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We elaborate on an operator approach to effective medium theory for homogenization of the periodic
multilayered structures composed of nonmagnetic isotropic materials, which is based on equating the spatial
evolution operators for the original structure and its effective alternative. We show that the zeroth-, first-, and
second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and
magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic
effective medium obtained in the second-order approximation perfectly replaces a multilayered composite and
does not suffer from the effective medium approximation breakdown that happened near the critical angle of total
internal reflection found previously in the conventional effective medium theory. We establish the criterion of the
validity of the conventional effective medium theory depending on the ratio of unit-cell length to the wavelength,
the number of unit cells, and the angle of incidence. The operator approach to effective medium theory is
applicable for periodic and nonperiodic layered systems, being a fruitful tool in the fields of metamaterials and
subwavelength nanophotonics.
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I. INTRODUCTION

Metamaterials is the effective approach in condensed-
matter physics for designing novel composite materials with
exceptional electromagnetic (acoustic) properties that do not
occur naturally [1]. The first demonstration of the negative
refractive index behavior predicted by Veselago [2] was done
with split-ring resonators employed as meta-atoms [3]. Cur-
rently, there is an extended nomenclature of various metallic,
graphene, and high-index dielectric inclusions applied for
designing metamaterials in microwave, terahertz, infrared, and
optical ranges [4–17].

Typically, to treat a periodic composite as a continuous
medium, the working wavelength should be much greater than
the lattice period. Then fields within the unit cell are local,
and material properties are determined by the polarization and
magnetization vectors, i.e., by the dielectric permittivity and
magnetic permeability tensors. The procedure of substituting
an inhomogeneous structure with its homogeneous analog,
which performs effectively the same, is called homogenization.
As sketched in Fig. 1(a), the homogenized medium can
acquire bianisotropic properties, which can include, in general,
chirality and spatial dispersion.

*physics.vlad@gmail.com
†alav@fotonik.dtu.dk
‡anov@fotonik.dtu.dk

There are different approaches to find material parameters
of a metamaterial, which can be grouped into the retrieval and
homogenization methods. A retrieval method allows finding
material parameters using reflection and transmission data
[18,19]. These data can be obtained experimentally and/or
from numerical simulations. Although this technique has
certain drawbacks and constraints, e.g., ambiguity of the
retrieval, difficulties with gathering the phase information in
experiments, etc., these problems can be, in principle, solved.
For example, an alternative wave-propagation retrieval method
[20,21] does not suffer from the ambiguity and can be applied
to thick metamaterials. Usually, the parameters are retrieved
accurately away from resonances, but in the vicinity retrieval
suffers from enhanced errors and noises. In Ref. [22] the
generalized retrieval method functioning near resonances was
proposed.

Plenty of homogenization methods have appeared over
the last decade as a reaction to the absence of a universal
procedure applicable to a vast number of cases [23]. To
overcome the limitations of the standard homogenization the
first-principles homogenization theory for periodic metamate-
rials, the effective material parameters of which are spatially
dispersive, was proposed in Ref. [24]. The multipole approach
developed in Refs. [25,26] allows us to describe analytically
bulk and planar metamaterials. The microscopic approach
based on the dynamics of the classical electrons was used
in Ref. [27] to describe the asymmetric transmission in
planar chiral metamaterials [17]. Reference [28] deals with
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FIG. 1. (a) Bilayer unit cell of a multilayer dielectric structure
(top) and its homogenized counterpart with bianisotropic effective
medium parameters (bottom). (b) Periodic multilayered dielectric
structure with N bilayer unit cells.

electromagnetostatic homogenization of materials with mi-
croscopically bianisotropic inclusions. A rigorous homoge-
nization theory via the Whitney interpolation developed in
Ref. [29] allows us to reproduce the well-known Maxwell
Garnett formula and introduce artificial magnetism.

Local homogenization can be insufficient for correct de-
scription of the wave propagation in a metamaterial even in
its validity range. In this case, the spatial dispersion should
be taken into consideration, and homogenization becomes
nonlocal. Although material parameters still depend on wave
characteristics in nonlocal theories, the latter provide better
correspondence to the exact solutions, and therefore, their
usage is justified for linear [24,30] and nonlinear media [31].
Nonlocality can be used for dispersion engineering [32,33]
in transformation optics formalism applied to the spectral
domain and for investigation of anisotropy induced by spatial
dispersion [34]. When spatial dispersion is a shortcoming
for some metamaterial-based application, one can apply the
nonlocal homogenization approach to find out how to reduce
undesired dispersion consequences. In the present paper we
deal with nonlocal homogenization for a multilayered system.

Different materials forming the unit cell of a metamaterial
can have a complex shape. However, it is instructive to use a
simple toy model which can provide the main features of the
metamaterial function. Such a simple model can be a periodic
multilayered system, as demonstrated in Fig. 1(b). The
homogenization in this case is given by the Maxwell Garnett
(quasistatic) approach, which is called the effective medium
approximation (EMA). Recently, the homogenization of the
subwavelength dielectric layered structures has attracted close
attention in connection with the discovered EMA breakdown
[35–37]. The EMA breakdown typically is quite pronounced

near the critical angle of total internal reflection defined for the
effective medium. As reported in Ref. [35], the transmission
of a multilayered structure strongly depends on periodicity, the
order of the layers, and their parity, although such a dependence
is supposed to be nonexistent when the EMA is applied, in
particular for deep-subwavelength dielectric multilayers.

