appendix H. 

7.1   Results 

7.1.1  Modelled terminus retreat, surface elevation and horizontal surface 

velocities 

The modelled terminus retreat and/or advanced under the different climate forcing 

scenarios (Fig. 5 and Table 2) is shown in Fig. 42. Under both the RCP 4.5 and the 

RCP 8.5, the simulations indicate a retreat of the terminus for the period 2013-2100 

of ~30 km in Scenario A, ~30 km in Scenario B, and ~40 km in Scenario C. While, 

one major terminus collapse is modelled in 2071 in Scenario A, and 2047 in Scenario 



                                                                                                        Chapter 7. Study 4                                                                                                                                                                                 Chapter 4. Study 1 

89 
 

B, two major terminus collapses are modelled in Scenario C. According to Scenario 

C, the major terminus collapse (~30 km) at JI will occur in 2034 and will be 

 

 

Figure 42: Modelled terminus retreat at JI between 2013-2100 for Scenario A, 

Scenario B and Scenario C built under RCP 4.5. The colorbar shows the 

ice thickness in meters. The red line denotes the 2012 observed terminus 

position. 
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followed by a similar but less significant event (~10 km) in 2083. In my simulations, 

these modelled episodes of rapid retreat occur at different time intervals but 

generally at the same location (see Fig. 43).  

 

Figure 43: Modelled surface elevation (>100 m) and grounding line position (A) and 

modelled horizontal velocities (B) at JI along the dashed flow-line shown 

in Fig. 1D during the period 2013-2100 for Scenario A. Modelled surface 

elevation (>100 m) and grounding line position (C) and modelled 

horizontal velocities (D) at JI along the flow-line shown in Fig. 1C 

during the period 2013-2100 for Scenario C. The black line represents 

the bedrock topography from Bamber et al. (2013).  The colour scale 

ranges from dark blue (2013), light blue, green (2050), yellow, orange to 

red (2100) (see the legend). The dots represent modelled grounding line 

positions where the colours follow closely the colour scale used for 

surface elevation and horizontal velocities. The location of point O1 

shows the position of the first sill. The location point O2 shows the 

position of the second sill and denotes a possible pinning point for JI. 

The location of point O3 denotes a second possible pinning point. 
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Figure 44: Modelled horizontal surface velocities at JI  between 2013-2100 for 

Scenario A, Scenario B and Scenario C built under RCP 4.5. The 

colorbar shows the magnitude of the horizontal surface velocities in m 

a
-1

.  

The modelled horizontal velocities under the different climate forcing scenarios (Fig. 

5, and Table 2) are shown in Figs. 43 and 44. In Scenario A, the velocities remain 

relatively stable during the period 2013-2070 (~12 000 m a
-1

) and accelerate once the 
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terminus starts to retreat on the downward-sloping bed (Fig. 43A,B).  Speeds as high 

as 24 000 m a
-1

 are modelled during the terminus retreat (~2071). Nonetheless, after 

the retreat ceased, the horizontal velocities decreased to 16 000 m a
-1

 (Fig. 43B), 

value that they maintained until the end of the century.  Similarly to Scenario A, in 

Scenario C, two flow accelerations are simulated in 2034 and 2083, which correlate 

with the two modelled terminus retreat events (Fig. 43C,D). In Scenario C, speeds as 

high as 35 000 m a
-1

 are modelled during the first major terminus collapse, and as 

high as 20 000 m a
-1

 during the second but less significant terminus collapse. 

According to Scenario C, by the end of the century the modelled horizontal velocities 

decrease to values that range between 10000 m a
-1

 to 14 000 m a
-1 

as the terminus 

ceased to retreat and stabilized at the lower end of the upward-sloping bed. In 

contradiction with present day observed and modelled JI flow accelerations, both 

accelerations seem to be short lived and once the grounding line reached higher 

ground (~2050 and ~2080), the modelled velocities decreased to values similar or 

smaller (i.e., ~2090) than those simulated before the acceleration (Fig. 43). In my 

simulations, the modelled accelerations in flow speed correlate with the modelled 

terminus retreat. Further, and similar with the modelled terminus retreat, the 

modelled flow accelerations occur at different time intervals (i.e., relative to the 

climate forcing applied) but generally at the same location (see Fig. 43). 

7.2   Modelled ice mass changes 

After 2013, the mass loss continues to accelerate in my simulations and correlates 

with the terminus retreat and thinning discussed in Sect. 7.1. Following the initial 

and major acceleration of JI which occurs in 2071 in Scenario A and 2034 in 

Scenario C, the modelled mass change accelerates thereafter. Overall, an acceleration 

in mass is modelled every time a retreat of the terminus occurs (e.g. in ~2040 and 

~2080 in Scenario C). Mass change estimates that vary between 2019 Gt or 24 Gt a
-1

 

(Scenario A) and 3275 Gt or 38 Gt a
-1

 (Scenario C) are modelled between 2016-

2100. The mass change estimates are at the same magnitude with those suggested by 

Nick et al. (2013). Table 3 summarizes mass loss estimates and major terminus 

collapses at JI for the period 2016-2100. 

Figure 45 shows observed and modelled mass change estimates for Scenario A, 

Scenario B and Scenario C.  Separating the dynamic and the SMB derived mass loss 

between the different simulations performed, I found that between 74 % and 86 % of 

the mass loss is dynamic in origin, while only 14 % to 26 % is caused by a decrease 

in SMB. For the period 1990-2014 dynamically driven discharge has been shown to 

control Jakobshavn’s mass loss (Nick et al., 2013). Similarly, here, the dynamical 

driven discharge will continue to control JI’s mass change by the end of the century. 
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Figure 45: Modelled and observed cumulative mass change for Jakobshavn Isbræ 

for the period 1840-2100. The black curve denotes the mass change 

simulated between 1840-2012 in Study 2 (Sect. 5). The light blue curve 

represents the mass change due to SMB under the RCP 4.5 scenario 

(Sect. 2.1.2) after the 2000–2010 baseline is removed (~453 Gt). The 

“golden olive” curve represents the mass change due to SMB under the 

RCP 8.5 scenario (Sect. 2.1.2) after the 2000–2010 baseline is removed 

(~515 Gt).  The red to light green curves represent the total modelled 

mass change for the period 2013-2100 for Scenario A, Scenario B and 

Scenario C under RCP 4.5 and RCP 8.5 scenarios. The filled triangles 

denote modelled major terminus collapses for the period 1840-2100. 

 

Table 3: Modelled mass loss estimates (dynamic vs. SMB mass), mass loss rates, 

major terminus collapses, and mass loss increase (i.e., relative to 1840-

2012) at JI during the period 2016-2100. 

Scenarios 
Mass loss 

(Gt)  

Mass loss type (%) Mass loss rate Major terminus 
collapse (year) 

Increase relative 
to 1840-2012 (%) Dynamic SMB (Gta-1) 

Scenario A RCP8.5 2018.73 74 26 24 2071 81 % 

(+0 °C) RCP4.5 1859.94 76 24 22 2071 67 % 

Scenario B RCP8.5 2786.70 82 18 33 2046 149 % 

(+1 °C) RCP4.5 2641.03 83 17 32 2047 136 % 

Scenario C RCP8.5 3274.71 84 16 39 2033;2081 192 % 

(+3 °C) RCP4.5 3191.04 86 14 38 2034;2083 184 % 
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The estimates regarding the overall contribution to SLR for the period 2016-2100 

vary between ~5.2 mm SLE (or 127 % relative to 1840-2012)  in Scenario A to ~ 9.1 

mm SLE (or 248 % relative to 1840-2012) in Scenario C. 

