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Summary (English)

Embedded real-time systems have been adopted in a wide range of safety-critical
applications — including automotive, avionics, and train control systems — where the
focus has long been on safety (i.e., protecting the external world from the potential
damage caused by the system) rather than security (i.e., protecting the system from the
external world). With increased connectivity of these systems to external networks the
attack surface has grown, and consequently there is a need for securing the system from
external attacks. Introducing security protocols in safety critical systems requires careful
considerations on the available resources, especially in meeting real-time and resource
constraints, as well as cost and reliability requirements. For this reason many proposed
security protocols in this domain have peculiar features, not present in traditional security
literature.

In this thesis we tackle the problem of analysing security protocols in safety critical
embedded systems from multiple perspectives, extending current state-of-the-art analysis
techniques where the combination of safety and security hinders our efforts. Examples
of protocols in automotive control systems will follow throughout the thesis. We initially
take a combined perspective of the safety and security features, by giving a security
analysis and a schedulability analysis of the embedded protocols, with intertwined
considerations. Then we approach the problem of the expressiveness of the tools used
in the analysis, extending saturation-based techniques for formal protocol verification in
the symbolic model. Such techniques gain much of their efficiency by coalescing all
reachable states into a single set of facts. However, distinguishing different states is a
requirement for modelling the protocols that we consider. Our effort in this direction is to
extend saturation-based techniques so that enough state information can be modelled and
analysed. Finally, we present a methodology for proving the same security properties in
the computational model, by means of typing protocol implementations.
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Summary (Danish)

Indlejrede realtidssystemer har fundet anvendelse på en lang række sikkerhedskritiske
områder, såsom i bilindustrien, flyindustrien og kontrolsystemer til tog. På disse områder
har fokus længe været på pålidelighed (dvs. at beskytte omverden mod potentiel skade
forårsaget af systemet), snarere end sikkerhed (dvs. at beskytte systemet mod omverden).
Med tættere forbindelser mellem disse systemer og eksterne netværk, er angrebsfladen
blevet større. Som konsekvens, er der brug for beskyttelse mod angreb udefra. At benytte
sikkerhedsprotokoller i kritiske systemer, kræver nøje afvejninger af de tilgængelige
ressourcer, især når krav til realtid og ressourceforbrug skal overholdes, samtidig med
at prisen ikke må stige og pålideligheden forbliver høj. Af denne grund indeholder
mange foreslåede sikkerhedsprotokoller utraditionelle løsninger, der ikke er at finde i
den klassiske sikkerhedslitteratur.

I denne afhandling tackler vi problemet med at analysere protokoller til sikkerhed-
skritiske indlejrede systemer fra flere forskellige vinkler. Vi udvider de eksisterende
analyseteknikker hvor kombinationen af sikkerhed og pålidelighed gør dem utilstrække-
lige. Gennem afhandlingen vil protokoller fra bilindustrien løbende blive brugt som
eksempler. Vi betragter som udgangspunkt sikkerhed og pålidelighed fra et samlet per-
spektiv, ved at give en sikkerheds- og skeduleringesanalyse af de indlejrede protokoller.
Dernæst nærmer vi os problemet med udtryksfuldheden for de værktøjer der blev brugt
til analysen. Vi udvider de mætningsbaserede teknikker til formel protokolverifikation
i den symbolske model. Disse teknikker er meget effektive på grund af evnen til at
kombinere alle tilgængelige tilstande til ét sæt fakta. At kunne skelne mellem tilstande,
er dog et krav for at kunne modellelere de protokoller vi gerne vil analysere. Dette prob-
lem løser vi ved at udvide de mætningsbaserede teknikker, så der gemmes tilstrækkelig
tilstand til at protokollerne kan modelleres og analyseres. Endelig præsenterer vi en
metode til at bevise de samme sikkerhedsegenskaber i den beregningsmæssige model
ved hjælp af type-annoterede protokolimplementationer.
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CHAPTER 1

Introduction

Distributed computing systems permeate the fabric of our society. When ARPANET —
the ancestor of the modern Internet — was originally conceived in 1969, it sprung off
from J.C.R. Licklider’s vision of a “Galactic Computer Network”. Licklider envisioned
a global network of interconnected computers where every piece of data and program
would be quickly accessible from any of its nodes.

Even though the concept of a “Galactic Computer Network” could have been compared
to the dimensions of ARPANET, it cannot hold any comparison with the scale of
the Internet today, let alone the Internet we are building now. A study published by
CISCO [Eva11] calculated that, in 2010, 12.5 billion devices — almost twice the
amount of living humans — were connected to the Internet. This number is growing at
an exponential rate, doubling every five years.

Today’s Internet does not only support the sharing of knowledge: it also runs banking
and e-commerce applications, aids business and government operations worldwide. In
its continuous transformation, the global network is now connecting more and more of
the physical world, following the grand vision of the Internet of Things. Besides the
proportions, which Licklider and his fellows would have probably never guessed, the
original open design of ARPANET does not fit the bill of the current Internet.

Nowadays we need to protect from malicious attackers the data and programs that run
through this globalised network. This need is going to increase in the future, as we build



2 Introduction

more applications that rely on the Internet, and more real-world assets are at stake.

Security protocols play a central role in protecting the information and applications that
run through the network from unwanted attacks. Designing security protocols is known
to be a delicate and error prone process, and we know by experience that mistakes can
go unnoticed for decades [Low96].

Systematically reasoning about the correctness of security protocols is therefore im-
portant to design secure systems. Formal methods provide theoretical frameworks and
analysis techniques that can be used to reason about security properties in communica-
tion protocols. Formal approaches to security have proven their value in discovering
flaws in existing designs, and are being used to ensure that new designs are immune to
classes of attacks.

This thesis deals with the study and extension of formal methods for protocol verification.
As the Internet expands to connect more of our physical world, new protocol designs
are adopted that differ from the established literature, because physical constraints and
safety requirements come into play. We study how these new designs can be described
with formal languages and their peculiar properties captured and precisely analysed by
means of automated verification techniques.

1.1 Challenge

Formal verification of security protocols has flourished over the last thirty years. The
Dolev-Yao model [DY83], first proposed in 1983, is one formal model for describing
security protocols where the security of many cryptographic functions is represented
in symbolic terms. It allows formal automated reasoning about security protocols, and
is used in many theoretical frameworks with tool support [Bla02, BBD+05, BMV05,
Cre08, SMCB13]. Although the Dolev-Yao model is very successful for its simplicity,
the problem of verifying security protocols in the Dolev-Yao model is in general unde-
cidable [RD82], and continues to challenge the research community who tries to push
the boundaries of machine-checked automated proofs.

Another model for describing protocols and their security properties is the computational
model [Sho04]. In this model security protocols are described as probabilistic programs
(called games), and cryptographic functions are treated as functions on bitstrings. It
allows to capture a wider range of details in security protocols, at the cost of being more
complex to reason about. Formal frameworks with semi- and fully-automated reasoning
support are emerging [BGHB11, Bla07, FKS11], and showing promising results.

Both the symbolic and the computational model can prove various confidentiality
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and integrity properties among the standard CIA triad: Confidentiality, Integrity and
Availability. Confidentiality properties encompass secrecy (i.e. an attacker cannot obtain
a piece of information) and indistinguishability (i.e. an attacker cannot distinguish
whether two secrets are indeed the same). Integrity properties regard the integrity
of data [Low97]. Agreement or correspondence is an integrity property that requires
honest principals to agree on a specific message that they exchange, hence the attacker
cannot alter the information without them noticing. A stronger notion of agreement is
injective-agreement or correspondence, where an attacker also cannot reuse a message
once that is consumed.

Availability is also an interesting category, as it regards the ability of a system to resist an
attacker who aims to take it down. However, neither the symbolic nor the computational
model can be used to reason about availability: they assume that the attacker is in control
of all communication, hence the system can trivially be unavailable. A complementary
approach is to study the robustness of a system under attack, and language approaches
with optional data types can support this kind of analysis [VNN15].

As mentioned before, we have seen a trend towards interconnecting physical devices with
each other, and more recently connecting them to the Internet. However, the symbolic
and computational models have been mostly used for studying Internet protocols, hence
there is an urgency to investigate their applicability to embedded systems. As an example
that will follow us throughout this thesis, personal vehicles are integrating features like
remote control and anti-theft protection, vehicle-to-vehicle communication, autonomous
driving, etc., which all require network connectivity to function.

This higher level of connectivity has increased the attack surface of everyday objects,
requiring security measures not previously necessary. In our example, a modern car
contains more than fifty embedded computers, communicating through a very simple
broadcast network called CAN bus, which offers no security features. However, introduc-
ing security protocols in the CAN bus requires to work within safety and cost constraints
that are not present when designing security protocols for traditional computer systems.

To maintain the system schedulable and deliver signals in the car within strict deadlines,
one cannot use challenge-response patterns, instead tracking the state of the system
explicitly is required. The ability of tracking state is out of range for many of the most
advanced analysis techniques, which obtain their efficiency by coalescing information
about multiple states. However, we maintain that the same technologies can be extended
to cope with this new challenge. Therefore we claim that

language based technologies offer a framework to push the boundaries of protocol
verification, both in the symbolic and computational models, so as to encompass the
verification of features peculiar to embedded systems.

This thesis sets to validate our claim by studying in depth a real-world use case in
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automotive and extending state-of-the-art techniques as a result of our discoveries.

1.2 Contributions

To capture the peculiar features of the protocols under our consideration, we introduce
Set-Pi, an extension of the Applied Pi-calculus with support of global non-monotonic
state. Set-Pi adds sets and set transformations (insertion, deletion) as first class citizens
to the Applied Pi-calculus.

The extension allows us to model succinctly the stateful aspects of our case study, and
are general enough to express interesting properties of a wide range of stateful protocols,
not limited to embedded systems: for example protocols with key revocation/update,
protocols with databases etc.

We propose a new formulation of weak and strong agreement properties in terms of sets
and transitions, which can contribute to a better understanding of existing formulations.
Similarly to previous work in the Applied Pi-calculus [Bla02], we provide an analysis
for Set-Pi that translates the process calculus models into logic programs, and either
proves the absence of attacks in the model, or shows a potential attack. The analysis is
implemented in a tool and successfully tested against a number of different case studies.

In order to build verified protocol implementations, we present a methodology for
proving strong agreement properties in the computational model, using refinement types
— types with attached formulas — to express such properties on the code. This method
differs from previous work in that standard first order logic is used, hence protocols can
be verified with existing tools which support first order logic and refinement types, like
F*.

We analyse two security protocols in automotive, MaCAN and CANAuth, using both
the symbolic and computational models. We adapt a standard schedulability analysis to
take the security features into account, and to ensure that the protocols respect the safety
constraints. Our analysis using the Applied Pi-calculus discovers a number of flaws in
the MaCAN protocol and limitations in expressing the properties of our interest for both
MaCAN and CANAuth. Throughout the thesis we present corrected models using our
language Set-Pi, as well as a minimal verified implementation of CANAuth in F*.

The results of this study validate the utility of our formal approach, which helped us to
discover and correct multiple flaws in the protocol design of MaCAN and to ensure that
our modified designs are secure w.r.t. the original specification.
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1.3 Structure of this Thesis

This thesis proceeds as follows:

• Chapter 2 presents technical background material on CAN bus and related tech-
nologies, including the security protocols MaCAN and CANAuth. These are later
used throughout this thesis as the subject of our analysis.

• Chapter 3 introduces protocol verification in the symbolic Dolev-Yao model and
the computational model. The techniques that form the basis for our contribution
in both settings are presented as well, namely the Applied Pi-calculus/ProVerif
and F*.

• Chapter 4 presents our case studies. We model them in the Applied Pi-calculus,
finding flaws in one of the protocols, and showing the limitations that we get in
the analysis. Considerations around security and schedulability will introduce
us to Chapter 5. This work is based on [BSNN14] and the SESAMO deliver-
able [Pro13].

• Chapter 5 shows how to extend the standard schedulability analysis to take into
account the security features of the protocol presented in Chapter 4. We also
discuss how we found a DoS attack that arises in MaCAN, and how to eliminate
it with acceptable costs.

• Chapter 6 presents Set-Pi, an extension of the Applied Pi-calculus which allows
us to precisely capture the spurious attacks discovered in Chapter 4. The calculus
can also be used in verifying protocols where non-monotonic sets of values (e.g.
keys) are used. This chapter is based on [BMNN15].

• Chapter 7 presents an analysis of different authentication mechanisms in F*, a
ML-like programming language with dependent types — types with attached
formulas to data — which directly allows to prove properties on the programs. In
this case we use it to prove authentication properties on a minimal implementation
of the protocol. This chapter has been presented at the CryptoForma workshop
[BKA+15].

• In Chapter 8 we present our final considerations, discuss related work and potential
future work.

• In the appendix we present proofs of correctness for the analysis in Chapter 6.
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CHAPTER 2

The CAN Bus Protocols

In this chapter we provide the necessary background for Chapter 4 and Chapter 5.
We introduce relevant details about the CAN bus protocol, its extensions and the
authenticated protocols MaCAN and CANAuth, that run on top of it.

2.1 Background

During the ’80s car manufacturers developed the first vehicles that included Electronic
Control Units (ECUs), often employing custom solutions for implementing communica-
tion between them, or resorting to costly off-the-shelf solutions that were not fit for the
newly born and growing automotive sector. There was a need for a standardised, cost
efficient, and reliable protocol that could fit the requirements of the automotive domain.

In 1983 Robert Bosch GmbH started working on a prioritised real-time bus network pro-
tocol for resource limited microcontrollers that could fit the precise needs of automotive
applications. In 1986 Bosch officially released their Controller Area Network (CAN)
bus protocol, and in 1987 Intel and Philips released the first two microcontrollers with
hardware support for this protocol.

Since then, CAN became the primary choice for car manufacturers, and its application
areas expanded to big vehicles like trucks and agricultural machines, medical equipment
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and other forms of automation. The CAN protocol was standardised in 1993 as ISO-
11898, and later revised in 1995. It is also required for on-board diagnostics of vehicles
sold in the United States since 1996, as mandated by the OBD-II standard, and for
vehicles sold in Europe since 2001, mandated by the EOBD standard.

The limitations of the microcontrollers that were available in 1983 are reflected in the
protocol design, which presents simple features — broadcast, fixed message priority,
unauthenticated — and fault tolerance mechanisms, namely error detection with CRC
codes and automatic disconnection of faulty nodes by the use of error flags.

Technology evolved over time, and more and more ECUs have been introduced in
modern vehicles. Some have been used for reducing production costs and maximise
efficiency, like the engine control unit. Others increased the vehicle safety, like the
Anti Blocking System (ABS) which avoids uncontrolled skidding and increases traction
during braking. Again others have been introduced to add new features to a car: among
these, the car infotainment system and the telematics unit can now provide navigation
information to the user, manage vehicle functionality to ease the driving experience (e.g.
automatically managing music volume, seat position given user preferences, etc.) or add
anti-theft mechanisms that integrate GPS information and proprietary protocols over
GSM communication for tracking and blocking stolen vehicles.

These new functionalities result into an increased level of connectivity inside the car
and higher complexity of the units responsible for controlling the vehicle. Figure 2.1
summarises the network topology and connectivity of a modern vehicle, showing a
low speed/low criticality CAN bus network and a high speed/highly critical CAN bus
network, connected to the telematics unit and the infotainment system. These two act
as an interface to the external networks. Modern vehicles have several wireless and
wired interfaces, including WiFi, Bluetooth, remote monitoring/anti-theft protocols over
cellular network, diagnostic interfaces, GPS signaling system, and wireless keys.

In two recent studies [KCR+10, CMK+11] a joint group of researchers from University
of California San Diego and the University of Washington analysed the vulnerability of
a modern sedan. They were able to reverse-engineer their behaviour, taking apart the
control units. In their first work [KCR+10] they managed to remotely control the vehicle
from the U.S. mandated OBD-II diagnostic port, which directly communicates over
the low speed network to the telematics unit. Through bad filtering and broadcasting
policies they were able to send message from the low-speed network through the high
speed network of the car, achieving complete control of the vehicle.

Later [CMK+11] they attacked the remote vulnerabilities of the vehicle and found
an array of potential security flaws: a buffer overflow in the Bluetooth stack of the
infotainment system, and another buffer overflow in the WMA codec of the media
player, allowed them to create a CD that was capable of running the same attack of their
previous experiment.
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Figure 2.1: Connectivity inside a modern vehicle
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The unauthenticated and broadcast nature of CAN makes it hard to implement any kind
of information flow control, and even some basic filters required by the safety standard
were not properly implemented due to diagnostic requirements [KCR+10], leading to
leakage of signals from the low-speed network to the high-speed network. These first
attacks have sparked an enormous interest across the academic, industrial and hacking
communities, and new exploits for different models of vehicles continuously hit the
news.

Among the more interesting recent exploits we mention the work of Miller and Valasek
[MV13, MV14, MV15]. They published a series of Black Hat security papers studying
different makes and models of vehicles finding various security vulnerabilities. The last
of the series [MV15] shows the first discovered remote exploit on a vehicle, proving
that these attacks are possible in practice.

Another interesting document, freely available, is the “Car Hacker’s Handbook” [Smi14].
This document teaches how to hack a car to anyone who has basic hardware and software
skills and a few widely available tools: hacking a car has never been easier. One of the
root causes for the weakness of current automotive architectures lies in the design of the
CAN bus, which was conceived as a simple, economic and reliable protocol, but with
no security in mind.

To mitigate the problem, different groups have proposed authenticated extensions to the
CAN protocol [HSV11, GMHV12, GGH+12, HRS12, SRW+11]. These authenticated
extensions add a signature for proving the origin of the message, its intended recipient,
and for ensuring freshness. They are necessary to enforce information flow policies
such as “only the brake pedal and the anti-blocking system are allowed to activate the
brakes” or “messages coming from a diagnostic unit connected through the OBD-II port
can only be accepted in diagnostic mode”, and to prevent replay attacks of previously
sent messages.

In the next two sections we are going to give an overview of CAN and related tech-
nologies, then introduce two authenticated protocols on top of CAN — MaCAN and
CANAuth — that will be the subjects of our studies throughout the thesis.

2.2 CAN Bus and Extensions

2.2.1 CAN Bus

CAN is a broadcast, prioritised, real-time protocol designed to work on a bus network
topology of interconnected microcontrollers. Typical transmission speeds of the CAN
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Figure 2.2: A typical CAN frame1

bus are 125 Kbps, 500 Kbps and 1 Mbps.

As shown in Figure 2.2, a CAN frame is composed by an ID (or arbitration) field of 11 or
29 bits (also used for arbitration), 6 control bits, including 4 defining the payload length
(in bytes), a payload of 0 to 64 bits, a 15 bit CRC code, 2 bits for acknowledgement,
and a sequence of 7 bits delimiting the end-of-frame.

The ID/arbitration field of a CAN frame is used for priority scheduling, where lower
ID values have higher priority. All ECUs that are waiting to send a message on the
CAN bus start transmitting the message IDs during the arbitration phase, using a Carrier
Sense Multiple Access/Bitwise Arbitration (CSMA/BA) scheme. In this scheme each
ECU sends its message ID bit by bit, while sensing on the channel if other ECUs are
also transmitting. When an ECU sends a 1 bit of ID while reading a 0 bit on the channel,
it stops communicating and waits for the next frame, giving priority to the other ECU,
which has a lower message ID.

This arbitration scheme produces a simple and predictable system, that can be analysed
to give guarantees on the real-time schedulability of a configured network, as we will
see in Chapter 5.

Given the restricted size of CAN frames, all extensions that add authentication to the
network must make a compromise on the space-time-complexity constraints. As we will
see later, both CANAuth and MaCAN use weak but fast cryptography. Both protocols
rely on extensions of the CAN Bus that allow longer payloads to avoid sacrificing the
standard message length, or worse splitting frames, which would likely interfere with
the real-time schedulability constraints of the applications. We now briefly present the
extensions.
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2.2.2 CAN+ and CAN-FD

CAN+ [ZWT09] is an extension of the CAN bus that makes it possible to encode
additional bits of payload in a CAN frame, while remaining backwards compatible. This
is done by exploiting the fact that CAN devices sample a bit signal at approximately
75% of the time frame allocated to a bit transmission, in order to wait for the channel
to stabilise. With new and more precise equipment, it is possible to encode more bits
between 15% and 55% of the time frame, hence encoding at least 15 additional bits for
every bit of payload transmitted on a 1Mbps CAN bus, and possibly even more in case
of slower networks.

One particular advantage of this approach is that the added payload is completely
transparent to standard CAN devices. CAN+ devices can be integrated in a CAN
network and — if the authenticated extensions are restricted on the additional bits of
payload — they can easily be ignored by non-CAN+ enabled ECUs. On the other hand
CAN+ requires more expensive equipment, which could deter from to its adoption.

CAN-FD [Har12] allows transmitting up to 64 bytes of payload by using a Flexible
Datarate (FD). The message arbitration phase proceeds as in standard CAN at the
normal data rate, while the payload and CRC codes are sent at a faster data rate,
allowing extended payload length. The payload length field has a different interpretation
in CAN-FD (i.e. 1), so that the timing remains compatible with standard CAN devices.

CAN bus hardware can also be used for CAN-FD, making it a much more attractive
evolution of the current car infrastructure. Differently from CAN+, the extended frames
in CAN-FD cannot be interpreted by standard CAN controllers, so this extension could
not support transparent authentication. Bosch is currently pushing for its adoption, so it
is very likely that it will be the standard of choice for adding authentication features to
this very simple protocol.

2.2.3 TTCAN

TTCAN (Time Triggered CAN) is an extension on top of the standard CAN protocol
that allows both time triggered and event triggered communication. The scheduling of
time triggered communication is defined statically at development time, while event
triggered communication (the standard mode in CAN) is allowed to happen only during
defined arbitration windows, and follows the standard priority based non-preemptive
scheduling mode.

The specific features of TTCAN result into increased real-time performance, and easier
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Figure 2.3: Example of TTCAN scheduling, showing four basic cycles, each starting
with the reference message, three arbitration windows in cycles 0 and 2,
two free windows in cycles 0 and 2, and the statically scheduled messages
in the remaining slots.

schedulability for periodic messages: it is no longer needed to compute a worst-case
response time analysis for periodic messages, since they have fixed scheduling and
therefore fixed response times. Lastly, since TTCAN allows both time triggered and
event triggered communication in the same network, there is no need for duplicating the
hardware to support both modes, hence reducing implementation costs.

In TTCAN the communication is organised in basic cycles, predefined time frames with
a fixed combination of exclusive, free and arbitrating windows. At the start of each
basic cycle, a chosen master ECU sends a reference message, that provides information
for time triggered control and allows all other ECUs to synchronise. Exclusive windows
are static time frames where only one predefined ECU at a specific time is allowed to
communicate over the network, arbitrating windows are dedicated to standard CAN
arbitration for event-triggered messages, while free windows are empty slots dedicated to
extensions, like the integration of third party accessories in a vehicle. A sequence of basic
cycles is called system matrix, which is continuously repeated over the execution of the
protocol. Figure 2.32 shows an example TTCAN system matrix, graphically representing
all the concepts just explained. For a detailed description of how communication is
handled in TTCAN we refer the reader to [FMD+00, HMF+02].

2Source: http://www.can-cia.org/index.php?id=166

http://www.can-cia.org/index.php?id=166
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2.3 Authenticated extensions

In this section we discuss the desired properties that authentication protocols in automo-
tive should enforce, and the specific constraints in which they have to operate. These
considerations led us to choice of studying MaCAN and CANAuth among a plethora of
proposals. In fact, these were the only protocols that met all the requirements. We will
present them in the next two subsections.

Properties We identified the following set of properties that authenticated protocols
in safety critical embedded systems should enforce. We relate these properties back to
Lowe’s taxonomy for authentication [Low97].

Key secrecy During the execution of the protocol the keys that are exchanged don’t get
revealed to the attacker.

Authentication If A is sending a message and B acknowledges it, then it is really A
who sent the message. The protocols we are going to analyse use keyed hashing
during session communication, so in principle any participant with the valid key
to check a message is also able to sign it. This results into a weaker notion of
authentication: if a message with a valid signature is sent over the network then it
is signed by one of the trusted parties. Nevertheless this can be related back to
Lowe’s notion of weak (non-injective) agreement, or weak authentication, since
all participants in a group can be viewed as a single principal.

Freshness If an authenticated message is sent through the network then the same
content and signature cannot be accepted twice. Freshness violations are also
called replay attacks. This notion of freshness correspond to the concept of
(injective) agreement in Lowe’s taxonomy.

Schedulability The real-time system must be schedulable (i.e. deliver the messages
within the deadlines) even under the presence of an attacker. We consider this
equivalent to the notion of recent agreement in Lowe’s taxonomy. Since it is not
possible to guarantee this in principle, we study which assumptions need to be
placed in the attacker model to provide such a guarantee.

Constraints The real-time nature of the CAN protocol imposes tight constraints on
a potential extension: first of all, authentication should be compatible with the timing
constraints. Since the current usage of the network is at about 80% of its capacity in
current applications [DBBL07], one cannot choose to use more traditional schemes
like challenge-response protocols, instead authentication has to fit into one single CAN
message.



2.3 Authenticated extensions 15

Since the protocol is running on microcontrollers with limited processing power, the
cost of computing the cryptographic primitives must be limited in order to respect the
deadlines imposed on the system. The response time for message transmission is clearly
affected by the processing time required by the sender to sign the message and by the
receiver to check the signature.

The second source of constraints is the space limitations that arise from the limited
payload length offered by CAN. Since authentication must take place in a single frame
transmission, it must either occupy part of the payload, limiting its size and the strength
of the cryptographic primitive as well, or use one of the two extensions (CAN+, CAN-
FD) above presented.

2.3.1 CANAuth

CANAuth [HSV11] is a compatible extension to the CAN protocol that adds authen-
tication features to the standard. It accomplishes this goal by exploiting the CAN+
extension of the CAN bus, which allows to add information by encoding extra bits in
between the sampling points of a traditional CAN transmission [ZWT09].

CANAuth provides a mechanism to verify message authenticity (but not the origin due
to limits in the CAN protocol), resistance to replay attacks, and group keys manage-
ment functionality while maintaining backwards compatibility with the CAN standard.
Multiple ECUs can share a single authentication key for a group of messages. At the
low level, patterns and masks on the message identifiers define to which authentication
group a message belongs to.

CANAuth uses the CAN+ extension to provide authenticated messages that are com-
patible with standard CAN ECUs. Since 120 bits is the lower bound of additional
information that can be used per each CAN packet3, CANAuth accomplishes its goal
within this space constraint.

The protocol consists of two phases: the first is key establishment, where a designated
master ECU initiates authenticated communication by establishing a session key that will
be used to authenticate messages; the second is message authentication, where a message
sent through the channel is signed with the session key previously communicated.

Key Establishment All ECUs connected to the CAN network have at least one pre-
shared key kp installed. To establish a session key (2.1) the designated master ECUi

3This happens with a 1 MHz CAN bus, as the one used in the network that runs high-integrity ASIL C-D
components.
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0 1 2 3 4 5 6 7

10 0︸ ︷︷ ︸
8 bit

countA︸ ︷︷ ︸
24 bit

rand︸ ︷︷ ︸
88 bit

(a) CANAuth frame for key establishment, containing the counter and random numbers.

0 1 2 3 4 5 6 7

11 0︸ ︷︷ ︸
8 bit

sigA︸ ︷︷ ︸
80 bit

(b) CANAuth frame for key establishment, containing the signature.

CAN-ID︸ ︷︷ ︸
11-29 bit

msg︸ ︷︷ ︸
64 bit

0 1 2 3 4 5 6 7

0 0︸ ︷︷ ︸
8 bit

cnt︸ ︷︷ ︸
32 bit

sig︸ ︷︷ ︸
80 bit

(c) CANAuth frame for message authentication. The first row represents the standard CAN ID
and payload fields, while the second row represents the CAN+ extension payload.

Figure 2.4: CANAuth message authentication frame

broadcasts a counter (countA, 24 bits) and a random number (rand, 88 bits). The
counter must be greater than every value already used during key establishment in order
to ensure freshness. At this stage every ECU in possession of the pre-shared key can
compute the session key (2.2) and the signature (2.3) using the received information.
To confirm that the transmission succeeded, the master ECU again sends the signature
(2.4), so that the other nodes in the network can compare it with their own computed
value.

ECUi→ ECU j :CH,countA,rand (2.1)

ks =hmac(kp,〈countA,rand〉) (mod 2128) (2.2)

sigA =hmac(ks,〈countA,rand〉) (mod 2112) (2.3)
ECUi→ ECU j :SIGN,sigA (2.4)

The session key ks is 128 bit long and relies on the strength of the hashing function
HMAC [KCB97]. The modulo operation is not required for the abstract protocol as
HMAC can produce longer signatures and ks is never sent through the network. However
it is necessary to fit the message in one frame, increasing the speed of the authentication
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process.

Message Authentication Once a session key is established, messages can be authenti-
cated through the channel. The message format, shown in Figure 2.4, shows the sizes of
the bit fields, where the first row represents the CAN bus frame (with 64 bit of payload)
and the second row represents the CAN+ extension (120 bit). To authenticate a message
M, ECUi sends a counter (countM , 32 bits) and the signature sigM in (2.6). To ensure
freshness countM has to be greater than any other previously used value.

sigM =hmac(ks,〈countM,M〉) (mod 280) (2.5)
ECUi→ ECU j :M,SIGN,countM,sigM (2.6)

2.3.2 MaCAN

MaCAN [HRS12] is an alternative proposal for doing authentication over the CAN bus.
The authors argued that there was a need for a different authentication scheme than the
one proposed by CANAuth. CANAuth relies on the extra bits offered by CAN+, and
therefore requires also switching to different hardware. Furthermore, it is more likely
that CAN-FD is going to be adopted.

MaCAN is a protocol that provides authentication capabilities while meeting the real-
time requirements of the traditional CAN networks. It is designed to be flexible and
backwards compatible, so as to accommodate a mixed environment of CAN and MaCAN
ECUs.

Single message authentication is done in 32 bits using the CMAC [Dwo05] keyed
hashing function, that fits in half of the standard CAN payload. The signature length
can also be extended when using CAN-FD in order to increase robustness and to allow
more than 64 bits of payload.

The designers of MaCAN discarded the use of more traditional challenge-response
protocols during the second phase of message authentication, because of the real-time
requirements that need to be met in the applications. They also considered problematic
the use of counter values to ensure message freshness. This is justified by the fact that
some ECUs in the automotive environment are unavailable at times due to sleep cycles,
thus creating synchronisation issues [HRS12].

The Crypt Frame As depicted in Figure 2.5 the crypt frame is a specific interpreta-
tion of the traditional CAN frame where the traditional CAN fields are split to encode
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authentication details. This format constitutes the basis for MaCAN’s additional func-
tionality.

The CAN ID in the crypt frame contains a source ID of 6 bits, which indicates the source
ECU. The first byte of data is used to send a 2 bit flag field and a 6 bit destination id,
which could indicate a specific ECU or a group of ECUs, in order to make the protocol
fully directional.

fi(src_id)︸ ︷︷ ︸
CAN-ID

dlc︸︷︷︸
DLC

0 1 2 3 4 5 6 7

ty dst_id︸ ︷︷ ︸
Data 0

Data︸ ︷︷ ︸
Data 1 – 7

Figure 2.5: The MaCAN crypt frame

Key establishment The key establishment phase of the protocol works as follows.
ECUi sends a challenge Ci to the designated Key Server (KS), signalling the requested
partner ECU j (2.7). KS replies with the session key SKi, j encrypted, together with the
challenge and the two identifiers of the two participants, with the pre-shared key Ki,ks
(2.8). KS also sends a challenge request to ECU j, in order to activate it (2.9).

After ECUi decrypts the session key, it sends an acknowledgement to the other partner,
authenticating it with a CMAC of its ID, group_ f ield and a timestamp in order to ensure
freshness (2.10). group_ f ield is a 24 bit field that signals which ECUs in a particular
group are already authenticated according to ECUi. After sending this message, ECUi
considers itself authenticated to the group.

Then a challenge is also sent from ECU j to KS and the protocol continues symmetrically
in order to authenticate also ECU j to ECUi (2.11–2.14).