Metal-dielectric planar multilayered systems can be con-
sidered effectively anisotropic (uniaxial) media possessing
either closed ellipsoid or open hyperboloid isofrequency
surfaces. In the latter case the multilayers, called hyperbolic
metamaterials, enable a number of distinctive properties,
including guiding evanescent waves (with wave vectors much
bigger than those in the corresponding uniform dielectric),
hyperlensing, and enhancement of the spontaneous emission
rate [10,38–42]. The EMA is applicable for multilayered
hyperbolic metamaterials, too; however certain constraints
must be acknowledged [43]. It should be noted that, typically,
homogenization approaches have been developed for layered
structures to catch some specific features. For example, the
high-frequency homogenization is applicable near the points
of topological transition from the elliptic to hyperbolic regime
[44]. However, a general and consistent homogenization
approach for multilayers is still missing.

In this paper, we use an operator technique to develop an
operator effective medium approximation (OEMA), in which
the zeroth order renders the conventional EMA (Maxwell Gar-
nett theory), while higher orders ameliorate the accurateness
of material tensors. The approach is grounded on the theory
presented in Ref. [45], which is adapted to find the effective
material tensors of the homogenized multilayered structure. In
Sec. II we briefly discuss the propagation of plane waves in
bianisotropic media using the spatial evolution operator tech-
nique developed in Refs. [46–48]. It was used, in particular,
for analyses of planar waveguides modes [49] and retrieving
bianisotropic material tensors from transmission and reflection
spectra [50,51]. In Sec. III we outline the OEMA and show how
to accurately determine material parameters of the effective
medium. The zeroth-order OEMA for multilayered dielectric
systems is considered in Sec. IV. This approach is limited
to only electric dipoles. In Sec. V we discuss the first-order
OEMA and its connection with the chiral properties of the
multilayer. In the second-order OEMA, consequently, mag-
netic dipoles and electric quadrupoles are taken into account
(Sec. VI). In Sec. VII we demonstrate that application of the
second-order OEMA allows avoiding the EMA breakdown
near the critical angle of total internal reflection. We also
identify the criterion for the zeroth-order OEMA validity,
which depends on the unit-cell thickness to wavelength
ratio, the number of unit cells, and the angle of incidence.
Section VIII advances application of the OEMA to frequency-
dispersive metal-dielectric multilayers. Comparison with the
results of the latest high-frequency homogenization approach
[44] and conclusions are also provided here.

II. PLANE WAVES IN MULTILAYERED BIANISOTROPIC
MEDIA

We consider a plane monochromatic electromagnetic wave
with circular frequency ω propagating in a bianisotropic slab
characterized by dielectric permittivity tensor ε̂, magnetic
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permeability tensor μ̂, and gyration pseudotensors α̂ and
β̂ [52],

D(ω,r) = ε̂(ω)E(ω,r) + α̂(ω)H(ω,r),

B(ω,r) = β̂(ω)E(ω,r) + μ̂(ω)H(ω,r). (1)

Here E, H, D, and B are, respectively, the strengths of electric
and magnetic fields, electric displacement, and magnetic
induction vectors. Under the oblique incidence the wave vector
can be decomposed into two components, tangential kt = k0b
and longitudinal kz = k0ηq, where k0 = ω/c is the wave
number in vacuum, b lies in the plane of incidence, and q
is the unit vector normal to the slab interfaces (see Fig. 1).
Since the field is translation invariant in the plane (x, y),
it can be written in the form E(r) = E(z) exp(ik0b · r), thus
reducing the Maxwell equations to the system of the four
first-order ordinary differential equations for the tangential
field components W = (Ht ,q × E)T , where T denotes the
transpose operation. Here two tangential fields, Ht = ÎH =
(Hx,Hy)T and q × E = (−Ey,Ex)T , are introduced, where
Î = 1̂ − q ⊗ q is the projector onto the plane orthogonal to q
(two-dimensional unit tensor), 1̂ is the three-dimensional unit
tensor (Kronecker’s delta tensor), and ⊗ stands for the tensor
(outer) product defined as (u ⊗ v)i,j = uivj , i,j = 1,2,3.

The system of four differential equations can be rewritten
as a single equation for unknown field vector W:

dW(z)

dz
= ik0M̂W(z), (2)

where M̂ is the 4 × 4 matrix, whose representation as a block
matrix reads [47]

M̂ =
(

Â B̂

Ĉ D̂

)
.

In the case of bianisotropic media described by material
equations (1), the 2 × 2 blocks Â, B̂, Ĉ, and D̂ are

Â = q×α̂Î + q×ε̂q ⊗ v3 + (b + q×α̂q) ⊗ v1,

B̂ = −q×ε̂q× + q×ε̂q ⊗ q×v4 + (b + q×α̂q) ⊗ q×v2,

Ĉ = Î μ̂Î + Î μ̂q ⊗ v1 + (−a + Î β̂q) ⊗ v3,

D̂ = −Î β̂q× + Î μ̂q ⊗ q×v2 + (−a + Î β̂q) ⊗ q×v4, (3)

where q× is the tensor dual to vector q [47,52,53] [(q×)ik =
εijkqj , where εijk is the antisymmetric Levi-Civita tensor and
summation over repeated indices from 1 to 3 is assumed],
a = b × q, and

v1 = δq(βqqα̂Î − εqqμ̂Î − βqa),

v2 = δq(βqqε̂Î − εqqβ̂Î − εqa),

v3 = δq(αqqμ̂Î − μqqα̂Î + μqa),

v4 = δq(αqqβ̂Î − μqqε̂I + αqa),

δq = (εqμq − αqβq)−1, εq = qε̂q,

μq = qμ̂q, αq = qα̂q, βq = qβ̂q.