7.3   Discussion 

The 21st century simulations resulted in large mass loss estimates even for the 

mildest of the scenarios used (Table 3). In contrast with the 1930 acceleration, in the 

21st century, JI’s terminus continues to retreat over a downward-sloping, marine-

based bed into deeper water and therefore sustained high velocities are modelled 

throughout the century.  Further, I found that in my simulations, these modelled 

episodes of rapid retreat occurred at different time intervals but generally at the same 

location (see Fig. 43). The 2033 collapsed of the terminus under Scenario C resulted 

in a doubling of the modelled speed (i.e., relative to present day values; Fig. 43D). 

However, in contradiction with present day observed and modelled JI flow 

accelerations, these 21st century accelerations seem to be short lived and once the 

grounding line reached higher ground (i.e., ~2050 and ~2085 in Scenario C), the 

modelled velocities decreased to values similar or smaller (i.e., ~2090) than those 

simulated before the acceleration (Fig. 43).  Even in the best case scenario (Scenario 

A, i.e. no increase in ocean temperatures), once the terminus succeeded to retreat 

over the sill and into the large over deepening that characterizes JI’s bed (indicated 

by point O1 in Fig. 43), an irreversible collapse of the terminus was triggered. This 

shows that although, the terminus retreat was likely initiated by the ocean 

parametrization used, the prime driver for JI’s subsequent response remained its own 

bed topography.  

 

As seen in the simulations performed with Scenario C, after the first major collapse 

of the terminus (i.e., ~2033), the front remained relative stable for the next 24 years 

in the proximity of point O2 (Fig. 43). Therefore, this location close to the point O2 

has all the necessary features to become a new pinning point for JI in the next 

century. According to Scenario C, by the end of the century the modelled horizontal 

velocities decrease to values that range between 10000 m a
-1

 to 14 000 m a
-1

 as the 

terminus ceased to retreat and stabilized at the lower end of an upward-sloping bed 

(point O3 in Fig. 43). Therefore, once the terminus and grounding line will reach the 

location of point O3, this new geometry of JI and the fact that the grounding line will 

start to retreat on an upward-sloping bed will most probably result in a decrease in 

speeds.  

 

Further, I forced the model between 2020 and 2040 with 20 years of cooling similar 

to what occurred between 1970-1990 (Fig. 5). I found that 0.5 °C of oceanic cooling 

(Scenario D2) will slow down the retreat – resulting in a much smaller chance of 

early 21st century collapse. I also found that 0.9 °C of oceanic cooling (Scenario D1) 

will make JI advance to its 1990 position. In both cooling scenarios, the major 
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terminus retreat is delayed with ~20 years relative to Scenario C (~2055; Fig. 43). In 

contrast with Scenario D1, in Scenario D2, two terminus collapses are model in 

~2054 and ~2097. 

 

 

Figure 46: Modelled surface elevation (> 0 m) and grounding line position (A), and 

modelled horizontal velocities (B) at JI along the flow-line shown in Fig. 

1C during the period 2013-2100 for Scenario D1. Modelled surface 

elevation (> 0 m) and grounding line position (C), and modelled 

horizontal velocities (D) at JI along the flow-line shown in Fig. 1C 

during the period 2013-2100 for Scenario D2 .The black line represents 

the bedrock topography from Bamber et al. (2013). The colour scale 

ranges from dark blue (2013), light blue, cyan (2050), green, yellow, 

orange to red (2100) (see the legend). The dots represent modelled 

grounding line positions with colours that follow closely the colour scale 

presented above.  

In the best case scenario with regards to future warming, expected mass loss of JI 

amounts to ~1860 Gt by the year 2100, equivalent of 5.2 mm global sea-level rise.  
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In the worst case scenario with regards to future warming, expected mass loss of JI 

amounts to ~3275 Gt by the year 2100, equivalent of 9.1 mm global sea-level rise.   
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CHAPTER 8 

 

      Discussion 
 

 

 

his chapter highlights the main findings of the thesis and brings together the 

discussion performed at the end of each study.  

Study 2, Study 3 and Study 4 have shown that representing the processes that 

act at the marine boundary (i.e., calving and ocean melt) is important for 

understanding and modelling the retreat and/or advance of Jakobshavn Isbræ. In 

order to allow the glacier terminus to advance and/or retreat due to calving, I have 

used the superposition of two calving mechanisms (Sect. 3). The benefit of using 

such a combination of calving laws is that it can evolve the terminus position with 

time under the applied forcings and thus, potential calving feedbacks are not ignored. 

Generally, I find that the superposition of these two calving mechanisms performs 

well for relatively narrow and deep fjords as those characterized by JI. Preparatory 

experiments have shown that calving is mostly driven in my model by the basic 

calving mechanism used (> 90 % of the overall mass loss) and that the eigen-calving 

parametrization is important in modelling sub-annual to seasonal fluctuations of the 

terminus. The introduction of the basic calving mechanism was needed in order to 

accurately match observed front positions. However, the basic calving mechanism is 

not deeply rooted in JI’s calving triggering processes, other than the fact that ice 

shelf calving fronts are generally thicker than 150–300 m (The PISM Authors, 2014). 

Therefore, and although, I found that the superposition of these two calving 

T 



                                                                                                   Chapter 8. Discussion                                                                                                                                                                                 Chapter 4. Study 1 

99 
 

mechanisms performed relatively well for JI, it represents just a compromise 

solution. Generally, more physically based calving laws (e.g., especially when 

prognostic simulation are involved) are needed. However, to represent calving front 

dynamics in a 2-D or 3-D ice sheet model remains significantly difficult. Even today, 

the amount of calving laws available for 3-D ice sheet models is very limited and 

rarely, physically based. 

In terms of the bed topography, I used the dataset from Bamber et al. (2013) where 

the overall bathymetry was obtained by interpolating various bathymetric data from 

the entire Arctic Ocean (i.e., IBCAO v3 maps). In the Jakobshavn fjord, the 

bathymetric data are supplemented with soundings performed by CReSIS (Sect. 2). 

As seen in my simulations, the terminus retreat and flow acceleration are largely 

topographically controlled and thus, any errors in the bed topography could 

potentially affect the modelling results. For example, after the terminus and the 

grounding line retreat from a basal high through an overdeepening, flow acceleration 

is modelled.  If the overdeepning is improperly shaped, this can influence both the 

terminus retreat and the flow acceleration. The Ilulissat fjord is frozen all year round 

making it inaccessible for research vessels and thus, the bathymetry data available in 

this region is generally limited. To overcome this issue, I have tried to supplement 

the available bathymetry set with data available in the Ilulissat fjord from annual 

surveys and instrumented seals (Gladish et al., 2015a,b).  The seals are known to 

generally feed at the bottom of the fjords and therefore they could provide additional 

knowledge about the bathymetry. The dataset has been provided by Carl Gladish 

(personal communication). Overall, I have found good agreement with the 

bathymetry from Bamber et al. (2013) (Abbas Khan, personal communication). 

Nonetheless, the basal topography of JI’s channels should be accounted as a possible 

source of uncertainty. 

Regarding the grid resolution, sensitivity experiments performed on a 1 km grid 

(Sect. 6.2.3) did not show significant improvement with respect to ice thickness (Fig. 

