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Summary

In a number of areas software correctness is crucial, therefore it is often desirable
to formally verify the presence of various properties or the absence of errors. This
thesis presents a framework for concisely expressing static analysis and model
checking problems. The framework facilitates rapid prototyping of new analyses
and consists of variants of ALFP logic and associated solvers.

First, we present a Lattice based Least Fixed Point Logic (LLFP) that allows
interpretations over complete lattices satisfying Ascending Chain Condition. We
establish a Moore Family result for LLFP that guarantees that there always is
single best solution for a problem under consideration. We also develop a solving
algorithm, based on a differential worklist, that computes the least solution
guaranteed by the Moore Family result.

Furthermore, we present a logic for specifying analysis problems called Layered
Fixed Point Logic. Its most prominent feature is the direct support for both
inductive computations of behaviors as well as co-inductive specifications of
properties. Two main theoretical contributions are a Moore Family result and
a parametrized worst-case time complexity result. We develop a BDD-based
solving algorithm, which computes the least solution guaranteed by the Moore
Family result with worst-case time complexity as given by the complexity result.

We also present magic set transformation for ALFP, known from deductive
databases, which is a clause-rewriting strategy for optimizing query evaluation.
In order to compute the answer to a query, the original ALFP clauses are rewrit-
ten at compile time, and then the rewritten clauses are evaluated bottom-up. It
is usually more efficiently than computing entire solution followed by selection
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of the tuples of interest, which was the case in the classical formulation of ALFP
logic.

Finally, we show that the logics and the associated solvers can be used for rapid
prototyping. We illustrate that by a variety of case studies from static analysis
and model checking.



Resumé

Inden for mange omr̊ader er det essentielt at softwaren er korrekt. Inden for dat-
alogien er der udviklet en række formelle verifikation teknikker, herunder statisk
analyse og model tjek, som gør det muligt at analysere softwaren og sikre at den
har forskellige egenskaber. I denne afhandling præsenteres en ramme inden for
hvilken man hurtigt og elegant kan specificere specielt statisk analyse og model
tjek problemer i logisk form. Denne ramme understøttes af en række gener-
iske værktøjer, som gør at man givet en egenskab automatisk kan konstruere et
system som kan analysere softwaren for den p̊agældende egenskab.

I den første del af afhandlingen præsenteres en gitter-baseret logik kaldet Least
Fixed Point Logic (LLFP). Dens semantiske fundament er en matematiske struk-
tur af fuldstændige gitre som tilfredsstiller den s̊akaldte Ascending chain condi-
tion. Vi viser at LLFP har en Moore familie egenskab; det betyder at ethvert
problem udtrykt i LLFP altid har præcist en løsning som er bedre en alle andre
løsninger p̊a problemet. Vi udvikler derefter en implementation som beregner
denne løsning; den er baseret p̊a den s̊akaldte differential worklist tilgangsvinkel.

Den næste logik der præsenteres i afhandlingen er Layered Fixed Point Logic.
Denne logik adskiller sig fra den forrige ved at den direkte understøtter induk-
tive s̊avel som co-induktive specifikationer af problemer. Ogs̊a for denne logik
viser vi en Moore familie egenskab; ydermere etablerer vi et worst-case tids
kompleksitets resultat. Denne gang udvikler vi en implementation baseret p̊a
BDD tilgangsvinklen; implementationen beregner den bedste løsning p̊a prob-
lemet, som angivet af Moore familie resultatet, og har en køretid svarende til
det teoretiske kompleksitets resultat.

Efterfølgende studerer vi en optimeringsstrategi, kaldet magic sets transforma-
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tioner, fra deduktive databaser og dens anvendelse p̊a logikken ALFP. Ideen er at
omskrive den oprindelige formulering af egenskaben til en form som muliggør en
mere effektiv beregning; specielt er det ikke nødvendigt at beregne hele løsningen
hvis der kun er brug for en mindre del af den.

I den sidste den af afhandlingen illustrerer vi hvordan logikkerne og de tilhørende
implementationer kan bruges til hurtig konstruktion af prototyper. Specielt ser
vi p̊a forskellige eksempler fra statisk analyse og model tjek.
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Chapter 1

Introduction

1.1 System analysis and verification

Nowadays, we rely more and more on software systems. At the same time the
systems become bigger and more complex. They are present in almost every
aspect of our daily life via e.g. online banking, shopping and embedded systems
such as cameras or mobile phones. Due to our extensive use of software systems,
it is very important that they are reliable, offer good performance and are free
of errors. We are sure that many Windows OS users were annoyed by the
’Blue Screen’ that is displayed when the system encountered an unrecoverable
error. Game players may also be familiar with a software bug in the Pac-
Man game, which was caused by integer overflow [1] and made further play
impossible. There are well known examples of errors that had damaging financial
consequences. The most prominent is probably the bug in the control software
of the Ariane-5 missile, which crashed 36 seconds after the launch due to a
conversion of a 64-bit floating point into a 16-bit integer value. Another critical
error, which caused the death of six people due to the exposure to an overdose
of radiation, was the bug in the control part of the radiation therapy machine
Therac-25.

As systems grow in size and complexity, the number of potential errors increases.
At the same time market pressure and demand on software systems, make the
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task of delivering reliable and fast software hard and challenging. In order to
achieve more reliable systems, peer reviews and testing may be applied. A
peer review is a manual inspection of the source code by a software engineer,
who preferably was not the author of the part of the system being reviewed.
The main drawback of the method is that subtle errors such as corner cases
or concurrency problems are very hard to detect. Another technique commonly
used in practice is software testing. In contrast to peer reviews, which is a static
method and does not execute the software, testing is a dynamic technique that
runs the software. During software testing the software being tested is executed
for given inputs, and the actual output is then compared against the expected
one. The main problem of software testing is its incompleteness, due to the fact
that exhaustive testing that covers all execution paths is infeasible in practice.
It is well summarized by Edsger W. Dijkstra: ’Program testing can be a very
effective way to show the presence of bugs, but it is hopelessly inadequate for
showing their absence’ [24].

A much stronger approach for ensuring reliability and correctness of systems
is verification. Its aim is to prove that a system under consideration possess
certain properties such as deadlock freedom or lack of memory leaks. In order to
verify a system, the specification (model) is needed, along with the property (or
properties) that are to be checked. The system is considered correct with respect
to some properties, if it satisfies all of them. Consequently, this understanding
of correctness is relative to the specification and properties.

This dissertation deals with two formal verification techniques called static anal-
ysis [41, 2] and model checking [4, 31]. Both static analysis and model checking
apply mathematics to model, analyse and verify systems. Research in formal
methods led to the development of promising techniques, which in turn led to an
increasing use of formal verification in practice. There are many powerful veri-
fication tools that could have detected the errors in, e.g., the Ariane-5 missile,
Intel’s Pentium II processor, and the Therac-25 therapy radiation machine.