In the case of a homogeneous bianisotropic medium
matrix M̂ is constant, thus allowing us to write down the
fundamental solution of the system by means of the matrix
exponential [47,49]

W(z) = exp[ik0zM̂]W(0), (4)

where W(0) is the initial field at z = 0. The field transmitted
by the first slab is the initial field for the second one, the second
slab produces the initial field for the third slab at its output,
and so on. Therefore, the field transmitted by the stack of N

slabs is of the form

W(D) =
N∏

j=1

exp[ik0dj M̂j ]W(0) = P̂ W(0), (5)

where D = ∑N
j=1 dj is the thickness of the stack. Tensor P̂

can be called a spatial evolution operator because it describes
the spatial evolution of the initial field W(0).

In Fig. 1(b) the periodic structure of 2N alternating
dielectric slabs with permittivities ε1 and ε2 and thicknesses
d1 and d2 is considered. Oblique incidence of a plane wave in
dielectric material εin is assumed. The transmitted wave exits
to the semi-infinite dielectric medium εout. For the parameters
given in the caption of Fig. 2 the effective parameters in the
zeroth-order OEMA are equal to ε

(0)
|| = 3 and ε

(0)
⊥ = 5/3. Then

the critical angle of total internal reflection for a TE wave
is αc = 60◦, which corresponds to the normalized tangential
wave number kt/k0 = bc = √

3.
Fresnel’s (amplitude) transmission operator can also be

written in terms of the spatial evolution operator P̂ as [47]

t̂ = 2

[(
γ̂in Î

)
P̂ −1

(
Î

γ̂out

)]−1

γ̂in, (6)

where γ̂in and γ̂out are the surface impedance tensors of the
input and output media shown in Fig. 1(b). For instance, γ̂in

equals

γ̂in =
√

εin − b2

b2εin
a ⊗ a + 1

b2
√

εin − b2
b ⊗ b. (7)

The output magnetic field equals H(tr)
t = t̂H(inc)

t , where H(inc)
t

is the magnetic field of the incident wave. Then the power
transmission coefficient for a TE wave reads

T = Re
[
η−1

out

]∣∣H(tr)
t

∣∣2

Re
[
η−1

in
]∣∣H(inc)

t

∣∣2 , (8)

where ηin =
√

εin − b2 and ηout =
√

εout − b2 are the longi-
tudinal components of the input and output wave vectors
normalized to k0, respectively.

Fresnel’s transmission coefficient t for the TE-polarized
wave passing through the N -period multilayer [see Fig. 1(b)]
equals

t =
(

ηin + ηout

2ηout
P2 + P1P3

2ηout

)−1

, (9)
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FIG. 2. Transmission of s- (TE-) polarized light through the N -period stack of slabs calculated exactly, in the zeroth-order OEMA, in
the first-order OEMA, and in the second order OEMA vs the number of unit cells N for (a) subcritical (εout = 4, b = √

3 − 0.01) and
(b) critical angles of incidence (εout = 4, b = √

3), (c) output permittivity εout (N = 25, b = √
3), and (d) the number of unit cells for the

impedance-matched output medium (εout = 3, b = √
3 − 0.01). Parameters are ε1 = 5, ε2 = 1, d1 = d2 = 10 nm, εin = 4, radiation wavelength

λ = 500 nm. The first layer of the stack is slab 1 in (a), (b), and (d) and slab 2 in (c).

where

P1 = sin(NKBd)

sin(KBd)
, P2 = cos(NKBd),

P3 = −P 12
T E − ηinηoutP

21
T E + (ηin − ηout)

P 11
T E − P 22

T E

2
.

(10)

Here d = d1 + d2 is the thickness of the unit cell. The
dispersion equation for the Bloch wave number KB and
elements P 11

T E , P 12
T E , P 21

T E , and P 22
T E of the TE-wave evolution

operator bP̂ b/b2 are given in Appendix A.

III. OPERATOR EFFECTIVE MEDIUM APPROXIMATION

The EMA is usually derived using the Maxwell Garnett
(quasistatic) approach. Then a homogeneous effective medium
replacing the multilayered structure has quite simple material
parameters of an anisotropic medium. The coordinate-free
approach of such homogenization generalized for an arbitrary
number of anisotropic layers defined through complex non-
symmetrical tensors ε̂,μ̂ composing the unit cell are derived in
[54]. In this section we apply an operator approach developed
in Ref. [45] to improve the accuracy of the EMA. We will refer
to this method as operator effective medium approximation.

The idea behind the OEMA is a conventional routine to
replace the periodic structure of thickness Nd by a homo-
geneous slab (effective medium) of the same thickness Nd,
where N and d are the number of unit cells and thickness of a
single unit cell, respectively. In general, the effective medium
is bianisotropic, thus having dielectric ε̂eff and magnetic
μ̂eff tensors and gyration pseudotensors α̂eff and β̂eff as
material parameters. With the ideal homogenization we cannot
distinguish the initial layered medium and effective medium
because the electromagnetic field outside the homogeneous
slab and inhomogeneous medium are the same. This can
be achieved owing to the equality of the spatial evolution
operators for homogeneous and inhomogeneous samples over
a period:

exp[ik0dM̂eff] = exp[ik0d2M̂2] exp[ik0d1M̂1]. (11)

It should be noted that the OEMA through the equality (11)
is applicable even for a single period, i.e., for nonperiodic
structures, too. Thus, in no way we are restricted by the
number of periods N in the process of homogenization. In
the above discussion we assume an external illumination of
the multilayer system. OEMA can also be applied when the
light source is placed at the boundaries between periods, i.e.,
at z = jd (j = 1,2, . . . ,N − 1).