ECUi→ KS :CH,Ci, id j (2.7)
KS→ ECUi :SK,senc(Ki,ks,Ci, id j, idi,SKi, j) (2.8)
KS→ ECU j :RC (2.9)

ECUi→ ECU j :ACK,group_ f ield,cmac(SKi, j,T, id j,group_ f ield) (2.10)
ECU j→ KS :CH,C j, idi (2.11)
KS→ ECU j :SK,senc(K j,ks,C j, idi, id j,SKi, j) (2.12)

ECU j→ ECUi :ACK,group_ f ield,cmac(SK j,i,T, id j,group_ f ield) (2.13)
ECUi→ ECU j :ACK,group_ f ield,cmac(SKi, j,T, id j,group_ f ield) (2.14)
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Message authentication Messages in MaCAN can get authenticated in two different
modes (and formats): the first mode is used to authenticate only the successive signal,
and allows only 16 bits of payload in the standard configuration. The second mode is
used to authenticate every broadcast signal that is sent, and allows 32 bits of payload
using CAN (the other 32 bits are taken by the CMAC signature). This is done by setting
the Prescaler to either 0 for having the next message authenticated, or n≥ 1 for having
every n-th message authenticated. Figure 2.6 shows the frame layout for each message
in the narration.

fi(src_id)︸ ︷︷ ︸
CAN-ID

0 1 2 3 4 5 6 7

1 1 dst_id︸ ︷︷ ︸
Data 0

Sig#︸ ︷︷ ︸
Data 1

Prescaler︸ ︷︷ ︸
Data 2

CMAC︸ ︷︷ ︸
Data 3-6

(a) Signal authentication request frame (SIG_AUTH_REQUEST, 2.15)

fi(src_id)︸ ︷︷ ︸
CAN-ID

0 1 2 3 4 5 6 7

1 1 dst_id︸ ︷︷ ︸
Data 0

Sig#︸ ︷︷ ︸
Data 1

Signal︸ ︷︷ ︸
Data 2-3

CMAC︸ ︷︷ ︸
Data 4-7

(b) Crypt frame with 32 bit signature (SIG_AUTH, 2.16)

fi(src_id)︸ ︷︷ ︸
CAN-ID

Signal︸ ︷︷ ︸
Data 0-3

CMAC︸ ︷︷ ︸
Data 4-7

(c) Standard CAN frame with 32 bit signature (SIG_AUTH, 2.17)

Figure 2.6: Frame formats for authentication

The protocol proceeds as follows: in (2.15) ECUi sends a signal authentication request to
ECU j, declaring which signal needs to be authenticated (Sig#), a Prescaler that specifies
the frequency of authenticated signals, and a signature for the message authenticity.
Depending on the choices made at design time, ECU j responds in one of the two formats,
sending the signal and the signature of the signal concatenated with the communicating
parties and a timestamp to ensure freshness (2.16–2.17).

ECUi→ ECU j :SIG_AUT H_REQ,Sig#,Prescaler,

cmac(SKi, j,〈Time, idi, id j,Sig#,Prescaler〉) (2.15)
ECU j→ ECUi :SIG_AUT H,Sig#,Signal,

cmac(SKi, j,〈Time, idi, id j,Signal〉) (2.16)
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ECU j→ ECUi :SIG_AUT H,Signal,

cmac(SKi, j,〈Time, idi, id j,Signal〉) (2.17)

Serving time All signatures include a timestamp that is not sent in cleartext over
the channel, thus the communicating ECUs need to be perfectly synchronised. If an
ECU is not synchronised, it has no information about the current timestamp, therefore
it is not able to check the signature and recognise a message as valid. This factor
produces synchronisation problems between ECUs, and thus a time server is introduced
to globally provide the necessary time information.

When a ECU (ECUi) needs to synchronise its internal clock with the global time, it
sends a challenge to the time server (2.18), and this later responds with the current time
information, signed with the challenge just received and the key shared only between
SKts,i (2.19).

ECUi→ T S :CH,Ci, f wd_id = 0 (2.18)
T S→ ECUi :Timet−1,cmac(SKts,i,〈Ci,Timet−1〉) (2.19)

2.4 Conclusions

Introducing security protocols in embedded systems — which were not initially designed
with security in mind and must obey to safety and cost considerations — presents tough
design choices that would not be required in a more traditional setting. Both MaCAN
and CANAuth make concrete choices, such as the length of signatures and keys, which
would be risible if considered out of context, but considering the typical usage of a car
and the bandwidth limitations of the internal network provide a sufficient assurance
within the tight constraints.

Having presented the concrete scenario, we now proceed to Chapter 3 by introducing
the necessary theoretical background on which we base our contribution.



CHAPTER 3

Formal Protocol
Verification

3.1 Introduction

Formal protocol verification aims at verifying security protocols by the use of formal
methods. Verification of security protocols is an area where formal methods have
flourished in the last two decades. The goal is to find, given an attacker model, a
protocol description and the desired security properties, whether the protocol is secure
with respect to the attacker, or the security properties are violated.

As opposed to traditional security proofs, which protocol designers and cryptographers
carry out by hand and are thus error prone, formal methods in security verification
aim at fully machine checked proofs, and possibly automated ones. Both in traditional
security proofs and in (semi-)automated verification, there have been two basic models
for protocol verification: the symbolic model — often referred to as Dolev-Yao — and
the computational model.

Briefly speaking, the symbolic model assumes that cryptographic functions are perfect
(i.e., unbreakable), and encodes them as operations on algebraic terms. By contrast, the
computational model assumes makes finer assumptions on the cryptographic functions.
In the computational model, cryptographic functions are programs that operate on
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bitstrings, and the security argument relies on assuming that breaking the security
mechanisms is a computationally hard problem.

In this chapter we are going to present verification techniques in both models. As we
will see, they both provide a different combination of advantages and shortcomings in
their application to formal methods.

3.2 Symbolic Model

The Dolev-Yao model [DY83] is a well-known attacker model for analysing security
protocols. Dolev-Yao assumes that the cryptographic primitives are perfect — hence
cannot be reversed without knowing the keys. It also assumes that the attacker knows
all public information, can freely manipulate the public channels, encrypt and decrypt
messages, and generate fresh values. Assuming that the cryptographic primitives are
perfect allows modelling protocols in symbolic terms, which greatly simplifies protocol
analysis.

For example, the symmetric encryption of a plaintext p with a key k in the Dolev-Yao
model is represented with the term senc(k, p), and the corresponding decryption function
of ciphertext c is represented with the term sdec(k,c), and the following equation holds:

sdec(k,senc(k, p)) = p (3.1)

In reality, symmetric encryption is supposed to be hard to invert, and it is possible
to recover the ciphertext from the plaintext with a certain amount of work. However,
(3.1) matches the perfect cryptography assumption in the symbolic model, where an
encryption function cannot be inverted unless the key is available.

As another example, hash functions are considered to be injective in the symbolic model,
hence we assume h(m) = h(m′) =⇒ m = m′. Real hash function implementations
cannot enjoy this property, because their codomain is strictly smaller than their domain.
However, cryptographically secure hashing functions have a good probability distribu-
tion in their codomain, and finding two messages m1 and m2 for which h(m1) = h(m2)
is supposed to be a hard problem. Figure 3.1 summarises how to encode a number of
common cryptographic primitives.

One particularly successful symbolic approach is to represent security protocols with
Horn clauses, which can then be solved using any Prolog system. In the next section we
detail how one can encode protocols into Horn clauses. In Section 3.3 we present the
Applied Pi-calculus [AF01], a process calculus designed to describe security protocols
in the symbolic model, and we show how to systematically analyse Applied Pi-calculus
programs by translating them into Horn clauses.
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Function Inverse
Symmetric encryption: senc(k,m) sdec(k,senc(k,m)) = m
Asymmetric encryption: aenc(pk(x),m) adec(sk(x),aenc(pk(x),m)) = m
Signatures: sign(k,m) —

Figure 3.1: Symbolic encoding of cryptographic primitives.

M ::= x | a[M1, . . . ,Mn] | f (M1, . . . ,Mn) variables, names and functions
P ::= p(M1, . . . ,Mn) predicates
C ::= P1∧·· ·∧Pn =⇒ P Horn clauses

Figure 3.2: Syntax for Horn clauses

3.2.1 Horn Clause Representation

The idea of representing security protocols with Horn clauses was initially conceived by
Weidenbach [Wei99] and later used in ProVerif [BS13]. ProVerif introduced a specific
resolution procedure for Horn clauses, that has shown experimentally better termination
and performance results than other Prolog systems [Bla01].

ProVerif has also the ability to verify injective and non-injective agreements, by adding
events to the Applied Pi-calculus and extending the analysis to verify non-injective
and injective agreements, according to Lowe’s [Low97] definitions. For a detailed
presentation of the Applied Pi-calculus with events and the analysis techniques used in
this thesis we refer to [Bla09].

Before discussing how to represent security protocols by means of Horn clauses, we
introduce in Figure 3.2 the syntax that will be used throughout the thesis. M ranges
over terms, P represents predicates and C represents clauses. We differ from standard
logic syntax in that we distinguish algebraic constructors into names (a[·]) and functions
( f (·)). We use the name notation to identify values like nonces and keys, and the
function notation to denote cryptographic primitives.

Representing security protocols Hereby we give an informal description of the most
common encoding of security protocols into Horn clauses. Section 3.3 will show how
to systematically construct Horn clauses, starting from protocol models described in the
Applied Pi-calculus.
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Horn clauses represent the interactions of a protocol with an attacker on a public channel,
and model the behaviour of the protocol and the attacker capabilities. They are better
explained with an example. Consider the well-known Needham-Schröder protocol,
where the two principals A and B want to establish a secure connection over an insecure
network using a trusted server S:

A→ S : A,B,NA (3.2)
S→ A : {NA,KAB,B,{KAB,A}KBS}KAS (3.3)
A→ B : {KAB,A}KBS (3.4)
B→ A : {NB}KAB (3.5)

The initiator A contacts the server indicating that it wants to communicate with B, and
uses a fresh nonce NA to mark a new session (3.2). In response S returns an encrypted
message with the key KAS pre-distributed to A and S. The message contains the nonce
NA, a key for the session KAB, the ID of the responder B, and a message for B containing
the current session key KAB and the ID of the initiator A, encrypted with the shared
key KBS between B and S (3.3). The initiator is then able to decrypt such message and
extract the encryption intended to B (3.4), who finally receives the session key KAB and
can start communicating with A (3.5).

The protocol can be encoded with the following Horn clauses:

=⇒ att(a[],b[],nA[]) (3.6)
att(a[],b[],nA[])

=⇒ att(senc(kAS[],〈nA[],kAB[],b[],senc(kBS[],〈kAB[],a[]〉)〉)) (3.7)
att(senc(kAS[],〈nA[],kAB[],b[],senc(kBS[],〈kAB[],a[]〉)〉))

=⇒ att(senc(kBS[],〈kAB[],a[]〉)) (3.8)
att(senc(kBS[],〈kAB[],a[]〉)) =⇒ att(senc(kAB[],nB[])) (3.9)

Clause 3.6 represents the message 3.2 sent from A to the server, stating that it wants
to communicate with B using the fresh nonce nA: att(a[],b[],nA[]) denotes that such
message is sent through the public channel and hence the attacker knows it. Clause
3.7 represents message 3.3, sent from the server to A. The message 3.2 is required to
activate the server, and therefore it is marked as a hypothesis to the clause. Similarly,
the clauses 3.8 and 3.9 represent the messages sent by A and B in the communication
steps 3.4 and 3.5, respectively.

These clauses denote the interaction between the principals in the protocol, where each
clause corresponds to an output. Each party in the communication is receiving and
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sending messages: in this encoding each input becomes a precondition to a clause,
and each output becomes a conclusion (or head) for the clause. The predicate att(·)
represents the values observed by the attacker over the public channel, where the
argument of the predicate is a term in the Dolev-Yao model.

Cryptographic primitives are also represented by Horn clauses. In the Herbrand universe
h(m) = h(m′)⇔ m = m′ holds, which as we saw models hash functions. The equation
sdec(k,senc(k,m)) = m represents the capability of the attacker to decrypt a message,
hence it can be encoded as:

att(senc(k,m))∧att(k) =⇒ att(m) (3.10)

that is, if the attacker knows an encrypted term, and it knows the key that was used for
the encryption, then it is able to derive the plaintext.

A secrecy goal can be represented as a query of the form att(x) where x is the term that
has to be proven secret. Let CP be the set of clauses that describe the behaviour of the
protocol and the capabilities of the attacker. If the formula CP∧¬att(x) is satisfiable,
then the protocol is secure, otherwise there might be an attack.

3.2.2 Saturation

The property is checked by saturating the set of Horn clauses CP. Intuitively, in the
saturation process, two clauses H1 =⇒ C1 and H2 =⇒ C2 are combined together if
the head of the first clause C1 “matches” with a fact in H2; the resulting clause will have
the hypotheses of both clauses, minus the hypothesis of H2 that matches with C1. The
combined clause is inserted in the knowledge base, while all subsumed clauses that are
present in the knowledge base are eliminated as redundant.

A specific goal (e.g. ⇒ att(x)) is reachable if a clause exists in the saturation sat(CP)
that concludes att(x) and has no hypotheses. If such clause is found, then the proof tree
for that derivation describes a potential attack, which can be reconstructed by the rules
that are applied.

For example, if the rule (3.10) is used in a derivation for an attack, then the attacker
has to perform a decryption; if the rule (3.6) is used, then the first message of the
Needham-Schröder protocol is exchanged during the attack, and so on. If after an
exhaustive search no derivation is found, then the model preserves the desired secrecy
property.

An exhaustive search over the infinite space of derivable facts can easily lead to non-
termination. Weidenbach’s original work in encoding protocols into Horn clauses [Wei99]
shows that the SPASS theorem prover does not always terminate in its search.
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He also provided decidability results for the saturation of the particular logic fragment
that he used. Blanchet later proposed a modified resolution procedure based on saturation
that yields better results in practice [Bla01], implemented in ProVerif. It is proven to
be sound and complete, semi-decidable procedure. The remainder of this section
summarises this form of saturation, and Theorem 1 shows its correctness.

ProVerif’s resolution procedure treats differently predicates that have the same form of
a predicate in a set S. We define such predicates to be in S-form. The procedure consists
of two phases: the first, which we will call S-saturation, takes an initial set of clauses B0
(which we distinguish syntactically by the use of→ instead of =⇒ ) and produces a
new set of clauses B1 where all the hypotheses are in S-form. The second phase tries to
find a derivation for the particular query⇒ Q using the rules in B1.

S-saturation The S-saturation phase consists in applying the following rule until no
new clauses can be introduced in B1.

H→C F0∧H ′→C′

σH ∧σH ′→ σC′
if

(1) σ=mgu(F0,C),

(2) F0 /∈rS, and

(3) ∀ F∈H, F∈rS

where the relation F ∈r S intuitively means that the predicate F is of the same form of
one of the predicates in S, and by default S = {att(x)}.

Once a clause is produced by this rule, its variables are renamed apart so that they are
fresh in B1, and duplicate hypotheses are removed. The resulting clause is inserted in
the knowledge base B1, and all other clauses that it subsumes are removed from B1.

The saturated set B1 is produced by applying the saturation rule, removing duplicate
hypotheses and subsumed clauses from the knowledge base, until a fix-point is reached.
Finally, all the rules that do not satisfy (3) are removed from the knowledge base.

Backwards chaining The second phase is backward chaining, and is exactly as in
standard Prolog. This procedure ends when it produces a clause that concludes the query
goal Q and contains no hypotheses.

H→C F0∧H ′⇒ Q
σH ∧σH ′⇒ σQ

if σ = mgu(F0,C)

THEOREM 1 (Correctness of S-saturation) If Q is a closed fact (and S is chosen such
that S-saturation terminates and backward chaining terminates on both B0 and B1),
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then
(a)⇒ Q is obtainable by backward chaining using the given set clauses B0
iff
(b)⇒ Q is obtainable by backward chaining using the S-saturated clause set B1.

PROOF.(b =⇒ a) If ⇒ Q is obtainable by the saturated rules in B1, then it is also
obtainable by rules in B0.

Let T be the derivation tree for⇒Q using rules in B1. It is easy to see that a rule R ∈ B1
is either already a rule in B0 or it is constructed by the saturation process. If R ∈ B0 and
is used in T , then the derivation tree needs no change. If R /∈ B0, then we can modify
the derivation tree in such a way that it only uses rules in B0 in place of R.

Let TR be the derivation tree for R using saturation. All the leaves in TR will be rules in
B0. We can substitute the node that applies R with a subtree constructed from the leaves
of TR. Therefore we obtain a proof for⇒ Q using one less rule in B1 \B0, and we can
repeat this process until we obtain a proof tree with only rules in B0.

(a =⇒ b) If⇒ Q is obtainable by the original rules in B0, then it is also obtainable by
the saturated rules in B1.

Let T0 be the derivation tree for backward chaining on B0 rules. We can construct a
derivation tree T1 using only rules in B1 as follows: keep a frontier of rules that need
to be considered, which is initially the set of leaves (closed facts). All the closed facts
have empty premises, so their rules are also in B1 and therefore can be added to T1.

3.3 The Applied Pi-Calculus

The Applied Pi-calculus [AF01] is a process calculus stemming from the Pi-calculus [MPW92].
As in the Pi-calculus, it features the ability to create new names, and to use such names
both as data and as communication channels. The distinguishing feature of the Applied
Pi-calculus is its ability to encode cryptographic primitives by introducing logic terms
in a fashion similar to those that we have seen in Section 3.2.1. In the following section,
we will present the calculus as described in [Bla09], without events.

The syntax for the Applied Pi-calculus is shown in Figure 3.3. As in the Herbrand
universe, we have terms M,N. We extend them in the process algebra to be either
variables, names and constructors (functions). In contrast to Figure 3.2, names in the
Applied Pi-calculus have no arguments.
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M,N ::= x,y,z variables
| a,b,c names
| f (M1, . . . ,Mn) constructors

P,Q ::= 0 terminated process
| ! P replication
| P |Q parallel composition
| new a; P restriction
| in(M,x); P input
| out(M,N); P output
| let x = g(M1, . . . ,Mn) inP else Q destructor application
| if M = N thenP else Q conditional

Figure 3.3: Applied Pi-calculus

In Section 3.2.1 we used equations on terms to symbolically represent cryptographic
primitives. In the Applied Pi-calculus we use rewrite rules, which can be seen as a
directed form of such equations. These have the form:

∀~x . g(M1, . . . ,Mn)→M

where we require that f v(M)⊆ f v(M1, . . . ,Mn)⊆~x. We will often omit the universal
quantifier in this presentation, and assume~x = f v(M1, . . . ,Mn). For example, asymmet-
ric decryption can be represented with the following rule:

adec(sk(xk),aenc(pk(xk),xm))→ xm

Given a rewrite rule r = g(M1, . . . ,Mn)→M, and a term t = g(N1, . . . ,Nn), there exists a
rewrite relation t→r t ′ iff there is a substitution σ = mgu(g(M1, . . . ,Mn),g(N1, . . . ,Mn))
unifying the left hand side of the rule with the term being rewritten, and t ′ = σ(M). We
will omit the subscript r and assume a fixed set of rewrite rules R in the remainder of
this chapter.

Next we introduce the syntax for processes. Processes P,Q are: the empty process 0,
the infinite replication of a process ! P, the parallel composition P |Q which runs two
processes in parallel, the restriction new a; P which binds a in P to a fresh name. The
primitives for communication are input in(M,x); P, which receives a value on channel
M that will be bound to x in P, and output out(M,N); P, which sends N on channel M.
The destructor operator let x = g(M1, . . . ,Mn) inP else Q applies non-deterministically a
rewrite rule r ∈ R producing the relation g(M1, . . . ,Mn)→r M and then executes P{M/x},
otherwise executes Q. Finally if M = N thenP else Q checks equality between terms M
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and N and executes P if the two terms are equal, Q otherwise, and event, which signals
an event in the execution of the process, marked with the term M. Note that this can be
seen as syntactic sugar over let x = eq(M,N) inP else Q, where the reduction of eq is
defined by the rewrite rule eq(x,x)→ x.

Syntactic sugar Throughout this thesis we will use shorthand notation for standard
constructs in the Applied Pi-calculus: we represent n-tuples with angle brackets notation
〈M1, . . . ,Mn〉 and assume the presence of the projections πi,n(〈x1, . . . ,xn〉)→ xi for 1≤
i≤ n. We will use pattern matching syntax on tuple inputs and omit empty else branches,
hence we write for example in(ch,x); in(ch,〈=f (x),y〉); P instead of in(ch,x); in(ch,z);
let x′ = π1,2(z) in(if x′ = f (x) then(let y = π2,2(z) in P else 0) else 0) else 0.

3.3.1 Semantics

Next we present the semantic rules for the Applied Pi-calculus, shown in Figure 3.4.
We will later link this semantics to a translation of Applied Pi-calculus processes into
Horn clauses, of which we can prove the soundness of the analysis. A configuration
P represents a multiset of concurrent processes P. Each rule P →P ′ is intended
as a transition between the parallel composition of all processes in P to the parallel
composition of all processes in P ′. That is:

|P∈PP

Rule NIL eliminates the empty process 0. Rule PAR splits the parallel composition of
P and Q in two separate processes. Replication REPL adds a copy of P to P , while
keeping the process under replication !P. This allows to have infinitely many copies of
the same process. Rule COM puts two processes in communication, matching the input
in(M,x) with the corresponding output out(M,N). The resulting processes are P1{N/x},
where the substitution replaces the input variable x with the matching output term N,
and P2. Rule NEW creates a fresh value a′ that is not present in the current configuration.
Rule LET-1 is applied when the rewrite rule g(M1, . . . ,Mn)→M succeeds, and replaces
x with M in P; when the rewrite rule fails, LET-2 is applied and Q the executed process.
Finally, rule IF-1 transitions to P if M = N, and rule IF-2 transitions to Q otherwise.

In order to formalise our translation from Pi-calculus processes into Horn clauses, we
switch to the term algebra of Figure 3.2 where names are constructor symbols, and we
extend the syntax of replication and restriction and instrument the semantics: the new
syntax for replication !i P introduces the unique replication index i; the new syntax for
restriction newl a; introduces the unique label l for the name a.
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P ]{0}→P NIL
P ]{P | Q}→P ]{P,Q} PAR
P ]{! P}→P ]{P, !P} REP
P ]{in(M,x); P1,out(M,N); P2}→P ]{P1{N/x},P2} COM
P ]{new a; P}→P ]{P{a′/a}} with a′ fresh NEW
P ]{let x = g(M1, . . . ,Mn) in P else Q}→P ]{P{M/x}} LET-1

if g(M1, . . . ,Mn)→M

P ]{let x = g(M1, . . . ,Mn) in P else Q}→P ]{Q} LET-2
if g(M1, . . . ,Mn) 6→

P ]{if M = N then P else Q}→P ]{P} if M = N IF-1
P ]{if M = N then P else Q}→P ]{Q} if M 6= N IF-2

Figure 3.4: Semantics for the Applied Pi-calculus

The semantics is extended by defining P as the multiset of tuples of a process P and
a lists of terms V , representing its environment. All the rules are trivially extended by
converting P ]{P} →P ]{P′} into P ]{(P,V )} →P ]{(P′,V )}, except for the
interesting cases of replication, restriction and communication:

P ]{(!k P,V )}→P ]{(P,k :: V ),(!k+1 P,V )} REP’
P ]{(newl a; P,V )}→P ]{(P{al [V ]/a})} NEW’
P ]{(in(M,x); P1,V1),(out(M,N); P2,V2)}

→P ]{(P1{N/x},N :: V1),(P2,V2)} COM’

The rule REP’ introduces an instance of P with replication index k – recorded in the
environment – and increases the replication index to k+1 to distinguish future instances
of the rule. The rule NEW’

3.3.2 Translation

As we have seen in Section 3.2.1, we can represent a security protocol specification with
a set of Horn clauses. In our introduction we could only give an intuitive understanding
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[[0]]HV = /0
[[!i P]]HV = [[P]]H(V ∪{xi})
[[newl a; P]]HV = [[P{al [V ]/a}]]HV

[[P | Q]]HV = [[P]]HV ∪ [[Q]]HV

[[in(M,x); P]]HV = [[P]](H ∧msg(M,x))(V ∪{x})
[[out(M,N); P]]HV = [[P]]HV ∪{H⇒msg(M,N)}
[[let x = g(M1, . . . ,Mn) in P else Q]]HV =⋃

{[[Pσ ]]HσVσ | ∀~x . g(M′1, . . . ,M
′
n)→M′ is a defined rewrite rule,

σ is a m.g.u. that satisfies
∧

i

Mi $M′i ∧ x$M′}∪ [[Q]]HV

[[if M = N then P else Q]]HV =
⋃
{[[Pσ ]]HσVσ | σ ∈ mgu(M,N)}∪ [[Q]]HV

Figure 3.5: Translation of Applied Pi-calculus processes into Horn clauses

of how to construct this logical specification. Now we have a formal specification
language — the Applied Pi-calculus — and a formal semantics, hence we can construct
an automatic translation from a protocol specification into a set of Horn clauses. As the
Applied Pi-calculus uses terms as channels, we extend our Horn clause representation
of Section 3.2.1 with a new predicate, msg(M,N), used to record that message N is
present in channel M. This allows to encode secret channels, as we will see by the rules.

Figure 3.5 presents the rules for translating each construct of the calculus into a set of
Horn clauses. The translation function [[P]]HV takes as parameters the process P to be
translated, an increasing set of hypotheses H, and a set of terms V that are either session
identifiers (variables), or accumulated inputs to the current process.

The translation for the stuck process 0 produces an empty set of clauses. The translation
for replication !iP introduces the session identifier i as a variable xi in V , and translates
the continuation with the new parameters. Restriction newl a; P introduces a substitution
for P, where a is replaced with a name al [V ] that depends on the terms in V and the label
l. Parallel composition P | Q produces the union of the clauses for the translation of the
two processes P and Q. The rule for input in(M,x); P adds a hypothesis of the form
msg(M,x), hence requiring the presence of a message x on channel M to proceed with P;
it also adds x to the set of influencing terms. The rule for output out(M,N); P produces
a clause with H as hypotheses, and the predicate msg(M,N) as conclusion. Intuitively
this indicates that if all inputs (hypotheses in H) are satisfied, then the message N will
be sent on channel M. Finally the rule for let x = g(M1, . . . ,Mn) in P else Q takes
an applicable rewrite rule g(M′1, . . . ,M

′
n)→M′ and computes the most general unifier
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σ that satisfies the equality constraints Mi $ M′i and x $ M′. This produces a most
general substitution σ that is applied to the resulting process P. Similarly the rule
for if computes the unification σ between M and N, if one exists, and applies it as a
substitution for the continuation P. As an over-approximation, both in the rule for let
and the rule for if, the process Q in the else branch has no applied constraint.

For example, the process if a= a then0 else out(c,secret); 0, assuming the environment
that restricts all the free variables, gets translated to the clause: ⇒ msg(c[],secret[]).
Hence the fact msg(c[],secret[]) is reachable from the generated Horn clauses, but secret
can never be sent through channel c, according to the semantic rules. Here lies the
strength, as well as the weakness, of this translation: some facts will be reachable that
do not correspond to the system’s behaviour, however all this behaviour is captured by a
reachable fact (as we will show soon in Section 3.3.3) and we avoid a potential source
of non-termination [].

Standard attacker predicates Next we define a fixed set of rules CA, representing
the capabilities of the attacker.

The attacker can send any message he knows:

att(xc)∧att(xm)⇒msg(xc,xm)

The attacker can read on known channels:

msg(xc,xm)∧att(xc)⇒ att(xm)

The attacker can apply any knwon n-ary constructor f on known data:

att(x1)∧·· ·∧att(xn)⇒ att(f (x1, . . . ,xn))

The attacker can apply any public destructor ∀~x . g(M1, . . . ,Mn)→M:

att(M1)∧·· ·∧att(Mn)⇒ att(M)

Finally, the attacker knows the public channel shared with the protocol and at least a
name, to which we assign a special label A for the attacker:

⇒ att(ch[]) ⇒ att(aA[xi])

3.3.3 Soundness

The translation that we presented in the previous section allows to analyse a process P,
in the presence of an attacker A, who interacts by means of the public channel ch. This
result is achieved by means of the following theorem.
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THEOREM 2 (SOUNDNESS OF THE TRANSLATION) Let P and A be two processes,
representing the protocol and the attacker – where new ch; (P |A) is closed, let Q =
msg(M,N) be a reachability query, let CP = [[P]] /0[ch 7→ ch[]] be the translation of the
protocol P into Horn clauses, and let CA be the fixed set of rules for the attacker.

If {new ch; (P |A)} →∗ P ] {out(M′,N′); P′} and there exists σ m.g.u. satisfying
M $M′ and N $N′, then the set of facts FP derivable from the saturation sat(CP∪CA)
contains msg(M,N)

σ
. In particular, if att(M)

σ
, then also att(N)

σ
.

The proof of this theorem relies on the construction of a typing judgement for processes,
which we are going to introduce for our extension of the Applied Pi-calculus in Sec-
tion 6.7. Essentially, this typing judgement establishes a relation between the semantics
and the set of clauses CP∪CA, ensuring that whenever an output out(M,N) is derivable
from the initial configuration, the corresponding predicate msg(M,N) is also reachable
in the set of saturated facts FP. This relation is established both between the protocol P
and the set of clauses CP, and between any arbitrary attacker process A with access to
the public channel and the fixed set of clauses CA.

As a direct consequence of Theorem 2 we have the following fact: if msg(M,N) /∈
FP, then for any substitution σ with Dom(σ)⊆ fv(M,N) the output out(Mσ ,Nσ ,) is
unreachable from the initial configuration.

3.4 Computational Model

The symbolic representation of security protocols that we presented in Section 3.2 makes
simplifying assumptions on reality. For example, the rewrite rule sdec(k,senc(k,m))→
m does not represent all the possible behaviours of an encryption function. This repre-
sentation excludes for example that the attacker can change specific bits of the ciphertext
knowing the structure of the messages being sent, and does meaningful manipulations
on encrypted data.

Consider the case where A sends to B an encrypted transaction:

A→ B : senc(kAB,〈A,B,send,100〉)

If the intruder knows the structure of the message, she can try to insert another value at
the end to gain an advantage, but only if the encryption is malleable: that is, only if the
intruder can transform a valid ciphertext into another valid ciphertext.

In the computational model, the attacker is a deterministic Turing machine operating
on bitstrings, and cryptographic functions are computable in polynomial time, while
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their inverses are assumed to be hard to compute (e.g., not deterministic polynomial
time functions). A security proof in this model consists of a sequence of games [Sho04,
BR04] — probabilistic programs where the attacker is allowed to freely interact with
the protocol — where the initial game is the real protocol, and each successive game is
the result of a transformation of the previous probabilistic program, where the distance
in the probability distribution and the traces generated by the two games is negligible.
Here negligible means bounded by a number smaller than the inverse of any polynomial
in the security parameter — e.g., the size of a key, nonce etc.

The original game (program) must contain a failure event — for example an event
that occurs when the attacker can forge a MAC signature, or distinguish between two
different ciphertexts. Each transformation has associated a difference in probability of
reaching such failure event, and the final game is one such that the probability of failure
is very easily computed, most often being 0, 1 or 1

2 . If the sequence is represented as:

G0
p1→ G1

p2→ G2 . . .
pn→ Gn

then the proof gives a probability bound to attacking the system that is the sum of all the
distances:

n

∑
i=1

pi

3.4.1 Building Blocks

Here we mention some of the most common security properties that are used in compu-
tational proofs. The first three properties (EAV, IND-CPA, IND-CCA) present different
security requirements for encryption, and the last (INT-CMA) defines the requirements
for secure message authentication codes.

Eavesdropping Security (EAV)

1. The attacker sends two messages m0 and m1 to the protocol

2. The protocol samples a random bit b $←{0,1}, then encodes c← senc(k,mb) and
gives it to the attacker.

3. The attacker guesses which plaintext mb′ has been encrypted, and outputs b′.

4. If b = b′ then the attacker won the game.
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This game formalises the ability of the attacker to gain information from one encryption,
and relate it to one of the two original plaintexts m0, m1. If the attacker can win the
game with probability that is non-negligibly higher than 1

2 , then it has an advantage
over a purely random guess. Hence the attacker can recover some information about the
plaintext. If the probability that the attacker wins the game is bounded by 1

2 plus the
inverse of any polynomial p(n) on the security parameter n, then the scheme is defined
to be IND-EAV secure.

Note that the attacker can choose both messages, including their length. The scheme
should hide this information. However an encryption that is secure by this definition
can still reveal information about the message.

If the encryption is deterministic, then an attacker is able to check whether two cipher-
texts c0 = senc(k,m0) and c1 = senc(k,m1) are the encryption of the same plaintext,
simply by comparing them: c0 = c1 =⇒ senc(k,m0) = senc(k,m1), because the en-
cryption is a bijective function.

Indistinguishability under Chosen Plaintext Attack (IND-CPA)

1. The protocol generates a random key k.

2. The attacker has access to the encryption oracle senc(k, ·), and outputs a pair of
messages m0, m1 of the same length.

3. The protocol chooses a random bit b $←{0,1} and then computes the encryption
c← senc(k,mb) and gives it to the attacker.

4. The attacker continues to have access to the oracle senc(k, ·), and guesses which
plaintext has been encrypted by outputting b′.

5. If b = b′ then the attacker won the game.

Similarly to the definition of eavesdropping security, the encryption scheme is IND-CPA
secure if the attacker is not able to win the game with probability non-negligibly higher
than 1

2 . That is, the attacker does not have a better strategy than a purely random guess.

This definition differs from eavesdropping security in that the attacker has access to
the encryption oracle, before and after receiving the encrypted text c. An encryption
scheme that satisfies this definition must behave randomly. Encrypting two times the
same plaintext m with the same key k results in two different ciphertexts, otherwise the
attacker could ask the oracle to encrypt one of the two plaintexts (e.g. m0) and compare
it to the challenge.
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Indistinguishability under Chosen Ciphertext Attacks (IND-CCA)

1. The protocol generates a random key k.

2. The attacker has access to the encryption oracle senc(k, ·) and the decryption
oracle sdec(k, ·), and outputs a pair of messages m0, m1 of the same length.

3. The protocol chooses a random bit b $←{0,1}, encrypts mb as c← senc(k,mb),
and outputs the result.

4. The attacker continues to have access to the encryption and the decryption oracles
senc(k, ·) and sdec(k, ·), but is not allowed to decrypt the ciphertext c received
by the protocol. However, it cannot use the decryption oracle on the challenge
ciphertext c. With this information, the attacker has to guess which message has
been encrypted, and outputs a bit b′.