Model checking is an automated verification technique that systematically ex-
plores all possible system behaviors. Thanks to the exhaustive exploration, one
is sure that the system satisfies certain properties. However, since model check-
ing verifies the model, not the actual system, the technique is only as good as
the model of the system.

State-of-the-art model checkers are able to analyse real systems whose corre-
sponding models have 109 − 1012 states. Using specialized algorithms and data
structures suited for a specific problem, even larger state spaces (1020 and be-
yond) can be handled [13]. Importantly, they have found errors that were un-
detected using peer reviews and testing.
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Examples of properties that can be verified using model checking vary from
qualitative properties such as: “Can the system deadlock?” to more sophis-
ticated quantitative properties such as: “Is the response delivered within 0.1
seconds?”.

The model of the system under consideration is usually automatically extracted
from the description of the system, which commonly is a programming language.
The properties to be checked need to be precise and unambiguous, and are
usually expressed as logical formulae using modal logic. As already mentioned
the model checker explores all possible system behaviors and checks whether the
properties of interest are satisfied. In the case a state violating some property
is encountered, the model checker produces a counterexample that shows how
the state can be reached. More precisely, the counterexample represents a path
from the initial state to the state violating the property.

Static analysis is a technique for reasoning about system behavior without ex-
ecuting it. It is performed statically at compile-time, and it computes safe ap-
proximations of values or behaviors that may occur at run-time. Static Analysis
is recognized as a fundamental technique for program verification, bug detection,
compiler optimization and software understanding.

Static analysis bug-finding tools have evolved over the last several decades from
basic syntactic checkers to those that find complex errors by reasoning about
the semantics of code. They help developers find hard-to-spot, yet potentially
crash-causing defects early in the software development life cycle, reducing the
cost, time, and risk of software errors. State-of-the-art static analysis engines
are able to identify critical bugs and they scale to millions of lines of code. They
also provide low rate of false positives, which makes them extremely useful.

Another important application of static analysis is compiler optimization [2].
Compiler optimization applies static program analysis techniques and aims at
producing the output so that e.g. the execution time of the program or the
memory used are minimized. It is usually accomplished using a sequence of
transformation passes - algorithms which take a representation of the program
and transform it to produce a semantically equivalent output that uses fewer
resources.

There are many different analyses embedded in compiler optimization frame-
works, results of which are used to perform these optimizations. Probably
the most common technique is data-flow analysis, which computes informa-
tion about the possible set of values at various points in the analysed program.
Classical data flow analyses include reaching definition, live variable and avail-
able expression analyses. Other important analyses performed by compilers are
pointer analysis, which computes which pointers may point to which variables
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or heap locations, as well as array bound analysis that determines whether an
array index is always within the bounds of the array.

It is known that some optimization problems are NP-complete, or even unde-
cidable. The optimizers are also limited by the time and memory requirements;
hence the optimization rarely produces “optimal” output in any sense. In order
for static analysis results to be computable, the technique can usually only pro-
vide approximate answers. Hence, program analysis usually provides a possibly
larger set of values or behaviors than what would be feasible during execution
of the system. The great challenge is not to produce too many spurious results,
since then the analysis will become useless.

1.2 Contributions

This dissertation deals with two verification techniques namely static analysis
and model checking, and presents a framework for concisely expressing problems
from both areas. The framework facilitates rapid prototyping and consists of
variants of ALFP logic [44] and associated solvers. In particular it consists of
the following logics and solving algorithms

• Alternation-free Least Fixed Point Logic (ALFP) developed by Nielson et
al. [44], which has successfully been used as the constraint language for
sophisticated analyses of many programming paradigms including imper-
ative, functional, concurrent and mobile languages and more recently for
model checking [10, 42]. Our contribution is the development of a BDD-
based solving algorithm for ALFP, which computes the least model of a
given ALFP formula.

• Lattice based Least Fixed Point Logic (LLFP) that allows interpretations
over complete lattices satisfying Ascending Chain Condition. We establish
a Moore Family result for LLFP that guarantees that there always is single
best solution for a problem under consideration. We also develop a solving
algorithm, based on differential worklist, that computes the least solution
guaranteed by the Moore Family result.

• Layered Fixed Logic (LFP), which has direct support for both inductive
computations of behaviors as well as co-inductive specifications of proper-
ties. Two main theoretical contributions are a Moore Family result and a
parametrized worst-case time complexity result. We also develop a BDD-
based solving algorithm, which computes the least solution guaranteed by
the Moore Family result with worst-case time complexity as given by the
complexity result.
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Figure 1.1: Succinct Analysis Framework in a nutshell.

The defining feature of this framework is the use of logic for specifying the anal-
ysis problems, which has many benefits. We believe that logical (declarative)
specifications of analysis problems are superior to their imperative counterparts.
This of mostly because they are clearer and simpler to analyse for complexity
and correctness than imperative ones. Furthermore, they give a clear distinction
between specification of the analysis, and the computation of the best analy-
sis result. The applicability of the framework is illustrated by presenting case
studies from static analysis and model checking. Due to the fact that prob-
lems from both areas can be succinctly expressed within one framework, we
believe that this dissertation enhanced our understanding of the interplay be-
tween static analysis and model checking — to the extent that they can be seen
as essentially equivalent to each other.

The main thesis of this dissertation is to show that:

Variants of ALFP logic and their associated solvers can be used for efficient
rapid prototyping and have a wide variety of applications within static analysis
and model checking.

The overview of the approach presented in this dissertation is depicted in Fig-
ure 1.1. The main idea is to have a unified framework that can handle both
static analysis and model checking problems in a succinct manner. Our ap-
proach consists of two steps. In the first one, we transform the analysis problem
into a logical formula expressed in some variant of ALFP logic. In the second
step, a corresponding solver is used to obtain the analysis result.

1.3 Related Work

The use of logic for specifying static analysis problems intrigued many re-
searchers and resulted in an immense body of work. Dawson, Ramakrishnan,
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and Warren [22] showed how some program analyses can be cast in the form
of evaluating minimal models of logic programs. In their case study they used
formulations of groundness and strictness analyses, and they used the XSB sys-
tem as a solving engine. Their results suggested that practical analysers can be
build using general purpose logic programming systems. They also argued that
logic programming is expressive enough to formulate many common analyses.

It was also demonstrated by Reps [49] that many data flow analyses may be for-
mulated as graph reachability. Based on the correspondence between context-
free languages and declarative programs that recognize them, his approach im-
plies existence of declarative specifications of these analyses. The paper pre-
sented the application of the approach to interprocedural dataflow analysis,
interprocedural program slicing and shape analysis.