085428-4
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Matrix M̂eff can be derived using the logarithm of the
operator

M̂eff = 1

ik0d
ln(exp[ik0d2M̂2] exp[ik0d1M̂1]) (12)

or through the Baker-Campbell-Hausdorff series [45]

M̂eff = ρM̂1 + (1 − ρ)M̂2

+ ik0d

2
ρ(1 − ρ)[M̂2,M̂1]

− (k0d)2

12
ρ(1 − ρ)(ρ[[M̂2,M̂1],M̂1]

+ (1 − ρ)[[M̂1,M̂2],M̂2]) + · · · , (13)

where ρ = d1/d and [M̂1,M̂2] is a commutator. Equation (13)
is the expansion with respect to the powers of k0d. Since M is
the 4 × 4 matrix, Eq. (13) represents the system of 16 algebraic
equations, which are not sufficient to uniquely determine 36
material parameters: each of the tensors ε̂eff , μ̂eff , α̂eff , and β̂eff

has, in general, nine components. Hence, there exists a group
of equivalent effective media which are able to describe the
same inhomogeneous structure.

It should be noted that such expansion over k0d was
also used in other works [30,55]. In Ref. [55], the authors
consider the zero-order term (k0d)0 corresponding to the
local effective parameters and outline the way to introduce
higher-order corrections to effective medium parameters. In
Ref. [30], the expansion up to the second order is applied to
the three-dimensional metamaterials to describe the effects of
artificial chirality and spatial dispersion.

IV. ZEROTH-ORDER OEMA: ELECTRIC DIPOLES

The Baker-Campbell-Hausdorff series (13) serves as the
exact homogenization. If k0d is small, the series can be safely
cut. The power of k0d defines the order of approximation: the
nth-order approximation corresponds to (k0d)n in Eq. (13).
Then the zeroth-order approximation of M̂eff can be written as
follows:

M̂
(0)
eff = ρM̂1 + (1 − ρ)M̂2. (14)

If the wave and material parameters in M̂1,2 are not peculiar, the
zeroth-order approximation is conventionally valid at d � λ,
where λ is the radiation wavelength.

Let us find material parameters from Eq. (14) in the case of
alternating isotropic dielectric slabs with matrices M̂1 and M̂2.
By substituting ε̂1,2 = ε1,21̂, μ̂1,2 = 1̂, α̂1,2 = β̂1,2 = 0 into
Eq. (3), one obtains matrices M̂1,2 as

M̂1,2 =
(

0 ε1,2Î − b ⊗ b

Î − a⊗a
ε1,2

0

)
. (15)

The effective medium can be regarded as a general
bianisotropic one. Then its parameters appear not to be
unique. However, the physical insight can significantly reduce
the number of material parameters. In fact, the stack of
isotropic slabs has a preferred direction specified by the
vector q. Then the effective medium material tensors can
be assumed as ε̂eff = ε||Î + ε⊥q ⊗ q, μ̂eff = μ||Î + μ⊥q ⊗ q,

α̂eff = α||Î + α⊥q ⊗ q, and β̂eff = β||Î + β⊥q ⊗ q. Matrix M̂

in the zeroth-order EMA reads

M̂
(0)
eff =

(
α||q× − β⊥b⊗a

δ⊥
ε||Î − ε⊥b⊗b

δ⊥
μ||Î − μ⊥a⊗a

δ⊥
−β||q× − α⊥a⊗b

δ⊥

)
, (16)

where δ⊥ = ε⊥μ⊥ − α⊥β⊥. By introducing matrices M̂ into
Eq. (14), we get a system of algebraic equations

α||q× − (β⊥/δ⊥)b ⊗ a = 0,

ε||Î − (ε⊥/δ⊥)b ⊗ b = ρ(ε1Î − b ⊗ b)

+ (1 − ρ)(ε2Î − b ⊗ b),

μ||Î − (μ⊥/δ⊥)a ⊗ a = ρ(Î − a ⊗ a/ε1)

+ (1 − ρ)(Î − a ⊗ a/ε2),

−β||q× − (α⊥/δ⊥)a ⊗ b = 0. (17)

The solution of this system of equations brings us to the
nongyrotropic (α̂eff = β̂eff = 0) nonmagnetic (μ̂eff = 1̂) uni-
axial medium as the zeroth-order effective medium:

ε
(0)
|| = ρε1 + (1 − ρ)ε2, ε

(0)
⊥ =

(
ρ

ε1
+ 1 − ρ

ε2

)−1

. (18)

Thus, the zeroth-order material parameters are those obtained
using the quasistatic Maxwell Garnett approach [40]. With
the assumption of the form of the effective media tensors we
determined them uniquely because eight unknown material
parameters can be found from 16 equations of the system
(14). It should be noted that the wrong ansatz of the effective
medium tensors can result in the contradictory system of
algebraic equations.

A dielectric multilayered system in the lowest order of
the OEMA is just a dielectric described by the average
electric dipole moment (medium polarization). Parameters
(18) depend on neither the number of unit cells nor the location
of the materials in the unit cells.