5. If b = b′ then the attacker has won the game.

Again, similarly to the previous definitions, an encryption scheme is IND-CCA secure
if the probability that the attacker wins the game is bounded by 1

2 plus the inverse of any
polynomial p(n) on the security parameter n. That is, the attacker has no better strategy
than making a purely random guess.

This definition strengthens IND-CPA security by giving the attacker access to the decryp-
tion oracle sdec(k, ·), with the sole requirement that the challenge ciphertext c cannot be
decrypted. Note that an encryption scheme that allows meaningful transformations on
encrypted data would not be IND-CCA secure. If the attacker can modify the challenge
c into a valid ciphertext c′ — flipping one bit, for example — then c′ can be decoded
into m′ by the decryption oracle, since it is not the original challenge. This would give
the attacker a non-negligible advantage, by learning a plaintext m′ that is meaningfully
related to one of the two initial plaintexts m1 and m2. Therefore, IND-CCA resistant
schemes are also said to be non-malleable.

Integrity under Chosen Message Attacks (INT-CMA)

1. The protocol generates a random key k.

2. The attacker has access to the MAC oracle mac(k, ·) and outputs a pair (m, t) of a
message and a tag. Let Q be the set of queries asked by the attacker to the MAC
oracle.

3. If verify(k,m, t) = 1, hence verification succeeds, and m /∈Q, then the attacker
wins the game.
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A MAC code is INT-CMA secure if the probability that the attacker wins the game is
negligible.

Tool Support As discussed, the game-playing technique can be formalised as a
set of program transformations. Halevi advocated about a decade ago the need for
computer supported security proofs [Hal05]. The formal methods community took
up the challenge, and has recently come up with formal approaches that support the
cryptographer in their security proofs. To construct such a tool one needs a formal
semantics in which these games can be expressed, and a technique to reason about the
games.

Barthe et al. propose the EasyCrypt framework [BGHB11, BGZB09], which uses a
probabilistic extension of the WHILE language — called pWHILE — and the proba-
bilistic relational Hoare logic to reason about program transformation. The probabilistic
relational Hoare logic is itself an extension of Hoare logic with judgements of the form
{P}G1 ∼p G2{Q}. In one such judgement G1 and G2 are the programs (games) and P
is a precondition on the programs that must hold before the execution G1 and G2. The
programs G1 and G2 satisfy the judgement if they both terminate and satisfy Q with a
probability that is bounded by p. This type of judgement closely maps the structure that
we have seen in this section.

Another emerging approach is the one employed by CryptoVerif [Bla07], with a language
similar to the Applied Pi-calculus, which employs a probabilistic semantics and a fixed
set of game transformations to automatically derive a proof of security from the original
game representing the protocol.

Finally we mention the F* project [SCF+13], which we are going to use in Chapter 7
of this thesis, and its previous incarnations FINE and F7 [CCS10, BBF+11]. F* is an
extension of the ML family of functional languages with refinement types, types with
attached formulas on data, that can be used to construct security proofs around protocol
code.

3.5 Conclusion

In this chapter we have seen two different models for verifying security protocols: the
symbolic Dolev-Yao model and the computational model. Both models are amenable
to the application of semi- or fully-automated formal verification techniques, and their
features imply trade-offs over the expressive power vs. the complexity of the verification
approach.
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CHAPTER 4

Formal Analysis of
Authenticating CAN

Protocols

As we saw in Chapter 2, the CAN bus is an embedded real-time network protocol
that cannot rely on off-the-shelf schemes for authentication, because of the bandwidth
limitations imposed by the network. As a result, both academia and industry proposed
custom protocols that meet the particular constraints of this network, with solutions that
may be deemed insecure if considered out of context.

With this chapter we set to analyse two proposed security protocols for CAN — MaCAN
and CANAuth — using ProVerif. Although there are plenty of different proposals being
developed in the last five years, for our analysis we selected the only two that, by
their requirements, were plausible candidates for adoption by our industrial partners in
SESAMO1.

1http://sesamo-project.eu

http://sesamo-project.eu
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4.1 Introduction

In this chapter we analyse the MaCAN and CANAuth protocols described in [HRS12]
and [HSV11], with the assistance of the ProVerif protocol verifier [BS13].

Our analysis of MaCAN shows two flaws in the specification, one in the key distribution
scheme, and another in signal authentication.

The first flaw allows the initiating principal to believe that a session has been established,
while the other parties have not received a session key. In MaCAN, key distribution hap-
pens between three or more parties: an initiator, responsible for starting the procedure,
the key server, responsible for delivering the session key, and one or more responders,
which also need to obtain the session key from the key server.

The slightly asymmetric behaviour of the protocol allows an attacker to reuse the sig-
nature of the acknowledgement message sent by the initiator, in order to simulate an
acknowledgement message coming from the responder, therefore completing authenti-
cation on one side. Furthermore, the attacker can manipulate the behaviour of the key
server so that the responder never receives a request for authentication, and therefore the
responder is never activated. This leads to an incomplete session establishment where
one of the parties believes that it can communicate authenticated messages while the
other will refuse such messages because it is not in possession of a valid session key.

Our proposed correction removes the asymmetry in the two phases of the protocol, and
prevents the attack. We model our modification of the MaCAN protocol in ProVerif and
discover another minor problem in the format of the acknowledgement message, that
allows the attacker to successfully send acknowledgements with the signature of another
principal in group sessions. Adding source information to the signature overcomes
this problem, and allows us to prove the desired authentication property in the key
establishment phase.

The second flaw allows repurposing an authenticated signal when a specific message
format is used. An attacker can forge the signal number without this being detected,
allowing, for example, the message with meaning “speed is 25” to be modified to
“temperature is 25”.

Our correction modifies the signature so that the signal number is considered, preventing
that particular attack form happening. However, the nature of the protocol allows replays
within the validity time frame of a message, which can be rather long for its applications.
Here we contribute with a discussion that clarifies which properties an application
designer can expect from MaCAN, and needs to take into consideration when designing
a system.
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Next we analyse the CANAuth protocol with ProVerif. While the analysis reveals a
potential attack in the authentication, we argue that it is a false positive, due to the
limitations of the analysis provided by ProVerif, which overapproximates by abstracting
away state information. These considerations pave the way for the work presented in
Chapter 6, where we extend the applied pi-calculus into a language — that we call
Set-Pi — with explicit stateful constructs. Set-Pi allows in this case a more faithful
representation of the protocol, and a more precise analysis that proves the desired
authentication property in our models. Set-Pi models of the two CAN protocols that do
not suffer from such over-approximations are shown in Appendix B.3.

4.2 Formal Analysis of MaCAN

4.2.1 Key Establishment

Figure 4.1 shows our model of the MaCAN authentication procedure in the Applied
Pi-calculus. All communication happens on a broadcast channel c, while we use a
private channel psk for the key server to store the long term keys of the ECUs. The
process KS represents the key server, ECUi is the initiator process and ECU j is the
responder process.

Due to the abstractions introduced by ProVerif, we have to change some important
aspects of the protocol in order to obtain a precise analysis. First and foremost, we
remove timestamps from signatures, because ProVerif abstracts away the concept of
state in its translation of processes to Horn clauses. Then we treat group_ f ield as a
name instead of a bit vector in order to simplify the models. Finally we encode long
encrypted messages that would be split into multiple frame as a single message. We
take these changes into consideration when we interpret the results of our analysis and
we argue to which extent they introduce overapproximations.

Current MaCAN configurations have clock rates of 1 second, so it is safe to assume
that timestamps can be treated as constants, since the key establishment procedure can
complete within a single clock tick. Note that it is undesirable to have high clock rates
due to the following constraint: the receiving end of an authenticated signal needs to
check a signature against all valid timestamps within the possible reception window
of the message. Therefore, increasing the clock rate also requires more computation
on the receiving end, which in turn increases the worst case response time for a signal
transmission. The length of the reception window for a message can be obtained
with schedulability analysis [DBBL07] and depends on the number of higher priority
messages that can delay the transmission of the message in question. In Chapter 5 we
adapt the schedulability analysis results for the CAN bus [DBBL07] to include the costs
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KS,in(c,〈i,=CH,=ks,ci, j〉);
in(psk,〈=i,ki〉);
new ski j;
event sesski(i, j,ci,ski j);
out(c,〈ks,SK, i,senc(ki,〈ci, j, i,ski j〉)〉);
out(c,〈ks,RC, j〉);
in(c,〈= j,=CH,=ks,c j,=i〉);
in(psk,〈= j,k j〉);
event sessk j( j, i,ci,ski j);
out(c,〈ks,SK, j,senc(k j,〈c j, i, j,ski j〉)〉);
in(c,〈=ski j〉);
event revealed(ski j); 0

ECUi ,new ci;
event authStarti(i, j,ci);
out(c,〈i,CH,ks,ci, j〉);
in(c,〈=ks,=SK,=i,resp〉);
let 〈=ci,= j,=i,ski j〉= sdec(ki,resp) in
event authAcki(i, j,ci,ski j);
out(c,〈i,ACK, j,cmac(ski j, j,AK)〉);
in(c,〈= j,=ACK,=i,=cmac(ski j, j,ACK)〉);
event authEndi(i, j,ci,ski j); 0

ECU j ,in(c,〈=ks,=RC,= j〉);
in(c,〈i,=ACK,= j,ack〉); new c j;
event authStart j( j, i,c j);
out(c,〈 j,CH,ks,c j, i〉);
in(c,〈=ks,=SK,= j,resp〉);
let 〈=c j,=i,= j,ski j〉= sdec(k j,resp) in
if ack = cmac(ski j, j,ACK) then
event authAck j( j, i,c j,ski j);
out(c,〈 j,AK, i,cmac(ski j, j,ACK)〉);
event authEnd j( j, i,c j,ski j); 0

Figure 4.1: MaCAN key establishment process in the Applied Pi-calculus
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of preparing and then checking signatures.

In Figure 4.1, KS represent the key server process. It waits on the public channel for
a challenge ci to establish a session between ECUi and ECU j, retrieves ki from its
database, produces a fresh session key ski j, outputs the encoding of the session and
sends a request for challenge to ECU j. It then waits for a challenge c j from ECU j,
retrieves its key k j, and encodes the session key ski j in a message for ECU j that includes
the challenge c j. Finally, it waits for the session key to be sent in clear text on the
channel to signal the event revealed(skik). If the event is not reachable then the secrecy
of ski j is guaranteed.

ECUi creates a new challenge ci, sends the challenge to the key server, waits for the
response of the key server and decodes the message to retrieve the session key ski j.
ECUi then sends an acknowledgement to ECU j signed with ski j, and waits for a similar
acknowledgement from ECU j to conclude the key establishment procedure.

ECU j waits for a request for challenge from the key server, reads the acknowledgement
from ECUi, sends its challenge to the key server, receives the session key ski j, verifies
the validity of the acknowledgement from the other party and finally sends its own
acknowledgement, concluding its part of the procedure.

Analysis results We analysed the following five properties for key establishment:

(i) the secrecy of long term keys ki,k j,

(ii) the secrecy of session keys ksi j,

(iii) the agreement between the events authStarti(i, j,ci), sesski(i, j,ci,ski j),
authAcki(i, j,ci,ski j), authEndi(i, j,ci,ski j), and

(iv) the agreement between the events authStart j( j, i,c j), sessk j( j, i,c j,ski j),
authAck j( j, i,c j,ski j), authEnd j( j, i,c j,ski j).

Using ProVerif, we were able to verify the secrecy properties (i,ii), but we found a
counterexample for the event correspondence (iii), where an attacker can run the protocol
in such a way that ECUi receives the proper session key from message (2.12) instead of
(2.8), leaving the ECU j unauthenticated. The correspondence (iv) for ECU j is proven,
therefore it can only authenticate as intended by the protocol.

Figure 4.2 shows our reconstruction of the attack trace produced by ProVerif for the
query of events related to ECUi (property iii), thereby providing feedback to the protocol
designer about how to amend the protocol. In this trace “ ” represents a message
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event authStarti(idi, id j,Ci); (4.1)
ECUi KS :CH,Ci, id j (4.2)

M[ECU j]→ KS :CH,a, idi (4.3)
event sesski(id j, idi,a,SKi, j); (4.4)

KS→ ECU j :SK,senc(Kks, j,〈a, idi, id j,SKi, j〉) (4.5)
KS ECUi :RC (4.6)

M[ECUi]→ KS :CH,Ci, id j (4.7)
event sessk j(idi, id j,Ci,SKi, j); (4.8)

KS→ ECUi :SK,senc(Kks,i,〈Ci, id j, idi,SKi, j〉) (4.9)
event authAcki(idi, id j,SKi, j); (4.10)

ECUi→ ECU j :ACK,cmac(SKi, j,〈T, id j,group_ f ield〉) (4.11)
M[ECU j]→ ECUi :ACK,cmac(SKi, j,〈T, id j,group_ f ield〉) (4.12)

event authEndi(idi, id j,SKi, j); (4.13)

Figure 4.2: Attack trace to MaCAN key establishment

deleted by the attacker (this can be achieved by jamming the signal at the proper time
or by making one of the participating nodes or an involved CAN gateway unavailable)
and M[x] represent the malicious agent impersonating x (it can be done by sending a
message with the proper CAN-ID).

This attack relies on the possibility to remove messages from the channel. The attacker
learns the current challenge and the destination ID (4.2), while suppressing the message.
It then impersonates ECU j and starts sending a random challenge (4.3), initiating the
communication with the key server in the opposite direction. The key server then sends
a legitimate message to ECU j (4.5), who will ignore it as it did not request a session
key. Then the key server sends a request for challenge to ECUi (4.6), which may be
suppressed by the attacker. The attacker remembers the previous challenge from ECUi
and replays it on the key server (4.7), receiving the session key encrypted for ECUi in
return (4.9). Finally ECUi sends its acknowledgement message (4.11), and since the
form of the two acknowledgement messages is the same for ECUi (2.10) and ECU j
(2.13), the attacker can impersonate ECU j and send back the same signature (4.12) so
that ECUi believes that also ECU j is authenticated.

Corrected model We propose a correction of the model where the asymmetries
that cause the improper authentication behaviour are removed. Figure 4.3 shows the
corrected procedure.
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ECUi→ KS :CH,Ci, id j (4.14)
KS→ ECUi :SK,senc(Ki,ks,〈Ci, id j, idi,SKi, j〉) (4.15)
KS→ ECU j :RC (4.16)

ECUi→ ECU j :ACK,group_ f ield,cmac(SKi, j,〈T, idi, id j,group_ f ield〉) (4.17)
ECU j→ KS :CH,C j, idi (4.18)
KS→ ECU j :SK,senc(K j,ks,〈C j, idi, id j,SKi, j〉) (4.19)

ECU j→ ECUi :ACK,group_ f ield,cmac(SKi, j,〈T, id j, idi,group_ f ield〉) (4.20)

Figure 4.3: Modified MaCAN key establishment procedure

To guarantee the agreement property we modify the form of the acknowledgement
message. The CMAC signature is now using the current timestamp, the source and
the destination of the message as content. Since CMAC is a hashed signature, adding
more parameters to the function does not affect the final payload size, therefore the
modified protocol still fits the space constraints of CAN. The two acknowledgement
messages (4.17) and (4.20) are now symmetrical. We added the source information on
the signed hashes, as well as the destination. This allows not only to prove the necessary
correspondence for two-party sessions, but in case of group sessions it removes the
chance for an intruder to reuse an acknowledgement message of another principal.

Figure 4.4 shows the corrected model in the Applied Pi-calculus, where we applied the
modified behaviour for the three processes. The properties (i–iv) that we defined in
Section 4.2.1 have all been proved in this model.

4.2.2 MaCAN message authentication

During a session, authenticated parties can send authenticated signals. As described
in Section 2.3.2, the transmission of an authenticated signal needs to follow a specific
request (2.15). Depending on whether the authenticated signal fits in 32 bits — that
is half of the available CAN payload size — the responding ECU uses either message
format (2.17) or (2.16).

Figure 4.5 shows two communicating processes that exchange authenticated messages
according to message format (2.16). ECUi requests an authenticated signal with the first
output according to (2.15). Then it keeps waiting for an authenticated signal and checks
whether the signature corresponds to its own computation of it, marking with an accept
the acceptance of an authenticated signal. On the other side ECU j receives a request
for authentication, checks its signature and starts sending signals, marking with a send



46 Formal Analysis of Authenticating CAN Protocols

KS,in(c,〈i,=CH,=ks,ci, j〉);
in(psk,〈=i,ki〉);
new ski j;
event sesski(i, j,ci,ski j);
out(c,〈ks,SK, i,senc(ki,〈ci, j, i,ski j〉)〉);
out(c,〈ks,RC, j, i〉);
in(c,〈= j,=CH,=ks,c j,=i〉);
in(psk,〈= j,k j〉);
event sessk j( j, i,ci,ski j);
out(c,〈ks,SK, j,senc(k j,〈c j, i, j,ski j〉)〉);
in(c,=ski j);
event revealed(ski j); 0

ECUi ,new ci;
event authStarti(i, j,ci);
out(c,〈i,CH,ks,ci, j〉);
in(c,〈=ks,=SK,=i,resp〉);
let 〈=ci,= j,=i,ski j〉= sdec(resp,ki) in
event authAcki(i, j,ci,ski j);
out(c,〈i,ACK, j,cmac(ski j, i, j,AK)〉);
in(c,= j,=ACK,=i,=cmac(ski j, j, i,ACK));
event authEndi(i, j,ci,ski j); 0

ECU j ,in(c,〈=ks,=RC,= j, i〉);
new c j; event authStart j( j, i,c j);
out(c,〈 j,CH,ks,c j, i〉);
in(c,〈i,=ACK,= j,ack〉);
in(c,〈=ks,=SK,= j,resp〉);
let 〈=c j,=i,= j,ski j〉= sdec(resp,k j) in
if ack = cmac(ski j, i, j,ACK) then event authAck j( j, i,c j,ski j);
out(c,〈 j,AK, i,cmac(ski j, j, i,ACK)〉); event authEnd j( j, i,c j,ski j); 0

Figure 4.4: Fixed version of the MaCAN key establishment process in the Applied
Pi-calculus
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ECUi ,out(c,〈i,SIG-AUTH-REQ, j,sig#,n0,cmac(ski j,〈i, j,sig#,n0〉)〉);
!(in(c,〈= j,=SIG-AUTH,=i,sig#,signal,xsig〉);

if xsig = cmac(ski j,〈i, j,signal〉) then
event accept(sig#,signal); 0)

ECU j ,in(c,〈i,=SIG-AUTH-REQ,= j,sig#, prescaler,xs〉);
if xs = cmac(ki j,〈i, j,sig#, prescaler〉) then
!(new signal; event send(sig#,signal);
out(c,〈 j,SIG-AUTH, i,sig#,signal,cmac(ski j,〈i, j,signal〉)〉); 0)

Figure 4.5: MaCAN message authentication processes in the Applied Pi-calculus.

event the transmission of a fresh signal.

The original paper [HRS12] is not clear about whether the CMAC signature includes
the signal number. The process in Figure 4.5 does not include the signal number as part
of the signature for signals. Thus, the correspondence between send(sig#,signal) and
accept(sig#,signal) is not verified. An attacker can read a signed signal with a sig#
value re-transmit the signal with a different sig# if multiple sig# have been requested
within the same session.

A simple solution to this problem is to add sig# as part of the signature. With the
modified process, which we omit for sake of brevity, we are able to verify the agreement
between the events send(sig#,signal) and accept(sig#,signal).

Still we fail to verify an injective agreement between the two events. Given our specifica-
tion it is possible to accept twice the same message, and this could constitute a freshness
violation. Our abstraction removes all timestamps, as the modelling technology cannot
efficiently deal with them, and we previously argued that they can be ignored and treated
as constant within their validity window.

As current configurations have clock rates of one second, this constitutes a potentially
serious flaw in the protocol. Imagine MaCAN authenticating messages for the brake
control unit of a vehicle. In case of emergency braking at high speed, the driver might
be tempted to go all the way down with the foot on the brake pedal, activating the ABS.
The ABS control unit works by sending messages to the brake control unit, releasing
the brakes at a fast interval, so that the wheels do not slide on the ground, reducing
their grip. In this example an attacker could wait for a “release message” from the ABS
control unit, and replay it for its whole validity, therefore effectively disabling the brake
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Attacker-
controlled

CAN
gateway

ECUi ECU j KS T S

CAN bus 1 CAN bus 2

Figure 4.6: Experimental setup

for an entire second in a dangerous situation.

Given the restrictions imposed by the CAN bus, we believe that MaCAN constitutes
a good enough solution for authenticating signals. A better level of security can be
achieved by incrementing the clock rate. This would reduce the time window available
for replaying messages, and therefore reduce the potential effect of such replay. In
case of fast control loops — where a specific signal needs to be sent every 50 ms, for
example — a solution that completely prevents replay attacks would synchronise the
clock with the message rate, and refuse any message signed with a timestamp that
has been previously used. Specific care would then be required for synchronising the
clock between the communicating devices, and to avoid any unavailability issues due to
improper synchronisation.

4.2.3 Experimental Evaluation

We compared the result of our analysis with the implementation of MaCAN, developed
independently by our SESAMO partners at the Czech Technical University – Industrial
Informatics Group, which is available under an opensource license on Github2. We
implemented the attacks to the key establishment and message authentication procedure,
putting the attacker in control of a gateway as shown in Figure 4.6. This was demon-
strated to be possible in practice by Checkoway et al. [CMK+11], and representative of
typical automotive architecture that we presented in Chapter 2.

The attack on key establishment was possible only after aligning the implementation to
the specification contained in the paper, as the necessary acknowledgement was already
corrected in our implementation. We cannot trace back, however, whether this correction
was due to explicit considerations by our skilled engineers, or it happened by chance by
misinterpreting the flawed specification.

Our implementation also accepted authenticated acknowledgement messages replayed

2https://github.com/CTU-IIG/macan

https://github.com/CTU-IIG/macan
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by the attacker impersonating another device in group authentication, however with
no practical consequences. We believe that this is a dangerous mistake to leave in a
reference paper, which could lead to flawed implementations if left undetected. We
could confirm the attack that allowed forging authenticated signals was present in the
implementation. With it an attacker could forge potentially dangerous authenticated
messages from legitimate ones. Comparing the models with the implementation also
helped us to reveal some minor bugs that were introduced when coding it, and would
have probably not been revealed by simple testing.

4.3 Formal Analysis of CANAuth

In this section we analyse the CANAuth protocol, which we presented in Section 2.3.1.
CANAuth sends counters as part of the signature for a message, instead of relying on
timestamps. A receiving ECU accepts a message only if the counter is higher than any
other counter value previously observed, ensuring replay protection but requires greater
bandwidth.

We first present our modelling in ProVerif for the two phases of the protocol, key
establishment and message authentication. We show to what extent we are able to prove
the security in ProVerif.

4.3.1 Key Establishment

In Figure 4.7 we model the key establishment phase of the protocol with ProVerif and
we try to verify key secrecy in this model. The system Sys defines a pre-shared key kp
and a term error not known to the attacker, then runs ECUi and ECU j.

The procedure starts with ECUi, which first generates a fresh counter cnt and a fresh
random number rnd. Then it computes the session key ks as the hmac signature, using
the preshared key kp, of the two values cnt and rnd, and the signature s2 of the same
values using the newly computed session key ks. It emits the event begin(ks) signalling
the start of the authentication process, and finally sends the challenge message 〈cnt,rnd〉
and the signature hmac(ks,〈cnt,rnd〉) over the public channel.

At the other end the process ECU j receives the counter cnt and random value rnd. It
internally computes the session key ks knowing kp and its version of the signature
s1, and the transmitted information cnt and rnd, then receives a signature s2. If s1
and s2 match ECU j emits an event end(ks), signalling successful completion of the
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ECUi ,new cnt : bitstring;
new rnd : bitstring;
let ks = hmac(kp,〈cnt,rnd〉) in
let s2 = hmac(ks,〈cnt,rnd〉) in
event begin(ks);
out(c,〈cnt,rnd〉);
out(c,s2);
in(c,=ks);
out(c,error); 0

ECU j ,in(c,〈cnt,rnd〉 : 〈bitstring,bitstring〉);
let ks = hmac(kp,〈cnt,rnd〉) in
let s1 = hmac(ks,〈cnt,rnd〉) in
in(c,s2 : signature);
if s1 = s2 then(

event end(ks);
out(c,confirm); 0

) else out(c,reject); 0

Sys,new error : bitstring; new kp : key; (! ECUi | ! ECU j)

Figure 4.7: CANAuth Key Establishment

authentication phase, and sends back a positive acknowledgement, otherwise it rejects
the signatures signaling an error.

We want to know if the attacker is able to find the pre-shared key kp or the session key
ks. To check whether ks ever gets revealed, ECUi listens for ks on the shared channel,
and reveals the secret error to represent that the session key has been compromised.

We mark the start and the conclusion with a begin and an end event, respectively, to
know if the authentication property that we defined in Section 2.3 holds for this protocol.
Therefore, we check the correspondence between end(ks) and begin(ks).

In these models we encode concatenated messages as tuples. We also discard all modulo
operators present in the protocol description: the necessity to cut the length of a number
with a modulo operation is due to speed considerations for the session key ks and to
space consideration for the signatures sigA and sigM , but our symbolic representation of
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the protocol does not take these details into account.

Replay attacks that would attempt to establish previously broken session keys are
avoided by the use of counters and random values. The protocol should refuse a message
containing an old counter, but we cannot express this behaviour in the Applied Pi-
calculus in a form that is suitable for verification, as it requires encoding persistent state.
Section 6.2 shows how to verify this property using Set-Pi. In our model it will always
be possible to re-establish a previous session, so we cannot prove injective agreement
on the authentication between ECUi and ECU j.

Analysis results ProVerif can prove secrecy of the long term key kp and the session
key ks. Also, we can prove weak agreement between the end(ks) and begin(ks): an
attacker cannot establish a session key that was not sent previously in the protocol
execution.

However, injective correspondence between the two events does not hold in the model:
an attacker can always replay the same combination of counter, random value and
signature as received by ECUi and complete authentication with ECU j. This is due to
the same overapproximation that we hit in Section 4.2, and we will show in Chapter 6
how to overcome these obstacles.

4.3.2 Message Authentication

The second phase of CANAuth, message authentication, is modelled on Figure 4.8.
Here we assume that a session key ks has already been established, and present only the
processes responsible for authenticating messages. The combination of the two phases
can be obtained by inserting ECUi and ECU j from Figure 4.8 as continuations of the
corresponding processes in Figure 4.7.

When ECUi wants to send a message msg, it generates a new counter cnt and computes
the signature hmac(ks,〈cnt,msg〉). ECUi signals the beginning of the protocol by a
begin event and then outputs the counter, the message and the signature.

On the other end ECU j receives the signed message, computes its own version of the
signature, and if the received signature matches with its own computation then sends a
positive acknowledgement, otherwise it raises the error flag, symbolised by the message
reject.
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ECUi ,new msg : signal;
new cnt : bitstring;
let sig = hmac(ks,〈cnt,msg〉) in
event begin(cnt,msg,sig);
out(c,〈cnt,msg,sig〉); 0

ECU j ,in(c,〈cnt,msg,sig〉 : 〈bitstring,signal,signature〉);
let sig′ = hmac(ks,cnt,msg) in
if sig = sig′ then(

out(c,confirm);
event end(cnt,msg,sig′);

) else out(c,reject); 0

Figure 4.8: CANAuth Message Authentication

Analysis results ProVerif can prove the preservation of secrecy for the long term key
kp and the session key ks, which are maintained when the processes of Figure 4.8 are
attached to those of Figure 4.7. ProVerif can also prove the weak agreement property
between end(cnt,msg,sig′) and begin(cnt,msg,sig), but not the strong agreement.

4.4 Discussion

We developed our models of MaCAN and CANAuth using the Applied Pi-calculus
variant of ProVerif. We had to change some aspects of the protocols, as described
in Section 4.2 and Section 4.3, to be able to analyse them. One such aspect is the
use of counters and timestamps to ensure freshness of messages. We modeled both
mechanisms as fresh names in Applied Pi-calculus, thus losing their structure.

During our experiments we tried to represent timestamps and counters in two ways: as
integers, with an initial constant value z[] and the successor constructor succ(x), where
a predicate lt(x,y) relation would enable comparison between timestamps/counters.
Another approach that we tried was to represent them as lists of known values, with an
empty list nil[] and a constructor cons(x,y) that appends one element to the list, where
a membership predicate mem(x,y) would indicate whether an element has been seen
by the process. Unfortunately none of these approaches works, as the saturation of the
predicates mem(x,y) and lt(x,y) leads to non-termination issues.
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Other analysers such as StatVerif [ARR11] allow the analysis of Applied Pi-calculus
processes extended with stateful constructs, but in order to represent potentially infi-
nite timestamps one needs more powerful abstractions that avoid exploring an infinite
state-space. Explicitly inserting a fresh timestamp into a list and checking whether the
current timestamp is in the list, as we discussed, would generate terms of continuously
increasing size, hanging the engine. The same behaviour we encountered in ProVerif,
not surprisingly, as they share the same resolution strategy. SAPIC [KK14], an exten-
sion of the Applied Pi-calculus using multiset rewriting semantics and the Tamarin
prover [SMCB13], became available while this study was being published.

In Chapter 6 we show how we overcome this problem by abstracting names of the
Applied Pi-calculus into a finite structure that tracks enough state information to encode
the properties of our interest. Appendix B.3 presents Set-Pi models that verify the
protocols presented in this chapter.

4.5 Conclusions

This chapter presents an analysis of the two protocols MaCAN and CANAuth using the
ProVerif protocol verifier. By this analysis we found a flaw in the key establishment
procedure of MaCAN, experimentally verified its presence of an attack in the imple-
mentation, and proposed a modified version of the protocol that is immune from the
problems we discovered.

Resource constrained networks such as the CAN bus put a strong limit on the design of
an authentication protocol. The designers of MaCAN had to rely of custom schemes
when designing its procedures, as previous literature did not consider such extreme
bounds in terms of bandwidth as 8 bytes of payload per message. Similarly CANAuth
relies on a compatible extension (CAN+) and makes careful considerations on the
available bandwidth, also avoiding the challenge-response mechanism. We contribute
to the protocols with a formal analysis (and an experimental evaluation in the case of
MaCAN) and propose changes that fix the flaws we discovered.

The next chapter will study how MaCAN and CANAuth perform in terms of schedula-
bility. We will discover that MaCAN still violates one of the schedulability assumptions
in its time distribution procedure, and propose an alternative version of the procedure
that prevents a potential Denial of Service attack.

During our analysis we also encountered some limitations in expressing the particular
features of MaCAN with the languages and tools of our choice. Chapter 6 presents an
extension of the Applied Pi-calculus that deal with these limitations.
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Finally, protocols like MaCAN rely on relatively weak cryptography, so we would like
to extend our analysis to cover possible attacks in the computational model, and be able
to precisely evaluate the level of security of MaCAN.



CHAPTER 5

Schedulability Analysis for
Authenticated CAN

Protocols

Authenticated CAN protocols increase the security of a car, protecting the internal
network from message forgeries and replays. However, the added functionality comes
at a cost of computation and bandwidth resources, so we need to determine how these
extensions can coexist with the real-time safety features of a microcontroller with limited
processing power.

The designs of MaCAN and CANAuth have avoided the traditional challenge-response
mechanisms by introducing some state information, in forms of a timestamp or a counter.
This choice was necessary because a challenge-response mechanism would double the
number of messages sent through the network, and would also require a more complex
implementation in systems with tight control loops (where the same type of message is
sent at a fixed interval, e.g. one every 50 ms).

The performance impact of challenge-response could make a system unschedulable,
therefore all the authenticated extensions to CAN which meet the necessary safety
criteria avoid such pattern in favour of the use of more stateful mechanisms, such as
counters and timestamps. However, even when using counters or timestamps to reduce
the communication overhead, an increased cost in terms of computation time and the
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relative added delay are still present.

In this chapter we present the traditional schedulability analysis of CAN as described
in [DBBL07], and extend it to take into account the timing impact in computing the
cryptographic functions for MaCAN and CANAuth. In analysing the schedulability
of MaCAN, we discover a potential Denial of Service attack in the time distribution
procedure, and propose an alternative procedure that avoids the issue.

Section 5.1 presents the standard analysis of [THW94, DBBL07] for the schedulability
of CAN networks. Sections 5.3 and 5.4 extend the analysis to take into account the
features of MaCAN and CANAuth, respectively. Section 5.5 analyses the impact of the
time-triggered extensions on schedulability with authentication. Finally, we conclude in
Section 5.6.

5.1 Review: Schedulability Analysis

For the purpose of schedulability, a CAN bus network can be seen as a real-time, non-
preemptive, fixed-priority system. A real-time system has a set of n independent tasks
(signals in the case of CAN bus) that need to be scheduled for execution (transmission).
Each task i executes at a recurring period Ti ∈ R+, requires Ci ∈ R+ time to complete,
and has an associated deadline Di ∈R+. In the case of a CAN bus network there is a set
of messages, and each message mi needs to be sent periodically with period Ti, occupies
the communication channel for the required transmission time Cm, has a fixed deadline
Dm and a queuing jitter Jm associated.

CAN bus is a non-preemptive system: after arbitration the transmitting ECU occupies
the channel until the transmission is completed, and the current transmission cannot be
interrupted for rescheduling. CAN bus has also a fixed-priority between messages: there
is a total priority order given by the message IDs. A message mi with ID i has higher
priority than m j with ID j if and only if i < j.