There is also an immense amount of work on pointer analysis using logic pro-
gramming; hence we restrict our discussion to a few representatives. Whaley et
al. [59, 58, 34] developed an implementation of datalog based on BDDs, called
bddbddb. Thanks to the use of BDDs, they were able to exploit redundancy in
the analysis relations in order to solve large problems efficiently.

PADDLE framework [36] is a highly flexible framework for context-sensitive
analyses. It is also based on BDDs and represents the state of the art in context
sensitive pointer analyses, in terms of both semantic completeness (language
features support) and scalability.

Finally, DOOP [11] raised the bar for precise context sensitive analyses. It is a
purely declarative points-to analysis framework and achieves remarkable perfor-
mance due to a novel optimization methodology of Datalog programs. Unlike
two previous frameworks, DOOP uses an explicit representation of relations
and thus it enhances our understanding on how to implement efficient points-to
analyses.

There is also interesting work on formalizing model checking using logic pro-
gramming. Ramakrishna et al. [47] presented an implementation of a model
checker called XMC using logic programming system XSB. In their system, a
CCS-like language is used to describe the model of the system under consider-
ation, whereas properties are expressed in the alternation free fragment of the
modal µ-calculus. The results presented in [46] indicate that XMC, although
implemented in a general purpose logic programming system, can compete with
the state-of-the-art model checkers.

An alternative approach to model checking using logic programming is described
by Charatonik and Podelski [15], where they demonstrated verification tech-
nique for infinite-state systems. Their approach uses set-based analysis to com-
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pute approximations of CTL formulae. Furthermore, Delzanno and Podelski
[23] explored formulation of safety and liveness properties in terms of logic pro-
grams. Their approach uses constraint logic programming to encode both the
transition system and the properties to be checked. Using their approach, they
were able to verify well-known examples of infinite-state programs over integers.

Another line of related work is concerned with the interplay between static
analysis and model checking. On one hand we have a developments by Steffen
and Schmidt that showed that static analysis is model checking of formulae in
some modal logic. In [52] they used abstract interpretation to generate program
traces, and modal µ-calculus to specify trace properties. In particular they
presented formulation of data flow equations for bit-vector frameworks as modal
µ-calculus formulae. In [53] they presented how abstract interpretation, flow
analysis and model checking intersect and support each other. The methodology
they presented consists of three stages. First a model, in a form of a state-
transition system, is constructed from the operational semantics and a program
of interest. Then the program model is abstracted by reducing the amount
of information in the model’s states and edges. Finally, the model is verified
against properties of its states and paths using a variant of Computation Tree
Logic (CTL). On the other hand there is work by Nielson and Nielson [42]
showing that model checking amounts to a static analysis of the modal formulae.
They used Alternation-free Least Fixed Point Logic (ALFP) to encode modal
formulae expressed in Action Computation Tree Logic.
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Chapter 2

Preliminaries

This chapter presents necessary background and notation used throughout the
dissertation. The chapter is organised as follows. In Section 2.1 we summa-
rize some properties of the partially ordered sets that play a crucial role in
the developments of the further chapters. Section 2.2 presents various ways of
modelling systems such as transition systems, control flow graphs and program
graphs. We present an Alternation free Least Fixed Point Logic (ALFP) in
Section 2.3, which constitutes a starting point for the formalisms developed in
this dissertation.

2.1 Partially Ordered Sets

Since partially ordered sets and complete lattices play a crucial role in this dis-
sertation, we summarize some of their properties. We present simple techniques
for constructing complete lattices from other complete lattices, and state the
definitions for Ascending and Descending Chain Conditions. We begin with a
definition of a partial order.

Definition 2.1 A partial ordering v is a binary relation on L that is:

• reflexive, i.e. ∀l : l v l,
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• transitive, i.e. ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3,

• anti-symmetric, i.e. ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2.

The above definition gives rise to a structured sets, whose elements are related
to each other according to a partial order relation.

Definition 2.2 A partially ordered set (poset) (L,v) is a set L equipped with
a partial ordering v.

The following two definitions introduce notions of least upper bounds as well as
greatest lower bounds.

Definition 2.3 An element l ∈ L is an upper bound of a subset Y ⊆ L if
∀l′ ∈ Y : l′ v l. A least upper bound l of Y is an upper bound of Y that
satisfies l v l0 whenever l0 is another upper bound of Y .

Definition 2.4 An element l ∈ L is a lower bound of a subset Y ⊆ L if ∀l′ ∈
Y : l v l′. A greatest lower bound l of Y is a lower bound of Y that satisfies
l0 v l whenever l0 is another lower bound of Y .

Note that a subset Y of a poset does not necessary have least upper bounds nor
greatest lower bounds, however if they exist they are unique and are denoted⊔
Y and

d
Y , respectively. Alternatively,

⊔
is called meet, whereas

d
is called

join.

Definition 2.5 A complete lattice L = (L,v) = (L,v,
⊔
,
d
,⊥,>) is a par-

tially ordered set (L,v) such that all subsets have least upper bounds and
greatest lower bounds. Moreover, ⊥ =

⊔
∅ =

d
L is the least element and

> =
d
∅ =

⊔
L is the greatest element.

Definition 2.6 A Moore family is a subset Y of a complete lattice L = (L,v)
that is closed under greatest lower bounds: ∀Y ′ ⊆ Y :

d
Y ′ ∈ Y .

It follows that a Moore family always contains a least element,
d
Y , and a great-

est element,
d
∅, which equals the greatest element, >, from L; in particular, a

Moore family is never empty. The property is also called the model intersection
property, since whenever we take a meet of a number of models we still get a
model.

New complete lattices may be created by combining the existing ones. We re-
view three methods for construction of new complete lattices based on cartesian
products, as well as total and monotone function spaces.
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Let L1 = (L1,v1) and L2 = (L2,v2) be two partially ordered sets. Then
L = (L,v) defined by

L = L1 × L2

and
(l1, l2) v (l′1, l

′
2)⇔ l1 v1 l

′
1 ∧ l2 v2 l

′
2

is also a partially ordered set. Furthermore, if each Li = (Li,vi) = (Li,vi
,
⊔
i,

d
i,⊥i,>i), i ∈ {1, 2}, is a complete lattice, then so is L = (L,v) = (L,v

,
⊔
,
d
,⊥,>). The least upper bound of the lattice is as follows⊔

Y =

(⊔
1

{l1 | ∃l2 : (l1, l2) ∈ Y },
⊔
2

{l2 | ∃l1 : (l1, l2) ∈ Y }

)
the bottom element ⊥ is given by ⊥ = (⊥1,⊥2). All other components are
defined analogously.