Fresnel’s transmission coefficient of the multilayered struc-
ture in the zeroth-order approximation t (0) can be written in
a way similar to Eq. (9), but the quantities P are replaced by
P (0):

P
(0)
1 = sin(Nk0η

(0)d)

sin(k0η(0)d)
, P

(0)
2 = cos(Nk0η

(0)d),

P
(0)
3 = i sin(k0η

(0)d)

η(0)
[−(η(0))2 − ηinηout], (19)

where η(0) =
√

ε
(0)
|| − b2 is the longitudinal component of the

wave vector in the zeroth- order OEMA normalized to k0.
Despite the validity condition of EMA d = d1 + d2 �

λ, the zeroth-order approximation can fail when either the
number of unit cells exceeds a certain value [see Figs. 2(a) and
2(b)] or the ambient medium is impedance matched [see the
example in Figs. 2(c) and 2(d)].

V. FIRST-ORDER OEMA: CHIRALITY

Matrix M̂ in the first-order OEMA

M̂
(1)
eff = ρM̂1 + (1 − ρ)M̂2 + ik0d

2
ρ(1 − ρ)[M̂2,M̂1] (20)

085428-5
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breaks the symmetry with respect to the sequence of the slabs.
Starting the stack from layer 2 one exchanges M̂1 and M̂2 and
therefore changes the sign of the last term.

Since the commutator

ik0d

2
ρ(1 − ρ)[M̂2,M̂1] =

(
Â0 0
0 −Â0

)
(21)

is a matrix with nonzero diagonal blocks, the effective
medium matrix M̂

(1)
eff can have nonzero gyration pseudotensors

α̂eff and β̂eff . Thus, the chiral properties of the effective
material are built up only in the first-order approximation and
therefore are quite small as k0d � 1. Keeping μ̂eff = 1̂ and a
permittivity tensor as in Eq. (18), we shall find the gyration
pseudotensors. Constant ε̂eff and μ̂eff require invariant B̂ and
Ĉ in Eq. (3), that is, qα̂eff Î = qβ̂eff Î = Î αeffq = Î βeffq = 0.
Imposing conditions αq = βq = 0, one derives the blocks of
matrix M̂eff : Â = q×α̂eff Î and D̂ = −Î β̂effq×. Finally, we
derive the gyration pseudotensors as

α̂eff = −β̂T
eff = Î α̂eff Î = −q×Â0 = α1

a ⊗ b
b2

+ α2
b ⊗ a

b2
,

(22)

where

α1 = ik0d

2
σ, α2 = ik0d

2
σf (b), f (b) = b2

εr

− 1,

σ = ρ(1 − ρ)(ε2 − ε1). (23)

Here εr = (ε−1
1 + ε−1

2 )−1 is the reduced permittivity. When
the stack starts from layer 2 (1 ↔ 2), α̂eff and β̂eff change their
signs.

Eigenwaves of the effective medium of the first order are
TE- and TM-polarized plane waves. Although the obtained
constitutive relations are very similar to those for uniaxial �

structures [56], the coupling between the electric and magnetic
fields is different for TE and TM waves, i.e., α1 �= α2. It
is curious that this result is in contrast to that obtained
in Ref. [30], where it was shown that the structure under
consideration is a genuine uniaxial � medium.

It should be noted that the effective gyrotropy is surface
induced because it can be removed by transferring half of
the last slab to the place before the first layer, which makes
the structure symmetric. Volume gyrotropy, in principle, can
also be achieved, e.g., using a three-layer unit cell without an
inversion center.

Parameters P
(1)
j in the transmission coefficients (9) of the

TE-polarized wave in the first-order approximation are equal
to

P
(1)
1 = sin(Nk0η

(1)d)

sin(k0η(1)d)
, P

(1)
2 = cos(Nk0η

(1)d),

P
(1)
3 = i sin(k0η

(1)d)

η(1)
[−(η(0))2 − ηinηout + (ηin − ηout)α1],

(24)

where η(1) =
√

ε
(0)
|| − b2 + α2

1 is the normalized longitudinal

wave number of the wave. The dependence of η(1) versus
b is the dispersion equation of the effective medium in the
first-order approximation.

The first two approximations of OEMA work well only
for a small number of unit cells N [Fig. 2(a)]. Further, both
approximations fail, with the zeroth-order OEMA being even
closer to the exact solution than the first order, when εin = εout,
i.e., when chirality owing to the same ambient media does not
appear.

The obtained first-order correction for the material param-
eters results in, however, the second-order corrections for the
wave number of the plane wave in a homogenized medium
because the Fresnel equation gets the correction α2

1 or α2
2

depending on the wave polarization. So the spatially dispersive
chiral parameters should result in the second-order effect, and
the second-order OEMA should be used for more accurate
prediction of the reflection and transmission.

It should be noted that, alternatively, chiral material pa-
rameters can be assigned with a Hermitian permittivity tensor
of the form ε̂eff = ε̂sym + ih×, where ε̂sym = ε̂T

sym and h is a
nonunitary vector, while αeff = βeff = 0. Such a form of ε̂ is
often used to describe the Faraday optical activity induced by
the magnetic field [52].