The system is schedulable if the computed worst case response time Rm for each message
meets its respective deadline Dm: hence for all message m we must have Rm ≤ Dm.

This section presents the worst case schedulability analysis that was first elaborated in
[THW94] and then corrected in [DBBL07, BLV07].

Given a message m, the transmission time τbit for one bit and the payload length in bytes
sm, we can compute the transmission time for the message as follows:

Cm =

(
g+8sm +13+

⌊
g+8sm−1

4

⌋)
τbit (5.1)



5.1 Review: Schedulability Analysis 57

The term under the floor operation takes into account bit stuffing: this mechanism inserts
a bit of opposite polarity for each sequence of 5 bits of the same polarity, to ensure
synchronisation.

The value of g represents the number of bits used for the fixed-length fields of the frame.
It is set to 34 for the standard 11-bit identifier format, and to 54 for the extended 29-bit
identifier format. We can therefore simplify (5.1) to (5.2) for 11-bit identifiers and (5.3)
for 29-bit identifiers.

Cm = (55+10sm)τbit (5.2)
Cm = (80+10sm)τbit (5.3)

DEFINITION 1 (WORST CASE RESPONSE TIME) The worst case response time Rm
as defined by [THW94] in their original analysis is defined by the formula:

Rm = Jm +wm +Cm (5.4)

where Jm indicates the queuing jitter, which is the longest time between the initiating
event of a message and the message being queued, and wm is the worst case delay on
the channel before message m can be transmitted.

We are now going to detail how to compute the worst case response time.

Since CAN is a non-preemptive system, the channel might not be available for trans-
mission. We define this time window as the maximum blocking time before arbitration
Bm. The maximum blocking time is equal to the maximum transmission time of lower
priority messages that might occupy the channel when message m is queued:

Bm = max
k∈l p(m)

(Ck) (5.5)

The queuing delay is defined by the following recursive formula:

w0
m = Bm (5.6)

wn+1
m = Bm + ∑

k∈hp(m)

⌈
wn

m + Jk + τbit

Tk

⌉
Ck (5.7)

Where hp(m) denotes the messages with priority higher than m.

The definition of wn
m is monotonic on the parameter n, therefore it defines a fix-point

computation that allows us to find the worst case response time for message m.

The analysis of the system terminates when either:
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1. ∃m, i .Jm+wi
m+Cm >Dm, the worst case response time for message m at iteration

i already exceeds its deadline, in which case the system is not schedulable;

2. ∀m∃ i .wi
m = wi+1

m ∧Rm ≤ Dm, in which case the fix-point is reached and the
system is schedulable with the computed worst case response times.

Before discussing the correctness of this analysis, we define the concept of level-m busy
period.

DEFINITION 2 (LEVEL-m BUSY PERIOD) In non-preemptive fixed priority schedul-
ing, level-m busy period is a period [ts, te), where ts is the time when the first message of
priority level m or higher is scheduled for being transmitted, and te is the corresponding
ending time, when all messages of priority level m or higher have already been trans-
mitted, therefore no messages of priority m or higher in the current busy period can
interfere with any future enqueuing of a level-m message.

Revised analysis The original analysis by Tindell et al. [THW94] assumes that the
deadline for each message is bounded by its period (Dm ≤ Tm) to enforce a queue of
length at most 1. It does not take into account that with non-preemptive scheduling the
level-m busy period might exceed the time at which the next instance of message m is
queued. Even then, it is not always the case that Dm ≤ Tm, as in some applications the
deadline needs to be set above the period [DBBL07].

If tm ≤ Tm− Jm then the busy period ends before the successive message is queued, so
the standard analysis is still valid. Otherwise tm > Tm− Jm and there can be more than
one level-m message queued for transmission at a given time. In this case we can expect
two different behaviours: new messages are queued for transmission, or new messages
will overwrite previous ones. The analysis just presented is still fine for the overwriting
behaviour, but does not consider that more than one message with the same ID m may
be queued for communication at any given time.

Davis et al. [DBBL07] proposed a revised analysis to compute the correct worst case
response times when tm > Tm− Jm. They only consider the queuing behaviour as it is
the one that [THW94] does not.

The level-m busy period can be computed as the fix-point of:

t0
m =Cm (5.8)

tn+1
m = Bm + ∑

k∈hp(m)

⌈
tn
m + Jk

Tk

⌉
Ck (5.9)

this fix-point computation above is guaranteed to be converging if the bus utilisation is
less than 1.
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The bus utilisation is defined as:

Um = ∑
k∈hep(m)

Ck

Tk
(5.10)

where hep(m) denotes all messages with higher or equal priority to m.

Assuming that messages are queued in the network, the number of messages that are
ready before the end of the busy period is:

Qm =

⌈
tm + Jm

Tm

⌉
(5.11)

this number corresponds to the maximum queue size for message m, and takes into
consideration both the level-m busy period and the worst case jitter necessary to insert a
message in queue.

We can now re-define the worst case queuing delay — when q messages of level m are
queued for transmission — with the following fix-point computation:

w0
m(q) = Bm +q ·Cm (5.12)

wn+1
m (q) = Bm +q ·Cm + ∑

k∈hp(m)

⌈
wn

m(q)+ Jk + τbit

Tk

⌉
Ck (5.13)

where the factor q ·Cm is added to (5.6, 5.7) to take into account the transmission of all
q messages queued to be sent.

The worst case response time for the q-th message in queue is:

Rm(q) = Jm +wm(q)−qTm +Cm (5.14)

because its relative busy period starts at qTm− Jm.

The worst case response time for message m then becomes the maximum response time
for all messages in queue:

Rm = max
q=0...Qm−1

(Rm(q)) (5.15)

Hence schedulability can be computed as before, by substituting the new definitions of
wn

m(q) and Rm to the decision procedure.

5.2 Authenticating Messages

In this section we introduce the common assumptions and definitions that form the basis
for our extended analysis for both MaCAN and CANAuth.
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Assumptions Key establishment happens at the beginning of a session when the car
is started, so this phase of communication can be excluded from the schedulability
analysis. It is worth noting that both protocols under our consideration have a maximum
life for session keys of 48 hours.

The weak cryptography used by CANAuth and MaCAN would allow an attacker to
discover the keys if he observed more messages than those observable in 48 hours of
communication [HSV11, HRS12]. This limit on the operational time goes far beyond
the normal operational time of a vehicle, hence it is safe to assume that key establishment
only happens at startup, when there are no timing requirements.

Definitions Here we present common measures that will be used in both analyses:

1. Hm is the time required for computing the cryptographic primitive for message m;

2. T eo f = 30 · τbit over-approximates the time taken to transmit the end of the frame,
comprising the CRC codes, error flags and the end of frame delimiter;

3. T payload
m = 8 · sm · τbit + d 8·sm·τbit

4 e over-approximates the time taken to transmit
the payload of message m, considering bit-stuffing.

MaCAN and CANAuth both propose an authentication scheme for signals which, at a
high level, requires computing a cryptographic primitive by the sender, recomputing
such primitive by the receiver, and check if there is a match. At a closer look, these two
protocols have different timing constraints, as we will now discuss.

In Section 5.3 and Section 5.4 we adapt the analysis to the CANAuth and the MaCAN
protocols, respectively. Finally, in Section 5.5 we discuss how the TTCAN extension
can positively affect the schedulability of MaCAN.

5.3 Schedulability with MaCAN

5.3.1 Message Authentication

Recalling Section 2.3.2, the protocol sends authenticated messages by first performing a
request for authentication (Figure 2.6 (a)). The response to this request varies depending
on the size of the signal sm: if sm ≤ 4 then the format of Figure 2.6 (c) is used, otherwise
a longer signal is split in multiple messages, each containing 2 bytes of actual payload.
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Furthermore, the prescaler field from the request for authentication (Figure 2.6 (a)) spec-
ifies the frequency of authenticated signals. In this analysis we are going to assume that
prescaler is always 1 for authenticated messages, hence every message is authenticated.
This will lead to an analysis that is overly pessimistic, especially in the case of signals
with length greater than 4, which need to be split into multiple messages. The number
of MaCAN messages in which a payload of length sm will be split is defined as:

Splitm =

{⌈ sm
2

⌉
if m is authenticated

1 otherwise

The MaCAN Crypt Frame is always 8 bytes in size, hence we define a normalisation of
the message size:

ŝm =

{
8 if m is authenticated
sm otherwise

The transmission time needs to be redefined by substituting sm with ŝm:

Cm =

(
g+8ŝm +13+

⌊
g+8ŝm−1

4

⌋)
τbit (5.16)

The formula for the maximum blocking time due to lower priority messages occupying
the channel remains unchanged:

Bm = max
k∈l p(m)

(Ck) (5.17)

However, we redefine the level-m busy period, to take into account the possibility of
queuing multiple messages when using signatures, as follows:

t0
m =Cm ·Splitm (5.18)

tn+1
m = Bm + ∑

k∈hp(m)

⌈
tn
m + Jk

Tk

⌉
·Ck ·Splitk (5.19)

And similarly the bus utilisation is multiplied by the number of messages transmitted at
each period:

Um = ∑
k∈hep(m)

Ck ·Splitk

Tk
(5.20)

(5.21)

In MaCAN messages are signed with the current timestamp before they are ready to be
transmitted; the timestamp, however, is not transmitted along with the message, hence
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the receiving end must check the signature against all the timestamps that are valid in
the current transmission window.

Let Tclock be the rate at which the timestamp is increased, configurable at design time.
Depending on Tclock and on the deadline Dm, there can be more than one valid timestamp
to sign message m.

We denote the number of valid timestamps for a signature of a message m as:

Nm =

⌊
Dm

Tclock

⌋
+1 (5.22)

The queue length is increased by the additional computation time Hm required before a
message is available for transmission:

Qm =

⌈
tm + Jm +Hm

Tm

⌉
·Splitm (5.23)

The worst case delay for the q-th message m in the queue remains the one defined in
(5.12, 5.13), since this fix-point computation is only influenced by the use of the channel
by higher priority messages, which does not change in MaCAN.

Finally we define the worst case response time for the q-th message m in queue as:

Rm(q) = Jm +Hm +wm(q)−q ·Tm +Cm +max(0,Nm ·Hm−T eo f ) (5.24)

this formula takes into account the necessary time for computing the cryptographic
primitive by the sending ECU, and that after having received the message payload, the
receiving ECU needs to perform at most Nm signature computations before accepting or
discarding a message. Such computation is parallel to the transmission of messages in
the channel, and it can start just after having received the message payload. The max
operator reflects this parallelism in the worst case analysis.

Remarks In MaCAN, securing the system might require finding the right balance
between the cost of the cryptographic primitive Hm and the frequency of clock up-
dates Tclock: increasing security and thus the cost Hm reduces the potential for system
schedulability, while increasing the clock update rate Tclock may render the system
unschedulable.

On the other hand, decreasing the level of security provided by the signing function
might increase the chances for an attacker of finding the session key, or forging a
message that passes the signature checks, and decreasing the rate Tclock might introduce
potential replay attacks within the validity time frame of the signature.
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Correctness of the extended analysis The work in [BLV07] presents full proofs
of correctness for fixed-priority scheduling with deferred preemption, of which the
schedulability of the CAN protocol is a specific case. Inspecting the proofs presented
there, we found no assumption that is compromised for this extended set of formulas
that capture the behaviour of the MaCAN protocol.

The formulas re-defined in this section touch the computation leading of the maximum
queue length, the initial delay of a message and the time used to validate a message
upon reception. The initial delay now defined as Jm +Hm can fit the concept of phasing
φm presented in [BLV07] and only influences the result of the analysis, but maintains
the validity of the proofs. The time needed to check a message signature (max(0,Nm ·
Hm−T eo f )) does not alter any other condition for schedulability than that of the final
worst case response time for message m. The rest of the concepts are preserved equal as
in Section 5.1.

5.3.2 Time Server

Recalling Section 2.3.2, the time server is responsible for delivering the current times-
tamp in a MaCAN network, synchronising the ECUs. In order to do this, the time server
sends an unauthenticated signal at each update of the timestamp, so that the client ECUs
can check whether its internal version is synchronised with the time server.

A non-synchronised ECU would request an authenticated version of the timestamp, by
sending a challenge as in message format (2.18), to which the time server would reply in
message format (2.19) with the timestamp signed with the shared key between the ECU
and the key server. This behaviour represents a problem for the system schedulability,
as it violates the requirement of no dependency between tasks. Hence, these messages
cannot be captured by the rules that we introduced for the rest of the protocol.

In fact, the dependency introduced by this portion of the protocol constitutes a more
serious Denial of Service attack. An attacker willing to compromise the system avail-
ability can simply inject an unauthenticated out-of-sync timestamp. At this point all
other ECUs believe that their internal clock is not synchronised with the time server,
and request an authenticated version of the timestamp by sending a challenge.

A hardware safety mechanism provided by the CAN bus network prevents devices
from flooding the network due to software failures, hence a CAN device has a limited
number of messages that can be sent over a predefined interval. In this case the
mechanism, which also prevents an attacker from simply flooding the network, would
slow down the response of the time server for sending authenticated timestamps. This
behaviour effectively disables communication until all the other ECUs have received an
authenticated timestamp.
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Revised timestamp distribution We propose the following alternative procedure for
distributing authenticated timestamps. The time server TS generates a key pair pkT S,
skT S at each new session, and publishes pkT S to the key server KS at the end of the
key-establishment procedure. The key server KS is responsible for delivering the public
key pkT S for each new session established between clients, by including it at the end of
the key establishment payload. Finally, the key server delivers each new version of the
timestamp T both in cleartext and encrypted with skT S:

TS→ ECUs : T,aenc(skT S,T )

In this protocol, the receiving ECUs only need to check that the encryption aenc(skT S,T )
corresponds to the plaintext T if their internal clock is skewed, saving precious compu-
tational time. Replay attacks are detected and ignored by refusing old timestamps, and
newer timestamps cannot be forged by the attacker unless it learns skT S. The correctness
of this approach is shown with a Set-Pi model, in Appendix B.3.

5.4 Schedulability with CANAuth

In CANAuth instead, each authenticated message needs to be sent with the highest
counter for its authentication group. This means that if another ECU is sending an
authenticated message on the same group, the signature computed for a message in
queue is invalidated. Therefore the time available for computing the signature needs to
fit in the period between the end of transmission of the previous message payload and
the end of transmission of the current message ID. If the signature computation does not
fit within this period of time, then we need to make sure that there is an available slot
for communicating the message with a valid signature, before a new message from the
same group arrives.

Since a message in the same authentication group can invalidate the current signature, we
need to define the authentication delay as the time needed to re-compute the signature:

Am = max(0,Hm−T payload
m −T eo f ) (5.25)

here we remove T payload
m and T eo f from the delay because an ECU can assume that its

signature has been invalidated when it reads on the channel the identifier of a message
in the same authentication group.

The worst case delay for the q-th message m then becomes:

w0
m(q) = Bm (5.26)

wn+1
m (q) = Bm +q ·Cm + ∑

k∈hp(m)

⌈
wn

m(q)+ Jk + τbit

Tk

⌉
Ck +Am (5.27)
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note that this formula assumes the continuity of the level-m busy period. This implies
that the transmission of q consecutive messages with identifier m must be performed
without invalidating the signatures, and therefore introducing delays that could be filled
by lower priority messages.

If this condition cannot be satisfied, then it would be impossible to guarantee continuity
of the busy period, and the analysis would be invalidated. For example when Hm >Cm,
it is impossible to transmit a sequence of consecutive messages with the same identifier,
and continuity of the busy period is violated.

Finally we adapt the worst case response time for the q-th level-m message as follows:

Rm(q) = Jm +wm(q)−q ·Tm +max(Cm−T eo f +Hm,Cm) (5.28)

here we impose that a message is available to the receiver only when the signature has
been checked.

Remarks In CANAuth, the choice of cryptographic primitive can have a strong
influence in the schedulability analysis. We noted that if the computation cost Hm is
higher than the time needed for transmitting the message Cm, and if more than one
level-m message can be enqueued at any time, then the level-m busy period can be
interleaved with lower priority messages and therefore the analysis is invalidated.

Even if the continuity of the busy period is satisfied, there worst-case delay can still
increase if a previous message invalidates the signature. This places a strict limit on the
strength of the cryptographic primitive.

Correctness of the extended analysis Similarly to the argument for the correctness
of the analysis for MaCAN in Section 5.3, we argue that the extended analysis does
not alter the proofs of correctness presented in [BLV07], with one important exception:
the invalidation of a signature for message m might break the level-m busy period
while messages of priority m or higher are scheduled for transmission, but have invalid
signature that need recomputing. In that case, a message m′ with lower priority can
successfully win arbitration and block the channel and the level-m busy period with a
low priority message.

One possible way to avoid this problem is to limit the signature computation time to
T payload

m +T eo f , so that even in case of a signature invalidation the sender is able to
recompute a new signature before the next transmission.
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5.5 Effects of TTCAN

TTCAN can positively affect the schedulability of a system. Periodic messages are
assigned a fixed slot in the system matrix. Arbitrated messages do not present a periodic
behaviour, therefore are not subjected to deadlines. Because of the fixed scheduling in
TTCAN, response time are defined statically, hence there is no need for a worst-case
analysis.

When using the MaCAN protocol on top of TTCAN, the fixed priority scheduling
defined in terms of basic cycles and system matrices also defines what are the constraints
for the schedulability of MaCAN:

1. for each message m under fixed priority scheduling, scheduled to be transmitted
at time t in the current cycle, the payload information needs to be available at
least at time t−Hm for the signature computation;

2. on the receiving side messages need to be checked for authentication. Unlike
in the worst-case schedulability analysis, the timestamp used for authentication
is identified by the fixed priority scheduling. Only one combination of message
and timestamp then needs to be checked for authentication on the receiving side,
therefore they will be available at time t +Cm +Hm;

3. differently from standard CAN, TTCAN incorporates a notion of synchronised
time that is transmitted with the reference message at the start of each basic cycle,
possibly eliminating the need for an additional time-server.

When using the CANAuth protocol on top of TTCAN, we can recognise the benefit that
each message m under fixed priority scheduling, scheduled for transmission at time t,
has statically known time distances to other messages in a group. It is therefore easy to
compute the counter value that will be used to sign message m at time t, or to statically
enforce that there is enough time for the sending ECU to compute the right signature
after another message in the same group of m has been sent.

5.6 Conclusions

In this chapter we have seen how the schedulability analysis for the standard CAN
protocol can be adapted to take into account the authenticated extensions. As it is
common in many situations where we need to guarantee both safety and security
properties in a safety critical system, the two sets of properties are usually conflicting,



5.6 Conclusions 67

and we need to find a balance between the level of security that we put in the system
and the impact over its safety characteristics, like real-time schedulability.

In particular the MaCAN and CANAuth protocols avoided the challenge response
scheme to ensure freshness, as their authors deemed it too costly for the application.
They also resorted to the use of timestamps and counters, respectively, and accepted the
costs of that choice, resulting in more complex protocols.

This study on their schedulability shows that MaCAN degrades its performances with the
increasing of precision in its timestamp mechanism. The authenticated time distribution
procedure of MaCAN contains a dangerous dependency between messages that allows
an attacker to take down the system by sending skewed unauthenticated timestamps.
CANAuth on the other side is limited in the time available for signing the messages, but
its design leads to simpler schedulability results.

The Time-Triggered CAN protocol — which is designed as a safety feature — pos-
itively affects both MaCAN and CANAuth because of the added restrictions in the
communication.
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CHAPTER 6

Extending the Applied
Pi-calculus with Sets

As we have seen throughout this thesis, communication protocols often rely on state-
ful mechanisms to ensure certain security properties. In our case study counters and
timestamps are used to ensure authentication. In other situations the security of commu-
nication can depend on whether a particular key is registered to a server or it has been
revoked.

In Chapter 3 we studied how ProVerif, like other state of the art tools for protocol
analysis, achieves good performance by converting a formal protocol specification into
a set of Horn clauses. These Horn clauses represent a monotonically growing set of
facts that a Dolev-Yao attacker can derive from the system. Since this set of facts is not
state-dependent, the category of protocols of our interest cannot be precisely analysed
by such tools, as they would report false attacks due to the over-approximation.

In this chapter we present Set-Pi, an extension of the Applied π-calculus that in-
cludes primitives for handling databases of objects, and propose a translation from
Set-Pi into Horn clauses that employs the set-membership abstraction to capture the
non-monotonicity of the state. Furthermore, we give a characterisation of authentication
properties in terms of the set properties in the language, and prove the correctness of our
approach. Finally we showcase our method with two examples, a simple authentication
protocol based on counters, and key registration protocol.



70 Extending the Applied Pi-calculus with Sets

6.1 Introduction

The automated verification of security protocols has been the subject of intensive study
for about two decades now. This has resulted in methods and tools that are feasible for
finding attacks or proving the absence of attacks for a large class of protocols. One of
the most successful approaches is static analysis, as for instance used in the ProVerif
tool [Bla01, Bla05, Wei99, GL08, BBD+05]. The key idea of this approach is to avoid
the exploration of the state space of a transition system, but rather compute an over-
approximation of the set of messages that the intruder can ever learn. The abstraction is
efficient because it avoids the common state-explosion of model checking and it does
not require a limitation to finite state-spaces. While this works fine for many protocols,
we get trivial “attacks” if a protocol relies on a notion of state that is not local to a single
session.

Simplifying the CANAuth protocol from Chapter 2, one can ensure authentication as
follows:

A→ B : {Msg,Counter}Key

where Key is a symmetric key known only to A and B, Msg is some payload message
and Counter is the current value of a counter used for avoiding replay attacks: B accepts
a message only if Counter is strictly greater than in the last accepted message from A.
This protocol thus ensures injective agreement [Low97] on Msg, since B can be sure
that A has sent Msg and it is not a replay, i.e., even if A chooses to transmit several times
the same Payload Msg, B will not accept it more often than A sent it. There are of course
several ways to model such a counter in the applied π calculus, the input language
of ProVerif, however none is going to work in the abstraction due to its monotonicity:
roughly speaking, whatever B accepts once, he will accept any number of times and
we thus get trivial attacks. In fact, verifying injective agreement properties in ProVerif
requires a dedicated mechanism [Bla09].

The above message is taken from the CANAuth protocol [HSV11] that is intended for
the automotive industry and needs to work under strong limitations on bandwidth and
time. Due to these constraints, standard mechanisms like challenge-response (B first
sends a nonce, then A includes it in the message instead of the counter) are no option.
But even without such bounds there are practical real-world examples that today’s
abstraction approaches cannot support:

• Key update/revocation: after updating an old key with a fresh one, one does not
accept messages encrypted with the old key anymore (at least after some grace
period).

• Key tokens/hardware security modules: they maintain a set of keys of different sta-
tus and attribute, and can be communicated with through an API. When changing
the status of a key, an operation may no longer be possible with that key.
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• Data bases: an online shop that maintains a database of orders along with their
current status; a customer may cancel an order, but only as long as it has not
entered the status “shipped”.

More generally, systems that have a notion of state (that is not local to a session) and
that have a non-monotonic behavior — i.e. an action is possible until a certain change
of state and that is disabled afterwards are incompatible with the abstraction of tools
like ProVerif.

Contributions In this chapter we formally define the novel Set-Pi calculus that extends
the popular applied π calculus [AF01] by a notion of sets of messages. It allows us to
declaratively specify how processes can store, lookup and manipulate information like
sets of keys, orders, or simply counters as in the above example. (Note that this does
not increase the expressive power of applied π , since one could also simulate sets using
private channels.) The semantics gives rise to an infinite-state transition system since we
can model unbounded processes that generate any number of fresh messages. We can
define state-based queries for Set-Pi, that ask for attacker-derivable messages, their set
membership status, and boolean combinations thereof. A specification is secure iff no
query is satisfied in any reachable state. Note that we do not specify a particular attacker,
but more generally prove that the protocol is secure in the presence of an arbitrary
attacker A that can be specified as a Set-Pi calculus (without access to restricted names
and sets).

The second contribution is a stateful abstraction for Set-Pi. The idea is that the abstrac-
tion of a message incorporates the information to which sets it belongs, and we model
how this set membership can change. In doing so, we integrate the essential part of the
state information into an otherwise stateless abstraction. This fine balance allows us to
combine the benefits of stateless abstraction — namely avoiding state explosion and
bounds to finite state spaces — and at the same time support a large class of protocols
that rely on some state aspects.

Formally, this abstraction is a translation from a Set-Pi protocol specification and a set
of queries into a set of first-order Horn clauses. Our third contribution is to prove a
soundness result for this abstraction: every reachable state is abstractly represented by
the Horn clauses. In particular, if the Horn clauses have a model, then the given Set-
Pi specification is secure for the given queries and against an arbitrary Set-Pi-attacker.
For checking whether the Horn clauses have a model, we can use various automated
tools like ProVerif.

Finally, we demonstrate the practical feasibility of our approach in our case study of the
MaCAN and CANAuth protocols presented in Chapter 4; this chapter will contain only
excerpts as illustrating examples, while the complete models of the protocols can be
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found in the appendix Section B.3.

The rest of the chapter proceeds as follows: Section 6.2 introduces the language and
presents, as a running example, a simplified version of CANAuth. Section 6.3 describes
the type system. Section 6.4 gives an instrumented semantics for the language. Sec-
tion 6.5 presents two definitions for weak and strong authentication and provides a
mechanised way to encode such properties in Set-Pi. Section 6.6 present our translation
of Set-Pi into Horn clauses and Section 6.7 proves the correctness of this approach. In
Sections 6.8 and 6.9 we summarize our results and discuss related work.

6.2 Syntax

The calculus is presented in Figure 6.1. As in ProVerif, we have terms M,N which
are either variables, names – annotated with a sequence of terms – or constructor
applications. Constructors are generally accompanied by destructors defined as rewrite
rules that describe cryptographic primitives. For example:

reduc ∀xm : tm,xk : key . sdec(xk,senc(xk,xm)) → xm;

models symmetric key encryption: for every message xm, key xk, if a process knows
an encrypted message senc(xk,xm) and the key xk then it can obtain the message xm.
For any rewrite rule of the form reduc ∀~x : ~T . g(M1, . . . ,Mn) → M; we require that
fv(M)⊆ fv(M1, . . . ,Mn)⊆ {~x}.

Processes P,Q are: the stuck process 0, replication – which is marked by a label k,
parallel composition of two processes, output, typed input, restriction – marked by a
label l – and destructor application. We require that processes are closed and that they
are properly alpha-renamed. Note that the user does not specify annotated names and
labels in the initial process, hence the grey color. Names are introduced by the semantic
step for restriction, and unique labels are automatically inserted by the parser.

The distinguishing feature of our calculus is the ability to track values in databases:
the membership test (if b thenP else Q) allows us to check a membership condition b,
while a set transition (set(b+); P) inserts and removes terms from sets, according to b+.
Finally we use locks on sets to ensure linearity of set transitions: the construct lock(L)
prevents all other processes to modify sets in L in the continuation, while unlock(L)
releases the locks on L.

A system Sys is the context in which the process operates, and declares the available
sets and rewrite rules. We mark with P the set of processes produced by the syntactic
category P and with M the set of terms produced by M. To avoid ambiguity, we
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M,N ::= x | al [M1, . . . ,Mn] | f (M1, . . . ,Mn)

P,Q ::= 0 | !k P | P1 |P2

| out(M,N); P | in(M,x : T ); P | newl x : a; P

| let x = g(M1, . . . ,Mn) in P else Q

| if b then P else Q | set(b+); P

| lock(L); P | unlock(L); P

b ::= b1∧b2 | b1∨b2 | ¬b |M ∈ s

b+ ::= b+1 ; b+2 |M ∈ s | ¬M ∈ s

Sys ::= new s : set T ; Sys

| reduc ∀~x : ~T . g(M1, . . . ,Mn) → M; Sys |P

Figure 6.1: The process calculus

mark with S= {s1, . . . ,sn} the sets declared in a specific instance of Sys, while we use
s,s′,s1,s2 and so on to denote any of the sets in S.

As syntactic sugar we add the following features to Set-Pi:

• n-tuples 〈M1, . . . ,Mn〉, which can be encoded with a constructor mktpln(M1, . . . ,Mn)
and n destructors reduc ∀~x : ~T . projin(mktpln(x1, . . . ,xn)) → xi;

• pattern matching on tuples for let bindings and inputs, which can be encoded
using multiple let bindings with the destructors projin and equality tests;

• !{s1,...,sn}P means the replication of P that locks sets s1, . . . ,sn before its execution;
the semantics releases the locks when P reduces to 0;

• and omitting else branches where not needed.

CANAuth example As a running example we use CANAuth, a protocol that runs on
top of resource limited CAN bus networks and — due to the real-time requirements
of CAN bus networks — uses one way communication from source to destination,
avoiding challenge-response patterns. The low level mechanism that is used to ensure
freshness properties is the use of counters together with message authentication codes.
Comparing a counter with the highest value previously received allows to ensure that a
message cannot be replayed.
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Here we model a simplified form of its message authentication procedure, that assumes
that the two communicating parties, a sender Alice and a receiver Bob, have established
a session key k and are both keeping track of their own local copy of a counter c.

In order for Alice to send a message m to Bob, she signs m and her own counter c
increased by one with the shared key k. Here we denote with hmac(msg(c),k) such
signature. Bob receives the message and checks whether the counter c is already in the
set received; if not, it accepts the message.

A, new1 c : cnt;
let m = msg(c) in
event send(m);
out(ch,〈m,hmac(m,k)〉); 0

B, in(ch,〈xm,xs〉 : 〈msg(cnt),hmac(msg(cnt),key)〉);
let xc = getcnt(xm) in
let _ = checksign(xm,xs,k) in

if xc /∈ received then
set(xc ∈ received);
event accept(xm); 0

S, new received : set cnt;
reduc ∀x : cnt . getcnt(msg(x)) → x;
reduc ∀x : t,k : key . checksign(x,sign(x,k),k) → x;

new2 k : key;

(!3 A | !4 {received}B)

In order to express authentication we insert two events: send and accept. These are just
syntactic sugar for set operations and, as we show in Section 6.5, they can be translated
into set operations.

6.3 Type system

The type system presented in Figure 6.2 is constructed to track the membership of values
in sets. We denote by Sym the set of symbols for terms, destructors and sets that occur
in a process; the category of types for Sym is T Sym.

Data types T are either type variables, name types or constructors over types. Name
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T ::= t |a | f (T1, . . . ,Tn) algebraic data types

T Sym ::= T data types
| (T1, . . . ,Tn)→ T destructor type
| set T set type

Figure 6.2: Type system

types (a) are atomic types like key or cnt, type variables (t) are used to make destructors
polymorphic, and constructor types define the shape of a constructor. For example
the term pk(skeyl []) has type pkey, pk(skey), and a possible type for the constructor
senc(xk,xm) could be senc(key,pair(id, pkey)), if we give the type pair(id, pkey) to xm
and key to xk.

Destructor types are of the form (T1, . . . ,Tn)→T where we require fv(T )⊆ fv(T1, . . . ,Tn).
A destructor can therefore be applied to different types of data in the process, as
long as the typing judgement instantiates a ground type when it is applied. For ex-
ample the destructor reduc ∀xm : t,xk : key . sdec(xk,senc(xk,xm)) → xm; has type
(key,senc(key, t)) → t, while the instantiation sdec(xk,senc(xk,xm)) has type
(key,senc(key,pair(id, pkey)))→ pair(id, pkey) considering the previous type assign-
ment.

Set types specify the type of terms contained in sets. For example a set of type
set pk(skey) contains public keys.

The typing rules (Figure 6.3) enforce the correct typing of processes. Γ is the type
environment, a map from identifiers of terms, destructors and sets to their type.

The typing rules for terms check whether the environment contains the right types for
variables, and build types accordingly for the constructors. The rules for systems create
the type environment required for typing destructors and set operations in processes.
The rule for destructors applies the substitution σ = {Ti/xi} to the terms M1, . . . ,Mn,M
in order to obtain the type of the destructor, while the rule for sets simply adds the type
to the environment.

Processes are typed recursively on their syntactic form. The rules for the stuck process,
parallel, replication and output simply try to type the continuation under the same Γ.
The rules for input and restriction add to Γ the type of the new bound variables. The
rules for if and set check that the membership test or the set transitions are well-formed
(i.e. M is of type T when s is of type set T ) and that the interested sets are locked.
Finally, the rule for let infers the type of the result of the destructor application given
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Terms:

Γ ` x : T
Γ(x) = T

Γ ` a[V ] : a
Γ `M1 : T1 · · · Γ `Mn : Tn

Γ ` f (M1, . . . ,Mn) : f (T1, . . . ,Tn)

Systems:

Γ[g 7→ (σM1, . . . ,σMn)→ σM] ` Sys

Γ ` reduc ∀~x : ~T . g(M1, . . . ,Mn) → M; Sys
σ = {Ti/xi}

Γ[s 7→ set T ] ` Sys
Γ ` new s : set T ; Sys

/0,Γ ` P
Γ ` P

Processes:

/0,Γ ` 0
/0,Γ ` P1 /0,Γ ` P2

/0,Γ ` P1 |P2

/0,Γ ` P

/0,Γ `!l P
L,Γ ` P

L,Γ ` out(M,N); P

L,Γ[x 7→ T ] ` P
L,Γ ` in(M,x : T ); P

L,Γ[x 7→ a] ` P

L,Γ ` newl x : a; P
L,Γ ` b+ L,Γ ` P

L,Γ ` set(b+); P

Γ `Mi : σTi L,Γ[x 7→ σT ] ` P L,Γ ` Q
L,Γ ` let x = g(M1, . . . ,Mn) in P else Q

Γ(g) = (T1, . . . ,Tn)→ T

L,Γ ` b L,Γ ` P L,Γ ` Q
L,Γ ` if b thenP else Q

L∪L′,Γ ` P
L,Γ ` lock(L′); P L′∩L = /0

L\L′,Γ ` P
L,Γ ` unlock(L′); P

L′ ⊆ L

Conditions:

L,Γ `M : T
L,Γ `M ∈ s

Γ(s) = set T,s ∈ L
L,Γ ` b1 L,Γ ` b2

L,Γ ` b1∧b2

L,Γ ` b1 L,Γ ` b2

L,Γ ` b1∨b2

L,Γ ` b+1 L,Γ ` b+2
L,Γ ` b+1 ; b+2

L,Γ ` b
L,Γ ` ¬b

Figure 6.3: Typing rules for terms, rewrite rules, processes and boolean expressions.
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the types of M1, . . . ,Mn, by finding a type substitution that allows typing all arguments
of the destructor and by applying such substitution to the result type.