Now, we present construction of complete lattices based on a total function
space. Let L1 = (L1,v1) be a partially ordered set and let S be a set. Then
L = (L,v) defined by

L = {f : S → L1 | f is total}

and
f v f ′ ⇔ ∀s ∈ S : f(s) v1 f

′(s)

is also a partially ordered set. Furthermore, if L1 = (L1,v1) = (L1,v1

,
⊔

1,
d

1,⊥1,>1) is a complete lattice, then so is L = (L,v) = (L,v,
⊔
,
d
,⊥,>).

The components of the lattice are as follows⊔
Y = λs.

⊔
1

{f(s) | f ∈ Y }

the bottom element ⊥ is given by ⊥ = λs.⊥1. All other components are defined
analogously.

The construction of complete lattices based on monotone function space is as
follows. Let L1 = (L1,v1) and L2 = (L2,v2) be two partially ordered sets.
Then L = (L,v) defined by

L = {f : L1 → L2 | f is monotone}

and
f v f ′ ⇔ ∀l1 ∈ L1 : f(l1) v2 f

′(l1)

is also a partially ordered set. Furthermore, if each Li = (Li,vi) = (Li,vi
,
⊔
i,

d
i,⊥i,>i), i ∈ {1, 2}, is a complete lattice, then so is L = (L,v) = (L,v

,
⊔
,
d
,⊥,>). The components of the lattice are as follows⊔

Y = λl1.
⊔
2

{f(l1) | f ∈ Y }



12 Preliminaries

the bottom element ⊥ is given by ⊥ = λl1.⊥2. All other components are defined
analogously.

It is common for static analysis algorithms to iteratively compute analysis in-
formation, which usually are an elements of a complete lattice. In each iteration
the algorithm obtains better information, hence the information computed in
each iteration essentially forms a sequence of lattice elements. Now we define
these sequences, called chains, and state some of their properties.

Definition 2.7 A subset Y ⊆ L of a partially ordered set L = (L,v) is a chain
if ∀l1, l2 ∈ Y : (l1 v l2) ∨ (l2 v l1).

It follows that a chain is a (possibly empty) totally ordered subset of a partially
ordered set.

A sequence (ln)n = (ln)n∈N of elements in L is an ascending chain if

n ≤ m⇒ ln v lm

Similarly, a sequence (ln)n is a descending chain if

n ≤ m⇒ lm v ln

Clearly ascending and descending chains are also chains.

We say that a sequence (ln)n eventually stabilise if and only if

∃n0 ∈ N : ∀n ∈ N : n ≥ n0 ⇒ ln = ln0

A partially ordered set has finite height if and only if all chains are finite. A
partially ordered set satisfies the Ascending Chain Condition if and only if all
ascending chains eventually stabilise. Analogously, it satisfies the Descending
Chain Condition if and only if all descending chains eventually stabilise. These
give rise to the following Lemma.

Lemma 2.8 A partially ordered set L = (L,v) has finite height if and only if
it satisfies both the Ascending and Descending Chain Conditions.

Proof. See Appendix A.3 in [41].
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2.2 Modelling Systems

A prerequisite for the analysis is a model of the system under consideration. In
this section we present such models. We first present transition systems that
are a standard way of representing hardware and software systems in model
checking. Then we introduce control flow graphs, which are usually used by
compilers to represent programs. Finally, we present program graphs, in which
actions label the edges rather than the nodes. The main benefit of using program
graphs is that we can model concurrent systems in a straightforward manner.
Moreover since a model of a concurrent system is also a program graph, all the
results are applicable both in the sequential as well as in the concurrent setting.

2.2.1 Transition Systems

Transition systems are used to model behavior of systems. They are basically
directed graphs, where nodes represent states of the system, whereas edges rep-
resent transitions i.e. changes of states. More precisely, a state describes certain
information about current state of the system, and transitions state how the
system may go from one state to another.

There are many different types of transition systems. The one we present here
uses named transitions, and labels each state with a set of atomic propositions.
The transition names can be used to denote the kind of action, or in the case of
concurrent systems may be used for communication. The atomic propositions
describe some basic facts about the given state. The formal definition of the
transition system is given by Definition 2.9.

Definition 2.9 A transition system TS is a tuple (S,Act ,→, I,AP , L) where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act × S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

A transition system TS is called finite if S, Act , and AP are finite.
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Figure 2.1: Transition system representing a vending machine.

As an example of a transition system, let us consider a simplified model of
a vending machine depicted in Figure 2.1. The machine first accepts a coin
and then nondeterministically serves either coffee or tea. The state space is
S = {idle, choose, coffee, tea}. The set of initial states is I = {idle}, which in
the figure is indicated by having an incoming arrow without a source. The set of
actions is Act = {insertCoin, serveCoffee, serveTea, τ}. The action insertCoin
corresponds to the user of the machine inserting the coin. The action τ is an
internal action performed by the machine that is not visible to the environment,
which in this case is the user of the machine. The actions serveCoffee and
serveTea represent delivery of coffee and tea, respectively. Let the set of atomic
propositions be AP = {paid , deliver} with the labeling function given by

L(idle) = ∅, L(choose) = {paid}, L(coffee) = L(tea) = {deliver}

Now we are able to reason about the behavior of the vending machine by ex-
pressing properties such as “The machine never delivers a beverage without
inserting a coin.”

In order to formally express the behavior of a transition system, we introduce a
notion of an execution or a run. The execution represents a possible behavior of
the transition system by resolving the nondeterminism in the transition system.

Definition 2.10 Let TS = (S,Act ,→, I,AP , L) be a transition system. A
finite execution fragment % of TS is an alternating sequence of states and actions
ending with a state

% = s0α0s1α1 . . . αn−1sn such that si
αi−→ si+1 for all 0 ≤ i < n,

where n ≥ 0. We refer to n as the length of the execution fragment %. An
infinite execution fragment ρ of TS is an infinite alternating sequence of states
and actions

ρ = s0α0s1α1s2α2 . . . such that si
αi−→ si+1 for all 0 ≤ i.
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The sequence s, where s ∈ S, is a valid execution fragment of length n = 0.
The j-th state of ρ = s0α0s1α1s2α2 . . . is denoted by ρS [j] = sj , whereas the
j-th action is denoted by ρAct [j] = αj , where j ≥ 0. The notion is defined anal-

ogously for finite execution fragments. Sometimes we write % = s0
α0−→ s1

α1−→
. . .

αn−1−−−→ sn and ρ = s0
α0−→ s1

α1−→ s2
α2−→ . . . for % = s0α0s1α1 . . . αn−1sn and

ρ = s0α0s1α1s2α2 . . ., respectively.

An execution fragment is called maximal if it cannot be prolonged. Formally, it
is defined by the following definition.

Definition 2.11 A maximal execution fragment is either a finite execution frag-
ment that ends in the terminal state, or an infinite execution fragment.

Hence according to the above definition the execution fragment is maximal if it
cannot be prolonged i.e. either it is infinite, or it is finite and ends in a state
having no outgoing transitions. In the following we use Execs(s) to denote a set
of maximal execution fragments that start in s, i.e. ρS [0] = s.