VI. SECOND-ORDER OEMA: MAGNETIC DIPOLES AND
ELECTRIC QUADRUPOLES

Material tensors of the second-order OEMA can be
searched like those of a bianisotropic crystal. Since the third
term in Eq. (13) maintains when the sequence of the slabs
changes to the opposite one, the second order does not affect
the chiral properties. The gyration pseudotensors can be kept as
in Eq. (22), but the permittivity and permeability tensors have
to be changed to incorporate proportional to (k0d)2 terms:

ε|| = ε
(0)
|| + (k0d)2

6
σf (b)ε̃||,

ε⊥ = ε
(0)
⊥ − (k0d)2

6
σε

(0)2
⊥

(
2ρ − 1

εr

− f (b)

ε̃⊥

)
,

μ|| = 1 + (k0d)2

6
σ (2ρ − 1),

μ⊥ = 1 − (k0d)2

6
σ

(
ρ

ε1

ε2
− (1 − ρ)

ε2

ε1

)
, (25)

where

ε̃|| = ρε1 − (1 − ρ)ε2, ε̃⊥ =
(

ρ

ε1
− 1 − ρ

ε2

)−1

. (26)

Corrections introduced in this section depend on the
tangential wave number kt = bk0; hence, the spatial dispersion
is taken into account. The spatial dispersion effect manifests
that the structure is thick compared with the radiation
wavelength. One expects that the higher-order multipole
moments besides the electric dipole will be excited. In fact,
an artificial magnetic response is observed in Eq. (25), and
it is not spatially dispersive. The correction to the dielectric
permittivity tensor originates from the electric quadrupole
moment, which depends on the tangential wave number
introducing a spatial dispersion. Values of the magnetic dipole
and electric quadrupole moments are of the same order, as
anticipated for a nonmagnetic object.
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The eigenwaves in the second-order OEMA are TE- and
TM-polarized plane waves like in the first-order OEMA, while
the medium can be treated as a uniaxial � medium with
different coupling constants α1,2.

The second-order OEMA yields the following parameters
Pj to substitute into Eq. (9) for TE-polarized light:

P
(2)
1 = sin(Nk0η

(2)d)

sin(k0η(2)d)
, P

(2)
2 = cos(Nk0η

(2)d),

P
(2)
3 = iμ|| sin(k0η

(2)d)

η(2)

[
(ηin − ηout)

α1

μ||
− ηinηout

+ α2
1 − (η(2))2

μ2
||

]
,

where the dimensionless longitudinal wave number equals

η(2) =
√

α2
1 + ε||μ|| − μ||/μ⊥b2.

VII. SECOND-ORDER OEMA WITHOUT A BREAKDOWN

As shown in Ref. [35], the periodic multilayered structure,
parameters of which are indicated in the caption of Fig. 2,
violates the main predictions of the effective medium ap-
proximation (zeroth-order OEMA in this paper). We shall
demonstrate that the elaborated corrections to the material
parameters solve the problem of the EMA breakdown.

For the subcritical angle of incidence the zeroth- and first-
order OEMAs keep the periodic dependencies characteristic
to the exact solution but quantitatively differ, as shown in
Fig. 2(a). Taking into consideration the effects of the structure’s
chirality, magnetic dipole, and electric quadrupole moments,
we restore the correct behavior of transmission T for any
number of unit cells N . Moving to the critical angle, the
transmission in the zeroth- and first-order OEMAs changes
drastically [see Fig. 2(b)]. In this case, the zeroth-order
effective medium does not transmit electromagnetic waves in
accordance with the phenomenon of the total internal reflection
except for the range of small N when the waves instead tunnel
through the thin structure. These tunneling waves result in the
transmission corresponding to that calculated accurately.

In Fig. 2(c) we show the transmission at the critical angle
(i.e., b = √

3) as a function of the permittivity εout of the
output medium. The effective permittivity of the multilayer
is ε

(0)
|| = 3. When εout � 3, the effective permittivity of the

system “periodic structure and output medium” is not greater
than 3. Hence, the total internal reflection occurs, and T = 0.
For εout > 3 the system is transmissive with the greatest value
at εout ≈ ε

(0)
|| . The sharp peak in Fig. 2(c) that cannot be caught

by the zeroth-order OEMA is reproduced by the second-order
OEMA even though the second-order corrections of material
parameters are small by default and have no peculiarities with
respect to b. This means that the resonance exists only in
transmission near the critical angle and is extremely sensitive
to the parameters of the system. Transmission in the peculiar
case of the impedance-matched output medium (εout = ε

(0)
|| ) is

shown in Fig. 2(d). It should be noticed that the behavior of
T is totally different for the exact solution and in the zeroth-
order OEMA. T is constant in the zeroth-order OEMA because
the multilayer and output substrate are effectively impedance

matched and no dependence on N is detected. The second-
order OEMA still functions perfectly.

In order to find out the reasons for the EMA breakdown
we analyze the transmission coefficient T for the incident
TE-polarized electromagnetic wave. Fresnel’s transmission
coefficient of the multilayered structure composed of N

layer pairs is given by Eq. (9). It should be compared with
the transmission coefficient t (0) of the zeroth-order effective
medium of thickness Nd, which follows from Eq. (9) when
P = P (0) according to Eq. (19).

The difference between coefficients t and t (0) is apparently
caused by the discrepancy in coefficients Pj and P

(0)
j (j =

1,2,3). Since we consider subwavelength structures, it is
instructive for further analysis to use approximation k0d � 1.
We can write the difference in transmission 
T = T − T (0) as
a linear function of deviations δPj = Pj − P

(0)
j (see Appendix

B for details):


T = −2T (0)Re

(
t (0) ηin + ηout

2ηout
δP2

+ t (0)

2ηout

(
P

(0)
3 δP1 + P

(0)
1 δP3

))
. (27)

If the terms on the right-hand side are small, the zeroth-order
OEMA works well. Otherwise, the zeroth-order OEMA cannot
be applied, and the phenomenon is called the EMA breakdown
[35]. We aim to derive the conditions of the breakdown.