We allow destructor definitions to contain type variables, while we require processes
and sets to have only terms of ground types. In the Section 6.4 we introduce a formal
semantics for the language, together with the necessary subject reduction results for the
type system.

6.4 Semantics

We define in Figure 6.4 an instrumented operational semantics for the language. We
have transitions of the form ρ,S,P → ρ ′,S′P ′ where:

• ρ : Var→M.

• S⊆ S×M records the set-membership states,

• P ⊆ P×℘(S)×℘(M) is a multiset of concurrent processes, which are repre-
sented as triplets (P,L,V ) where P is a process, L is the set of locks held by P,
and V is a list of terms that influenced the process (either session identifiers or
inputs).

A configuration ρ,S ,P represents the parallel execution of all processes in P:

|(Pi,Li,Vi)∈Pρ(Pi)

In the semantic rules we assume Γ to contain the type definitions for sets, constructors
and destructors, and the initial process to be well-typed according to Γ.

The concrete semantics presented here is a synchronous semantics, which we choose
for simplicity and in accordance with the previous related work on ProVerif [Bla09].

The rule NIL removes the process 0 when it holds no locks. The rule COM matches
an input and an output processes if the output has the type required by the input. Note
that the set V1 of influencing terms for the input process is increased with the term N′

constructed from type T using the function ptV
x . The purpose of ptV

x is to substitute any
type T with a term N′ that is homomorphic to T : that is, for every occurrence of a name
a in the type T , it produces a variable xa,V that is syntactically different from all other
variable occurrences, and every occurrence of a constructor type produces a constructor
term of the same form.
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ρ,S,P ]{(0, /0,V )}→ ρ,S,P NIL
ρ,S,P ]{(in(M,x : T ); P1,L1,V1),(out(M,N); P2,L2,V2)}→ COM

mgu(N′,N)◦ρ,S,P ]{(P1{N′/x},L1,N′ :: V1),(P2,L2,V2)}

where Γ ` N : T and N′ = ptri(V1)
x (T )

ρ,S,P ]{(P1 |P2, /0,V )}→ ρ,S,P ]{(P1, /0,V ),(P2, /0,V )} PAR
ρ,S,P ]{(!k P, /0,V )}→ ρ{k/xk},S,P ]{(P, /0,xk :: V ),(!k+1 P, /0,V )} REPL
ρ,S,P ]{(newl x : a; P,L,V )}→ ρ,S,P ]{(P{al [V ]/x},L,V )} NEW
ρ,S,P ]{(let x = g(M1, . . . ,Mn) inP1 else P2,L,V )}→

ρ,S,P ]{(P1{M/x},L,V )} if g(M1, . . . ,Mn)→ρ M LET1
ρ,S,P ]{(let x = g(M1, . . . ,Mn) inP1 else P2,L,V )}→

ρ,S,P ]{(P2,L,V )} if g(M1, . . . ,Mn)9ρ LET2
ρ,S,P ]{(if b thenP1 else P2,L,V )}→ ρ,S,P ]{(P1,L,V )} if ρ,S |= b IF1
ρ,S,P ]{(if b thenP1 else P2,L,V )}→ ρ,S,P ]{(P2,L,V )} if ρ,S 6|= b IF2
ρ,S,P ]{(set(b+); P,L,V )}→ ρ,update(S,ρ(b+)),P ]{(P,L,V )} SET
ρ,S,P ]{(lock(L′); P,L,V )}→ ρ,S,P ]{(P,L∪L′,V )}

if ∀ (P′′,L′′,V ′′) ∈P . L′∩L′′ = /0 LCK
ρ,S,P ]{(unlock(L′); P,L,V )}→ ρ,S,P ]{(P,L\L′,V )} if L′ ⊆ L ULCK

ρ,S |= b1∧b2 iff ρ,S |= b1 and ρ,S |= b2

ρ,S |= b1∨b2 iff ρ,S |= b1 or ρ,S |= b2

ρ,S |= ¬b iff ρ,S 6|= b

ρ,S |= M ∈ si iff ρ(M) ∈ S(si)

update(S,M ∈ s) = S∪{(s,M)}
update(S,M /∈ s) = S\{(s,M)}
update(S,b+1 ;b+2 ) = update(update(S,b+1 ),b

+
2 )

ptV
x (a) = xa,V

ptV
x ( f (T1, . . . ,Tn)) = f (pt1::V

x (T1), . . . , ptn::V
x (Tn))

ri(V ) denotes the set of variables xk in V produced by replication.

Figure 6.4: Semantics for the process algebra
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The rule PAR splits the process into two parallel processes. Replication REPL is
annotated with k ∈N and produces a fresh copy of P, adding xk to V and the substitution
{k/xk} to the environment ρ; the replication process is annotated with the index k+1
after the transition.

The rule for restriction NEW maps x to al [V ] in the continuation of the process, where l
is a unique label for the process newl x : a; P. Here we extend the terms of Figure 6.1 to
annotate names with a list of variables V under square brackets.

The rules for let reduce the process to P1 where x is substituted with the result of the
rewrite rule in case of success, and to P2 otherwise.

To that end, we define the relation→ρ as follows. Let s be a term that has only variables
of atomic types and such that ρ(s) is ground. Then s→ρ t holds iff for some reduction
rule reduc ∀~x : ~T . l → r, there is a σ such that:

• σ is the most general unifier of l and s; w.l.o.g. we can assume that fv(Img(σ))⊆
Dom(ρ);

• t = σ(r). (Note that ρ(t) is ground.)

Otherwise (if no such σ exists), we write s 6→ρ .

The rules for if b thenP1 else P2 execute P1 in case the set-membership state S satisfies
the boolean formula b, and P2 otherwise. The rule for set updates the current state
according to the expression b+. Finally, lock and unlock respectively acquire and
release the locks on the sets in L′ for the current process.

Having presented the semantic for Set-Pi, we need to prove that our typing judgements
are preserved over the transition relation. Hence we introduce Lemma 1 to then prove
subject reduction (Theorem 9).

We define the mapping âl [V ] = a that recovers the type from an instrumented name, and
its extension to environments ρ̂(x) = ρ̂(x).

LEMMA 1 (TYPE SUBSTITUTION) Let P be a process, Γ and Γ′ two type environ-
ments, M a term and T a type. If x /∈ Dom(Γ′) and L,Γ[x 7→ T ]Γ′ ` P and ΓΓ′ `M : T
then L,ΓΓ′ ` P{M/x}.

PROOF.[Proof sketch] The proof is carried out by induction on the shape of P, and its
sub-terms and boolean conditions.
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In particular, when x is encountered in P, we know that:

(Γ[x 7→ T ]Γ′)(x) = T
Γ[x 7→ T ]Γ′ ` x : T

is applied for the proof of L,Γ[x 7→ T ]Γ′ ` P. Since x{M/x}= M, our statement directly
follows from the hypothesis.

LEMMA 2 (ENVIRONMENT EXTENSION) Let ρ and ρ ′ be two environments such
that Dom(ρ) ⊆ Dom(ρ ′) and for all x in Dom(ρ) we have ρ(x) = ρ ′(x), let P be a
process, Γ a type environment. If L,Γ[ρ̂] ` P, then L,Γ[ρ̂ ′] ` P.

PROOF.By induction on the shape of P.

THEOREM 3 (SUBJECT REDUCTION) Let Γ be a type environment, ρ,S,P a config-
uration. If for all (P,L,V ) ∈P we have L,Γ[ρ̂] ` P, and if ρ,S,P → ρ ′,S′,P ′, then
for all (P′,L′,V ′) ∈P ′ we have L′,Γ[ρ̂ ′] ` P′.

PROOF.[Proof sketch] The statement can be proven by a case-by-case analysis of the
semantic step ρ,S,P → ρ ′,S′,P ′. A detailed version of this proof is available in the
appendix.

Subject reduction enforces that well-typed processes remain well-typed over transitions,
and in particular that values of the correct type are inserted and removed from sets, and
that if and set only occur when the concerned sets are locked.

Attacker processes Because sets represent private information of the protocol, our
attacker model does not use sets. Hence a valid attacker process is a well-typed process
that shares a channel xch with the honest protocol, and cannot perform set operations (if,
set, lock and unlock constructs are excluded).

6.5 Authentication in Set-Pi

A general definition of authentication goals for security protocols that has become
standard in formal verification are Lowe’s notions of non-injective and injective agree-
ment [Low97]. These notions are hard to combine with an abstract interpretation
approach as they inherently include a form of negation that is incompatible with over-
approximation. For this reason, ProVerif has a special notion of events that are handled
in a special way by its resolution procedure. We now show that in our Set-Pi calculus
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we can directly express both non-injective and injective agreement using sets, and we
can thus define events practically as syntactic sugar.

The definition of authentication is based on events e1(M) and e2(M) where message M
typically contains the (claimed) sender and (intended) receiver name, as well as the data
that the participants want to agree on; the event e1(M) is issued by the sender typically
at the beginning of the session and e2(M) by the receiver at the end of the session, but
the precise content and placement can be chosen by the modeler. One can then define
non-injective agreement as follows: whenever an event e2(M) happens for a message M,
then previously the event e1(M) must have happened. Thus, it is an attack if somebody
accepts a message that has not been sent that way. The injective agreement additionally
requires that if e2(M) has occurred n times, then e1(M) must have previously occurred
at least n times (i.e., there is an injective mapping from e2 events to e1 events). Roughly
speaking, it is an attack if a message is accepted more often than it was actually sent. It is
hard to automatically verify injective agreement in this formulation. To simplify matters,
it is common to require that the authenticated message M includes something fresh, i.e.,
a unique identifier that the sender chooses [The03, Bla09]. Thanks to this construction,
the same e1 event cannot occur more than once. Then, the injective agreement goal
boils down to checking that no e2 event occurs twice (and that non-injective agreement
holds).

Let us thus extend Set-Pi with event declarations:

Sys ::= . . . | new e : event(T ); Sys

and event processes:

P,Q ::= . . . | event e(M); P

and introduce the semantic rule (EVT):

ρ,S,P ]{(event e(M); P,L,V )} e(M)→ ρ,S,P ]{(P,L,V )}

With this extension of the language, we can reason about non-injective and injective
agreement properties according to Lowe’s definitions. We then encode processes in
the extended calculus with events into processes in standard Set-Pi and show how our
encoding simulates the events.

DEFINITION 3 (NON-INJECTIVE AGREEMENT) There is a non-injective agreement
between event e1(M) and event e2(M) if and only if, for every possible trace ρ,S0,P0→
ρ,S1,P1→···→ ρ,Sn,Pn produced by the protocol, if ρi,Si,Pi

e2(M)→ ρi+1,Si+1,Pi+1

occurs in the trace, then also ρ j,S j,P j
e1(M)→ ρ j+1,S j+1,P j+1 occurs, for j < i.
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We construct a transformation from the extended language with events into the language
without events, then prove the equivalence between Definition 3 in the original process
(extended with events) and a set-property of the transformed process.

The transformation is as follows:

new e : event(T ); Sys → new e : set T ; Sys
event e(M); P → lock(e); set(M ∈ e);

unlock(e); P

Every event declaration becomes a set declaration in the translated process (assuming
that the names for sets and events are disjoint). Whenever an event e(M); P occurs,
where M is of type T , we substitute it with the process that locks e, inserts M in the
set e, unlocks e and continues with P; we also add a set declaration for e in its scope.
Furthermore, to gain precision in the analysis we merge a set transition followed by an
event into a single operation. That is, if we have a process set(b+); event e(M); P, we
transform it into the process lock(e); set(b+;M ∈ e); unlock(e); P.

Note that this transformation is sound, although two semantic steps are merged into
one: for the purpose of finding violations to an agreement property where e(M) should
happen before e′(M), if there is a trace where event e′(M) happens between set(b+)
and event e(M), then there is also a trace where event e′(M) happens before the set
operation. Given a process P we denote its event-free encoding as agree(P).

THEOREM 4 Let P be an extended process with events. If there is no reachable state
S from P′ = agree(P) that satisfies the expression M ∈ e2∧¬M ∈ e1, then there is an
non-injective agreement between e1(M) and e2(M) in P.

PROOF.[Proof sketch] To prove the correctness of our transformation we construct a
simulation relation between P and P′, where the semantic step of an event is simulated
by our construction. The full proof is found in the appendix.

DEFINITION 4 (INJECTIVE AGREEMENT) There is an injective agreement between
event e1(M) and event e2(M) if and only if, for every possible trace ρ,S0,P0 →
ρ,S1,P1→···→ ρ,Sn,Pn produced by the protocol, if ρi,Si,Pi

e2(M)→ ρi+1,Si+1,Pi+1

occurs in the trace, then also ρ j,S j,P j
e1(M)→ ρ j+1,S j+1,P j+1 occurs, for some j < i;

furthermore, there does not exists k > i such that ρk,Sk,Pk
e2(M)→ ρk+1,Sk+1,Pk+1.
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Figure 6.5: State transitions of messages in the CANAuth example

For proving injective agreement properties the transformation becomes:

new e : event(T ); Sys → new e : set T ;
new twice-e : set T ; Sys

event e(M); P → lock(e, twice-e);
if ¬M ∈ e then

set(M ∈ e);
unlock(e, twice-e); P

else
set(M ∈ twice-e);
unlock(e, twice-e); P

Every event declaration becomes a pair of set declarations for e and twice-e in the
translated process (assuming that the names for sets and events are disjoint). Whenever
an event e(M); P occurs, where M is of type T , we substitute it with the process that
locks e and twice-e, and performs set(M ∈ e); P when M has not yet been inserted in
e; when it is already present in e it performs set(M ∈ twice-e); P, and in both cases
unlocks e and twice-e; finally we add set declarations for e and twice-e in the scope.
Similarly to the non-injective case, we merge a set operation with the event that follows.
Given a process P, we denote its event-free encoding as inj-agree(P).

THEOREM 5 Let P be an extended process with events. If no reachable state S from
P′ = inj-agree(P) satisfies the expression (M ∈ e2∧¬M ∈ e1)∨ (M ∈ twice-e2), then
the injective agreement between e1(M) and e2(M) holds in P.

PROOF.[Proof sketch] To prove the correctness of our transformation we construct a
simulation relation between P and P′, where the semantic step of an event is simulated
by our construction. The full proof is found in the appendix.
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Relating back to our example, Figure 6.5 shows in green the desired transitions and
in red the undesired ones. Our model satisfies non-injective agreement if no message
is being accepted without being previously sent by the honest principal. It satisfies
injective agreement if no message is accepted twice.

6.6 Translation

The translation takes a process in Set-Pi and produces a set of Horn clauses that are then
solved by a saturation based resolution engine, like ProVerif or SPASS.

At the end of the section we show how the translation is carried out for our CANAuth
example. We now present the general concepts of the translation at an intuitive level,
which we then refine with details later in the section. The translation produces clauses
with predicates of the form msg(M,N) to denote that the system has produced an output
of N on channel M, predicates of the form att(M) to denote that the attacker process
knows M, predicates of the form name(a) to denote that a new name is produced by the
protocol, and clauses that conclude implies(·, ·) to denote set-transitions.

The body of a Horn clause represents the inputs that are required to reach a specific
point in the process, while the head of the clause represents the output that is generated.
For example:

in(ch,x : a); in(ch,y : b); out(ch, f (x,y))

produces the clause:

msg(ch,x)∧msg(ch,y)⇒msg(f (x,y))

Names and variables in the predicates are annotated with a special constructor val that
defines their current membership class. For example, if we have three sets in our system
s1,s2,s3, the term val(a,1,0,xs3,a) represents a name a in the process algebra in a state
where a is in s1, it is not in s2 and its membership to the set s3 is not constrained, as
denoted by the variable xs3,a. By doing so two clauses can be unified only if the terms
are in consistent states. For example, val(a,1,0,xs3,a) unifies with val(a,xs1,a,0,1) but
not with val(a,xs1,a,1,1), because the first term represents a name a that is not in s2,
while the third term represents a in a state where it belongs to s2.

Now we look at how the translation is constructed. We use a special function α , which
we call the set-abstraction, to record whether a particular term belongs or not to some
sets, and introduce the rules of Figure 6.6 to transform clauses, predicates and terms
into annotated ones. The set-abstraction is a function of type:

α : (S×M)→ ({0,1}∪{xs,M | s ∈ S,M ∈M})
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〈[H1∧·· ·∧Hn⇒C]〉α = 〈[H1]〉α ∧·· ·∧ 〈[Hn]〉α ⇒ 〈[C]〉α
〈[p(M1, . . . ,Mn)]〉α = p(〈[M1]〉α , . . . ,〈[Mn]〉α)
〈[f (M1, . . . ,Mn)]〉α = f (〈[M1]〉α , . . . ,〈[Mn]〉α)

〈[al [V ]]〉α =

{
val(al [V ],α(s1,al [V ]), . . . ,α(sn,al [V ])) if l ∈ labels(P0)

val(a>[],α(s1,al [V ]), . . . ,α(sn,al [V ])) otherwise

〈[x]〉α = val(x,α(s1,x), . . . ,α(sn,x))

Figure 6.6: Applying the set-abstraction

where we require:
α(s,M) /∈ {0,1} =⇒ α(s,M) = xs,M

It takes a process set s and a term M, and returns either the constant 1, to enforce that M
is in s, the constant 0 , to enforce that M is not in s, or the variable xs,M , to allow one of
the two choices to be picked consistently across the hypotheses.

The function 〈[p]〉α of Figure 6.6 recursively applies the set-abstraction to the clauses.
When it encounters an annotated name al [V ] in the protocol, it produces a constructor
val(. . .) where the first parameter is the name itself — with no annotations in case of
attacker names— and the remaining parameters represent the membership of al [V ] to
the sets s1, . . . ,sn; similar clauses are generated for occurring variables. For the purpose
of making the analysis feasible, as a well-formedness condition we require set types (of
the form set T ) to contain only name types and monadic constructors over name types.
For example, set Seed, set pk(Seed) and set sk(Seed) are acceptable set types, while
set key(Seed,Nonce) is not.

The function [[P]]HV Lα of Figure 6.8 takes a process P, a set of hypothesis predicates
H, that intuitively represent the set of messages required to reach P, a list of influencing
terms for the process V , a set of locks L held by the process, and the set-abstraction α ,
and produces a set of clauses representing the protocol behaviour.

Lastly the functions restrict, zero and relax of Figure 6.6 modify the set-abstraction
for various constructs of Set-Pi. The function restrict takes a set-abstraction α and a
boolean formula b and produces the set of all consistent abstractions that satisfy b, while
zero inserts the constant 0 for fresh names, and relax introduces variables in the image
of α for unlocked sets.

Having introduced the auxiliary functions for manipulating the set-abstraction, we now
come back to explaining the translation process. The function relax(α,L) is applied at
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restrict(α,M ∈ s) = if α(s,M) 6= 0 then {α ′} else /0

where α
′(s′,M′) =

{
1 if M′ = M∧ s′ = s
α(s′,M′) otherwise

restrict(α,¬M ∈ s) = if α(s,M) 6= 1 then {α ′} else /0

where α
′(s′,M′) =

{
0 if M′ = M∧ s′ = s
α(s′,M′) otherwise

restrict(α,b1∧b2) =
⋃

α ′∈restrict(α,b1)

restrict(α ′,b2)

restrict(α,b1∨b2) = restrict(α,b1)∪ restrict(α,b2)

restrict(α,¬(b1∧b2)) = restrict(α,(¬b1)∨ (¬b2))

restrict(α,¬(b1∨b2)) = restrict(α,(¬b1)∧ (¬b2))

restrict(α,¬¬b) = restrict(α,b)

zero(α,a) = α
′

where α
′(s,M) =

{
0 if a occurs in M
α(s,M) otherwise

relax(α,L) = α
′

where α
′(s,M) =

{
α(s,M) if s ∈ L
xs,M otherwise

Figure 6.7: Functions for updating α

each step of the translation, as it inserts variables in the image of α for all sets that are
not locked, as they may be changed by other processes.

The translation for 0 produces an empty set of clauses. Replication !l P translates P
with the introduction of a new session variable xl in the list of influencing variables V .
Parallel composition P1 |P2 is translated as the union of the clauses generated by both
processes.

Input in(M,x : T ) adds the predicate msg(M,N′) as an hypothesis in H, where N′ is a
copy of T where every occurrence of a name type is replaced with a unique variable
using ptri(V)

x (T ); the substitution {N′/x} is then applied on the continuation. Output
out(M,N) produces a clause that generates 〈[msg(M,N)]〉α if all hypotheses in 〈[H]〉α
are satisfied. The rule for newl x : a introduces a restricted name: the value class of al [V ]
is set to 0 for every set, the predicate name(al [V ]) is introduced both in the hypotheses
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[[0]]HV Lα = /0
[[!l P]]HV /0α = [[P]]H(xl :: V ) /0(relax(α, /0))
[[P1 |P2]]HV /0α = [[P1]]HV /0(relax(α, /0))∪ [[P2]]HV /0(relax(α, /0))
[[in(M,x : T ); P]]HV Lα = [[P{N′/x}]](H ∧msg(M,N′))(N′ :: V )Lα

′

where α
′ = relax(α,L), N′ = ptri(V )

x (T )

[[out(M,N); P]]HV Lα = [[P]]HV L(relax(α,L))∪{〈[H⇒msg(M,N)]〉α}
[[newl x : a; l P]]HV Lα = [[P{al [V ]/x}]](H ∧name(al [V ]))V Lα

′∪{〈[H⇒ name(al [V ])]〉α ′}
where α

′ = zero(α,al [V ])

[[let x = g(M1, . . . ,Mn) inP1 else P2]]HV Lα =

{[[σ(P1)]]σ(H)σ(V )Lα
′′ | reduc ∀~x′ : ~T ′ . g(M′1, . . . ,M

′
n) → M′; is in the scope of let,

σ is an m.g.u. that satisfies M1 $M′1∧·· ·∧Mn $M′n∧ x$M′,

θ is an m.g.u. that satisfies ∀s,N1,N2, σ(N1) = σ(N2)⇒ α
′(s,N1)$ α

′(s,N2),

and α
′′ satisfies ∀N .α ′′(s,σ(N)) = θ(α ′(s,N))} ∪ [[P2]]HV Lα

′

where α
′ = relax(α,L)

[[if b thenP1 else P2]]HV Lα =
⋃

[[P1]]HV Lα
′

α ′∈restrict(relax(α,L),b)

∪
⋃

[[P2]]HV Lα
′

α ′∈restrict(relax(α,L),¬b)

[[lock(L′); P]]HV Lα = [[P]]HV (L∪L′)(relax(α,L))

[[unlock(L′); P]]HV Lα = [[P]]HV (L\L′)(relax(α,L))

[[set(b+); P]]HV Lα = {〈[H]〉α ′ ⇒ implies(〈[M]〉α ′ ,〈[M]〉α ′′) |M ∈ f v(b+)∪ f n(b+)}∪ [[P]]HV Lα
′′′

where α
′ = relax(α,L) and α

′′ = update(α,b+) and α
′′′ = relax(α ′′,L)

Figure 6.8: Translation of Set-Pi into Horn clauses

for analysing the continuation and as a fact that follows the current set of hypotheses H.
This ensures that all the set-abstraction variables occurring in the head of a clause are
closed under the hypotheses.

The rule for let x = g(M1, . . . ,Mn) inP1 else P2 looks for a substitution σ that success-
fully unifies a definition of the rewrite rule for the destructor g with the actual parameters
M1, . . . ,Mn, and then finds a substitution θ that unifies the terms in the set-abstraction
α accordingly to the unification on the process algebra terms; if both substitutions are
found then σ(P1) is analysed where x is substituted with the result of the reduction.

The rule for if b thenP1 else P2 translates P1 with all the set-abstractions that satisfy
the formula b, and P2 with all the set-abstractions that satisfy the formula ¬b. The
rule for lock(s); translates the continuation by first introducing s in the locked sets
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L, and applying relax to take into account state changes from other processes before
the lock takes place. Similarly, the rule for unlock(s); translates the continuation
by removing s from the set L, and applying relax. The rule for set(b+); P, for every
name and variable occurring in b+ that we denote by M, creates a clause of the form
〈[H]〉α ′ ⇒ implies(〈[M]〉α ′ ,〈[M]〉α ′∪{(s,M)}), and translates the continuation. The clauses
produced by this last rule ensure that whenever M appears in a predicate on state α ′, we
will also have the same predicate on state α ′∪{(s,M)}.

Clauses representing the attacker We add the following set of clauses to represent
a Dolev-Yao attacker. The attacker can eavesdrop messages form known channels:

msg(xch,xmsg)∧att(xch)⇒ att(xmsg)

The attacker can insert known messages into channels:

att(xch)∧att(xmsg)⇒msg(xch,xmsg)

For every n-ary constructor f occurring in the protocol we produce a clause:

att(x1)∧·· ·∧att(xn)⇒ att(f (x1, . . . ,xn))

For all destructors of the form g(M1, . . . ,Mn)→M we produce a clause:

att(M1)∧·· ·∧att(Mn)⇒ att(M)

Finally, the attacker knows a name for each name type a in the initial state S0:

⇒ 〈[att(a>[])]〉S0 ; ⇒ 〈[name(a>[])]〉S0

as well as the public channel shared with the honest protocol:

⇒ 〈[att(chl0 [])]〉S0

Clauses representing the set-transitions Let Cl be the set of clauses produced by
the translation [[P0]] /0 /0 /0α0. In order to transfer the knowledge obtained between states,
for every predicate p(C[a]) used as conclusion in Cl, for every compatible conclusion of
the form implies(〈[a]〉α ,〈[a]〉α ′) in Cl, we produce a set of clauses of the form:

〈[p(C[a])]〉α ∧ implies(〈[a]〉α ,〈[a]〉α ′)⇒ 〈[p(C[a])]〉α ′

This set of clauses transfers the attacker knowledge between state transitions. Intuitively
this set of rules suffices for the translation because only the honest protocol produces
state transitions, and everything that the attacker can derive in a state, it can also derive
in the successor state. Therefore, it is only necessary to transfer the hypotheses for the
protocol. Lemma 9 in Appendix A.3 establishes the correctness of this approach.
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Translation of CANAuth into Horn clauses To show how the translation is applied
to produce Horn clauses from the original description, we have taken an excerpt from our
running example, namely the receiving process, translated the events into set transitions,
and labelled each point of the program:

P1 , !l1 {r,a,at} l2 in(ch,〈xm,xs〉 :

〈msg(cnt),hmac(key,msg(cnt))〉);l3

let _ = eq(xs,hmac(k,xm)) in l4

let xc = getcnt(xm) in l5

if xc /∈ r then l6

if xm /∈ a then l7set(xc ∈ r;xm ∈ a); l8

else l9set(xc ∈ r;xm ∈ at); l10

Figure 6.9 shows the clauses that are generated, together with the recursive calls of [[·]]
that are required to produce them. We use here the notation like (H1 = /0) to indicate the
development of the parameters H, V , L and α over the recursive calls of [[·]], and Pl to
denote the subprocess of P1 at label l.

6.7 Correctness

In this section we want to establish the correctness of our translation with respect to the
semantics of Section 6.4. We use the inference system of Figure 6.10 to express our
correctness results. Intuitively, this set of rules relates the instrumented semantics to the
Horn clauses generated by the translation, namely that the fixed-point FP0 covers all
possible behaviours of a process, when started in the given configuration (ρ,L,V,S) and
in any environment that cannot change sets in L.

Let S and S′ again be states of the sets (i.e., S(s) yields the elements that are members
of set s in state S); we can view a state as a special case of an abstraction α that has no
variables (i.e., indetermined set memberships) and we can thus write 〈[·]〉S accordingly.
We will now show: if the semantic relation induces a reachable state S at which output
N on channel M is produced, then the Horn clauses generated for the protocol entails
the ground fact 〈[msg(M,N)]〉S. This ensures that whatever behaviour is present in the
semantics is also captured by the translation.

We denote by CP0 the set of clauses produced by the translation, including the fixed
clauses, and by FP0 the set of ground facts derivable from CP0 . First we introduce the
order relation �L on the facts FP0 derivable from the initial protocol.
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ρ,V,L,S  0 T-NIL

∀S′ s.t.S� /0 S′ (ρ,V, /0,S′  Q1∧ρ,V, /0,S′  Q2)

ρ,V, /0,S  Q1 |Q2
T-PAR

∀S′ s.t.S� /0 S′ (ρ{l/xl},(xl :: V ), /0,S′  Q)

ρ,V, /0,S !l Q
l ∈ N T-REPL

∀S′ s.t.S�L S′ ∀N s.t.Γ ` N : T

〈[ρ(msg(M,N))]〉S′ ∈FP0 ⇒ (mgu(N′,N)◦ρ),

(N′ :: V ),L,S′  Q{N′/x}
ρ,V,L,S  in(M,x : T ); Q N′ = ptri(V )

x (T ) T-IN

〈[ρ(msg(M,N))]〉S ∈FP0 ∧∀S′ s.t.S�L S′ (ρ,V,L,S′  Q)

ρ,V,L,S  out(M,N); Q
T-OUT

〈[ρ(name(al [V ]))]〉S ∈FP0 ∧∀S′ s.t.S�L S′ ρ,V,L,S′  Q{al [V ]/x}
ρ,V,L,S  newl x : a; Q

T-NEW

∀S′ s.t.S�L S′ (∀M s.t.g(M1, . . . ,Mn)→ρ M

ρ,V,L,S′  Q1{M/x})∧ρ,V,L,S′  Q2

ρ,V,L,S  let x = g(M1, . . . ,Mn) inQ1 else Q2
T-LET

∀S′ s.t.S�L S′, (ρ,S′ |= b⇒ ρ,V,L,S′  Q1)∧ (ρ,S′ |= ¬b⇒ ρ,V,L,S′  Q2)

ρ,V,L,S  if b thenQ1else Q2
T-IF

∀S′ s.t.S�L S′ ρ,V,(L∪L′),S′  Q
ρ,V,L,S  lock(L′); Q

T-LOCK

∀S′ s.t.S�L S′ ρ,V,(L\L′),S′  Q
ρ,V,L,S  unlock(L′); Q

T-UNLOCK

∀S′ s.t.S�L S′,(∀M ∈ fv(b+)∪ fn(b+)

implies(〈[ρ(M)]〉S′ ,〈[ρ(M)]〉S′′) ∈FP0)∧
(∀S′′′ s.t.S′′ �L S′′′, ρ,V,L,S′′′  Q)

ρ,V,L,S  set(b+); Q
S′′ = update(S′,ρ(b+)) T-SET

Figure 6.10: Inference system for correctness
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DEFINITION 5 (ORDER RELATION �L) The order relation S1 �L S2 between states
S1 and S2 holds iff:

(i) ∀s j ∈ L . S1(s j) = S2(s j);

(ii) ∀p(M1, . . . ,Mk) .〈[p(M1, . . . ,Mk)]〉S1 ∈FP0 ⇒ 〈[p(M1, . . . ,Mk)]〉S2 ∈FP0 .

Intuitively the�L relation captures the causal relation of the semantic rules, as condition
(ii) requires all predicates of the form msg, name and att to be transferred from state S1
to state S2. Furthermore condition (i) imposes that the locked sets L are not modified
between the two states. The most general of such relations is � /0, as it allows any set to
be modified.

Next we formalise the definition for set-abstraction α that was introduced in Section 6.6.

DEFINITION 6 (SET-ABSTRACTION) The mapping α abstracts S under the environ-
ment ρ iff for every set s, term M, either α(s,M) = 1 and ρ(M) ∈ S(s), or α(s,M) = 0
and ρ(M) /∈ S(s), or α(s,M) = xs,M .

A set abstraction α abstracts a state S if every pair (s,M) that maps to a variable in α

is mapped to a variable that is unique in the image (this is ensured syntactically by the
use of xs,M), and whenever α(s,M) maps to the constants 1 and 0 then ρ(M) ∈ s and
ρ(M) /∈ s, respectively, in the state S.

The following lemmata establish the relation between the operations used in the trans-
lation and the order relation �L. Formal proofs of these properties are present in the
appendix.

LEMMA 3 (relax PRESERVES THE SET-ABSTRACTION OVER �L) Let S,S′ be two
states such that S �L S′, and assume α abstracts S under ρ . Then α ′ = relax(α,L)
abstracts S′ under ρ .

Since relax inserts unique variables in α ′ for all sets that are not locked, and for all
sets s that are locked α(s) = α ′(s) and S(s) = S′(s) holds by condition (i) of the order
relation, then α satisfies the properties of Definition 6.