Example execution fragments for the vending machine from Figure 2.1 are

ρ = idle
insertCoin−−−−−−−→ choose

τ−→ tea
serveTea−−−−−−→ . . .

% = idle
insertCoin−−−−−−−→ choose

τ−→ coffee

Notice that the execution fragment ρ is maximal, whereas % is not.

In some instances the actions are not important and hence can be omitted. In
particular this will be the case in Section 8.1, where we consider the CTL model
checking. The result of omitting the actions from an execution fragment is called
a path fragment. Similarly to the case of execution fragments, we define path
fragments as well as maximal path fragments. All the definitions are obtained
in a straightforward manner by omitting the actions.

Definition 2.12 Let TS = (S,Act ,→, I,AP , L) be a transition system. A
finite path fragment π̂ of TS is a sequence of states

π̂ = s0s1 . . . sn such that si
α−→ si+1 for all 0 ≤ i < n,

where n ≥ 0. We refer to n as the length of the path fragment π̂. An infinite
path fragment π of TS is an infinite sequence of states

π = s0s1s2 . . . such that si
α−→ si+1 for all 0 ≤ i.

The j-th state of π = s0s1 . . . is denoted by π[j] = sj , where j ≥ 0. The notion
is defined analogously for finite paths.
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Now let us define a notion of a maximal path fragment.

Definition 2.13 A maximal path fragment is either a finite path fragment that
ends in the terminal state, or an infinite path fragment.

Hence according to the above definition the path fragment is maximal if it
cannot be prolonged i.e. either it is infinite, or it is finite and ends in a state
having no outgoing transitions. In the following we use Paths(s) to denote a set
of maximal path fragments that start in s, i.e. π[0] = s.

Let us again consider the vending machine depicted in Figure 2.1. Example
path fragments are

π = idle choose tea . . .

π̂ = idle choose coffee

Notice that the path fragment π is maximal, whereas π̂ is not since it ends
in a state having an outgoing transition. We also have π[1] = choose and
π̂[2] = coffee.

2.2.2 Control Flow Graphs

Control Flow Graphs (CFGs) are usually used to model a program under consid-
eration. They essentially are directed graphs where nodes represent statements
in the program, whereas edges model the flow of control between these state-
ments. We also assume that a control flow graph has two special nodes that
are not associated with any statement. Thus, we distinguish a unique initial
node, which does not have any incoming edges, and one final node having no
outgoing edges. The decision for distinguishing unique initial and final nodes
is motivated by simplifications in the specifications of the analyses. The formal
definition of the control flow graph is given by Definition 2.14.

Definition 2.14 A Control Flow Graph is a directed graph with one entry
node (having no incoming edges) and one exit node (having no outgoing edges),
called extremal nodes. The remaining nodes represent program statements and
conditions. Furthermore, the edges represent the control flow of the program.

2.2.3 Program Graphs

This section introduces program graphs, a representation of software (hard-
ware) systems that is often used in model checking [4] to model concurrent and
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distributed systems. Compared to the classical flow graphs [33, 41], the main
difference is that in the program graphs the actions label the edges rather than
the nodes.

Definition 2.15 A program graph over a space S has the form

(Q,Act ,→,QI ,QF ,A, S)

where

• Q is a finite set of states;

• Act is a finite set of actions;

• → ⊆ Q×Act × Q is a transition relation;

• QI ⊆ Q is a set of initial states;

• QF ⊆ Q is a set of final states; and

• A : Act → S specifies the meaning of the actions.

Now let us consider a number of processes each specified as a program graph
PGi = (Qi,Act i,→i,QI i,QF i,Ai, S) that are executed independently of one
another except that they can exchange information via shared variables. The
combined program graph PG = PG1 ||| · · · ||| PGn expresses the interleaving
between n processes.

Definition 2.16 The interleaved program graph over S

PG = PG1 ||| · · · ||| PGn

is defined by (Q,Act ,→,QI ,QF ,A, S) where

• Q = Q1 × · · · × Qn,

• Act = Act1 ] · · · ]Actn (disjoint union),

• 〈q1, · · · , qi, · · · , qn〉
a−→ 〈q1, · · · , q′i, · · · , qn〉 if qi

a−→i q
′
i,

• QI = QI1 × · · · × QIn,

• QF = QF 1 × · · · × QF n,

• AJaK = AiJaK if a ∈ Act i.
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Note that Ai : Act i → S for all i and hence A : Act → S.

Note that the ability to create interleaved program graphs allows us to model
concurrent systems using the same methods as in the case of sequential pro-
grams. This will be used to analyse and verify the algorithm in Section 8.1.

2.3 The logic ALFP

This section presents the Alternation-free Least Fixed Point Logic (ALFP) orig-
inally introduced in [44]. The logic is a starting point for the formalisms devel-
oped in further chapters, and itself it is an extension of definite Horn clauses
allowing both existential and universal quantifications in preconditions, negative
queries, disjunctions of preconditions, and conjunctions of conclusions. In order
to deal with negative queries, we restrict ourselves to alternation-free formulae
that are subject to a notion of stratification defined below.

Definition 2.17 Given a fixed countable set X of variables, a non-empty and
finite universe U and a finite alphabet R of predicate symbols, we define the
set of ALFP formulae (or clause sequences), cls, together with clauses, cl, and
preconditions, pre, by the grammar:

u ::= x | a
pre ::= R(u1, . . . , uk) | ¬R(u1, . . . , uk) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∃x : pre | ∀x : pre
cl ::= R(u1, . . . , uk) | 1 | cl1 ∧ cl2 | pre⇒ cl | ∀x : cl
cls ::= cl1, · · · , cls

Here ui ∈ (X ∪ U), a ∈ U , x ∈ X , R ∈ R and s ≥ 1, k ≥ 0.

Occurrences of R and ¬R in preconditions are called positive queries and neg-
ative queries, respectively, whereas the other occurrences of R are called asser-
tions. An atom is written as R(~u), where R is a predicate name and ~u is a
non empty list of arguments. A literal is either an atom, or a negated atom
i.e. ¬R(~u). We say that an atom R(~u) is ground when all of its arguments are
constants. A ground clause is a clause containing only ground atoms. A fact is
a ground clause without a precondition. A definition of a predicate is a clause
sequence asserting that predicate. We say that a predicate is a base predicate if
it is defined only by facts. A clause that is not a fact is a derivation clause, and
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a predicate that is defined only by derivation clauses is a derived predicate. We
write 1 for the always true clause.

In order to ensure desirable theoretical and pragmatic properties in the presence
of negation, we impose a notion of stratification similar to the one in Datalog
[3, 14]. Intuitively, stratification ensures that a negative query is not performed
until the predicate has been fully asserted. This is important for ensuring that
once a precondition evaluates to true it will continue to be true even after further
assertions of predicates.