Each of the quantities in the transmission difference (27)
is calculated in Appendix B, establishing the dependence on
k0d, N , and η. By substituting the values of P

(0)
j and δPj into

Eq. (27) in approximation k0d � 1, we have


T = A(ηout − ηin)σ (k0d) + O[(k0d)2] (28)

for η(0) �= 0 and


T = N{B(ηout − ηin)σ (k0d)2 + O[(k0d)3]} (29)

for η(0) → 0, where A and B are the coefficients derived in
Appendix B. The term proportional to N (k0d)3 arises due to
the wave-number deviation 
Kd = (KB − k0η

(0))d ∼ (k0d)3

(see Appendix A). It is less than other terms stemming
from chirality and spatial dispersion. In the case η(0) �= 0
the transmission difference linearly depends on k0d as it
is commonly adopted. But when η(0) → 0, the transmission
difference grows with the number of unit cells N , yielding the
great deviation, in accordance with Fig. 2(a).

If εin = εout (or ηin = ηout), the term proportional to σ in
the deviation δP3 vanishes (see Appendix B). This means
that δP3 ∼ (k0d)3 and the EMA works better. In fact, the
transmission difference is proportional to 
T ∼ (k0d)2 for
η(0) �= 0 and 
T ∼ N (k0d)3 for η(0) → 0.

Thus, the criterion for the zeroth-order OEMA to be valid
is no longer k0d � 1 but

sin[Nη(0)k0d](k0d)

η(0)ηout
� 1 (30)

for εin �= εout and

sin[Nη(0)k0d](k0d)2

η(0)ηout
� 1 (31)

for εin = εout.
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In the first-order OEMA η(1) differs from η(0) by the term
proportional to (k0d)2. Therefore, 
Kd ∼ (k0d)3 is not more
precise than that in the zeroth-order OEMA. At the same time
δP3 ∼ (k0d)3, whose estimation is more accurate than in the
zeroth order for εin �= εout. Thus, the first-order OEMA is better
than the zeroth one only if εin �= εout. Figure 2(d) supports
our conclusion: the first-order OEMA has oscillating behavior
as the exact solution, while the zeroth-order approximation
exhibits a constant value.

In the second-order OEMA 
Kd ∼ (k0d)5 and δP3 ∼
(k0d)5 because the terms proportional to (k0d)3 cancel each
other. Then there is no peculiarity of the transmission at η(0) =
0 and 
T ∼ N (k0d)5. This approximation can be violated if
N∗
Kd ∼ 1, i.e., N∗ ∼ (k0d)−5. For the parameters in Fig. 2
we estimate N∗ ∼ 1000.

VIII. DISCUSSION AND CONCLUSION

The second-order OEMA is applicable within an extremely
wide range of multilayered nanostructures. In what follows
we show that it can describe wave propagation in frequency-
dispersive media as well. We compare the transmission in the
zeroth-, first-, and second-order OEMAs with those calculated
accurately and using the high-frequency homogenization [44].
In the stack of metal-dielectric slabs, only metal is assumed
to have the Drude-model dispersion. When the validity
conditions of the ordinary EMA hold true [see Fig. 3(a)], the
high-frequency homogenization and zeroth-order OEMA are
very close but differ heavily from the exact solution. The latter
is indistinguishable from the second-order EMA, although the
first-order OEMA is insufficient. When thickness d is not much
less than the wavelength [see Fig. 3(b)], the second-order EMA
is not a valid approximation anymore. Nevertheless, it catches
the resonances of the exact solution, thus exhibiting similar
behavior. Other homogenization models considered cannot be
used at all outside their applicability ranges.

The operator effective medium approximation is a general
method to homogenize an arbitrary multilayered system. It
is valid for a small number of slabs in the system, e.g., two
slabs, as well as for any periodic and nonperiodic structure.
The slabs of these structures can be anisotropic, magnetic, and
chiral. OEMA does not require the development of a special
technique for another composition of layers. The method is
straightforward, but the technical difficulties should be solved
to succeed in finding material tensors of the effective medium.

Although the idea of the OEMA is given in Ref. [45],
we have analyzed different orders of the effective medium
approximation for bilayer unit cells in detail. We have
revealed that the orders of the approximation correspond to the
appearance of the artificial multipole moments in the structure,
with the value k0d being the dimensionless size parameter
as in scattering theory [57]. When k0d is small, the electric
dipole moment is important. Greater k0d produces higher-
order artificial multipole moments. We apply the second-order
OEMA to avoid the EMA breakdown in the vicinity of the
critical angle of the total internal reflection found earlier [35].
The breakdown in the zeroth-order OEMA is unavoidable
because transmission near the critical angle is very sensitive to
the exact values of the effective parameters: even a very small

FIG. 3. Transmission of s- (TE-) polarized light through the
metal-dielectric structure calculated exactly, in the zeroth-order
OEMA, in the first-order OEMA, in the second-order OEMA, and
with the high-frequency homogenization (HFH) approach vs normal-
ized tangential wave number b = kt/k0 for (a) k0d = 0.24 (d1 =
d2 = 0.2c/ωp , ω = 0.6ωp , εin = 1,εout = 0.241) and (b) k0d = 2
(d1 = d2 = 2c/ωp , ω = 0.5ωp , εin = 1,εout = 0.215). Parameters are
ε1 = 1 − ω2

p/ω2, ε2 = 2.25, N = 10.

correction of the material parameters dramatically changes
transmission.