36) or surface speed (i.e., shape of the flow and overall magnitude; Fig. 37). These 

findings agree with Della-Giustina (2011). In terms of the spatial distribution of the 

flow, my simulations produce a more wide but overall short flow (i.e., relative to the 

distance it reaches inland), while observations suggest a more narrow flow that feeds 

deeper into the ice sheet (Joughin et al., 2012). However, the overall distribution of 

modelled and observed velocities suggests an overall good fit with observations (e.g. 

Fig. 17 in Study 1). A study published recently by Aschwanden et al. (2016) showed 

progress in modelling the spatial resolution of the flow (i.e., for “isbræ” type 

glaciers) by using high resolution ice thickness data, by (i.e., main changes relative to 

my set of parameters) tuning 𝑞, the exponent of the pseudo-plastic basal resistance 

model that controls the basal shear in Eq. 25, and by tuning the bed roughness in the 

SIA (i.e., the bed roughness controls how the SIA stress balance models ice flow 

over bumpy bedrock topography). Performing a similar experiment but for my JI 
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model, I obtained improvement relative to the spatial distribution of the modelled 

flow (Fig. A13), but as my sensitivity experiments showed, increasing 𝑞 in my model 

results in a faster retreat of the terminus and a doubling of the modelled mass loss for 

each 0.1 of increase (Fig. 33). This does not imply that the two setups are 

incompatible, but highlights that generally, more thought and tuning of the 

parameters involved is required for making the transition smooth.  Further, the same 

study by Aschwanden et al. (2016) showed that a resolution of 2 km is enough to 

reasonable capture the flow at JI.  The particular influence of these potential 

limitations on my model was detailed in Study 3. 

 

In Study 2, I modelled the behaviour of JI since the end of the LIA (1840-2012). The 

present study is the first that aimed and succeeded to capture reasonably well JI’s 

behaviour in the last century. This longer-term reconstruction of glacier behaviour 

back to the end of the LIA provided new insight in understanding JI’s behaviour over 

more than 100 years and had the capability to ensure long term calibrated 

projections. Overall, I obtained a good agreement between observed and modelled 

time series of horizontal velocities and ice thickness changes (Figs. 23, 24 and 25).  I 

found a first modelled acceleration of JI in 1930 when the grounding line retreated 

over a reversed bed slope (Fig. 21). In my simulations, this initial acceleration of JI 

was responsible for large surface lowering, and can explain the surface lowering 

observed by Weidick (1969) and Csatho et al. (2008) during this period (Figs. 22 and 

26). Although, the acceleration could potentially be inferred from observations of 

terminus retreat which during that period suggest a large retreat of the terminus 

(Csatho et al., 2008), it was neither modelled before nor referenced in any other 

scientific publication. Further, this acceleration illustrates that the dynamic response 

to a loss of buttressing is transient and it is largely topographically controlled.  The 

1930 acceleration in terminus retreat and flow speed was captured even in a 

simulation with constant ocean forcing (Fig. 21B), suggesting that the acceleration 

was probably not triggered by an increase in ocean temperature (e.g. warm ocean 

waters entering the Ilulissat fjord that could destabilize JI). Nonetheless, I found that 

overall, the ocean influence in JI’s behaviour over the last century is significant and 

most of JI’s retreat during 1840–2012 is driven by the ocean parametrization used 

and the glacier’s subsequent response, which is largely governed by bed geometry 

(Fig. 26). 

The period 1960-1990 is characterized in my model by stable terminus positions and 

an overall slowdown in mass loss. Observational data (i.e., atmospheric and oceanic 

temperature in the JI region) suggests that, during this period, the observed terminus 

retreat decelerates, most probably, as a consequence of colder climate conditions 

(Sect. 2). Similarly, in my simulation, the slowdown modelled in terms of terminus 

retreat is triggered by an overall decrease in ocean temperature of 0.5 °C (i.e., 

between 1970 to 1990). Further, and in agreement with existing observations, I found 



                                                                                                   Chapter 8. Discussion                                                                                                                                                                                 Chapter 4. Study 1 

101 
 

a second acceleration that occurs in my model between 1999-2003 (Figs. 21 and 22) 

and is largely controlled by the bed topography (see Fig. 21). Therefore, in my 

simulations, and similarly with Nick et al. (2013), these episodes of rapid retreat 

occur at different times but generally at the same location (see the location for the 

1930 and 2003 accelerations in the simulation with variable ocean forcing vs. the 

simulation with constant ocean forcing; Fig. 21).  

In Study 3, I attempted and succeeded to model the recent behaviour of JI (i.e., 1990-

2014). Relative to Study 2, here, I focused more on glacier dynamics - the seasonal 

driven terminus advance and/or retreat and speed fluctuations of JI during the period 

1990-2014. Overall, I obtained a good agreement of my model output with time 

series of measured horizontal velocities, observed thickness changes, and GPS 

derived elastic uplift of the crust. I found that representing the processes that act at 

the marine boundary (i.e., calving and ocean melt) is the key for modelling the 

temporal variability of the flow at JI. In a simulation in which the terminus position 

is kept fixed to the 1990s position (Study 1), the velocity peaks are uniform (i.e., no 

acceleration is modelled except for some small seasonal related fluctuations 

generated by the atmospheric forcing applied). In agreement with previous studies 

(e.g. Joughin et al., 2012), my results suggest that the overall variability in the 

modelled horizontal velocities is a response to variations in terminus position (e.g. 

Fig. 29). Further, my model reproduced two distinct flow accelerations in 1998 and 

2003 that are consistent with observations. The first was generated by a retreat of the 

terminus and moderate thinning prior to 1998; the latter was triggered by the final 

breakup of the floating tongue. During this period, JI attained in my simulations 

unprecedented velocities as high as 20 km a
-1

. Additionally, the final break-up of the 

floating tongue generated a reduction in buttressing that resulted in further thinning. 

In this model, the seasonal variability was likely driven by processes related to the 

atmospheric forcing applied (e.g. temperature and SMB variability), which in fact 

represented the only seasonal input used in the model. The greater-than seasonal 

frequency seen in this study was attributed to grid resolution and missing seasonal-

scale processes (e.g. ice mélange variability or seasonal ocean temperature 

variability) in the model. Therefore, for modelling seasonal scale processes grid 

resolutions >2 km are probably indicated. The grounding line migration will also 

benefit from finer resolutions. 

Similar with Study 2, the results obtained in Study 3 suggested that most of the JI 

retreat during 1990–2014 was driven by the ocean parametrization and the glacier’s 

subsequent response, which was largely governed by its own bed geometry (e.g. 

Figs. 29, 30 and 34). Finally, the 2010–2012 observed terminus retreat (Joughin et 

al., 2014) was reproduced neither in Study 2 nor in Study 3, most likely due to 

inaccuracies in basal topography or misrepresentations of the atmospheric forcing 

and the ocean parametrization that I used. Additional sensitivity experiments showed 
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that an increase in ocean temperature of 0.7 °C for the period 2010–2014 may trigger 

a retreat of the terminus that agrees better with observations (Fig. 40). 

Further, according to observations, JI terminus became afloat sometime around 1946 

and by 1997 the glacier is characterized by a large floating tongue (> 10 km; e.g. 