Definition 2.18 The formula cls = cl1, · · · , cls is stratified if there exists a
function rank : R → {0, · · · , s} such that for all i = 1, · · · , s:

• rank(R) = i for every assertion R in cli;

• rank(R) ≤ i for every positive query R in cli; and

• rank(R) < i for every negative query ¬R in cli.

Example 1 As an example let us define equality predicate E, and non-equality
predicate N as follows:

(∀x : E(x, x)) ∧ (∀x : ∀y : ¬E(x, y)⇒ N(x, y))

Let us assign rank(E) = 1 and rank(N) = 2. It is straight-forward to verify that
the stratification conditions are fulfilled.

To specify the semantics of ALFP we shall introduce the interpretations ρ : R →⋃
k P(Uk) and σ : X → U for predicate symbols and variables, respectively. We

shall write ρ(R) for the set of k-tuples (a1, . . . , ak) from Uk associated with the
k-ary predicate R and we write σ(x) for the atom of U bound to x. In the
sequel we view the free variables occurring in a formula as constants from the
finite universe U . The satisfaction relations for preconditions pre, clauses cl and
clause sequences cls are given by:

(ρ, σ) |= pre, (ρ, σ) |= cl and (ρ, σ) |= cls

The formal definition is given in Table 2.1; here σ[x 7→ a] stands for the mapping
that is as σ except that x is mapped to a.

Now we present the Moore family result for ALFP. A Moore family was formally
defined is Section 2.1.

Let ∆ = {ρ | ρ : R →
⋃
k P(Uk)} denote the set of interpretations ρ of predicate

symbols in R over U . We define a lexicographical ordering v defined by ρ1 v ρ2
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(ρ, σ) |= R(~u) iff σ(~u) ∈ ρ(R)
(ρ, σ) |= ¬R(~u) iff σ(~u) /∈ ρ(R)
(ρ, σ) |= pre1 ∧ pre2 iff (ρ, σ) |= pre1 and (ρ, σ) |= pre2

(ρ, σ) |= pre1 ∨ pre2 iff (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= ∃x : pre iff (ρ, σ[x 7→ a]) |= pre for some a ∈ U
(ρ, σ) |= ∀x : pre iff (ρ, σ[x 7→ a]) |= pre for all a ∈ U

(ρ, σ) |= R(~u) iff σ(~u) ∈ ρ(R)
(ρ, σ) |= 1 iff true

(ρ, σ) |= cl1 ∧ cl2 iff (ρ, σ) |= cl1 and (ρ, σ) |= cl2
(ρ, σ) |= pre⇒ cl iff (ρ, σ) |= cl whenever (ρ, σ) |= pre
(ρ, σ) |= ∀x : cl iff (ρ, σ[x 7→ a]) |= cl for all a ∈ U

(ρ, σ) |= cl1, · · · , cls iff (ρ, σ) |= cli for all i, 1 ≤ i ≤ s

Table 2.1: Semantics of ALFP.

if and only if there is some 0 ≤ j ≤ s , where s is the order of the formula, such
that the following properties hold:

(a) ρ1(R) = ρ2(R) for all R ∈ R with rank(R) < j,

(b) ρ1(R) ⊆ ρ2(R) for all R ∈ R with rank(R) = j,

(c) either j = s or ρ1(R) ⊂ ρ2(R) for some relation R ∈ R with rank(R) = j.

Lemma 2.19 v defines a partial order.

Lemma 2.20 (∆,v) is a complete lattice with the greatest lower bound given
by

(
l
M)(R) =

⋂
{ρ(R) | ρ ∈M ∧ ∀R′ rank(R′) < rank(R) : ρ(R′) = ρ(R)}

which is well defined by induction on the value of rank(R).

Proposition 2.21 Assume cls is a stratified ALFP formula, σ0 is an interpre-
tation of the free variables in cls. Then {ρ | (ρ, σ0) |= cls} is a Moore family.

The result ensures that the approach falls within the framework of Abstract
Interpretation [18, 19]; hence we can be sure that there always is a single best
solution for the analysis problem under consideration, namely the one defined
in Proposition 2.21.
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Example 2 As an example we can formulate a ALFP clause defining a predi-
cate R that holds on all states in the graph from which no cycle can be reached.
The clause is as follows

∀s : (∀s′ : ¬T (s, s′) ∨R(s′))⇒ R(s)

where T is a predicate defining the edges of the graph. Note that the above
example cannot be defined in Datalog, due to the use of universal quantification
in precondition.
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Chapter 3

Lattice based Least Fixed
Point Logic

Prior work on using logic for specifying static analysis focused on analyses de-
fined over some powerset domain [49, 54, 59]. However, this can be quite limit-
ing. Therefore, in this chapter we present a logic that lifts this restriction, called
Lattice based Least Fixed Point Logic (LLFP), that allows interpretations over
any complete lattice satisfying Ascending Chain Condition. The main theoret-
ical contribution is a Moore Family result that guarantees that there always is
a unique least solution for a given problem.

The chapter is organized as follows. In Section 3.1 we define the syntax and
semantics of Lattice based Least Fixed Point Logic. In Section 3.2 we establish a
Moore Family result. We continue in Section 3.3 with presenting the relationship
between ALFP and LLFP logics. Section 3.4 introduces the implementation of
the LLFP logic called LLFP#. Finally, in Section 3.5 we present an extension
of LLFP with monotone functions.
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3.1 Syntax and Semantics

In Section 2.3 we presented ALFP logic developed by Nielson et al. [44], which
is interpreted over a finite universe of atoms. In this section we present an
extension of ALFP called Lattice based Least Fixed Point Logic (LLFP) allowing
interpretations over complete lattices satisfying the Ascending Chain Condition.
Due to the use of negation in the logic, we need to introduce a complement
operator, {, in the underlying complete lattice. The only condition that we
impose on the complement is anti-monotonicity i.e. ∀l1, l2 ∈ L : l1 v l2 ⇒ {l1 w
{l2, which is necessary for establishing Moore Family result. The following
definition introduces the syntax of LLFP.

Definition 3.1 Given fixed countable and pairwise disjoint sets X and Y of
variables, a non-empty and finite universe U and a finite alphabet R of predicate
symbols, we define the set of LLFP formulae (or clause sequences) cls, together
with clauses cl, preconditions pre, terms u and V by the grammar:

u ::= x | a
V ::= Y | [u]
pre ::= R(~u;V ) | ¬R(~u;V ) | Y (u) | pre1 ∧ pre2 | pre1 ∨ pre2

| ∃x : pre | ∃Y : pre
cl ::= R(~u;V ) | 1 | cl1 ∧ cl2 | pre⇒ cl | ∀x : cl | ∀Y : cl
cls ::= cl1, · · · , cls

Here x ∈ X , a ∈ U , Y ∈ Y, R ∈ R, and s ≥ 1. Furthermore, ~u abbreviates a
tuple (u1, · · · , uk) for some k ≥ 0.