In conclusion, we have found the effective medium tensors
in different orders of the operator effective medium approx-
imation. Each order corresponds to the artificial multipole
moments. We have revealed that the second-order OEMA
accurately describes the periodic multilayered structure even
in such peculiar conditions as total internal reflection and a
dispersive hyperbolic metamaterial. OEMA in the zeroth-order
approximation can be used to find local parameters of a
multilayered structure composed of anisotropic slabs.
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APPENDIX A: COEFFICIENTS P11
T E , P12

T E , P21
T E , AND P22

T E

AND BLOCH WAVE NUMBER KB

The evolution operator P̂ of a bilayer unit cell for a TE-
polarized electromagnetic wave with fields (b/b) · W = (b ·
Ht /b,a · Et /b)T should be projected onto unit vector b/b as

P̂T E = bP̂ b
b2

=
(

P 11
T E P 12

T E

P 21
T E P 22

T E

)
. (A1)

The elements of P̂T E are of the form

P 11
T E = cos(kz1d1) cos(kz2d2) − kz2

kz1
sin(kz1d1) sin(kz2d2),

P 12
T E = i

k0
[sin(kz2d2) cos(kz1d1)kz2 + sin(kz1d1)

× cos(kz2d2)kz1],

P 21
T E = ik0[sin(kz2d2) cos(kz1d1)/kz2 + sin(kz1d1)

× cos(kz2d2)/kz1],

P 22
T E = cos(kz1d1) cos(kz2d2) − kz1

kz2
sin(kz1d1) sin(kz2d2),

(A2)

where kjz = k0

√
εj − b2 (j = 1,2) is the longitudinal compo-

nent of the wave vector in the j th layer.
When k0d � 1, one obtains

P 11
T E = 1 − k2

z1d
2
1 + k2

z2d
2
2

2
− k2

z2d1d2 + O[(k0d)4],

P 12
T E = i

k0

(
k2
z1d1 + k2

z2d2
) + O[(k0d)3],

P 21
T E = ik0(d1 + d2) + O[(k0d)3],

P 22
T E = 1 − k2

z1d
2
1 + k2

z2d
2
2

2
− k2

z2d1d2 + O[(k0d)4].

(A3)

The Bloch wave number KB follows from the dispersion
equation

cos[KBd] = P 11
T E + P 22

T E

2
. (A4)

For k0d � 1 this equation reduces to

cos[KBd] = 1 − η(0)2k2
0d

2

2
+ O[(k0d)4], (A5)

whose solution is KBd = k0η
(0)d + O[(k0d)3]. Therefore,

the wave-number difference equals 
Kd = KBd − k0η
(0)d =

O[(k0d)3].

APPENDIX B: TRANSMISSION COEFFICIENT
DIFFERENCE

Fresnel’s transmission coefficient (9) can be written as
a linear function of the deviations from the zeroth-order
approximation δPj = Pj − P

(0)
j (j = 1,2,3), if |δPj | � |Pj |:

t = t0(1 − t0τ ), (B1)

where

τ = ηin + ηout

2ηout
δP2 + δP1P

(0)
3 + P

(0)
1 δP3

2ηout
. (B2)

Then the transmission difference 
T = T − T (0) takes the
form


T = ηin

ηout
|t |2 − ηin

ηout
|t (0)|2 = −2T (0)Re(t0τ ). (B3)


T in the explicit form is demonstrated by Eq. (27).
Let us calculate P

(0)
j and δPj in approximation k0d � 1.

In the expressions we can treat sin(k0η
(0)d) ≈ k0η

(0)d, but
Nk0η

(0)d is large, and sin(Nk0η
(0)d) �= Nk0η

(0)d except in
the case of η(0) → 0.

Then

P
(0)
1 =

{
sin(Nk0η

(0)d)
k0η(0)d

for η(0) �= 0,

N for η(0) = 0,

P
(0)
2 =

{
cos(Nk0η

(0)d) for η(0) �= 0,

1 for η(0) = 0,

P
(0)
3 =

{−ik0d(η(0)2 + ηinηout) for η(0) �= 0,

−ik0dηinηout for η(0) = 0,
(B4)

and

δP1 =
{

pN
K

k0η(0) + O[(N
Kd)2] for η(0) �= 0,

O[N3(k0d)6] for η(0) = 0,

δP2 =
⎧⎨
⎩

− sin(Nk0η
(0)d)N
Kd

+O[(N
Kd)2] for η(0) �= 0,

O[N2(k0d)6] for η(0) = 0,

δP3 = (ηout − ηin)
σ (k0d)2

2
+ O[(k0d)3], (B5)

where

p =
(

cos(Nk0η
(0)d) − sin(Nk0η

(0)d)

Nk0η(0)d

)
. (B6)

The transmission difference for η(0) �= 0 is


T = 2T0Re(t0τ1)N
Kd + 2T0Re(t0)τ2k0d + O[(k0d)2]

(B7)

and for η(0) → 0 is of the form


T = 2T0Re(t0)τ3N (k0d)2 + O[N (k0d)3], (B8)

where

τ1 = ηin + ηout

2ηout
sin(Nk0η

(0)d) + ip
η(0)2 + ηinηout

2ηoutη(0)
,

τ2 = ηin − ηout

4ηoutη(0)
σ sin(Nk0η

(0)d),

τ3 = ηin − ηout

4ηout
σ. (B9)
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