Motyka et al., 2011) that I am not able to simulate in Study 2 or in Study 3 (Figs. 21 

and 29). In Study 3, the glacier starts to develop a larger floating tongue (~10 km) in 

1999. Starting in 2000, the floating tongue is comparable in length and thickness 

with observations and the model is able to simulate, with a high degree of accuracy, 

its break-up that occurred in late summer 2003 and the subsequent glacier 

acceleration. In Study 2, a larger floating ice tongue starts to develop in ~1870, 

~1920 and ~1980. Generally, these modelled ice tongues are shorter lengthwise than 

those suggested by observations (Csatho et al., 2008) and except the 1870 floating 

ice tongue which is calved only in ~1915, the 1920s and 1980s ice tongues are calved 

within several years after their development (Fig. 21).  In my simulations, the 

modelled terminus retreat tends to follow closely the modelled grounding line retreat, 

i.e. only a small floating ice tongue is modelled (~2 to 4 km). Comparing Study 2 

with Study 3, I found that generally when the model is forced with seasonal forcing 

(e.g. monthly atmospheric forcing in Study 3), the model tends to favour the 

development of larger floating tongues. Not being able to simulate a large floating 

tongue before 2000, may suggest limitations of the bed topography used (e.g. the bed 

geometry simply does not sustains the development of such large floating tongues) or 

missing seasonal-scale processes (e.g. ice mélange variability or seasonal ocean 

temperature variability).  Alternatively, it may also represent a limitation of the 

melting parametrization used which for my choice of parameters could not favour the 

development of large floating ice tongues, limitations of the calving mechanisms 

used, or a combination of both. These potential limitations were discussed in detail 

for each study (see Sect. 5 for Study 2 and Sect. 6 for Study 3).  

 

The geometry of the terminus plays an important role in parametrizing ice shelf 

melting (Sect 3.), and therefore misshapen geometries (e.g. my 1990-1999 geometry 

in Study 3) will influence the magnitude of the basal melt rates (Sect. 6.3). Overall, 

differences in geometry result in modelled mean basal melt rates that tend to increase 

exponentially when JI begins to develop a larger floating tongue. For example, in 

Study 3, the modelled mean melt rates for the period 1999–2003 are large and likely 

overestimated (Table A13). 

 

The results obtained in Study 2 (Sect. 5), suggested that the ocean influence in JI’s 

behavior over the last century is significant. Therefore, in Study 4, I used the historic 

simulation performed in Study 2, and I projected forward in time for the period 2013-

2100 using two RCP Scenarios and five SST scenarios (Fig. 5). As seen in Fig. 43, in 

the 21st century, JI’s terminus continues to retreat over a downward-sloping, marine-
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based bed into deeper water and therefore, in my simulations, sustained high 

velocities are modelled throughout the century.  In terms of terminus retreat, I found 

that even in the best case scenario (Scenario A, i.e. no increase in ocean 

temperatures), once the terminus succeeds to retreat over the sill and into the large 

over deepening that characterizes JI bed (indicated by point O1 in Fig. 43), an 

irreversible collapse of the terminus is triggered.  In the worst case scenario (i.e., 

Scenario C), two collapses of the terminus should be expected by the end of the 

century with a retreat of up to 40 km along JI’s downward-sloping bed.  Similar with 

Study 2 and Study 3, these modelled episodes of rapid retreat occur at different time 

intervals but generally at the same location. Yet again, I found that although the 

terminus retreat is likely initiated by the ocean parametrization used, the prime driver 

for JI’s subsequent response remains its own bed topography.   Relative to present 

day observed and modelled JI flow accelerations (e.g. Study 3), I found that these 

21st century accelerations are generally short lived and once the grounding line 

reached higher ground (i.e., ~2050 and ~2085 in Scenario C), the modelled velocities 

decreased to values similar or smaller (i.e., ~2090) than those simulated before the 

acceleration (Fig. 43).  In scenario, D1 and D2, I forced the model between 2020 and 

2040 with 20 years of cooling similar to what occurred between 1970-1990 (Fig. 5). I 

found that 0.5 °C of oceanic cooling (Scenario D2) will slow down the retreat – 

resulting in a much smaller chance of early 21st century collapse. I also found that 

0.9 °C of oceanic cooling (Scenario D1) will make JI advance to its 1990 position. In 

both cooling scenarios, once cooling stops, the terminus retreat continues and the 

major terminus collapse is only delayed with ~20 years (i.e., relative to Scenario C; 

Fig. 43). 

 

Finally, the modelled cumulative mass loss for the period 1840-2012 is 1214.5 Gt, of 

which 77 % is dynamic in origin and 23 % is attributed to a decrease in SMB (Fig. 

26). Mass change estimates that vary between 2019 Gt or 24 Gt a
-1

 (Scenario A) and 

3275 Gt or 38 Gt a
-1

 (Scenario C) are modelled between 2016-2100 (Fig. 45). From 

these values between 74 % and 86 % of the mass change is dynamic in origin, while 

only 14 % to 26 % is caused by a decrease in SMB. 

8.1   Limitations 

Beside the limitations mentioned above (e.g. bed topography), I will further 

introduce some general limitations of ice sheet models which also need to be taken 

into account.  

First, observations play a fundament role in ice sheet modelling. While some of them 

are used as input data, large parts are used to validate the models. Even today the 

available observations are often uncertain, sparse in time and space and indirect (e.g. 

trimlines). These may result in poorly constrained models and physical parameters. 

Compared to Study 3, in Study 2 the amount of available observations before 1990 is 
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relatively low. Therefore, overall Study 3 performed only for the period 1990-2014 

should represent a better constrained model. 

Secondly, basal conditions are generally unknown, with the basal drag being one of 

the most uncertain model parameters. The basal drag plays a key role in determining 

sliding, i.e. when the driving stress exceeds the basal drag, sliding occurs. Generally, 

inverse methods can be used to infer the basal drag, however when modelling the 

temporal behaviour, the basal drag distribution changes with the bed topography 

variability and the ice thickness evolution as the terminus retreats (e.g. for JI the 

terminus retreats over 45 km from 1840 to 2007). Therefore, inferring for the basal 

drag is only suitable and effective in relatively short simulations or for those glaciers 

characterized by relatively stable terminus positions and consequently, stable ice 

geometries.  

Thirdly, the modelling approach will always be biased by the modeler own choices 

and decisions, especially when tuning large sets of parameters to match observations 

(i.e., the choices are not always random). As an example, in Study 2, I calibrated the 

model such that it matches observed terminus positions, and so my choice for the 

basic calving mechanism thickness threshold (e.g. 400 m) could directly affect my 

choice of the melting parameter, Fmelt, and vice versa.  
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CHAPTER 9  

 

                     Conclusions & outlook 
 

 

 

n this thesis, a three-dimensional, time-dependent regional outlet glacier model 

is used to investigate the processes driving the dynamic evolution of JI between 

1840 and 2100. The model was forced with different climate variables: near-

surface air temperature, surface mass balance (SMB), sea-surface temperature and 

salinity (Sect. 2). The model parameters were calibrated such that the model 

reproduced observed front positions (Figs. A3 and 27) and ice mass change 

observations (Figs. 26 and 31) at JI over the periods 1840–2014 and 1997–2014, 

respectively. I obtained a good agreement of my model output with time series of 

measured horizontal velocities, observed thickness changes, and GPS derived elastic 

uplift of the crust (Fig. 32). The present thesis represents the first study, to my 

knowledge, that aimed and succeeded to capture with a 3-D dynamic numerical 

model the temporal behaviour of JI since the end of the LIA. The longer-term 

reconstruction of modelled glacier behaviour back to the end of the LIA provided 

new insight in understanding JI’s behaviour over more than 100 years and had the 

capability to ensure long term calibrated projections. Overall, the study is unique 

both in approach and results obtained, and shows significant progress in modelling 

the temporal variability of the flow at JI.  