We write fv(·) for the set of free variables in the argument ·. Occurrences of
R(~u;V ) and ¬R(~u;V ) in preconditions are called positive, resp. negative, queries
and we require that fv(~u) ⊆ X and fv(V ) ⊆ Y ∪ X ; these variables are defining
occurrences. Occurrences of Y (u) in preconditions must satisfy Y ∈ Y and
fv(u) ⊆ X ; Y is an applied occurrence, u is a defining occurrence. Clauses of the
form R(~u;V ) are called assertions; we require that fv(~u) ⊆ X and fv(V ) ⊆ Y∪X
and we note that these variables are applied occurrences. A clause cl satisfying
these conditions together with fv(cl) = ∅ is said to be well-formed ; we are only
interested in clause sequences cls consisting of well-formed clauses.

In order to deal with negation correctly we impose a stratification condition. The
definition is exactly the same as the one for ALFP (given in Definition 2.18)
and hence omitted.

The following example illustrates the use of negation in an LLFP formula.
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Example 3 Using the notion of stratification we can define equality E and
non-equality N predicates in LLFP as follows

(∀x : E(x; [x])), (∀x : ∀Y : ¬E(x;Y )⇒ N(x;Y ))

According to Definition 2.18 the formula is stratified, since predicate E is fully
asserted before it is negatively queried in the clause asserting predicate N . As a
result we can dispense with an explicit treatment of = and 6= in the development
that follows. On the other hand the Definition 2.18 rules out

(∀x : ∀Y : ¬P (x;Y )⇒ Q(x;Y )), (∀x : ∀Y : ¬Q(x;Y )⇒ P (x;Y ))

This is because relations P and Q depend negatively on each other. More pre-
cisely, it is impossible to have rank(P ) < rank(Q) ∧ rank(Q) < rank(P ).

To specify the semantics of LLFP we introduce the interpretations % and ς of
predicate symbols and variables, respectively. Formally we have

% :
∏
kR/k → Uk → L

ς : (X → U)× (Y → L6=⊥)

In the above R/k stands for a set of predicate symbols of arity k, and R is
a disjoint union of R/k, hence R =

⊎
kR/k. We write ς(x) for the element

from U bound to x ∈ X and ς(Y ) for the element of L 6=⊥ bound to Y ∈ Y,
where L 6=⊥ = L \ {⊥}. We do not allow variables from Y to be mapped to ⊥
in order to establish a relationship between ALFP and LLFP in the case of a
powerset lattice, i.e. P(U), which we present in Section 3.3. The interpretation
of terms is generalized to sequences ~u of terms in a pointwise manner by taking
ς(a) = a for all a ∈ U , thus ς(u1, · · · , uk) = (ς(u1), · · · , ς(uk)). In order to give
the interpretation of [u], we introduce a function β : U → L. The β function
is called a representation function and the idea is that β maps a value from
the universe U to the best property describing it. For example in the case
of a powerset lattice, β could be defined by β(a) = {a} for all a ∈ U . The
interpretation of [u] is given by ς([u]) = β(ς(u)).

The satisfaction relations for preconditions pre, clauses cl and clause sequences
cls are given in Table 3.1; here ς[x 7→ a] stands for the mapping that is as ς
except that x is mapped to a and similarly ς[Y 7→ l] stands for the mapping
that is as ς except that Y is mapped to l ∈ L6=⊥.

Example 4 As an example we can formulate the classical live variables analy-
sis in LLFP. Let the complete lattice be (P(U),⊆,∪,∩, ∅,U). The complement
operator is defined as a set complement, {, and the representation function is
given by β(a) = {a} for all a ∈ U . Assume that we have a program graph (de-
fined in Section 2.2.3) with three kinds of actions: x := e, e, and skip. Then we
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(%, ς) |=β R(~u;V ) iff %(R)(ς(~u)) w ς(V )
(%, ς) |=β ¬R(~u;V ) iff {(%(R)(ς(~u))) w ς(V )
(%, ς) |=β Y (u) iff β(ς(u)) v ς(Y )
(%, ς) |=β pre1 ∧ pre2 iff (%, ς) |=β pre1 and (%, ς) |=β pre2

(%, ς) |=β pre1 ∨ pre2 iff (%, ς) |=β pre1 or (%, ς) |=β pre2

(%, ς) |=β ∃x : pre iff (%, ς[x 7→ a]) |=β pre for some a ∈ U
(%, ς) |=β ∃Y : pre iff (%, ς[Y 7→ l]) |=β pre for some l ∈ L6=⊥

(%, ς) |=β R(~u;V ) iff %(R)(ς(~u)) w ς(V )
(%, ς) |=β 1 iff true

(%, ς) |=β cl1 ∧ cl2 iff (%, ς) |=β cl1 and (%, ς) |=β cl2
(%, ς) |=β pre⇒ cl iff (%, ς) |=β cl whenever (%, ς) |=β pre
(%, ς) |=β ∀x : cl iff (%, ς[x 7→ a]) |=β cl for all a ∈ U
(%, ς) |=β ∀Y : cl iff (%, ς[Y 7→ l]) |=β cl for all l ∈ L6=⊥

(%, ς) |=β cl1, · · · , cls iff (%, ς) |=β cli for all i, 1 ≤ i ≤ s

Table 3.1: Semantics of LLFP.

can define the KILL and GEN predicates for the assignment action qs
x:=e−−−→ qt

by the two clauses

∀Y : FV(qs;Y )⇒ GEN(qs;Y ) ∧KILL(qs; [x])

where FV(qs;Y ) captures a set of free variables Y occurring in the expression

e. We also define the GEN predicate for an action qs
e−→ qt as follows

∀Y : FV(qs;Y )⇒ GEN(qs;Y )

The analysis itself is defined by the predicate LV; whenever we have qs
x:=e−−−→ qt

in the program graph we generate the clause

∀Y : (LV(qt;Y ) ∧ ¬KILL(qs;Y )) ∨GEN(qs;Y )⇒ LV(qs;Y )

Similarly whenever we have qs
e−→ qt or qs

skip−−−→ qt in the program graph we
generate the clause

∀Y : LV(qt;Y )⇒ LV(qs;Y )

3.2 Moore family result for LLFP

In this section we establish a Moore family result for LLFP that guarantees that
there always is a unique best solution for LLFP clauses. A Moore family was



3.2 Moore family result for LLFP 27

formally defined in Section 2.1.