LEMMA 4 (restrict PRESERVES THE SET-ABSTRACTION) Let α be a set abstrac-
tion, ρ an environment, S a state and A = restrict(α,b). If ρ,S |= b and α abstracts S,
then there exists an α ′ ∈ A such that α ′ abstracts S.
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Restrict produces a set of set-abstractions each representing a possible way of satisfying
the formula b. Lemma 8 establishes that if α abstracts S then at least one of these
restrictions on α satisfies the abstraction of S.

LEMMA 5 (implies PRESERVES S�L S′) Let S be a set-membership state, and S′ =
S∪{(s1,M1), . . . ,(s j,M j)} \ {(s j+1,M j+1), . . . ,(sn,Mn)}. If for all M ∈ {M1, . . . ,Mn}
we have implies(〈[M]〉S,〈[M]〉S′) ∈FP0 then for any set of locks L such that {s1, . . . ,sn}∩
L = /0 we have S�L S′.

Lemma 9 in Appendix A.3 establishes that implies predicates actually capture the state
transitions, hence following the definition of the order �L the set of predicates derivable
in the updated state is larger than that derivable in the original state.

Next we type the attacker process A and the honest protocol P0, under the initial
environment ρ0 = [xch 7→ chl0 []].

LEMMA 6 (TYPABILITY OF A) Let A be an attacker process, then ρ0, /0, /0,S0  A.

PROOF.[Proof of sketch] Let B be a subprocess of A, ρ an environment, S a state, V a
list of terms. We prove that if:

(i) ρ(B) is a closed process, ρ(V ) is ground,

(ii) S0 � /0 S, and

(iii) for every maximal subterm M of B closed under ρ , we have 〈[ρ(att(M))]〉S ∈FP0 ,

then:
ρ,V, /0,S  B

Proof by induction over the depth of B.

In particular, we have that (i) f v(A) = xch, hence ρ0(A) is closed; (ii) S0 � /0 S0 by
reflexivity; and (iii) the only maximal subterm of A that is bound by ρ0 is xch, and
by construction of the translation 〈[ρ0(att(xch))]〉S0 ∈FP0 . Hence the attacker process
types.

For the full proof we refer to the appendix.

LEMMA 7 (TYPABILITY OF P0) ρ0, /0, /0,S0  P0.
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PROOF.[Proof sketch] Let Q be a process. We prove that, given a list of terms V , a set
of locks L, a state S, a set-abstraction α , an environment ρ; if:

(i) ρ(Q) is a closed process, ρ(V ) and ρ(H) are ground,

(ii) α abstracts S under ρ ,

(iii) CP0 ⊇ [[Q]]HV Lα ,

(iv) for every predicate p in H, we have that 〈[ρ(p)]〉S ∈FP0

Then ρ,V,L,S  Q.

The proof is carried out by induction on the structure of the process Q.

In particular, (i) ρ0 closes P0 by construction, ρ0( /0) is trivially ground, (ii) α0 abstracts
S0 under ρ0 by construction, (iii) CP0 ⊇ [[P0]] /0 /0 /0α0 by definition of the translation, (iv)
holds vacuously. Therefore the conditions (i–iv) are satisfied and hence ρ0, /0, /0,S0  P0.

For the full proof we refer to the appendix.

THEOREM 6 (SUBJECT REDUCTION) If ρ,S,P → ρ ′,S′,P ′ and for all (P,L,V ) ∈
P we have ρ,V,L,S  P then for all (P′,L′,V ′) ∈P ′ we have ρ ′,V ′,L′,S′  P′.

The proof, found in the appendix, is a case-by-case analysis on the semantic rules for
the language.

THEOREM 7 (CORRECTNESS OF THE ANALYSIS) Let Sys[·] be the system context,
let P0 be the protocol, let T be the set of types used by P0, let A be any attacker process
using only types in T , and ρ0 = [xch 7→ chl0 []].

If the typing [] ` Sys[newl0 xch : ch; P0 |A] holds, and if ρ0,S0,P0 = {(P0 |A, /0, /0)}→∗
ρn,Sn,Pn = Pn′ ]{(out(M,N); P′,L,V )}; then 〈[ρ(msg(M,N))]〉Sn ∈FP0 .

PROOF.By Lemma 11 we know that ρ0, /0, /0,S0  P0; by Lemma 10 we know that
ρ0, /0, /0,S0  A, hence all processes in P0 type in the initial state S0.

Let ρ0,S0,P0→ ρ1,S1,P1→ ··· → ρn,Sn,Pn. By inductively applying Theorem 12
on the length of the trace n we can conclude that all processes in Pn type in the Sn.

In particular, the process out(M,N); P′ types in state Sn and hence 〈[ρn(msg(M,N))]〉Sn ∈
FP0 .
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Theorem 7 establishes the final relation between the inference system of Figure 6.10
and the instrumented semantics. We use this result to link the facts generated by the
translation to a query of interest.

COROLLARY 1 (CHECKING QUERIES) If ρ0,S0,P0 = {(P0 |A, /0, /0)}→∗ρ j,S j,Pj =
P′j ]{(out(M,N);P′,L,V )}
→∗ ρn,Sn,Pn and ρn,Sn |= b then there exists an αb ∈ restrict(α0,b) where θ =mgu(Sn,αb)
and 〈[ρn(msg(M,N))]〉θ◦αb .

PROOF.Follows from Theorem 7 and because S j � /0 Sn.

Therefore we can express any query of the form:

msg(M,N) where b

where b is a boolean expression ranging over names and monadic constructors in M
and N. Queries of this form are general enough to model secrecy from the attacker’s
perspective (assuming that the channel M is public), as well as the authentication
properties discussed in Section 6.5.

6.8 Experimental Evaluation

We implemented our analysis into a prototype tool written in Haskell, that translates
processes specified in Set-Pi and uses the ProVerif as a back-end resolution engine for
Horn clauses.

Figure 6.11 shows the results for our examples: the running example on CANAuth, a
flawed version of MaCAN [BSNN14], a key registration protocol, and an implemen-
tation of the Yubikey protocol modeled after [KK14]. We recorded the running times
for our test suite on a 2,7 GHz Intel Core i7 with 8 GB of RAM running OS X. They
are comparable to similar ProVerif models in applied-π , which shows that there is little
overhead induced by our specific translation.

6.9 Conclusions and Related Work

The Set-Pi calculus and its set-based abstraction method provide an important step to
overcome a serious limitation in current automated protocol verification: the limited
support verifying protocols that use state. When a change in state can lead to non-
monotonicity (things that were possible before the change are not possible after it) then
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Example Average time Vulnerable
CANAuth 0.0174s no
MaCAN 0.0244s yes
Key registration 0.0254s no
Yubikey single 0.0194s no

Figure 6.11: Experimental results

the standard abstraction and resolution approach leads to false positives. Our solution is
to enter just the “right amount” of state information into the abstraction of messages:
enough to represent the non-monotonic aspects we want to model, but only so much that
we do not destroy the benefit of the stateless abstraction approach in the first place. This
work has been inspired by several works that go in a similar direction and we discuss
here how they relate to us.

The closest works are two articles that similar to this work add state-information into
abstraction-based approaches. The AIF framework [Möd10] first used the idea of
encoding set memberships into the state abstraction. AIF is based on the low-level
AVISPA Intermediate Format [The03] and thus does not have the declarativity of a
process calculus. For instance, one has to explicitly specify the attacker and cannot
derive it from the calculus. Further, AIF uses the “raw” set membership abstraction,
while in our abstraction approach we do integrate the context in which messages have
been created which gives a finer abstraction. Also Set-Pi uses locks on sets, while AIF
does not have this notion (and the lock exists only as per the scope of each AIF transition
rule).

The second similar stateful abstraction approach is StatVerif [ARR11] which also
provides an extension of the applied π calculus. While we use state-information in the
abstraction of messages, StatVerif encodes state-information as an additional argument
in the generated predicates of the Horn clauses. The state transition that this approach
supports are in some sense like “breaking glass”: we can make at some point a global
change which cannot be reverted (to avoid cycles in the state transition graph). We
believe that Set-Pi and StatVerif have some complementary strengths as there are
examples that cannot be directly expressed in the other. While StatVerif can express that
a set of messages makes a state-transition at the same time, our abstraction looses this
relation between messages. On the other hand, we can flexibly have messages change
their set membership independent of each other, and they can return to any previous
state. An argument for the expressiveness of Set-Pi is that we have a systematic way to
formalize agreement properties using sets.

There are several model-checking approaches that can deal with stateful protocols,
namely the AVISPA/AVANTSSAR platform [AAA+12]. Note that here one needs to
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bound the number of steps of honest agents which is often fine for finding attacks, but
gives limited guarantees for verification. In fact, [FS09] studies APIs of key tokens
using SATMC [AC08] of AVISPA, and considers abstractions of data similar to our set
abstraction. This can in some cases lead to finitely many reachable abstracted states so
the analysis despite depth bound is complete. The AVANTSSAR platform also includes
the novel specification language ASLan that besides sets also supports the formulation
of Horn-clause policies that are freshly evaluated in every state. For certain fragments
we can obtain effective model-checking approaches, but again at the price of bounding
the number of steps of honest agents.

The work [KK14] presents a verification approach for stateful protocols using the
Tamarin prover [SMCB13] that is based on backwards analysis using multi-set rewriting.
This is not fully automated and often requires the user to supply auxiliary lemmas
tailored to the problem. The benefit of this approach is a great amount of flexibility in
formalizing relationships between data that cannot be captured by a particular abstraction
and resolution approach.
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CHAPTER 7

Proving Stateful Injective
Agreement with Refinement

Types

As we have seen in Chapter 4, embedded protocols require a certain amount of state to
operate. In traditional Internet-oriented communication protocols, injective agreement
between two parties is ensured with challenge-response mechanisms: a fresh nonce is
sent to be signed along with a response, to be later checked. Instead, embedded protocols
must often deal with restrictions that hinder the applicability of a challenge-response
pattern, as we have shown in Chapter 4 for our case study. Therefore protecting from
replay attacks must be handled with internal state. For example, in CANAuth this
consists of a counter, of which a copy is kept by the two communicating parties, and is
increased for every new message sent.

This pattern is also present in mobile GSM networks [AMRR11] to avoid unnecessary
roundtrips during authentication, and was also proposed as an optional feature of
emerging Internet protocols like QUIC [FG14, LJBNR15] that support a zero round-
trip mode. There, a so-called “strike-register” could be used to ensure freshness of
short-lived nonce received by the server until a time-stamp invalidates the nonce.

In Chapter 6 we presented Set-Pi, an extension of the Applied Pi-calculus that coupled
with an encoding into Horn clauses that maintains enough state information so that
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non-monotonic behaviour could be analysed by monotonic, saturation-based solvers,
such as ProVerif. The key idea there is to abstract values into their set-membership class,
and to use this state information as a pattern upon which certain actions are taken. We
showed how events are converted into set transitions and injective-agreement properties
into reachability queries of a specific membership class for the nonces identifying the
session.

While analysing protocols at an abstract level — such as with the Applied Pi-calculus
— is useful to reason about the correctness of a protocol design, there is an abstraction
gap between Applied Pi-calculus models and protocol specifications. In particular Set-
Pi defines a notion of sets that can be used to model a wide range of concrete mechanisms,
such as counters, timestamps, databases of keys and nonces. In this chapter we aim
at closing this gap by constructing a verified implementation of a protocol using these
concrete mechanisms.

Contributions We present a novel way of proving injective agreement properties
directly on the executable specification of the protocol extending previous work on
verifying weak agreement using event logs [FKS11]. We prove these properties using
refinement types — types with attached logic formulas that express properties on data —
and the F* language [SHK+15] — an ML-like language with support for refinement
types. The key idea is to maintain a log of events in the protocol, and to type the
insertion of an event in the log such that the desired injective correspondence property
is preserved.

In line with Bellare and Rogaway’s game playing technique [Sho04, BR04], the proofs
that we generate consist of a sequence of games G1 → ··· → Gn, where the original
game G1 corresponds to the protocol code, and successive transformations Gi→ Gi+1
are indistinguishable up to a negligible probability. The final game Gn is one such that
the security property can be easily verified, hence typing succeeds.

Our approach differs from previous work using refinement types and affine logic [BCEM15]
in that we use classical logic formulas on the event traces to prove the strong agreement
property. This allows us to use F* — an extension of the F# functional language with
refinement types, supported by an SMT-based type checker — to obtain a provably
correct implementation of the protocol.

7.1 Review: Computational RCF

First we review Computational RCF, the core calculus used by F*, which is an extension
of RCF with probabilistic semantics, and no non-determinism. For a complete and
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a,b,c label
x,y,z variable

ϕ first-order logic formulas
h ::= value constructor

inl | inr left/right constructor of sum type
fold constructor of recursive type

M,N ::= value
| x | () | fun x→ A variable, unit, function
| (M,N) | h M pair, construction
| reada | writea reference reader/writer

A,B ::= expression
|M |M N value, application
| let x = A in B | let (x,y) = M in A let binding, pair split
|match M with h x→ A else B constructor match
| assume ϕ | assert ϕ assumption/assertion of ϕ

| sample | ref M fair coin toss, reference creation

true, inl () false, inr ()

Figure 7.1: Syntax of Computational RCF

formal treatment we refer to the original article [FKS11]. A probabilistic semantics
allows precise modelling of probabilistic cryptographic algorithm and adversaries. As
non-determinism in practice gives the adversary the power of an NP-oracle, the semantics
of the calculus excludes it. To prove computational soundness of the cryptographic
primitives, we instead rely on the ability of the attacker to call the protocol.

Figure 7.1 presents the core calculus. It is a simplified version of F*, which will be used
throughout this chapter, however, the extensions that we use are standard ML syntactic
sugar on top of RCF.

The syntax contains the standard categories of algebraic constructors, values and expres-
sions. Semantic rules are expressed in the form [X ,L,A]→p [X ′,L′,B] where A is an
expression that reduces to B in one step with probability p, changing the environment
X into X ′, and the set of logical assumptions L into L′. The additions to the calculus
include assume and assert. The semantics for assume ϕ introduces a new hypothesis ϕ

to a list hypothesis in the program, and assert ϕ introduces a proof obligation, requiring
ϕ to hold when the assert is executed. The formula ϕ can be any first-order logic



102 Proving Stateful Injective Agreement with Refinement Types

T,U,V ::= types
| α | unit type variable, unit
| x : T → E U | x : T ∗U dependent function type, dependent pair type
| T +U | µα.T disjoint sum type, recursive type
| x : T{ϕ} refinement type

E ::= effects
| Tot | Div | St total, divergent, stateful functions
| Exn | All functions with exception, all effects

bool , unit +unit ref T , (()→ T )∗ (T → ())

Figure 7.2: Refinement types

formula such that fvϕ are bound in the current environment. In F*, ϕ can be any total
Boolean expression.

The expression sample allows sampling one bit of information with probability 1
2 , and

returns either true or false. This allows to express the probabilistic behaviour used in
cryptography.

References are in ML-style, and can be used for programming stateful computation,
including stateful protocols, communication buffers, and oracles. They are represented
as pairs of functions that read and write in a specific memory location, and each execution
of ref creates a fresh label a, and returns a pair of functions (reada,writea) that read and
write on a, respectively. Hence we can write !M for dereferencing a memory location,
and M := N for assigning N to the location M.

Runtime Safety An RCF program A is safe if for every possible evaluation of the
program all assertions succeed. Hence whenever a formula is evaluated, this formula is
a consequence of the previously evaluated formulas.

As the RCF programs are probabilistic, one can define probabilistic runtime safety of
A as the limit with n→ ∞ of the sum over all n-step probabilistic evaulations A→p1
· · · →pn An of p1 · . . . · pn in which all assertions succeed. Probabilistic runtime safety
computes the total probability over all possible executions that the assertions succeed:
this is a useful concept that we will later use for defining our cryptographic properties.
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Type Safety Figure 7.2 presents the type system that we use in our programs. Again,
we refer to the original article for a fully formal treatment [FKS11]. As we have seen,
refinements are formulas applied on data, and are denoted by the type x : T{ϕ}. The
typing judgement holds for every element x of type T for which ϕ(x) holds. Note
that dependent function types are annotated with an effect system. The elements of
the effect system compose a lattice with the order relation Tot < Div < St < All and
Div < Exn < All. Here Tot denotes a pure and terminating function, Div denotes a
computation that can diverge, St denotes a stateful function, Exn denotes a function that
can raise an exception, and All denotes a function that can have the combination of all
other effects. F* allows treating any pure terminating function with Boolean return type
as a logic formula, unifying the language of refinements and code.

Type judgements are of the form I ` A : T , where: I is a type environment, that is a
mapping from symbols to types, A is an expression closed under I, and T is a type
judgement for A under the type environment I. An alternative typing judgement is
I ` B I′ to express that A exports an interface I′ under assuming the environment I.

An important typing result is compositionality: if I ` A I′ and I′ ` B : T then also
I ` A ·B : T . Hence the type system allows to compose two RCF expressions A and B,
typed independently, and type the composition accordingly.

Refinement types give strong guarantees about the runtime behaviour of RCF programs.
The type safety results ensure that if /0 ` A : T , then A is safe. That is, if A types with T
under an empty set of assumptions, then the formulas enforced by T and the assert are
never violated at runtime.

7.2 Stateful Authentication

So far, we have reviewed existing literature. Now we will build on it in order to prove
injectivity. We present here our running example, a simple protocol that uses state in
order to ensure injective agreement between two parties, A and B:

A→ B : m,c,hmac(k,〈m,c〉)

When A wants to send an authenticated message m to B, it creates a fresh challenge
c and signs the m with c, using the key k shared between A and B. Upon receiving
the message, B checks the challenge c against its own local state, and the validity of
the signature. If c is a fresh value and the hmac signature is valid, then the message
is accepted, otherwise it is rejected. The challenge can be implemented with multiple
mechanisms, including counters, timestamps, and tracking random nonces. We only
require that there is a way to check their freshness.
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Implementation We implement the skeleton of the protocol CPR with two processes
proc_a and proc_b, shown in Figure 7.3. Both principals proc_a and proc_b share a
session key k, which is generated once and for all in the protocol with an attached
property msg_prop, which specifies the security property, as we will see later. The
proc_a encodes the message into a tagged bitstring using the function Format.message,
produces its signature, and finally sends the assembled message. The proc_b disassem-
bles it, checking all the conditions that violate the property. Such conditions are signaled
by the use of the option return type.

logic type Message : text→uint32→Type
logic type msg_prop (msg:text) = (∃ m c. msg = Format.message m c ∧Message m c)

let k = keygen msg_prop

let proc_a m =
let c = fresh_challenge () in
assume (Message m c);
let msg = Format.message m c in
let tag = mac k t in
send (append msg tag);
None

let proc_b () =
let msg_tag = recv () in
if length msg_tag = msg_size + mac_size then (
let (msg, tag) = split msg_tag msg_size in
match Format.parse msg with
| Some (m, c)→

if is_fresh_challenge c then (
if verify k m tag then (

recv_lemma m c !log_pr;
log_and_update m c;
assert (Message m c);
None

) else Some "MAC verification failed"
) else Some "Challenge used"

| None→Some "Bad tag"
) else Some "Wrong length"

Figure 7.3: Protocol skeleton for stateful authentication

The function fresh_challenge creates a fresh challenge to be used by proc_a, the function
is_fresh_challenge returns true if the challenge has not been observed by proc_b, and
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log_and_update adds the challenge to proc_b’s local state. Communication between
the two parties is done using the send and recv functions, while the cryptographic
component is handled by the MAC module.

7.3 Verification Approach

We break down the problem of verifying injective agreement in two steps. First we
prove weak agreement as shown in the RPC protocol [FKS11]: a custom predicate on
the signatures ensures that whenever the proc_b accepts a message, the message has
previously been produced and sent by an honest principal. Then we use the log of events
to prove strong agreement: whenever we insert an event in the log that corresponds to
the acceptance of the message by the proc_b, we ensure by typing that the event does
not appear in the log.

The combined use of assume and assert with the predicate Message m c proves weak
agreement by typing: the protocol types if, whenever Message m c is asserted, it was
previously assumed as an hypothesis. Similarly the typing of log_and_update m c
proves strong agreement, as its type requires the event Recv m c not to be in the log. We
use refinement types to attach these properties on data, and to prove invariants on the
structure of the log.

7.3.1 Cryptographic Verification of MAC

Recalling the INT-CMA game described in Section 3.4, a secure MAC signature is
one such that an attacker, having access to an oracle to compute an arbitrary number
of signatures for a set of plaintexts T , can forge a signature for a plaintext t /∈ T with
negligible probability.

Here we show how to express the INT-CMA assumption in the type system. We define
a logic type key_prop that is used to attach a property to the key and the text, a type
constructor pkey, a type entry for log entries, and a log log_m.

type key_prop : key→ text→Type
type pkey (p:(text→Type)) = k:key{key_prop k == p}
type entry = | Entry : k:key→ t:text{key_prop k t}→m:tag→entry
let log_m = ref []

Intuitively, the property key_prop k t can be read as “the oracle has generated the MAC
tag of the plaintext t using the key k”. Hence, as long as the property holds, the attacker
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has not forged a valid MAC. The Entry constructor requires key_prop to hold on k and t
before the entry can be created. Finally, we define a log that is used for checking our
cryptographic assumption.

Ideal Interface I The ideal interface of MAC encodes the properties of the INT-CMA
game in the type signatures. Our type signatures have been adapted from [FKS11] to fit
in the state monad St, which we require for verifying our protocol. The function mac
requires that the attached key_prop holds on k and t, while verify ensures that key_prop
holds if the verification succeeds.

val keygen: p:(text→Type)→pkey p
val mac: k:key→ t:text{key_prop k t}→St tag (modifies !{log_m})
val verify: k:key→ t:text→ tag→St (b:bool{b =⇒ key_prop k t}) (modifies !{no_refs})

An attacker that is able to win the INT-CMA game can construct a MAC tag tag for
the combination of k and t without requiring key_prop k t to hold. Note that this would
violate the type of verify, hence no such well-typed attacker exists.

The property msg_prop of Figure 7.3 requires that the signed message is tagged and
distinct from others, and that Message m c has been assumed, therefore the MAC is
not forged by an adversary. This property is attached to the key k when it is generated.
Typing the protocol code under this interface ensures the weak agreement property.

Ideal Implementation CI The ideal implementation of MAC maintains a log of all
the entries Entry k t on which mac is called. Calling verify k t m succeeds only if the tag
m is the result of computing mac k t and if Entry k t is present in the log.

let keygen (p: (text→Type)) =
let k = sample keysize in assume (key_prop k == p); k

let mac k t =
let m = hmac sha1 k t in log_m := Entry k t m :: !log_m; m

let verify k t m =
let verified = (m = hmac sha1 k t) in
let found = is_Some (find (fun (Entry k’ t’ m’)→k=k’ && t=t’) !log_m) in
verified && found

The ideal implementation CI types under the interface I, hence we have /0 `CI  I.

Concrete Implementation CC The concrete implementation CC differs from the ideal
implementation CI in that verify does not check the presence of k and t in the log.
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let keygen (p: (text→Type)) =
let k = sample keysize in assume (key_prop k == p); k

let mac k t =
let m = hmac sha1 k t in log_m := Entry k t m :: !log_m; m

let verify k t m =
m = hmac sha1 k t

By the INT-CMA assumption on MAC the attacker can forge a signature that successfully
verifies only with negligible probability, hence we have that CI ≈CC.

7.3.2 Stateful Injectivity

The protocol presented in Figure 7.3 relies on state to ensure an injective correspondence
between the two processes. Here we present the three mechanisms that we identified in
the various protocols: counters, timestamps and Bloom filters.

As said at the beginning of the section, we maintain injectivity by typing the function
log_and_update that updates the server state and a log of events of the form Recv m c,
which indicate that B has received and accepted a message.

val log_and_update: m: text→c: uint32→St (unit)
(requires (fun h→ Invariant h ∧ PreLogUpd m c (sel h log_p) ∧

∀e . List.mem e (sel h log_p) =⇒ e <> (Recv m c)))
(ensures (fun h x h’→ Invariant h’ ∧ PostLogUpd m c (sel h log_p) ∧

sel h’ log_p = Recv m c :: sel h log_p))
(modifies !{log_p})

let log_and_update m c =
log_p := Recv m c :: !log_p;
update_challenge c

The type of log_and_update requires that Invariant h be maintained before and after
the execution of the function. The precondition PreLogUpd m c (sel h log_p) relates
the current combination of message m and challenge c with the state of the log before
the execution of the function, and similarly does PostLogUpd m c (sel h’ log_p) relate
them after both the log and the server state have been updated. The combination of
precondition and the postcondition is dependent on the specific mechanism, which we
are soon going to detail. What is maintained over the interfaces for counters, timestamps
and Bloom filters is the third precondition, which requires that all events in the log
before execution are different from the one being inserted, and the third postcondition,
which ensures that the log is properly updated.
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Note that log_and_update only types when the event Recv m c is not in the log, hence it
can insert the event only once: each successive call with the same parameters violates
the typing after the state update. Next we are going to detail the specific invariants and
the functionality of the three stateful mechanisms.

Counters StC As previously mentioned we ensure strong authentication by typing the
log_and_update function:

logic type Invariant (h:heap) =
max_challenge (sel h log_p) = sel h proc_b_st ∧ Heap.contains h proc_b_st
∧ Heap.contains h proc_a_st ∧ Heap.contains h log_p ∧ proc_b_st <> proc_a_st

logic type PreLogUpd (m: text) (c: uint32) (h: heap) =
c > max_challenge (sel h log_p)

logic type PostLogUpd (m: text) (c: uint32) (h: heap) =
c = max_challenge (sel h log_p)

The Invariant ensures that a set of properties are maintained on the heap across exe-
cutions of proc_a and proc_b. In particular, we maintain the invariant that the highest
counter in log_p is equal to the current value of proc_b_st, and that the proc_a_st and
proc_b_st are disjoint memory locations, hence proc_a and proc_b do not interfere.

The following code implements the counter interface that is used by the protocol.

let proc_a_st = ref 1
let proc_b_st = ref 0
let fresh_challenge () =

let c = !proc_a_st in
proc_a_st := c+1; c

let is_fresh_challenge c =
c > !proc_b_st

let update_challenge c =
proc_b_st := max c (!proc_b_st)

let check_challenge c st =
c ≤ st

The following lemma is used for typing the log_and_update function.

val recv_lemma: m:text→c:uint32→ (l:list event{c > max_chal l})→
Lemma(∀ e . List.mem e l =⇒ e <> (Recv m c))

Intuitively, recv_lemma asserts that whenever we receive a message m that is signed
with a counter c greater than all the counters in the log, then the event Recv m c is not in
the log.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Empty bloom filter consisting of 16 bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0

(b) Bloom filter containing “hi”, “hola”, “hello”. Here we assume hash1(hi) = 7, hash2(hi) = 14,
hash1(hola) = 10, hash2(hola) = 2, hash1(hello) = 7, and hash2(hello) = 0.

Figure 7.4: Example of Bloom filter

Timestamps StT Timestamps are very similar to counters for the sake of proving
injective agreement. In fact, our stateful module for timestamps only differs in the
definition of fresh_challenge and in the addition of the tick function.

let fresh_challenge () = !proc_a_st
let tick () = proc_a_st := (!proc_a_st) + 1

Bloom filters StB Bloom filters are an efficient data structure that can track, with a
fixed number of bits, an arbitrary number of values in a set. Bloom filters trade efficiency
for precision, in the sense that a membership query gives either a negative answer —
i.e., a certain value is not in the set — or a probabilistic answer — i.e., the value may
be in the set with a certain probability. Hence they are considered a probabilistic data
structure.

The use of Bloom filters is very appealable for the construction of efficient security
protocols, since they can be employed to efficiently track values such as random numbers
and keys instead of relying on multiple, time-consuming message exchanges. One
interesting example is the QUIC protocol [FG14, LJBNR15] with support for a zero
round-trip mode: a so-called “strike-register” is used to ensure freshness of short-lived
nonces received by the server until a time-stamp invalidates the nonce.

The data structure consists of a bitstring of a fixed length ln, like the one in Figure 7.4 (a).
Adding an element to the Bloom filter requires computing n different hashes of the data,
then setting bits of the bitstring with index corresponding to those hashes. Checking
whether an element is present in the filter requires re-computing the n different hashes
for the data, then checking that all bits with index corresponding to those hashes are set
to 1.

The example of Figure 7.4 (b) shows a filter where the bits with indexes 0, 2, 7, 10 and
14 are set, and two hashes are computed for each element inserted. Checking whether



110 Proving Stateful Injective Agreement with Refinement Types

one element in S = {hi,hola,hello} is in the filter always succeeds, as the hash functions
are deterministic. Checking whether an element outside S is in the filter may succeed.
The check succeeds if the indexes computed by the hash functions map to bits in the
filter that are set to one.

Assuming that the hash function in use by the Bloom filter has uniform distribution over
its codomain1, one the rate of false positives of a Bloom filter is (1− ek·n/ln)k, where
the parameter k represents the number of computed hashes, the parameter ln represents
the length of the Bloom filter, and n are the elements being inserted [MU05].

We constructed a module that implements the following interface for Bloom filters:

type ln_t = ln:uint16{ln > 0}
type hash = h:seq byte{Seq.length h ≥ 2}
type hash_fn = text→Tot hash
type bloom (ln:ln_t) = bl:seq bool{Seq.length bl = ln}

logic type Le (ln:ln_t) (bl1:bloom ln) (bl2:bloom ln) =
∀i . (0 ≤ i && i < ln) =⇒ ((Seq.index bl1 i) =⇒ (Seq.index bl2 i))

val create: ln:ln_t→Tot (bl:bloom ln)
let create ln = Seq.create ln false

val check: ln:ln_t→h:hash_fn→k:nat→ t:text→bl:bloom ln→Tot (b:bool)
val add: ln:ln_t→h:hash_fn→k:nat→ t:text→bl:bloom ln→

Tot (bl’:bloom ln{Le ln bl bl’ ∧ check ln h k t bl’})

First, we define a length type ln_t as a positive 16-bit integer. The type of hashes is a
byte sequence containing at least two bytes that are used as index over the Bloom filter,
and a hash function is any total function from a plaintext to a hash value. A Bloom filter
with length ln is then a sequence of ln Boolean values.

Our module for Bloom filters is salted: we use one hash function h and hash k times
the plaintext t, by prepending a 2-byte representation of an integer i ranging from 0 to
k−1. Another option would be to use k different hash functions as parameters. The
latter choice would not change the theoretical result, however, the specific choice of
hash functions may influence the probabilistic performance.

We define a partial order relation Le between two Bloom filters bl1 and bl2 of length ln.
The relation holds if, for every bit with index i that is set in bl1, the bit with index i is

1The hash functions used by Bloom filters do not need to be collision-resistant, even when Bloom filters
are used to track nonces in cryptographic protocols. Finding a collision in our case would block the attacker,
because the protocol would reject nonces that have been recorded in the filter.
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also set in bl2. Note that this relation defines a lattice of Bloom filters, where the empty
filter is at the bottom, and the filter with all bits set is at the top.

The function create constructs an empty filter, which is a sequence of zeroes. The
function check evaluates the membership of t in the filter bl, returning true if all the
corresponding bits in the filter are set. Finally the function add inserts t in the bloom
filter bl, returning a new filter bl’.

Next we define the invariant to be maintained across executions of proc_a and proc_b,
and the pre and post condition to the log_and_update function.

logic type Invariant (h:heap) =
Heap.contains h proc_b_st

logic type PreLogUpd (m: text) (c: uint32) (h: heap) =
true

logic type PostLogUpd (m: text) (c: uint32) (h: heap) =
check_challenge m c (sel h proc_b_st)

This interface is much simpler than the ones used for counter, as one does not need to
maintain the relation between the state of the two processes. The interface for Bloom
filters that is used by the protocol is as follows:

let fresh_challenge () =
sample num_bits

let is_fresh_challenge c =
not (Bloom.check c (!proc_b_st))

let update_challenge c =
proc_b_st := Bloom.add c (!proc_b_st)

let check_challenge c st =
Bloom.check c st

Finally, we present the lemma used to type the log_and_update function.

val recv_lemma: m:text→c:uint32→
bl:bloom filter_size{not (Bloom.check (uint32_to_bytes c) bl)}→
l:list event{∀ m’ c’ . List.mem (Recv m’ c’) l =⇒ Bloom.check (uint32_to_bytes c) bl}→
Lemma (∀ e . List.mem e l =⇒ e <> (Recv m c))

Essentially, recv_lemma states that if a Bloom filter bl has recorded all the challenges in
a log of events l, and the new challenge c is not stored in bl, then the event Recv m c is
not present in l.
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7.3.3 Correctness

By composing the modules that we presented throughout this chapter, we obtain the
typability of the system from the following theorem.

THEOREM 8 (INJECTIVE AGREEMENT OF CPr) Let St ∈ {StC,StT ,StBl} be one of
the stateful mechanisms. If IMAC ` St ·CPr : T , then the composition CC ·St ·CPr of the
concrete MAC implementation CC, preserves injective agreement.

PROOF. Because the composition of the protocol code and the stateful mechanism
satisfies the judgement IMAC ` St ·CPr : T , and because /0 `CI  IMAC, then by compo-
sitionality we obtain /0 `CI ·St ·CPr : T .

We can augment the semantics of F* programs by recording traces of events, as follows:

[X ,L,(assume(Message m c); A)]
Message m c−−−−−−−→1 [X ,({Message m c}∪L),A]

[X ,L,(assert(Message m c); A)]
Message m c−−−−−−−→1 [X ,L,A] if L `Message m c

[X ,L,(log_and_update m c; A)] Recv m c−−−−−→1 [X ′,L,A]

Where in the last rule X’ updates the state X by appending the event Recv m c and
tracking the challenge c.