My results suggest that the ocean influence in JI’s behaviour over the last century is 

significant and most of the JI retreat during 1840–2014 is driven by the ocean 

parametrization and the glacier’s subsequent response, which is largely governed by 

its own bed geometry (Fig. 26). In agreement with previous studies (e.g. Joughin et 

I 
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al., 2012), my simulations suggest that the overall variability in the modelled 

horizontal velocities is a response to variations in terminus position (e.g. Fig. 29). In 

my simulations, the retreat of the front reduces the buttressing at the terminus and 

generates a dynamic response in the upstream region of JI which finally leads to flow 

acceleration. This buttressing effect tends to govern JI’s behaviour in all my 

simulations (Fig. 30). Similar to previous studies (Nick et al., 2009; Vieli and Nick, 

2011; Joughin et al. 2012), my results show that JI’s dynamic changes are triggered 

at the terminus (e.g. Figs. 21, 26, 29 and 34). 

In all of the simulations, I am not able to simulate the large floating tongue (> 10 km; 

e.g. Motyka et al., 2011) that characterized JI before 1997. I attribute this to 

limitations related with the bed topography, the melting parametrization, the calving 

mechanisms or to missing seasonal-scale processes (e.g. ice mélange variability or 

seasonal ocean temperature variability) at the terminus.  Alternatively, it may also 

represent a combination of more processes. Sensitivity experiments performed on a 1 

km grid did not show significant improvement with respect to ice thickness (Fig. 36) 

or surface speeds (i.e., shape of the flow and overall magnitude; Figs. 37 and 38). 

However, for modelling seasonal scale processes I suggest using grid resolutions 

higher than 2 km. 

Overall, between 1840-2100, I found five terminus retreats and flow accelerations. 

An initial, and most probably the first significant acceleration of JI after the end of 

LIA, is modelled in ~1930. The 1930 acceleration could potentially be inferred from 

observations of terminus retreat which between 1930 and 1946 (see Fig. 21) suggest 

a large terminus retreat of ~8 km (see Fig. 8). In my simulations, this initial terminus 

retreat and flow acceleration of JI resulted in large speeds (~20 000 m a
-1

), and were 

overall responsible for bringing the magnitude of the horizontal velocities at the level 

observed in ~1980 (see Fig. 21). Two other terminus retreat and flow accelerations 

consistent with observations (Joughin et al., 2012) were modelled in 1998 and 2003 

(Fig. 29). In the 21st century runs, JI’s terminus continues to retreat over a 

downward-sloping, marine-based bed into deeper water and therefore sustained high 

velocities are modelled throughout the century. Projections for the period 2013-2100, 

reveal one possible terminus collapse in ~2046 under Scenario A and two possible 

terminus collapses in ~2033 and ~2081 under Scenario C (Figs. 42 and 43). Except 

the modelled accelerations in 1998 and 2003, all the other modelled accelerations are 

generally short lived, i.e. once the grounding line reached higher ground, the 

modelled velocities decreased to values similar or smaller than those simulated 

before the acceleration (Fig. 43). In all the simulations, these modelled episodes of 

rapid retreat occur at different time intervals but generally at the same location, 

suggesting that although the ocean can dictate the timing (i.e., warm ocean results in 

accelerated terminus retreat, while cold ocean results in decelerated terminus retreat), 

the location will always remain unchanged.  Overall, my simulations suggest that JI 

behaviour represents an ice-dynamical response to local ocean forcings. The degree 
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of cooling needed to reverse the current retreat trend is tested by forcing the model 

with 20 years of cooling similar to what occurred between 1970-1990.  I found that 

0.5 °C of oceanic cooling (Scenario D2) will slow down the retreat – resulting in a 

much smaller chance of early 21st century collapse. I also found that 0.9 °C of 

oceanic cooling (Scenario D1) will make JI advance to its 1990 position. However, 

with current models both cooling scenarios are considered unlikely (IPCC, 2013), 

and major retreat reoccurs once cooling stops. Thus, at least one major collapse of 

the terminus should be expected at JI by the end of the 21st century. 

In terms of mass, I found that since the end of the LIA until the end of the 21st 

century JI’s mass change was and will remain predominately dynamically controlled 

(between 74 % and 86 % of the mass change is dynamic in origin). In my model, 

these dynamic losses are caused by JI’s terminus retreat. Usually, an acceleration in 

dynamic mass change was modelled after the terminus retreated from a basal high 

through an overdeepening (e.g. Figs. 21, 43 and 45). My simulations further 

suggested that the change in mass loss at JI is already triggered and that an eminent 

collapse of the terminus by the end of the century is inevitable. The modelled 

cumulative mass change for the period 1840-2012 is 1214.5 Gt or 7 Gt a
-1

, equivalent 

to 3.4 mm of global sea level rise (Fig. 26).  For the 21st century, the best case 

scenario with regards to future warming (i.e., Scenario A) suggested mass loss 

estimates that amount to 1860 Gt by the year 2100 or 24 Gt a
-1

 (67 % increase 

relative to 1840-2012), equivalent of 5.2 mm global sea-level rise (Fig. 45 and Table 

3).  In the worst case scenario with regards to future warming (Scenario C), expected 

mass loss of JI amounts to 3275 Gt or 39 Gt a
-1

  by the year 2100 (192 % increase 

relative to 1840-2012), equivalent of 9.1 mm global sea-level rise (Fig. 45 and Table 

3).  

9.1   Outlook 

Successful prognostic models should replicate both the spatial and the temporal 

variability of the flow.  While in this thesis, I show significant progress in the latter, 

the model would largely benefit if improvements are made relative to the spatial 

distribution of the flow. A recent study published by Aschwanden et al. in 2016 

shows progress in modelling the shape of the flow. I believe a successful 

combination of the two studies may prove to be useful.  

 

The second aspect that can be further improved is the calving mechanism. Although, 

I found that the superposition of the two calving laws used in this thesis performed 

relatively well for JI, it should only be seen as a compromise solution. To improve 

prognostic models, a full physically based calving law is needed. However, 

representing calving front dynamics in 3-D ice sheet models is difficult. The amount 

of calving laws available for 3-D ice sheet models is very limited and rarely, 

physically based.   A recent calving mechanism developed by Bondzio et al. in 2016 
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using a level-set method to model calving dynamics could be further implemented in 

PISM and used to compare, and, why not, improve the performance of the current 

model.  

 

Thirdly, the present thesis shows that with the right tuning PISM is capable to 

simulate temporal variability of outlet glacier behaviour with high degree of 

accuracy. The modelling approach is steady and could be therefore used to model 

other regions of the GrIS, e.g. Heilheim glacier or the NE Greenland ice stream.  
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Appendix A  

A1. List of symbols 
 

Table A1: List of symbols 

Symbol  Description  SI units  

𝐴 
𝐴𝑐 
𝐴𝑤 

ice softness  

ice hardness coefficient cold 

ice hardness coefficient warm 

Pa
−3

 s
−1  

Pa
−3

 s
−1  

Pa
−3

 s
−1  

𝐵̅ vertically averaged ice hardness  Pa s
1/3 

 

𝑏  bedrock elevation  m  

𝑐 calving rate m s
−1 

 

𝑐0 the till cohesion kPa 

𝐸𝑆𝐼𝐴 enhancement factor for the SIA - 

𝐸𝑆𝑆𝐴 enhancement factor for the SSA  -  

𝐹𝑚𝑒𝑙𝑡 
𝑓 

a sub-shelf melt model parameter 

flow law water fraction coeff.  

- 

- 

𝑔  acceleration due to gravity  m s
−2

 

ℎ  upper surface elevation of ice  m  

𝐻  ice thickness  m  

𝐾  proportionality constant for eigen calving  m s  

𝑀  ice equivalent surface mass balance  m s
−1 

 

𝑛  Glen flow law exponent  -  

𝑁𝑡𝑖𝑙𝑙 effective pressure of the till N m
−2 

 

𝑝  pressure Pa 

𝑃0  ice overburden pressure N m
−2 

 

𝑝𝑤  pore water pressure  N m
−2 

 

𝑸 
𝑄𝑐  

horizontal ice flux  

flow law activation energy cold 

m
2
 s

−1  

J mol−1K−1 

𝑸𝒉𝒆𝒂𝒕 
𝑄𝜔 

mass flux from shelf to ocean 

flow law activation energy warm 

- 
J mol−1K−1 

𝑞 
𝑅 

exponent of the pseudo-plastic basal resistance model 

ideal gas constant J mol−1K−1 

𝑆  ice equivalent basal mass balance  m s
−1 

 

𝑆0 ocean water salinity psu 

𝑇  
𝑇𝑐 

ice temperature  

flow law critical temperature 

K  

K 

𝑇𝑓 

𝑇𝑝𝑎 
virtual temperature 

pressure-adjusted temperature 

K 

K 

𝑇𝑝𝑚 ice temperature at the base of the shelf K  

𝑇0 ocean water temperature K 

𝒖 the model sliding velocity m s
−1 

 

𝒗𝑆𝐼𝐴 SIA velocity of ice  m s
−1 

 

𝒗𝑆𝑆𝐴  SSA velocity of ice m s
−1 

 

𝑊𝑡𝑖𝑙𝑙 the effective thickness of water in the till m 

𝑧𝑏 elevation at the base of the ice shelf m 

δij  Kronecker delta  -  

(𝑥, 𝑦)  horizontal dimensions  m  
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∇ 2-D gradient operator  m
−1

  

βcc the Clausius-Clapeyron gradient K m
−1 

 
εij  component of the strain rate tensor  s

-1
 

𝜈 viscosity Pa s  

ν̅ vertical-averaged viscosity Pa s  

ρi density of ice  kg m
−3 

 

ρo density of ocean water  kg m
−3 

 

𝑧  vertical dimension (positive upwards)  m  

𝜎𝑖𝑗 full Cauchy stress tensor N m
−2 

 

τb basal shear stress  N m
−2 

 

τc  yield stress  N m
−2 

 

τij  component of the deviatoric stress tensor;  N m
−2 

 

φ  till friction angle   degrees 

 

 

A2. Additional figures 
 

 

 Figure A1: (A) Bed topography from Bamber et al. (2013). (B) Bed topography   

from Morlighem et al. (2014).  (C) Difference in meters between the 

two bed topography sets (A-B) for the entire computational domain. (D) 

Difference in meters between the two bed topography sets (A-B) for the 

terminus region. 

 



                                                                                                                   Appendix  A                                                                                                                                                                             

134 
 

 

 

 

Figure A 2: Reconstructed surface elevation (see Sect. 2.3) for 1840 (left) and 1990 

(right) . 
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Appendix B. Study 1 
 

B1. Parameters 
 

Table A2: Ice sheet model parameters that have been altered from the default PISM 

values (The PISM Authors, 2014) during the paleo spin-up. 

Symbol Description Value 

ESIA the flow enhancement factor for SIA 3 

q the exponent of the pseudo-plastic basal resistance model 0.25 

ϕ the till fraction angle ° 

ϕ min for bed elevations lower than 300 m below sea level [ ° ] 5 

ϕ max for bed elevations higher than 700 m above sea level [ ° ] 30 

α pore water pressure fraction  0.98 

 

To obtain an initial state with temperature equilibrium, I ran the model at a 10 km 

horizontal grid resolution with constant surface forcing for 50 ka while keeping the 

geometry fixed. Based on this initial state, I then started the paleo climate forcing 

spin-up (125 ka to 0 ka) with full physics. Horizontal and vertical model resolutions 

are 5 km and 20 m, respectively. The computational domain extends horizontally 

over 1500 km × 2800 km, and vertically over 4000 m in the ice and 1000 m in the 

bedrock. Grid refinements are made from 10 km to 5 km at -5000 a. The FTT 

mechanism is switched on at -5000 a. The paleo spin-ups have been performed using 

pism v0.5-88-gc24f74b. 

Table A3: Ice sheet model parameters that have been altered from the default PISM 

values (The PISM Authors, 2014) during the equilibrium and forward 

simulations. 

Symbol Description Value 

ESIA the flow enhancement factor for SIA 1 

q the exponent of the pseudo-plastic basal resistance model 0.25 

ϕ the till fraction angle ° 

ϕ min for bed elevations lower than 300 m below sea level [ ° ] 5 

ϕ max for bed elevations higher than 700 m above sea level [ ° ] 30 

α pore water pressure fraction  0.98 

 

The equilibrium and forward simulations have been performed using pism v0.5-88-

gc24f74b.
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Table A4: Prediction errors for modelled horizontal surface velocities and ice thickness at the end of the forward simulation (~2012), and 

modelled cumulative mass change [Gt] for the period 1997-2012 together with the residual signal between modelled and 

observed ice mass change (Sect. 2) in percent [%]. Root Mean Squared Error (RMSE), coefficient of variation (CV) of the 

RMSE, 𝒐 mean observed ice thickness for the bed topography from Bamber et al. (2001) and Bamber et al. (2013) , 𝒎̅  mean 

modelled ice thickness,  and AMD absolute mean difference. 

 

Simulation  

Horizontal surface velocities Ice thickness Cumulative mass change [Gt] 

RMSE 

[ma
-1

] 

CV 

[unitless] 

𝒐 

[ma
-1

] 

𝒎 

[ma
-1

] 

AMD 

[ma
-1

] 

RMSE 

[m] 

CV 

[unitless] 

 
𝒐 

[m] 

 

𝒎 

[m] 

AMD 

[m] 
1997-2012 Difference  [%] 

Rv1-J90-12  214.53  4.04  53.08  53.09  33.58  170.39  0.09  1966.67  2110.65  146.97  195.76  6 % 

Rv1-R90-12  206.09  3.88  53.08  47.07  34.41  135.03  0.07  1966.67  2064.43  109.80  131.57  -29 % 

Rv1-H90-12  212.57  4.01  53.08  48.83  35.85  149.30  0.08  1966.67  2092.17  128.92  30.52  -84 % 

Rv2-J90-12  156.38  2.95  53.08  47.52  35.11  101.54  0.05  1996.59  2015.04  67.69  221.42  20 % 

Rv2-R90-12  154.94  2.92  53.08  49.00  34.70  105.43  0.05  1996.59  1985.72  65.17  243.66  32 % 

Rv2-H90-12  188.76  3.56  53.08  53.98  37.98  93.12  0.05  1996.59  1980.23  60.47  88.29  -52 % 

Rv2-H90-12*(1km)  172.68  3.88  53.08  61.72  30.11  116.28  0.10  1996.59  2017.94  68.34  115.31  -38 % 

Rv2-H90-12*(2km)  191.79  4.32  53.08  61.51  30.18  107.19  0.09  1996.59  2013.48  60.99  116.89  -37 % 

Rv1FTT-J90-12  160.04  3.02  53.08  25.90  36.09  85.80  0.04  1966.67  2020.11  66.93  195.28  5 % 

Rv1FTT-R90-12  158.29  2.98  53.08  26.28  36.19  71.04  0.04  1966.67  2001.13  51.03  127.79  -31 % 

Rv1FTT-H90-12  164.88  3.11  53.08  28.36  35.24  71.09  0.04  1966.67  2008.38  51.02  -13.85  -107 % 

Rv2FTT-J90-12  135.58  2.56  53.08  36.24  32.36  66.15  0.03  1996.59  1999.62  43.80  218.73  18 % 

Rv2FTT-R90-12  137.68  2.59  53.08  32.98  33.88  74.41  0.04  1996.59  1982.08  43.04  176.42  -5 % 

Rv2FTT-H90-12  145.43  2.74  53.08  36.14  33.86  61.70  0.03  1996.59  1980.24  34.93  34.82  -81 % 
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Appendix C. Study 2 

C1. Parameters 
 

Table A5: Ice sheet model parameters (The PISM Authors, 2014) that remain 

unchanged both during equilibrium and the forward simulations. 