Typing the protocol ensures the following two results:

(1) Agreement between the events Message m c and Message m c. If Message m c
occurs in a trace at index i of the sequence of transitions, then Message m c occurs
at index j with j < i, because the predicate Message m c must be assumed before
the corresponding assertion is executed.

(2) Pairwise disjointness of the events of the form Recv m c. Typing an instance of
log_and_update m c requires that Recv m c to be different from all other entries
in log_p. Hence a specific instance Recv m c can only be inserted once.

Because assert (Message m c) appears only after log_and_update m c in CPr, in order
to observe Message m c, one can only observe it after Recv m c in the sequence of
events:

. . .
Recv m c−−−−−→1 ·

Message m c−−−−−−−→1 . . .

And since Recv m c can appear at most once in a trace then also Message m c appears
at most once, and only after an occurrence of Message m c. Hence injective agreement
holds in the composition CI ·St ·CPr.
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Because CI ≈CC, then by compositionality CI ·St ·CPr ≈CC ·St ·CPr, hence an attacker
that interacts with the concrete protocol break injective agreement only up to a negligible
probability.

7.4 Conclusions

We showed how to prove injective agreement on a simple stateful protocol that uses
state for replay protection. This technique is general enough to be directly applicable to
protocols that use various form of stateful tracking mechanisms, and we have seen that
the same protocol structure types with counters, timestamps, and random challenges
tracked by Bloom filters.

The stateful nature of F* makes it natural to express stateful security protocols. Its
support for refinement types allows formal reasoning about their security properties,
and the modularity of the language allows to construct libraries of formally verified
security mechanisms. Furthermore, the programs that we presented can be compiled
into executable code: simply by erasing the refinement formulas and effect annotations
one valid obtains F# code.

On the other hand, the use of classical logic with combinations of assumes and asserts
required custom manual reasoning about the final result, as we have seen in Theorem 8.
We believe that one can overcome this limitation by using logs of events for the sender
and receiver processes, and check multiset inclusion to ensure injectivity. Work in this
direction has shown that this is achievable by typing, using monotonic references and
proving invariants that maintain the inclusion of the two logs [SHK+15].

Another approach is to use affine logic to reason about agreement properties. Affine
logic is a custom logic that can naturally express the consumption of resources and
replication thereof [Tro92]. Bugliesi et al. [BCEM15] propose an affine refinement type
system for RCF to prove resource authorisation properties in cryptographic protocols.
The advantage of this approach is that agreement properties are automatically captured
by the logic, and don’t need custom reasoning. On the other side it gives a great deal
of flexibility and support by standard tools such as F*, which in turn relies on the Z3
theorem prover. Supporting custom logics is known to be hard.

Relating to the Set-Pi language of Chapter 6, the primitives that we presented are two
concrete patterns that are indeed a set-abstraction. As future work it would be interesting
to produce a translation from Set-Pi protocols into formally verified F* protocols. This
could be done by means of annotations, for example one can define a mapping between
a library of Set-Pi types to a library of modules in F*.
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CHAPTER 8

Conclusions

In this thesis we have explored how formal protocol verification techniques can be
adopted in the domain of embedded systems, and we have improved existing techniques
to better cope with the peculiarities of the embedded domain. We have also given an
in-depth analysis of two authentication protocols for the CAN bus network, applying
formal verification to discover breaches in their design and to prove that our corrections
are sound. At beginning of our journey we claimed that:

language based technologies offer a framework to push the boundaries of protocol
verification, both in the symbolic and computational models, so as to encompass the
verification of features peculiar to embedded systems.

In Section 8.1 we summarise the contributions of this dissertation, in order to elucidate
how each of our developments is instrumental in validating our claim. Finally in Sec-
tion 8.2 we will discuss the challenges in the analysis of stateful protocols, particularly
in the embedded domain.

8.1 Contributions

We shall now briefly review our contributions on the verification of security protocols,
particularly in the domain of embedded systems.
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Formally verified embedded automotive protocols. We studied the panorama of
existing embedded authentication protocols in automotive, identified two proposals that
are likely to be good candidates for future adoption, and showed that formal verification
can help to improve their security. In-depth analysis of the systems revealed a range
of safety and security flaws. Combining formal protocol analysis with schedulability
considerations has helped us harden the system design, by showing which security
assumptions can be supported by the safety mechanisms, and viceversa, by constructing
security protocols that are more suitable for the safety constraints.

Stateful protocols can be analysed by means of process algebras. Process alge-
bras — and the Applied Pi-calculus in particular — offer an expressive language
framework for describing security protocols, and are supported by well-established and
effective symbolic analyses. However, most successful analysis techniques work by
coalescing multiple system states into a single set of reachable information. This over-
approximation is too coarse when certain security properties (secrecy, authentication)
depend on the system’s state. We propose an extension of the Applied Pi-calculus to
address these problems: Set-Pi extends the well-known process algebra with support for
global state. The state consists of sets of values from the process algebra, which can be
manipulated by means of insertion and removal operations, and queried for membership
of a particular value. We complemented the language with a formal analysis, which is
capable of proving secrecy and authentication properties of stateful protocols.

Verified implementations of stateful authentication mechanisms. Verifying proto-
col implementations in the computational model reduces the abstraction gap in com-
parison to symbolic proofs. We propose a methodology to prove strong authentication
properties on stateful protocols using refinement types and classical first-order logic in
an effectful programming language. We show with a concrete example how multiple
stateful mechanisms (e.g. counters, timestamps and random nonces paired with Bloom
filters) can be plugged into a unified protocol structure, as they offer similar guarantees.

8.2 Future Directions

Among the properties that we have not studied in this thesis, but that are interesting
in some embedded domains, we should mention indistinguishability properties, which
reduce to observational equivalence of processes. The problem of proving indistinguisha-
bility in the Applied Pi-calculus has received a lot of attention [BAF05, DKR07, CD09,
CB13], however, we still lack satisfying results for stateful calculi. Preliminary work
in this direction has been done by Mancini [Man15], showing limitations in proving
equivalences due to the abstractions required by the StatVerif translation. It also shows
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the need to reason about these properties in stateful embedded systems, such as mobile
telephony protocols, making this extension highly desirable.

The expressive power of our encoding of Set-Pi into Horn clauses is limited in that the
analysis gives precise results only when a certain property depends on a single value.
When we want to prove properties that depend on state information regarding multiple
values, our over-approximation fails to give the expected guarantees. We circumvented
this limitation by using a type system for our language that allows to track the state of
multiple values that can be constructed from a single seed, e.g. a public/private key pair.
However the problem still remains for cases in which these values are freshly generated
by independent processes.

Synchronising the state over multiple values is not a problem in the StatVerif encoding
of stateful Applied Pi-calculus models into Horn clauses, where the state is modelled as
a tuple of values added to the predicates and all state cells can be changed synchronously.
The StatVerif encoding encounters other limitations: when trying to express the po-
tentially infinite structures that are natural in Set-Pi the saturation procedure does not
terminate.

In our attempts at combining the expressive power of the two calculi we hit limitations
that suggest that a finer abstraction might require a more powerful logic than Horn
clauses can offer. Negative results in this respect would help to formalise our intuition.
Another interesting research direction is to study a possible extension of the underlying
logic that provides the required expressive power.

Regarding our work in Chapter 7, our verified implementation of authenticated protocols
is hand-crafted, but at the same time it is modular enough that the proofs for the different
stateful mechanisms (counters, timestamps, Bloom filters) can be swapped in the same
protocol structure.

These stateful mechanisms are concrete implementations of the set abstraction that
we employed in Chapter 6. The problem of refining abstract specifications into con-
crete working implementation poses interesting challenges, and has been addressed
before [TH05, CB12, Mod12, QPN14, AM14]. Refining specifications of stateful proto-
cols into implementations — in particular verifiable implementations — is still a rather
unexplored and interesting domain.
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APPENDIX A

Proofs of Chapter 6

This chapter presents the proofs for Set-Pi, sketched in Chapter 6. Section A.1 shows the
subject reduction results for the type system used in the language. Section A.2 shows
the soundness of the transformations used to prove agreement and injective agreement in
Section 6.5. Section A.3 shows the correctness of the analysis presented in Section 6.6
with respect to the semantics of Section 6.4; these proofs were sketched in Section 6.7.

A.1 Subject Reduction

THEOREM 9 (SUBJECT REDUCTION) Let Γ be a type environment, ρ,S,P a config-
uration. If for all (P,L,V ) ∈P we have L,Γ[ρ̂] ` P, and if ρ,S,P → ρ ′,S′,P ′, then
for all (P′,L′,V ′) ∈P ′ we have L′,Γ[ρ̂ ′] ` P′.

PROOF.We prove the theorem with a case-by-case analysis of the semantic step ρ,S,P→
ρ ′,S′,P ′.

Case COM.
ρ,S,P]{(in(M,x : T ); P1,L1,V1),(out(M,N); P2,L2,V2)}→ ρ ′,S,P]{(P1{N′/x},L1,N′ ::
V1),(P2,L2,V2)}, where ρ ′ = mgu(N′,N)◦ρ and N′ = ptri(V )

x (T ).
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Let (P,L,V ) be a process that remains unchanged after the transition. We need to
prove that if L,Γ[ρ̂] ` P then L,Γ[ρ̂ ′] ` P. We know that N is a ground term, and N′

is homomorphic to N by construction, where every instance of a name is mapped to
a syntactically unique variable1. Hence ρ and ρ ′ satisfy the properties of Lemma 2,
namely that Dom(ρ)⊆Dom(ρ ′) and that for every variable x in ρ we have ρ ′(x) = ρ(x).
Therefore we conclude that L,Γ[ρ̂ ′] ` P.

For P2 we know by hypothesis that since L2,Γ[ρ̂]` out(M,N); P2 then also L2,Γ[ρ̂]`P2.
Applying Lemma 2 we conclude that L2,Γ[ρ̂ ′] ` P2.

For P1 we know by hypothesis that L1,Γ[ρ̂] ` in(M,x : T ); P1, and hence L1,Γ[ρ̂, x 7→
T ] ` P1. By Lemma 2, since x does not appear in Dom(Γ)∪Dom(ρ ′), we obtain
L1,Γ[ρ̂ ′, x 7→ T ] ` P1 and by Lemma 1, because Γ[ρ̂ ′] ` N′ : T we obtain L1,Γ[ρ̂ ′] `
P1{N′/x}.

Therefore all processes type after the transition.

Case NEW.
ρ,S,P ]{(newl x : a; P,L,V )} → ρ,S,P ]{(P{al [V ]/x},L,V )}

By hypothesis L,Γ[ρ̂,x 7→ a] ` P and since Γ ` al [V ] : a by Lemma 1 we conclude that
L,Γ[ρ̂] ` P{al [V ]/x}. For all processes in P the typing judgement is unchanged after the
transition, hence it holds by hypothesis.

Case REPL.
ρ,S,P ]{(!k P, /0,V )} → ρ ′,S,P ]{(P, /0,xk :: V ),(!k+1 P, /0,V )} where ρ ′ = ρ{k/xk}.

By hypothesis:
/0,Γ[ρ̂] ` P

/0,Γ[ρ̂] `!k P

By Lemma 2 we conclude
/0,Γ[ρ̂ ′] ` P

and hence also
/0,Γ[ρ̂ ′] `!k+1 P

applying the typing rule for replication.

Let (P′,L′,V ′) be a process in P , then by hypothesis L′,Γ[ρ̂] ` P′. Since xk /∈ Dom(ρ)

and ρ ′ = ρ{k/xk}, by Lemma 2 we conclude L′,Γ[ρ̂ ′] ` P′.

1The use of position indexes in constructors and replication indexes serves this purpose.
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Remaining cases.
For all remaining cases we have a semantic rule of the form ρ,S,P ] {(P,L,V )}
→ ρ,S′,P ] {(P′,L′,V ′)}. We observe that in all these cases L,Γ[ρ̂] ` P contains
L′,Γ[ρ̂] ` P′ as hypothesis, hence it holds after the transition. For all processes in P
the typing judgement is unchanged after the transition, hence it holds by hypothesis.

A.2 Agreement

THEOREM 10 Let P be an extended process with events. If there is no reachable state
S from P′ = agree(P) that satisfies the expression M ∈ e2∧¬M ∈ e1, then there is an
non-injective agreement between e1(M) and e2(M) in P.

PROOF.One can construct a simulation relation between agree(P) and P, defined as a
binary relation on semantic configurations: ρ1,S1,P1 ∝ ρ2,S2,P2.

In particular, when P = event e(M); P1 we have that if (3,1) ∈∝ and:

1
ρ,S,P ]{(event e(M); P1,L,V )} e(M)→

2
ρ,S,P ]{(P1,L,V )}

then:
3
ρ,S′,P ′]{(lock(e); set(M ∈ e); unlock(e); P2,L,V )}→

4
ρ,S′,P ′]{(set(M ∈ e); unlock(e); P2,L,V )}→

5
ρ,S′∪{(e,M)},P ′]{(unlock(e); P2,L,V )}→

6
ρ,S′∪{(e,M)},P ′]{(P2,L,V )}

where P2 = agree(P2) and (6,2) ∈∝.

When a set operation precedes an event, that is:

set(b+); event e(M); P1

the set transition and the event are merged into a single set transition in the transformed
process:

lock(e); set(b+;M ∈ e); unlock(e); P2

Hence we build the following simulation, where the third component extends the relation
with the event that the process being simulated has still to emit, ε indicating that there is
no pending event in the simulated process. If (4,1,ε) ∈∝ and:
1
ρ,S,P ]{(set(b+); event e(M); P1,L,V )}→



122 Proofs of Chapter 6

2
ρ,S′,P ]{(event e(M); P1,L,V )} e(M)→

3
ρ,S′,P ]{(P1,L,V )}

then:

4
ρ,S′′,P ′]{(lock(e); set(M ∈ e); unlock(e); P2,L,V )}→

5
ρ,S′′,P ′]{(set(b+;M ∈ e); unlock(e); P2,L,V )}→

6
ρ,S′′′,P ′]{(unlock(e); P2,L,V )}→

7
ρ,S′′′,P ′]{(P2,L,V )}

where P2 = agree(P1) and (7,2,e(M)) ∈∝ and (7,3,ε) ∈∝.

Because P is well-typed all the sets modified by set(b+) are locked, and there is no
unlock operation before the event. Hence for any trace in the original process, where
the set transition and the event are not consecutive, there is an equivalent trace where
the interleaved transitions execute before the set transition.

In particular if a correspondence between e1(M) and e2(M) — where event e2(M) fol-
lows a set operation — is violated by a trace where event e1(M) occurs between the exe-
cution of the set transition and event e2(M), then there exists a trace where event e1(M)
occurs before the set transition, and such trace can be simulated by agree(P).

So if ρ0,S0,P
′
0 has no trace such that there exists a k where Sk |= M ∈ e2 ∧M /∈ e1

then it cannot simulate a trace from ρ0,S0,P0 such that e2(M) has fired but e1(M)
has not, but since ρ0,S0,P

′
0 ∝ ρ0,S0,P0, there is no trace violating the non-injective

agreement.

THEOREM 11 Let P be an extended process with events. If no reachable state S from
P′ = inj-agree(P) satisfies the expression (M ∈ e2∧¬M ∈ e1)∨ (M ∈ twice-e2), then
the injective agreement between e1(M) and e2(M) holds in P.

PROOF.Similarly to the proof for Theorem 10, we build a simulation, this time between
processes inj-agree(P) and P, where:

In particular we have that if (1,3) ∈∝ and:

1
ρ,S,P ] (event e(M); P1,L,V )

e(M)→
2
ρ,S,P ] (P1,L,V )

then:

3
ρ,S′,P ′] (lock(e, twice-e); if ¬M ∈ e thenset(M ∈ e);
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unlock(e, twice-e); P2 else set(M ∈ twice-e);

unlock(e, twice-e); P2,L,V )→2

4
ρ,S′,P ′] (if ¬M ∈ e thenset(M ∈ e); unlock(e, twice-e);

P2 else set(M ∈ twice-e); unlock(e, twice-e);
P2,L∪{e, twice-e},V )→

5
ρ,S′,P ′] (set(M ∈ e); unlock(e, twice-e); P2,

L∪{e, twice-e},V )→
6
ρ,S′∪{(e,M)},P ′] (unlock(e, twice-e); P2,

L∪{e, twice-e},V )→2

7
ρ,S′∪{(e,M)},P ′] (P2,L,V )

if e(M) has not previously fired in the trace, then (2,7) ∈∝, or:

5′
ρ,S′,P ′] (set(M ∈ twice-e); unlock(e, twice-e); P2,

L∪{e, twice-e},V )→
6′

ρ,S′∪{(twice-e,M)},P ′] (unlock(e, twice-e); P2,

L∪{e, twice-e},V )→2

7′
ρ,S′∪{(twice-e,M)},P ′] (P2,L,V )

if e(M) already fired in the trace, then (2,7′) ∈∝.

If a process is of the form:

set(b+); event e(M); P1

it gets translated into:

lock(e, twice-e); if ¬M ∈ e

then set(b+;M ∈ e); unlock(e, twice-e); P2

else set(b+;M ∈ e); unlock(e, twice-e); P2

where P2 = agree(P1). An argument similar to the proof for Theorem 10 can be used to
construct a simulation relation.

So if ρ0,S0,P
′
0 has no trace such that there exists a k where Sk |= (M ∈ e2 ∧M /∈

e1)∨ (M ∈ twice-e2) then it cannot simulate a trace from ρ0,S0,P0 such that e2(M)
has fired but e1(M) has not, nor a trace where e2(M) has executed twice, and since
ρ0,S0,P

′
0 ∝ ρ0,S0,P0 then there is no trace violating the injective agreement.
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A.3 Correctness of the Analysis

DEFINITION 7 (ORDER RELATION �L) The order relation S1 �L S2 between states
S1 and S2 holds iff:

(i) ∀s j ∈ L . S1(s j) = S2(s j);

(ii) ∀p(M1, . . . ,Mk) .〈[p(M1, . . . ,Mk)]〉S1 ∈FP0 ⇒ 〈[p(M1, . . . ,Mk)]〉S2 ∈FP0 .

PROOF.Let M be a term and s be a set. If s ∈ L then α ′(s,M) = α(s,M) by definition
of relax(α,L), and S′(s) = S(s) by property (i) of the order relation �L. Therefore if
α ′(s,M) = α(s,M) = 1[] then M ∈ S(s) = S(s′) and if α ′(s,M) = α(s,M) = 0[] then
M /∈ S(s) = S′(s).

If α ′(s,M) = x then either s ∈ L and α ′(s,M) = α(s,M), or s /∈ L and x = xs,M . In the
first case x is different from all other α ′(s′,M′) were M′ 6= M∧ s′ 6= s, by hypothesis if
s′ ∈ L and by construction if s /∈ L. In the second case xs,M is unique by construction.

LEMMA 8 (restrict PRESERVES THE SET-ABSTRACTION) Let α be a set abstrac-
tion, ρ an environment, S a state and A = restrict(α,b). If ρ,S |= b and α abstracts S,
then there exists an α ′ ∈ A such that α ′ abstracts S.

PROOF.The proof is done by induction on the depth of b.

Base cases:

Case b = M ∈ s.
If A = /0 then it is the case that α(s,M) = 0, and because α abstracts S under ρ we have
M /∈ S(s), hence ρ,S 6|= M ∈ s, invalidating the hypothesis.

If A = {α ′} then α ′(s,M) = 1 and ρ,S |= M ∈ s implies ρ(M) ∈ S(s); and for all s′,M′

such that s′ 6= s or M′ 6= M we have α ′(s′,M′) = α(s′,M′). Therefore α ′ satisfies the
abstraction requirements.

Case b = ¬M ∈ s.
Similar to b = M ∈ s.

Inductive cases:

Case b = b1∧b2.
By definition A =

⋃
{restrict(α ′,b2) | α ′ ∈ restrict(α,b1)}. If ρ,S |= b1∧b2 then also
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ρ,S |= b1 and ρ,S |= b2. By inductive hypothesis there exists α1 ∈ restrict(α,b1) that
abstracts S under ρ . For such α1 again by inductive hypothesis there exists α2 ∈
restrict(α1,b2) that abstracts S under ρ , and α2 is in A by construction.

Case b = b1∨b2.
By definition A = restrict(α,b1)∪ restrict(α,b2), and since ρ,S |= b1 ∨ b2 then (a)
ρ,S |= b1 or (b) ρ,S |= b2. If (a) holds, then by inductive hypothesis there exists an
α ′ ∈ restrict(α,b1) that abstracts S under ρ , therefore α ′ ∈ A. Similar is the case when
(b) holds.

Case b = ¬(b1∧b2).
Then by definition A = restrict(α,¬(b1∧b2)) = restrict(α,(¬b1)∨ (¬b2)) and by De
Morgan’s laws ρ,S |= ¬(b1∧b2) iff ρ,S |= (¬b1)∨ (¬b2). The case for ∨ can then be
applied, using the inductive hypothesis on ¬b1 and ¬b2.

Case b = ¬(b1∨b2).
Then by definition A = restrict(α,¬(b1∨b2)) = restrict(α,(¬b1)∧ (¬b2)) and by De
Morgan’s laws ρ,S |= ¬(b1∨b2) iff ρ,S |= (¬b1)∧ (¬b2). The case for ∧ can then be
applied, using the inductive hypothesis on ¬b1 and ¬b2.

Case b = ¬¬b1.
By definition A = restrict(α,¬¬b1) = restrict(α,b1). Since ρ,S |= ¬¬b1 iff ρ,S |= b1
we obtain the result by inductive hypothesis on b1.

LEMMA 9 (implies PRESERVES S�L S′) Let S be a set-membership state, and S′ =
S∪{(s1,M1), . . . ,(s j,M j)} \ {(s j+1,M j+1), . . . ,(sn,Mn)}. If for all M ∈ {M1, . . . ,Mn}
we have implies(〈[M]〉S,〈[M]〉S′) ∈FP0 then for any set of locks L such that {s1, . . . ,sn}∩
L = /0 we have S�L S′.

PROOF.The generated clauses for implies produce all the transitions over contexts that
appear as conclusions in the clauses generated by the translation. Therefore if an attacker
can derive a fact from a set of known terms M1, . . . ,Mn in state S, and there is a transition
from state S to state S′, then by induction either (base case) Mi is transferred because
it is a head of one of the clauses produced for the protocol, or (inductive case) it is
constructed by an attacker rule from a set of sub-terms M′1, . . . ,M

′
k that are transferred

by hypothesis.

LEMMA 10 (TYPABILITY OF A) Let A be an attacker process, then ρ0, /0, /0,S0  A.

PROOF.Let B be a process, ρ an environment, S a state, V a list of terms. We prove that
if:
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(i) ρ(B) is a closed process, ρ(V ) is ground,

(ii) S0 � /0 S, and

(iii) for every maximal subterm M of B closed under ρ , we have 〈[ρ(att(M))]〉S ∈FP0 ,

ρ,V, /0,S  B

Proof by induction over the depth of B.

Base case:

Case B = 0.
Holds trivially:

ρ,V, /0,S  0

Inductive cases:

Case B = B1 |B2.
We need to prove:

∀S′ s.t.S� /0 S′ (ρ,V, /0,S′  B1∧ρ,V, /0,S′  B2)

ρ,V, /0,S  B1 |B2

Let i ∈ {1,2}, let S′ be a state such that S � /0 S′, then: (i) ρ(B) is a closed process by
hypothesis, fv(B) = fv(Bi), hence ρ(Bi) is also closed, ρ(V ) is ground by hypothesis; (ii)
S0 � /0 S� /0 S′ hence S0 � /0 S′, (iii) because S� /0 S′ and because, by inductive hypothesis,
for every maximal subterm M of B closed under ρ we have 〈[ρ(att(M))]〉S ∈FP0 , then
〈[att(M)]〉S′ ∈FP0 (condition iv of � /0).

We proved ρ,V, /0,S′  B1 and ρ,V, /0,S′  B2 for any successor state S′; hence we
conclude: ρ,V, /0,S′  B.

Case B =!l B1.
We need to prove:

∀S′ s.t.S� /0 S′ (ρ ◦{l/xl},(xl :: V ), /0,S′  B1)

ρ,V, /0,S !l B1

where l ∈ N.
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Let S′ be a state such that S � /0 S′; then: (i) fv(B) = fv(B1) and since ρ(B) is closed
then ρ ◦ {l/xl} is also closed, as l does not appear in B; (ρ ◦ {l/xl})(xl :: V ) is ground
because ρ(V ) is ground by hypothesis and xl{l/xl} is ground by construction; (ii)
S0 � /0 S� /0 S′ hence S0 � /0 S′, (iii) because S� /0 S′ and because, by inductive hypothesis,
for every maximal subterm M of B closed under ρ we have 〈[ρ(att(M))]〉S ∈FP0 , then
〈[ρ(att(M))]〉S′ ∈FP0 .

Since we proved ρ,V, /0,S′  B1 for any successor state S′, we can conclude that
ρ,V, /0,S  B.

Case B = in(M,x : T ); B1.
We need to prove:

∀S′ s.t.S� /0 S′ ∀N s.t.Γ ` N : T 〈[ρ ′(msg(M,N′))]〉S′
∈FP0 ⇒ ρ ′,(N′ :: V ), /0,S′  B1{N′/x}

ρ,V, /0,S  in(M,x : T ); B1

where ρ ′ = ρ ◦mgu(N′,N), N′ = ptri(V )
x (T ).

Let S′ be a state such that S� /0 S′, let N be a term such that Γ `N : T ; then: (i) since N is
ground, ρ ′ is by construction a grounding substitution for all variables that appear in N′;
therefore because fv(B1)= fv(B)∪ fv(N′) and since B is closed under ρ , then B1 is closed
under ρ ′ and ρ ′(V ∪{N′}) is ground (ii) S0 � /0 S � /0 S′ hence S0 � /0 S′; and (iii) since
for every maximal subterm M′ of B closed under ρ we have 〈[ρ(att(M′))]〉S ∈ FP0
by hypothesis and S � /0 S′, therefore we have 〈[ρ(att(M′))]〉S′ ∈ FP0 . In particu-
lar 〈[ρ(att(M))]〉S′ ∈ FP0 and given that att(xc)∧msg(xc,xm)⇒ att(xm) ∈ CP0 and
〈[ρ(msg(M,N))]〉S′ ∈ FP0 , we can conclude 〈[ρ(att(N))]〉S′ ∈ FP0 and since ρ(N) =
ρ ′(N′) then 〈[ρ ′(att(N′))]〉S′ ∈FP0 . For every maximal subterm M′ of B1{N′/x} that
is closed under ρ ′, one of the following holds: either M′ is also a maximal subterm
of B closed under ρ , and since Dom(ρ) ⊆ Dom(ρ ′) we have 〈[ρ ′(att(M′))]〉S′ ∈FP0 ;
or M′ = N′ and hence 〈[ρ ′(att(N′))]〉S′ ∈FP0 , or M′ = f (M1, . . . ,Mn) and N′ = Mi for
some i; for 1 ≤ j ≤ n, j 6= i, Mi is a maximal subterm of B closed under ρ , there-
fore 〈[ρ(att(M j))]〉S ∈FP0 by hypothesis, then also 〈[ρ ′(att(M j))]〉S′ ∈FP0 , and since
att(x1)∧·· ·∧att(xn)⇒ att(f (x1, . . . ,xn)) then also 〈[ρ ′(att(f (M1, . . . ,Mn)))]〉S′ ∈FP0 ;
therefore we can conclude that ρ ′,V, /0,S′  B1{N′/x} therefore also ρ,V, /0,S  in(M,x :
T ); B1 holds.

Case B = out(M,N); B1.
We need to prove:

〈[ρ(msg(M,N))]〉S ∈FP0 ∧∀S′ s.t.S� /0 S′ (ρ,V, /0,S′  B1)

ρ,V, /0,S  out(M,N); B1

Let us prove the first condition of the rule. By hypothesis, M and N are bound terms in
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B, therefore 〈[ρ(att(M))]〉S ∈FP0 and 〈[ρ(att(N))]〉S ∈FP0 . Since att(xc)∧att(xm)⇒
msg(xc,xm) ∈ CP0 we conclude that 〈[ρ(msg(M,N))]〉S ∈FP0 .

To prove the second condition, let S′ be a state such that S � /0 S′; then: (i) ρ(B) is a
closed process by hypothesis, and fv(B1)⊆ fv(B), therefore ρ(B1) is also closed; ρ(V )
is ground by hypothesis; (ii) S0 � /0 S� /0 S′ hence S0 � /0 S′; (iii) any maximal subterm
M′ of B closed under ρ is also a maximal subterm of B1 closed under ρ; by hypothesis
then 〈[ρ(att(M′))]〉S ∈FP0 and since S � /0 S′ then 〈[ρ(att(M′))S′]〉∈FP0 and therefore
ρ,V, /0,S′  B1.

Since both conditions of the rule are satisfied, we can conclude ρ,V, /0,S out(M,N); B1.

Case B = newl x : a; B1.
We need to prove:

〈[name(al [V ])]〉S ∈FP0∧
∀S′ s.t.S� /0 S′ ρ,V, /0,S′  B1{al [V ]/x}

ρ,V, /0,S  newl x : a; B1

because x is restricted within the attacker process A.

By definition of the attacker rules, 〈[name(a>[])]〉S0 ∈FP0 , and since l /∈ label(P0), then
〈[al [V ]]〉S0 = 〈[a>[]]〉S0 , hence 〈[name(al [V ])]〉S0 ∈FP0 . Since S0� /0 S then 〈[name(al [V ])]〉S ∈
FP0 . Similarly we conclude that also 〈[att(al [V ])]〉S′ ∈FP0 .

Let S′ be a state such that S � /0 S′; then: (i) because fv(B1{al [V ]/x}) = (fv(B)∪{x}) \
{x}= fv(B) and by hypothesis ρ(B) is closed, then also ρ(B1{al [V ]/x}) is closed; ρ(V )
is ground by hypothesis; (ii) since S0 � /0 S� /0 S′ then S0 � /0 S′, and (iii) by hypothesis,
for every maximal subterm M of B closed under ρ we have 〈[ρ(att(M))]〉S ∈FP0 , and
since S� /0 S′ we also have 〈[ρ(att(M))]〉S′ ∈FP0 ; we also have 〈[ρ(att(al [V ]))]〉S′ ∈FP0 ;
every maximal subterm M of B1 closed by ρ is either a maximal subterm of B closed by
ρ , or it is the newly created name al [V ], or it is an applied constructor over maximal
ρ-closed subterms of B: similarly to the case for input, in either situation the clause
〈[ρ(att(M))]〉S′ holds; therefore we satisfy the judgement ρ,V, /0,S′  B1{a[]/x}.

Because all conditions of the rule are satisfied we conclude V, /0,S  newl x : a; B1.

Case B = let x = g(M1, . . . ,Mn) inB1 else B2.
We need to prove:

∀S′ s.t.S� /0 S′ (∀M s.t. g(M1, . . . ,Mn)→ρ M
ρ,V, /0,S′  B1{M/x})∧ρ,V, /0,S′  B2

ρ,V, /0,S  let x = g(M1, . . . ,Mn) inB1 else B2
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Let S′ be a state such that S� /0 S′.

We now prove ρ,V, /0,S′  B1{M/x}: (i) because ρ(B) is closed, and because fv(M)⊆
fv(M1, . . . ,Mn), then fv(B1{M/x}) = (fv(B)∪{x})\{x}∪ fv(M) = fv(B), then also ρ(B1)
is closed; (ii) since S0 � /0 S � /0 S′ then S0 � /0 S′, and (iii) by hypothesis, for every
maximal subterm N of B closed under ρ we have 〈[ρ(att(N))]〉S ∈FP0 , and since S� /0 S′

we also have 〈[ρ(att(N))]〉S′ ∈FP0 ; in particular the property holds for M1, . . . ,Mn as
they are bound in B; since for all destructor definitions:

reduc ∀~x : ~T . g(M′1, . . . ,M
′
n) → M′

CP0 includes the rule:

att(M′1)∧·· ·∧att(M′n)⇒ att(M′)

and because the rewrite rule succeeds producing M, then 〈[ρ(att(M1))]〉S′ ∈FP0 and
〈[ρ(att(Mn))]〉S′ ∈FP0 and hence 〈[ρ(att(M))]〉S′ ∈FP0 . Hence the conditions (i–iii) are
satisfied and we conclude ρ,V, /0,S′  B1{M/x}.

We now prove ρ,V, /0,S′  B2: (i) because σ is a grounding substitution for B, and since
fv(B) = fv(B2) then it is also grounding for B2; (ii) since S0 � /0 S � /0 S′ then S0 � /0 S′,
and (iii) by hypothesis, for every maximal subterm M of B that is closed under ρ we
have 〈[ρ(att(M))]〉S ∈FP0 , and since S� /0 S′ we also have 〈[ρ(att(M))]〉S′ ∈FP0 ; hence
we conclude ρ,V, /0,S′  B2.

Since both hypotheses of the rule are satisfied, we conclude that ρ,V, /0,S  let x =
g(M1, . . . ,Mn) inB1 else B2.

In particular, we have that (i) f v(A) = xch, hence ρ0(A) is closed; (ii) S0 � /0 S0 by
reflexivity; and (iii) the only maximal subterm of A that is bound by ρ0 is xch, and
by construction of the translation 〈[ρ(att(xch))]〉S0 ∈FP0 . Hence the attacker process
types.