Symbol Description Value 

ESIA 

ESSA 

the flow enhancement factor for SIA 

the flow enhancement factor for SSA 

1.5 

0.6 

ϕ the till fraction angle ° 

ϕ min for bed elevations lower than 300 m below sea level [ ° ] 15 

ϕ max for bed elevations higher than 700 m above sea level [ ° ] 40 

S0 

q 

δ 

salinity of the ocean water under the ice shelves [psu] 

the exponent of the pseudo-plastic basal resistance model 

the till effective fraction overburden 

35 

0.3 

0.022 

 

Table A6: Ice sheet model parameters that have been altered relative to the 

equilibrium simulations. 

Symbol Description Forward Equilibrium  

Fmelt parameter for subshelf melting [m s
-1

] 0.4705  0.01 

Hcr 

K 

To 

ice thickness threshold [m] 

proportionality constant for eigen calving [ms] 

temperature of the ocean water [°C] 

400 

2
18 

variable* 

500 

10
18 

-1.7 

        * Please refer to Sect. 2.2.1 for ocean water temperature scenarios. 

 

The equilibrium and forward simulations have been run on 30 and 80 cores using 

PISM v0.6.1-10-g37ef3af. 

.
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C2. Additional figures and tables 
 

 

Figure A 3: Modelled ice thickness in the simulation with variable surface ocean 

temperature over the period 1840-2012 at JI. The solid red lines represent 

the observed positions of the terminus for the different years plotted.
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Figure A 4: Modelled ice thickness in the simulation with constant surface ocean 

temperature over the period 1840-2012 at JI. The solid red lines represent 

the observed positions of the terminus for the different years plotted. 
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Figure A 5: Modelled ice thickness in the simulation with variable surface ocean 

temperature and in the simulation with constant surface ocean temperature 

during 1929, 1930, 1931 and 1932 at JI. The solid red lines represent the 

observed 1930 terminus position. 
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Figure A 6: Modelled horizontal surface velocities in the simulation with variable 

surface ocean temperature over the period 1840-2012 at JI.  

 

 

 



                                                                                                          Appendix C. Study 2                 Appendix 

142 
 

 

Figure A 7: Modelled horizontal surface velocities in the simulation with variable 

surface ocean temperature over the period 1840-2012 at JI. 
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Figure A8: Modelled horizontal surface velocities in the simulation with variable 

surface ocean temperature and in the simulation with constant surface ocean 

temperature during 1929, 1930, 1931 and 1932 at JI. 
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Figure A 9: Time series of modelled (filled circles) versus observed (black triangles 

with light green edges) velocities (Joughin et al., 2010) for the period 1990–2012 at 

locations S1 (A) and S6 (B) shown in Fig. 1C in a simulation with variable surface 

ocean temperature (darker colour) and a simulation with constant surface ocean 

temperature (lighter colour). 

 

 

 

 

 

 

 

 

 

 

Table A7: Root Mean Squared Error (RMSE) for modelled horizontal surface velocities 

(i.e. along the flowline shown in Figure 1C) during 2000-2001, 2005-2006, 2006-2007 

and 2008-2009 in a simulation with variable surface ocean temperature (“Variable”) and 

a simulation with constant surface ocean temperature (“Constant”). The observed 

velocities relative to which I compute the RMSE are from Joughin et al. (2010). 

Simulation 

Time Variable [ma
-1

] Constant [ma
-1

] 

2000-2001 667 996 

2005-2006 91 839 

2006-2007 623 1063 

2008-2009 802 280 
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Table A8: Root Mean Squared Error (RMSE) for modelled ice thickness changes (i.e. 

at points S1, S3 and S6 shown in Figure 1C) during 2003, 2005,  2006, 2007, 2008, 

2009, 2010, 2011 and 2012 in a simulation with variable surface ocean temperature 

(“Variable”) and a simulation with constant surface ocean temperature (“Constant”). 

The observed ice thickness changes relative to which I compute the RMSE are from 

Krabill (2014). 

Points 

Simulation S1 [m] S3 [m] S6 [m] 

Variable 9 12 33 

Constant 18 21 3 
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Table A9: Mass loss estimates and major terminus collapses at JI during the period 

1840-2012 in a simulation with constant surface ocean temperature (Sect. 2.2.1). 

Historic Mass loss (Gt) Mass loss rate (Gta
-1

) 
Major terminus 

collapse (year) 

1840-1880 37.42 0.9   

1880-1920 112.62 2.8 
 

1920-1960 315.36 7.7 1932 

1960-1990 338.93 10.93 
 

1990-2012 424.01 18.44 1998-2003 

1997-2012 306.97 19.2   

 

 

 

 

Table A10: Mass loss estimates and major terminus collapses at JI during the period 

1840-2012 in a simulation with variable surface ocean temperature (Sect. 2.2.1). 

Historic Mass loss (Gt) Mass loss rate (Gta
-1

) 
Major terminus 

collapse (year) 

1840-1880 37.42 0.9   

1880-1920 112.62 2.8 
 

1920-1960 437.63 10.6 1929 

1960-1990 373.59 12.1 
 

1990-2012 253.18 11.01 1999-2003 

1997-2012 209.33 13.08   
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Figure A 10: Cumulative mass change for part of the simulations performed in Study 2.  

During these simulations, I altered parameters controlling the ice dynamics (e.g. the 

flow enhancement factor, the exponent of the pseudo-plastic basal resistance model, the 

till effective fraction overburden, etc.) and parameters related with ice shelf melt, ocean 

temperature, and calving (i.e., the ice thickness threshold in the basic calving 

mechanism). The simulations include experiments with no ocean forcing, constant 

ocean forcing, and variable ocean forcing. The red curve represents the simulation that 

best capture the full observed evolution of JI during the period 1840–2012.  
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Appendix D. Study 3 

D1. Parameters 
 

Table A11: Ice sheet model parameters (The PISM Authors, 2014) that remain 

unchanged both during equilibrium and the forward simulations. 

Symbol Description Value 

ESSA the flow enhancement factor for SSA 0.6 

K proportionality constant for eigen calving [ms] 2
18

 

ϕ the till fraction angle
*
 ° 

ϕ min for bed elevations lower than 300 m below sea level [ ° ] 15 

ϕ max for bed elevations higher than 700 m above sea level [ ° ] 40 

S0 salinity of the ocean water under the ice shelves [psu] 35 

 

 

Table A12: Ice sheet model parameters that have been altered from the default PISM 

values (The PISM Authors, 2014) during the forward simulations. 