LEMMA 11 (TYPABILITY OF P0) ρ0, /0, /0,S0  P0.

PROOF.Let Q be a process. We prove that, given a list of terms V , a set of locks L, a
state S, a set-abstraction α , an environment ρ; if:

(i) ρ(Q) is a closed process, ρ(V ) and ρ(H) are ground,

(ii) α abstracts S,

(iii) CP0 ⊇ [[Q]]HV Lα ,
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(iv) for every predicate p in H, we have that 〈[ρ(p)]〉S ∈FP0

Then ρ,V,L,S  Q.

The proof is carried by induction on the size of the process Q.

Base case:

Case Q = 0.
Trivially holds:

ρ,V,L,S  0

Inductive cases:

Case Q = Q1 |Q2.
We need to prove:

∀S′ s.t.S� /0 S′ (ρ,V, /0,S′  Q1∧ρ,V, /0,S′  Q2)

ρ,V, /0,S  Q1 |Q2

Let α ′ = relax(α, /0), let S′ be any state such that S� /0 S′.

Let i ∈ {1,2}, then: (i) fv(Qi)⊆ fv(Q) hence ρ(Qi) is closed, and ρ(V ) and ρ(H) are
ground by hypothesis, (ii) α ′ abstracts S′ under ρ by Lemma 3, (iii) CP0 ⊇ [[Q1 |Q2]]HV /0α ⊇
[[Qi]]HV /0α ′ by construction, (iv) by hypothesis, for every predicate p in H, we have that
〈[ρ(p)]〉S ∈FP0 and S� /0 S′, then 〈[ρ(p)]〉S′ ∈FP0 , we finally conclude that ρ,V, /0,S′ 
Qi.

Therefore we can conclude that also ρ,V, /0,S  Q1 |Q2.

Case Q =!l Q1.
We need to prove:

∀S′ s.t.S� /0 S′ (ρ ◦{l/xl},(xl :: V ), /0,S′  Q1)

ρ,V, /0,S !l Q1
l ∈ N

Let α ′ = relax(α, /0), let S′ be any state such that S� /0 S′ and ρ ′ = ρ ◦{l/xl}.

Because (i) fv(Q1) = fv(Q) hence ρ ′(Q1) is closed, and ρ ′(xl :: V ) is ground since xl is
ground by the applied substitution {l/xl} and ρ(V ) is ground by inductive hypothesis,
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ρ(H) is ground by hypothesis hence also ρ ′(H) is ground, (ii) α ′ abstracts S′ under ρ

by Lemma 3, (iii) CP0 ⊇ [[!l Q1]]HV /0α = [[Q1]]H(xl :: V ) /0α ′, and (iv) by hypothesis, for
every predicate p in H, we have that 〈[ρ(p)]〉S ∈FP0 and S� /0 S′, then 〈[ρ(p)]〉S′ ∈FP0 ,
we finally conclude that ρ ◦{l/xl},(xl :: V ), /0,S′  Q1.

Therefore we can conclude that also ρ,V, /0,S !l Q1.

Case Q = in(M,x : T ); Q1.
We need to prove:

∀S′ s.t.S�L S′ ∀N s.t.Γ ` N : T 〈[ρ(msg(M,N))]〉S′
∈FP0 ⇒ ρ ′,(N′ :: V ),L,S′  Q1{N′/x}

ρ,V,L,S  in(M,x : T ); Q1

where N′ = ptri(V )
x (T ).

Let α ′ = relax(α,L), let S′ be any state such that S�L S′, let ρ ′ = ρ ◦mgu(N′,N).

Because (i) fv(Q1{N′/x}) = (fv(Q)∪{x})\{x}∪ fv(N′)⊆ Dom(ρ ′), and ρ ′(N′ :: V ) is
ground because by construction ρ ′(N′) is ground, and ρ(V ) is ground by hypothesis,
and ρ ′(H ∧msg(M,N′)) is also ground, because ρ ′(N′) is ground by construction, and
ρ(M) is ground by hypothesis, since ρ(Q) is closed; (ii) α ′ abstracts S′ by Lemma 3,
(iii) CP0 ⊇ [[P{N′/x}]](H ∧msg(M,N′))(N′ :: V )Lα ′ and (iv) by hypothesis, for every
predicate p in H, we have that 〈[ρ(p)]〉S ∈FP0 and S �L S′, then 〈[ρ(p)]〉S′ ∈FP0 , and
by hypothesis on the rule we require 〈[ρ(msg(M,N))]〉S′ ∈FP0 , therefore we conclude
that ρ ′,(N′ :: V ),L,S′  Q1{N′/x}.

Therefore we can conclude that also ρ,V,L,S  in(M,x : T ); Q1.

Case Q = out(M,N); Q1.
We need to prove:

〈[ρ(msg(M,N))]〉S ∈FP0∧
∀S′ s.t.S�L S′ (ρ,V,L,S′  Q1)

ρ,V,L,S  out(M,N); Q1

Let α ′ = relax(α,L), and let S′ be any state such that S�L S′.

Because (i) fv(Q1) = fv(Q) and ρ(Q) is closed, hence ρ(Q1) is closed, by inductive
hypothesis ρ(V ) and ρ(H) are ground, (ii) α ′ abstracts S′ by Lemma 3, (iii) CP0 ⊇
[[Q1]]HV Lα ′ and (iv) by hypothesis, for every predicate p in H, we have that 〈[ρ(p)]〉S ∈
FP0 and S�L S′, then 〈[ρ(p)]〉S′ ∈FP0 , hence we conclude that ρ,V,L,S′  Q1.
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Since by construction 〈[H⇒msg(M,N)]〉α ∈ CP0 , and by hypothesis α abstracts S and
for every predicate p in H holds 〈[ρ(p)]〉S ∈FP0 , we can conclude that 〈[ρ(msg(M,N))]〉S ∈
FP0 .

Therefore all hypotheses of the rule for output are satisfied, so we can conclude that
ρ,V,L,S  out(M,N); Q1.

Case Q = newl x : a; Q1.
We need to prove:

〈[ρ(name(al [V ]))]〉S ∈FP0∧
∀S′ s.t.S�L S′ ρ,V,L,S′  Q1{al [V ]/x}

ρ,V,L,S  newl x : a; Q1

Since by construction 〈[H⇒ name(al [V ])]〉α ∈ CP0 , and by hypothesis α abstracts S and
for every predicate p in H holds 〈[ρ(p)]〉S ∈FP0 , we can conclude that 〈[ρ(name(al [V ]))]〉S ∈
FP0 .

Let α ′ = relax(α,L), let S′ be any state such that S�L S′.

Because (i) fv(Q1{al [V ]/x}) = (fv(Q)∪ {x}) \ {x} ∪ fv(V ) and since ρ(Q) and ρ(V )
are closed by inductive hypothesis, also ρ(Q1{al [V ]/x}) is closed; ρ(H) and ρ(V )
are closed by inductive hypothesis; (ii) α ′ abstracts S′ by Lemma 3, (iii) CP0 ⊇
[[Q1{al [V ]/x}]](H∧name(al [V ]))V Lα ′ and (iv) by hypothesis, for every predicate p in H,
we have that 〈[ρ(p)]〉S ∈FP0 and S �L S′, then 〈[ρ(p)]〉S′ ∈FP0 , and since we proved
〈[ρ(name(al [V ]))]〉S ∈FP0 and S �L S′ then 〈[ρ(name(al [V ]))]〉S′ ∈FP0 , therefore we
conclude that ρ,V,L,S′  Q1{al [V ]/x}.

Therefore all hypotheses of the rule for restriction are satisfied, so we can conclude that
ρ,V,L,S  newl x : a; Q1.

Case Q = let x = g(M1, . . . ,Mn) inQ1 else Q2.
We need to prove:

∀S′ s.t.S�L S′ (∀M s.t.g(M1, . . . ,Mn)→ρ M
ρ,V,L,S′  Q1{M/x})∧ρ,V,L,S′  Q2

ρ,V,L,S  let x = g(M1, . . . ,Mn) inQ1 else Q2

Let α ′ = relax(α,L), let S′ be any state such that S�L S′. Assume g(M1, . . . ,Mn)→ρ M.

As for the Q1 branch, the following clauses will be generated:

{[[σ(P1)]]σ(H)σ(V )Lα
′′ | reduc∀~x′ : ~T ′
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g(M′1, . . . ,M
′
n)→M′ is in the scope of let,σ is an m.g.u.

that satisfies M1 $M′1∧·· ·∧Mn $M′n∧ x$M′,θ is
an m.g.u. that satisfies, ∀s,N1,N2, σ(N1) = σ(N2)⇒
α
′(s,N1)$ α

′(s,N2) and α
′′(s,σ(N1)) = θ(α ′(s,N1))}

Because (i) fv(Q1{M/x}) = (fv(Q) ∪ {x}) \ x ∪ fv(M) and we require that fv(M) ⊆
fv(M1, . . . ,Mn), then fv(Q1{M/x})⊆ fv(Q)∪ fv(M1, . . . ,Mn); since ρ(Q) is closed then
also ρ(M1), . . . ,ρ(Mn) are closed, hence we conclude that ρ(Q1{M/x}) is also closed;
ρ(H) and ρ(V ) are ground by hypothesis; (ii) α ′ abstracts S′ under ρ by Lemma 3, (iii)
CP0 ⊇ [[σ(Q1)]]σ(H)σ(V )Lα ′ and (iv) by hypothesis, for every predicate p in H, we
have that 〈[ρ(p)]〉S ∈FP0 and S�L S′, then 〈[ρ(p)]〉S′ ∈FP0 , therefore we conclude that
ρ,V,L,S′  Q1{M/x}.

As for the Q2 branch: (i) ρ(Q) is closed, hence also ρ(Q2); ρ(V ) and ρ(H) are ground
by hypothesis, (ii) α ′ abstracts S′ under ρ by Lemma 3, (iii) CP0 ⊇ [[Q2]]HV Lα ′ by
definition of the translation, and (iv) by hypothesis, for every predicate p in H, we have
that 〈[ρ(p)]〉S ∈FP0 and S�L S′, then 〈[ρ(p)]〉S′ ∈FP0 , we conclude that ρ,V,L,S′ Q1.

Therefore all hypotheses of the rule for let are satisfied, so we can conclude that
ρ,V,L,S  let x = g(M1, . . . ,Mn) inQ1 else Q2.

Case Q = if b thenQ1 else Q2.
We need to prove:

∀S′ s.t.S�L S′, (ρ,S′ |= b⇒ ρ,V,L,S′  Q1)∧
(ρ,S′ |= ¬b⇒ ρ,V,L,S′  Q2)

ρ,V,L,S  if b thenQ1else Q2

Let α ′ ∈ restrict(relax(α,L),b), let S′ be any state such that S�L S′. Assume ρ,S′ |= b.

Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by hypothesis,
(ii) α ′ abstracts S′ under ρ and is guaranteed to exist by Lemma 3 and Lemma 8
since ρ,S |= b, (iii) CP0 ⊇ [[Q1]]HV Lα ′ by definition of the translation, and (iv) by
hypothesis, for every predicate p in H, we have that 〈[ρ(p)]〉S ∈FP0 and S�L S′, then
〈[ρ(p)]〉S′ ∈FP0 , we conclude that ρ,V,L,S′  Q1.

A similar argument, taking α ′ ∈ restrict(relax(α,L),¬b) and assuming ρ,S′ |= ¬b,
proves ρ,V,L,S′  Q2.

Therefore all hypotheses of the rule for let are satisfied, so we can conclude that
ρ,V,L,S  if b thenQ1else Q2.
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Case Q = lock(s); Q1.
We need to prove:

∀S′ s.t.S�L S′ ρ,V,(L∪{s}),S′  Q1

ρ,V,L,S  lock(s); Q1

Let α ′ = relax(α,L), let S′ be any state such that S�L S′.

Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by hypothesis,
(ii) α ′ abstracts S′ under ρ by Lemma 3, (iii) CP0 ⊇ [[Q1]]HV (L∪{s})α ′ by definition
of the translation, and (iv) by hypothesis, for every predicate p in H, we have that
〈[ρ(p)]〉S ∈FP0 and S�L S′, then 〈[ρ(p)]〉S′ ∈FP0 , we conclude that ρ,V,(L∪{s}),S′ 
Q1.

Therefore all hypotheses of the rule for lock are satisfied, so we can conclude that
ρ,V,L,S  lock(s); Q1.

Case Q = unlock(s); Q1.
We need to prove:

∀S′ s.t.S�L S′ ρ,V,(L\{s}),S′  Q1

ρ,V,L,S  unlock(s); Q1

Let α ′ = relax(α,L), let S′ be any state such that S�L S′.

Because (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground by hypothesis,
(ii) α ′ abstracts S′ under ρ by Lemma 3, (iii) CP0 ⊇ [[Q1]]HV (L\{s})α ′ by definition
of the translation, and (iv) by hypothesis, for every predicate p in H, we have that
〈[ρ(p)]〉S ∈FP0 and S�L S′, then 〈[ρ(p)]〉S′ ∈FP0 , we conclude that ρ,V,(L\{s}),S′ 
Q1.

Therefore all hypotheses of the rule for unlock are satisfied, so we can conclude that
ρ,V,L,S  unlock(s); Q1.

Case Q = set(b+); Q1.
We need to prove:

∀S′ s.t.S�L S′ (∀M ∈ fv(b+)∪ fn(b+)
implies(〈[ρ(M)]〉S′ ,〈[ρ(M)]〉S′′) ∈FP0) ∧
(∀S′′′ s.t.S′′ �L S′′′, ρ,V,L,S′′′  Q1)

ρ,V,L,S  set(b+); Q1

where S′′ = update(S′,ρ(b+)).
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Let α ′ = relax(α,L), let S′ be any state such that S�L S′.

Because by hypothesis for all p in H we have that 〈[p]〉S ∈ FP0 , and S �L S′ then
〈[p]〉S′ ∈FP0 .

Let α ′′ = update(α ′,b+) = α ′∪{(s1,M1), . . . ,(s j,M j)}\{(s j+1,M j+1), . . . ,(sn,Mn)}.
Because also CP0 ⊇ {〈[H]〉α ′ ⇒ implies(〈[M]〉α ′ ,〈[M]〉α ′′) | M ∈ {M1, . . . ,Mn}} by the
translation, and α ′ abstracts S′ under ρ by Lemma 3, we obtain that ∀ M ∈ fv(b+)∪
fn(b+) implies(〈[ρ(M)]〉S′ ,〈[ρ(M)]〉S′′) ∈FP0 and hence the first condition is satisfied.

We are left to prove for every state S′′′ such that S′′ �L S′′′ we have ρ,V,L,S′′′  Q1.

We know that: (i) ρ(Q) is closed, hence also ρ(Q1); ρ(V ) and ρ(H) are ground
by hypothesis, (ii) α ′ abstracts S′ under ρ by Lemma 3, hence α ′′ = update(α,b+)
abstracts S′′ under ρ by Lemma 9, therefore also α ′′′ = relax(α ′′,L) abstracts S′′′

under ρ again by Lemma 3; (iii) CP0 ⊇ [[Q1]]HV L(α ′∪{(s,M)}) by definition of the
translation, and (iv) for every predicate p in H we proved that 〈[ρ(p)]〉S′ ∈FP0 and that
implies(〈[ρ(M)]〉S′ ,〈[ρ(M)]〉S′′) ∈FP0 ; by Lemma 9 we have that also 〈[ρ(p)]〉S′′ ∈FP0 ;
finally because S′′ �L S′′′ we also obtain that 〈[ρ(p)]〉S′′′ ∈FP0 .

Hence conditions (i-iv) are satisfied so ρ,V,L,S′′′  Q1.

In particular, (i) ρ0 closes P0 by construction, ρ0( /0) is trivially ground, (ii) α0 abstracts
S0 under ρ0 by construction, (iii) CP0 ⊇ [[P0]] /0 /0 /0α0 by definition of the translation, (iv)
holds vacuously. Therefore the conditions (i–iv) are satisfied and hence ρ0, /0, /0,S0  P0.

THEOREM 12 (SUBJECT REDUCTION) If ρ,S,P→ ρ ′,S′,P ′ and for all (P,L,V )∈
P we have ρ,V,L,S  P then for all (P′,L′,V ′) ∈P ′ we have ρ ′,V ′,L′,S′  P′.

PROOF.We prove subject reduction with a case-by-case analysis on the semantic steps.

Case NIL.
ρ,S,P ]{(0,L,V )}→ ρ,S,P

By hypothesis for all (P,L,V ) ∈P we have ρ,V,L,S  P, and this trivially holds also
after the transition.

Case COM.
ρ,S,P ]{(in(M,x :T ); P1,L1,V1),(out(M,N); P2,L2,V2)}
→ ρ ′,S,P]{(P1{N′/x},L1,N′ ::V1),(P2,L2,V2)}where Γ`N : T and ρ ′= ρ ◦mgu(N′,N)

and N′ = ptri(V)
x (T ).
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All processes in P type after the transition: in particular, they are not influenced by the
variables introduced in the domain of ρ , which are enforced to be syntactically different
(Lemma 2). By hypothesis:

∀S′ s.t.S�L1 S′ ∀N′′ s.t.Γ  N′′ : T
〈[ρ(msg(M,N′′))]〉S′ ∈FP0 ⇒
(ρ ◦mgu(N′′′,N′′)),(N′ :: V1),L1,S′  P1{N′′′/x}

ρ,V1,L1,S  in(M,x : T ); P1

and
〈[ρ(msg(M,N))]〉S ∈FP0∧
∀S′ s.t.S�L2 S′ (ρ,V2,L2,S′  P2)

ρ,V2,L2,S  out(M,N); P2

Therefore 〈[ρ(msg(M,N))]〉S ∈FP0 according to the deduction rule for output. Since
also S �L1 S and Γ ` N : T by hypothesis, by the rule for input we have that (ρ ◦
mgu(N′,N)),(N′ :: V1),L1,S  P1{N′/x}. Finally, by the rule for output and because
S�L2 S, and by the extension lemma (Lemma 2) on ρ ′, we have ρ ′,V2,L2,S  P2.

Case PAR.
ρ,S,P ]{(P1 |P2, /0,V )}→ ρ,S,P ]{(P1, /0,V ),(P2, /0,V )}

All processes in P trivially type after the transition. By hypothesis:

∀S′ s.t. S� /0 S′ (ρ,V, /0,S′  P1 ∧ ρ,V, /0,S′  P2)

ρ,V, /0,S  P1 |P2

In particular because S� /0 S we have that ρ,V, /0,S  P1 and ρ,V, /0,S  P2.

Case REPL.
ρ,S,P ]{(!k P, /0,V )}→
ρ ◦{k/xk},S,P ]{(P, /0,xk :: V ),(!k+1 P, /0,V )}

All processes in P trivially type after the transition, as xk does not appear in any of
them by construction. By hypothesis:

∀S′ s.t.S� /0 S′ (ρ ◦{l/xl},(xl :: V ), /0,S′  P)

ρ,V, /0,S !k P
l ∈ N

with l = k. The rule can be applied with l = k+1 and hence also ρ ◦{k/xk},V, /0,S!k+1 P,
since xk does not appear in the process !k1 P. In particular S� /0 S and therefore by the
extension lemma (Lemma 2) ρ ◦{k/xk}(V ∪{i}), /0,S  P.

Case NEW.
ρ,S,P ]{(newl x : a; P,L,V )}→
ρ,S,P ]{(P{al [V ]/x},L,V )}
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All processes in P trivially type after the transition.

By hypothesis:
x ∈ bv(P0)⇒ (〈[ρ(name(a[V ]))]〉S ∈FP0∧
∀S′ s.t.S�L S′ ρ,V,L,S′  P{al [V ]/x})

ρ,V,L,S  newl x : a; P

In particular S�L S and hence the judgement ρ,V,L,S  P{al [V ]/x} holds.

Case LET-1.
ρ,S,P ]{(let x = g(M1, . . . ,Mn) inP1 else P2,L,V )}→
ρ,S,P ]{(P1{M/x},L,V )} and g(M1, . . . ,Mn)→ρ M

All processes in P trivially type after the transition.

By hypothesis:

∀S′ s.t.S�L S′ (∀M s.t.g(M1, . . . ,Mn)→ρ M
ρ,V,L,S′  P1{M/x})∧ρ,V,L,S′  P2

ρ,V,L,S  let x = g(M1, . . . ,Qn) inP1 else P2

Since S�L S we obtain ρ,V,L,S  P1{M/x}.

Case LET-2.
ρ,S,P ]{(let x = g(M1, . . . ,Mn) inP1 else P2,L,V )}→
ρ,S,P ]{(P2,L,V )} and g(M1, . . . ,Mn)9ρ

Similarly to the case LET-1, all processes in P type after the transition, and ρ,V,L,S 
P2.

Case IF-1.
ρ,S,P ]{(if b thenP1 else P2,L,V )}→
ρ,S,P ]{(P1,L,V )} and S |= b.

All processes in P trivially type after the transition.

By hypothesis:
∀S′ s.t.S�L S′, (S′ |= b⇒ ρ,V,L,S′  P1)∧
(S′ |= ¬b⇒ ρ,V,L,S′  P2)

ρ,V,L,S  if b thenP1else P2
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and since S�L S and S |= B we obtain that ρ,V,L,S  P1.

Case IF-2.
ρ,S,P ]{(if b thenP1 else P2,L,V )}→
ρ,S,P ]{(P2,L,V )} and S 6|= b.

Similarly to the case IF-1, all processes in P type after the transition, and ρ,V,L,S P2.

Case LOCK.
ρ,S,P ]{(lock(s); P,L,V )}→ ρ,S,P ]{(P,L∪{s},V )} and ∀ (P′,L′,V ′) ∈P . s /∈
L′

All processes in P trivially type after the transition.

By hypothesis:
∀S′ s.t.S�L S′ ρ,V,(L∪{s}),S′  P

ρ,V,L,S  lock(s); P

and in particular since S�L S we obtain that ρ,V,L∪{s},S  P.

Case UNLOCK.
ρ,S,P ]{(unlock(s); P,L,V )}→ ρ,S,P ]{(P,L\{s},V )} and s ∈ L

All processes in P trivially type after the transition.

By hypothesis:
∀S′ s.t.S�L S′ ρ,V,(L\{s}),S′  P

ρ,V,L,S  unlock(s); P

and in particular since S�L S we obtain that ρ,V,(L\{s}),S  P.

Case SET.
Let ρ,S,P ]{(set(b+); P1,L1,V1)}→
ρ,S′,P ]{(P1,L1,V1)} where S′ = update(S,ρ(b+)).

Because by hypothesis:

∀S′1 s.t.S�L1 S′1(∀M ∈ fv(b+)∪ fn(b+)
implies(〈[ρ(M)]〉S′1 ,〈[ρ(M)]〉S′′1 ) ∈FP0)∧
(∀S′′ s.t.S′′1 �L1 S′′′1 , ρ,V1,L1,S′′′1  P1)

ρ,V1,L1,S  set(b+); P1

where S′′1 = update(S′1,ρ(b
+)), and because S�L1 S and S′ �L1 S′ then ρ,V1,L1,S′  P1.
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Now let (P2,V2,L2) be a tuple in P . We should prove that the typing ρ,V2,L2,S′  P2
holds assuming ρ,V2,L2,S  P2. By Lemma 9 we know that S�L2 S′, since L1∩L2 = /0
and for all M ∈ fv(b+)∪ fn(b+) holds implies(〈[ρ(M)]〉S,〈[ρ(M)]〉S′) ∈FP0 . The proof
is carried as a case-by-case analysis of the process P2. The case T-NIL trivially holds
after the transition.

For the cases T-PAR, T-REPL, T-IN, T-OUT, T-NEW, T-LET, T-IF, T-LOCK, T-
UNLOCK, T-SET the following consideration holds: because the condition of the
typing rule ρ,V2,L2,S  P2 is quantified over all states S′′ such that S�L2 S′′, then we
have that the states that satisfy S′ �L2 S′′ also satisfy S�L2 S′′, because �L2 is an order
relation and S�L2 S′, hence ρ,V2,L2,S′  P2.
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APPENDIX B

Carried out examples in
Set-Pi

B.1 Key Registration

Here we present a key-registration protocol where an honest principal A registers its
current pair of asymmetric keys (pkA,skA) to the server S. An initial pair of keys is
distributed securely to A and S, where A knows both public and secret keys while S only
knows the public key.

Later in the protocol, before the current key expires, A registers a new key to the server
by sending the following message:

A→ S : aenc(sk,〈new,a, pk′〉)

which encodes the new public key pk′ with the old secret key sk. S will be able to
decrypt A’s message with the old public key pk, move pk from the set of valid keys to
the database of revoked keys and send back an acknowledgment to A.

S→ A : aenc(pk′,con f irm)

In turn A will be able to decrypt this message with sk′ and remove the old sk from its
key-ring.
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A,in(kdba,ska : SKey);
if ska ∈ ringa then
new s′a : Seed;
set(sk(s′a) ∈ ringa);
out(ch,aenc(ska,〈new_key,a, pk(s′a)〉));
out(kdba,sk(s′a));
in(ch,xc : aenc(PKey,xt));
let xr = adec(sk(s′a),xc) in
if xr = con f irm then
set(¬ska ∈ ringa);
out(ch,ska); 0

S,in(ch,xs : aenc(SKey,〈xt ,xt ′ ,PKey〉));
in(kdbs, pka : PKey);
let (= new,= a, pk′a) = adec(pka,xs) in
if pka ∈ valida∧ pk′a /∈ valida∧ pk′a /∈ revokeda then
set(pka ∈ revokeda;¬pka ∈ valida; pk′a ∈ valida);
out(ch,aenc(pk′a,con f irm));
out(kdbs, pk′a); 0

Sys,reduc ∀x : Seed,m : t .

adec(pk(x),aenc(sk(x),m))→ m;
reduc ∀x : Seed . keypair(sk(x), pk(x)) → true;
new ringa : set sk(Seed);
new valida : set pk(Seed);
new revokeda : set pk(Seed);
new kdba : SKey; new kdbs : SKey; new sa : Seed;
set(sk(sa) ∈ ringa; pk(sa) ∈ valida);
out(kdba,sk(sa));
out(kdbs, pk(sa));

(!{ringa}A | !{valida,revokeda} S)

Once a new key is established and the client receives confirmation from the server that
the secret key sk has been revoked, sk can be revealed to the attacker. An attacker
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succeeds in breaking the protocol when she discovers a secret key that is still registered
to the server.

B.2 Yubikey

Yubikey is a small USB token used to authenticate to supported online services. It works
by maintaining a pair of a secret identity (shared with the server) and a public identity
(shared publicly), and by sending to the Yubikey server its own public identity, together
with the one time password encrypted with the current value of a counter using a shared
key k.

Here we model a simplified version of the Yubikey protocol, where we are interested
in the injective agreement between the client Yubikey (Y K) and the server (Srv). The
process BP represents the process activated by pressing they Yubikey button, which
authenticates the user to the server. We define a public channel ch, and a private channel
ch_server that is only used to securely exchange the secret identity and shared key to
the server.

The Yubikey process Y K creates a new fresh key k, its own public and secret identities
(xpid and xsid), stores them securely to the server, then reveals its public identity and
starts the BP process.

The button press (BP) process initiates the authentication procedure, increasing the
counter (this is encoded in our calculus by the creation of a fresh value), producing
the nonces xnonce and xt pr, and sending the encrypted message. An event yk_press is
inserted to denote that the button has been pressed.

The server on the other end receives the login request from the Yubikey, retrieves its
secret identity and key k from its own channel, pattern matching on the Yubikey’s public
identity to find the right tuple, decrypts the message with the retrieved key k, and finally
if the counter has not been used, it issues a yk_login event to conclude the protocol.

Sys, new yk_press : event(cnt);
new yk_login : event(cnt);
new used : set cnt;
reduc ∀x : t,k : key . sdec(k,senc(k,x)) → x;
new ch : channel;
new ch_server : channel;
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(!Y K | ! Srv)

BP, new xc : cnt;
new xnonce : nonce;
new xt pr : nonce;
event yk_press(xc);
out(ch,〈xpid ,xnonce,senc(k,〈xsid ,xc,xt pr〉)〉); 0

Y K , new k : key;
new xpid : pid;
new xsid : sid;
out(ch_server,〈xpid ,xsid ,k〉);
out(ch,xpid);
! BP

Srv, in(ch,〈xpid ,xnonce,xenc〉 :
〈pid,nonce,senc(key,〈sid,cnt,nonce〉)〉);

in(ch_server,〈= xpid ,xsid ,xk〉 : 〈pid,sid,key〉);
let 〈= xsid ,xcnt ,xt pr〉= sdec(xk,xenc) in
lock(used);
if xcnt /∈ used then
set(xcnt ∈ used);
event yk_login(xcnt);
unlock(used); 0

Here we find an injective agreement between the events yk_press and yk_login. Although
this example shows only one Yubikey and Server pair, it can be extended by including
multiple copies of the client and server processes, and copies of the respective sets and
events to prove the injective agreement with a finite number of participants.
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B.3 Set-Pi Models for the Case Study

(* Message Authentication in MaCAN *)

type seed.
type ts = ts(seed).
fun ts(seed).
type msg = msg(seed).
fun msg(seed).

type key.
type channel.

set recent : ts.
set old : ts.
event send(msg).
injevent accept(msg).

fun sign(t,key).
reduc checksign(x, sign(x, y), y) = x.

query x_seed: seed; injagree accept(msg(x_seed)) =⇒ send(msg(x_seed)).

new ch : channel.
new chclock : channel.
new k : key [private].

let A = new s: seed;
let t: ts = ts(s) in
let m: msg = msg(s) in
lock(recent,old);
set t in recent;
event send(m);
out(ch, (t, m, sign((t, m), k)));
out(chclock, t);
unlock(recent,old).

let B = in(ch, (xt: ts, xm: msg, xs:sign((ts, msg), key)));
let xr : msg = checksign((xt, xm), xs, k) in
lock(recent,old);
if not xt in old then

injevent accept(xm);
unlock(recent,old).
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let Clock = in(chclock, t: ts); set (not t in recent) and (t in old).

process (!A()) | (!B()) | (!{recent,old}Clock())

(* MaCAN TimeServer Fix *)

type seed.
type channel.
type time.

fun pk(seed).
fun sk(seed).

set skewed_time: time.
set checked_time: time.
set old_time: time.
event send(time).
injevent accept(time).

fun aes_enc(t,sk(s)).
reduc aes_dec(aes_enc(x, sk(s)), pk(s)) = x.

query x_t: time; injagree accept(x_t) =⇒ send(x_t).

new ch : channel.

let TS(pk, sk) =
new t: time;
event send(t);
out(ch, (t, aes_enc(t, sk))).

let ECU(pk_ts) =
lock(skewed_time, checked_time, old_time);
in(ch, (x_t: time, x_e: aes_enc(time, sk(seed))));
if (x_t in skewed_time) and (not x_t in old_time) then

let =x_t: time = aes_dec(x_e, pk_ts) in
set (not x_t in skewed_time) and (x_t in checked_time);
injevent accept(x_t);
unlock(skewed_time, old_time).

let Clock() =
in(ch,(x_t: time, x_e: aes_enc(time, sk(seed))));
((lock(skewed_time, checked_time);
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if (not x_t in checked_time) then
set (x_t in skewed_time)) |

(lock(old_time); set(x_t in old_time))).

process !(new s: seed;
let pk_ts:pk(seed) = pk(s) in
let sk_ts:pk(seed) = sk(s) in
!(TS(pk_ts, sk_ts) | ECU(pk_ts)) | Clock())

(* Key establishment in CANAuth *)

type cnt.

type key.
type channel.

set received : cnt.
event send(cnt).
injevent accept(cnt).

fun hmac(t,t’).
type sesskey = hmac(cnt, key).
type keysig = hmac(cnt, sesskey).
reduc checksign(x, hmac(x, y), y) = x.
reduc eq(x, x) = x.

query x_cnt:cnt; injagree accept(x_cnt) =⇒ send(x_cnt).

new ch : channel.
new kp : key [private].

let A = new c: cnt;
let ks:sesskey = hmac(c, kp) in
let s1:keysig = hmac(c, ks) in
event send(c);
out(ch, c);
out(ch, s1).

let B = in(ch, x_c: cnt);
in(ch, x_s1: keysig);
let ks:sesskey = hmac(x_c, kp) in
let s2:keysig = hmac(x_c, ks) in
let =x_s1:keysig = s2 in
if not x_c in received then
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set x_c in received;
injevent accept(x_c).

process (!A()) | (!{received}B())

(* Message authentication in CANAuth *)

type cnt.
fun msg(cnt).
type msg = msg(cnt).
reduc getCnt(msg(x)) = x.

type key.
type channel.

set received : cnt.
event send(msg).
injevent accept(msg).

fun sign(t,key).
reduc checksign(x, sign(x, y), y) = x.

query x_cnt:cnt; injagree accept(msg(x_cnt)) =⇒ send(msg(x_cnt)).
query m:msg; msg(ch, (m, sign(m, k))) where m in accept_twice.

new ch : channel.
new k : key [private].

let A = new c: cnt;
let m:msg = msg(c) in
event send(m);
out(ch, (m, sign(m, k))).

let B = in(ch, (xm: msg, xs:sign(msg, key)));
let xc : cnt = getCnt(xm) in
let xr : msg = checksign(xm, xs, k) in
if not xc in received then

set xc in received;
injevent accept(xm).

process (!A()) | (!{received}B())
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