Symbol Description Value* Range** 

ESIA the flow enhancement factor for SIA 1.2 1.0 - 1.3 

Fmelt parameter for subshelf melting [m s
-1

] 0.5505 0.01– 1 

Hcr ice thickness threshold [m] 375 250 - 450 

q the exponent of the pseudo-plastic basal resistance model 0.25 0.2 - 0.3 

δ the till effective fraction overburden 0.02 0.02-0.03 

𝑇𝑜 temperature of the ocean water [°C] -1.7 -1.3 - -1.9 

 

*  The parameterization that best captures the full evolution of JI during the period 1990–2014; 

** Range (min/max values) for the parameters tested during the simulations; 

The equilibrium and forward simulations have been run on 30 and 80 cores using PISM 

v0.6.1-10-g37ef3af. I performed over 50 simulations in which I varied during the regional 

runs different parameters with a focus on 𝐸𝑆𝐼𝐴, 𝑞, 𝛿, 𝐹𝑚𝑒𝑙𝑡, 𝐻𝑐r and 𝑇𝑜. The parameters or 

rather the range of the parameters (min, max) is shown in Table A12, 4th column. In order 

to match the overall retreat trend, the parameters 𝐹𝑚𝑒𝑙𝑡, 𝐻𝑐𝑟 and 𝑇𝑜 were altered first. 

However, a finer tuning was required to match the observed front positions and to capture 

the two accelerations (i.e., 1998 and 2003) within the observed time frame. This fine tuning 

was done by altering some of the parameters that control ice dynamics (𝐸𝑆𝐼𝐴, 𝑞, 𝛿). 

From these simulations, I present in Study 3 the parameterization that best captures the full 

evolution of JI during the period 1990–2014: (i) in terms of observed versus modelled front 

positions for 1990-2014 and (ii) based on the correlation between observed and modelled 

mass changes during 1997-2014. While (i) is based on my visual interpretation, for (ii) I 
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selected those simulations within a +/- 30 Gt threshold. I found 3 simulations to satisfy (i) 

and (ii). From these simulations, I chose only the one that captured the two accelerations in 

the observational record within a 1 year time frame difference and that has overall 

magnitudes similar with those in the observational record (i.e, the RMSE in point S1 is 

~2236 m a-1; Fig. 28). 

 

Table A13: Yearly mean modelled basal melt rates. 

Year Melt rates [ma
-1

] 

1990 262 

1991 473 

1992 150 

1993 123 

1994 159 

1995 162 

1996 148 

1997 177 

1998 690 

1999 1153 

2000 1387 

2001 1368 

2002 1295 

2003 881 

2004 242 

2005 159 

2006 145 

2007 142 

2008 138 

2009 134 

2010 148 

2011 154 

2012 177 

2013 147 

2014 159 
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Appendix E. Study 4 

E1. Parameters 
 

Table A14: Ice sheet model parameters (The PISM Authors, 2014) used during the 

prognostic simulations. 

Symbol Description Value 

ESIA 

ESSA 

K 

the flow enhancement factor for SIA 

the flow enhancement factor for SSA 

proportionality constant for eigen calving [ms] 

1.5 

0.6 

2
18 

ϕ the till fraction angle ° 

ϕ min for bed elevations lower than 300 m below sea level [ ° ] 15 

ϕ max for bed elevations higher than 700 m above sea level [ ° ] 40 

So 

To 

q 

δ 

Fmelt 

Hcr 

salinity of the ocean water under the ice shelves [psu] 

temperature of the ocean water [°C] 

the exponent of the pseudo-plastic basal resistance model 

the till effective fraction overburden 

parameter for subshelf melting [m s
-1

] 

ice thickness threshold [m] 

35 

variable* 

0.3 

0.022 

0.4705 

400 

       * Please refer to Sect. 2.2.2 for ocean water temperature scenarios. 

 

The prognostic simulations have been run on 30 cores using PISM v0.6.1-10-g37ef3af. 
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E2. Additional figures and tables 
 

 

Figure A 11: Modelled terminus retreat at JI between 2013-2100 for Scenario A, 

Scenario B and Scenario C built under RCP 8.5. The colorbar shows the ice thickness in 

meters. The red line denotes the 2012 observed terminus position. 
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Figure A 12: Modelled horizontal velocities at JI between 2013-2100 for Scenario A, 

Scenario B and Scenario C built under RCP 4.5. The colorbar shows horizontal 

velocites in m a
-1

.  
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Appendix F. Extra figures 
 

 

Figure A 13: Modelled horizontal velocities at JI with q=0.6 (top) and q=0.25 (bottom). 
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Appendix G. Teaching activities and conferences 
 

G1. Teaching activities 
 

           Teaching assistant – “GPS, GIS and Setting out” (June, 2013) 

Teaching assistant – “Mathematical and Numerical Methods in Earth and Space 

Physics” (February-May, 2014) 

Teacher – “Mathematical and Numerical Methods in Earth and Space Physics” 

(February-May, 2015) 

   Continuum dynamics 

   GIA using SELEN 

   Finite element method (FEM)  

Teacher – “Mathematical and Numerical Methods in Earth and Space Physics” 

(February-May, 2016) 

   Continuum dynamics 

   GIA using SELEN 

   Modelling glaciers and ice sheets (Driving stresses, Ice flow, SIA) 

   Finite element method (FEM)  
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G2. Conferences 
              

           EGU General Assembly, April 2014 (Poster no. EGU2014-6110) 

           Muresan et al., “Modelling the behavior of the Jakobshavn glacier since the end of the 

Little Ice Age” 

            http://meetingorganizer.copernicus.org/EGU2014/EGU2014-6110-1.pdf 

           Conference abstract published in: 

           Geophysical Research Abstracts Vol. 16,  

           EGU2014-6110-1, 2014 

 

            Proceedings of the Chamonix Symposium, May 2014 (Poster no. 70A1071) 

Muresan et al., “Modelling the behavior of Jakobshavn glacier in the last century” 

Conference abstract published online: 

            http://www.igsoc.org/symposia/2014/chamonix/proceedings/proceedings.html 

 

American Geophysical Union (AGU) Fall Meeting, December 2014 (Poster no. 

C51B-0257) 

Muresan et al., “Impact of External Forcing on Glacier Dynamics at Jakobshavn Isbræ 

during 1840-2012” 

Conference abstract published online: 

            https://agu.confex.com/agu/fm14/webprogram/Paper7768.html 

 

American Geophysical Union (AGU) Fall Meeting, December 2014 (Poster no. 

C51B-0258) 

Khan et al., “Modelled and observed present-day state of the Jakobshavn Isbræ, west 

Greenland” 

Conference abstract published online: 

           https://agu.confex.com/agu/fm14/webprogram/Paper12379.html 

http://meetingorganizer.copernicus.org/EGU2014/EGU2014-6110-1.pdf
http://www.igsoc.org/symposia/2014/chamonix/proceedings/proceedings.html
https://agu.confex.com/agu/fm14/webprogram/Paper7768.html
https://agu.confex.com/agu/fm14/webprogram/Paper12379.html
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            GIA modelling 2015, May 2015 (Oral talk) 

Muresan et al., “Mass change at Jakobshavn Isbræ during 1880-2012”, GIA meeting, 

Geophysical Institute, Fairbanks, Alaska, 2015. 

 

American Geophysical Union (AGU) Fall Meeting, December 2015 (Poster no. 

C21A-0715)  

Muresan et al., “Basin-Wide Mass Balance of Jakobshavn Isbræ (West Greenland) 

during 1880-2100” 

Conference abstract published online: 

             https://agu.confex.com/agu/fm15/webprogram/Paper68423.html 
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