Assume cls has the form cl1, . . . , cls, and let ∆ = {% :
∏
kR/k → Uk → L}

denote the set of interpretations % of predicate symbols in R. We also define
the lexicographical ordering � such that %1 � %2 if and only if there is some
1 ≤ j ≤ s, where s is the order of the formula, such that the following properties
hold:

(a) %1(R) = %2(R) for all R ∈ R with rank(R) < j,

(b) %1(R) v %2(R) for all R ∈ R with rank(R) = j,

(c) either j = s or %1(R) < %2(R) for at least one R ∈ R with rank(R) = j.

We say that %1(R) v %2(R) if and only if ∀~a ∈ Uk : %1(R)(~a) v %2(R)(~a),
where k ≥ 0 is the arity of R. Notice that in the case s = 1, the above
ordering coincides with the lattice ordering v. Intuitively, the lexicographical
ordering � orders the relations strata by strata starting with the strata 0. It is
essentially analogous to the lexicographical ordering on strings, which is based
on the alphabetical order of their characters. The conditions (a)-(c) are exactly
the same as the ones in the definition of partial order for ALFP (see Section 2.3
for details). The only distinction follows from the difference in the definitions
of the interpretations of predicate symbols % in LLFP and ρ in ALFP.

Lemma 3.2 � defines a partial order.

Proof. See Appendix A.1.

Assume cls has the form cl1, . . . , cls where clj is the clause corresponding to
stratum j, and let M ⊆ ∆ denote a set of assignments which map relation
symbols to relations.

Lemma 3.3 ∆ = (∆,�) is a complete lattice with the greatest lower bound
d

∆

given by (l
∆M

)
(R) = λ~a.

l{
%(R)(~a) | % ∈Mrank(R)

}
where

Mj =
{
% ∈M | ∀R′ rank(R′) < j : %(R′) =

(l
∆M

)
(R′)

}

Proof. See Appendix A.2
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Note that
d

∆M is well defined by induction on j observing that M0 = M and
Mj ⊆ Mj−1. Intuitively,

d
∆M is defined strata by strata starting with strata

0. For strata j and relation R of rank j we define (
d

∆M)(R) as a function
that takes a tuple ~a as argument and returns a lattice element that is a greatest
lower bound of all these %(R)(~a) whose interpretation % ∈M matches

d
∆M for

all relations with rank less than j.

Proposition 3.4 Assume cls is a stratified LLFP clause sequence, and let ς0 be
an interpretation of free variables in cls. Furthermore, %0 is an interpretation
of all relations of rank 0. Then

{% | (%, ς0) |=β cls ∧ ∀R : rank(R) = 0⇒ %0(R) v %(R)}

is a Moore family.

Proof. See Appendix A.3.

The result ensures that the approach falls within the framework of Abstract
Interpretation [18, 19]; hence we can be sure that there always is a single best
solution for the analysis problem under consideration, namely the one defined
in Proposition 3.4.

3.3 The relationship to ALFP

This section aims to establish the relationship between ALFP and LLFP logics.
Here, we consider the Datalog fragment of ALFP, i.e. we do not allow universal
quantification in preconditions in the ALFP formulae. In the remainder of this
chapter when we refer to ALFP, we mean the Datalog fragment of ALFP. As
the reader may have already noticed, in case the underlying complete lattice is
P(U) the two logics are essentially equivalent. Therefore, we can translate every
LLFP formula into a corresponding ALFP one and vice versa. In this section
we show this transformation. In particular we present a transformation from
LLFP to ALFP and prove its correctness; finally we show how ALFP can be
embedded in LLFP.

3.3.1 From LLFP to ALFP

Let the underlying complete lattice be P(U). The aim is now to transform
clauses in LLFP into ALFP. In order to map elements of the universe U into
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the elements of the powerset lattice P(U), we define the representation function
β : U → P(U) as β(a) = {a} for all a ∈ U . The idea is that a relation R in
LLFP with interpretation %(R) : Uk → P(U) is replaced by a relation in ALFP
(also named R) with interpretation f(%)(R) ∈ P(Uk+1). More precisely

f(%)(R) = {(~a, b) ∈ Uk+1 | β(b) ⊆ %(R)(~a)} (3.1)

Note that if %(R)(~a) = ⊥ then f(%)(R) does not contain any tuples with ~a as the
first k components. Furthermore, in order to correctly transform interpretations
of predicate symbols in case of negations, we define the complement operator,
{, as a set complement on the universe U .

In the transformation from LLFP to ALFP we need to replace the variables
ranging over the complete lattice with variables ranging over the universe and
we need to ensure that these variables only take values corresponding to those
of the complete lattice. To capture this for each variable Y ∈ Y we introduce a
special variable xY ∈ X , and ensure that the interpretation of xY in ALFP will
correspond to one of the potential values in the interpretation of Y in LLFP.
Thus for each mapping ς in LLFP we have a number of mappings σ in ALFP;
this is formalized by

f(ς) =

{
σ : X → U

∣∣∣∣ σ(x) = ς(x) whenever x ∈ X
β(σ(xY )) ⊆ ς(Y ) whenever Y ∈ Y

}
(3.2)

The replacement of the variables Y with variables xY is generalized to a trans-
formation on terms by taking

f(Y ) = xY
f([u]) = u

The latter reflects that [u] represents a singleton set in the powerset lattice
P(U) in LLFP. The preconditions, clauses, and clause sequences of LLFP are
now transformed into preconditions, clauses, and clause sequences of ALFP
using the function f defined in Table 3.2. The transformation is defined in a
syntax directed manner with the quantification over a variable Y ∈ Y and Y (u)
being the only non-trivial cases. Firstly, each quantification over a variable
Y ∈ Y is transformed into a quantification over variable xY ; this is necessary
because as mentioned above all occurrences of the variables Y ∈ Y are replaced
by xY . This means that the quantification over sets (variables from Y) in
LLFP corresponds to quantification over the elements of these sets in ALFP.
Furthermore, the Y (u) construct in LLFP amounts to checking whether the
lattice element corresponding to the constant bound to u is less or equal to a
lattice element bound to Y . In the current setting the semantics essentially
boils down to checking whether {a} ⊆ ς(Y ), where a is an element of U bound
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f(R(~u;V )) = R(~u, f(V ))
f(¬R(~u;V )) = ¬R(~u, f(V ))
f(Y (u)) = xY = u
f(pre1 ∧ pre2) = f(pre1) ∧ f(pre2)
f(pre1 ∨ pre2) = f(pre1) ∨ f(pre2)
f(∃x : pre) = ∃x : f(pre)
f(∃Y : pre) = ∃xY : f(pre)

f(R(~u;V )) = R(~u, f(V ))
f(1) = 1
f(cl1 ∧ cl2) = f(cl1) ∧ f(cl2)
f(pre⇒ cl) = f(pre)⇒ f(cl)
f(∀x : cl) = ∀x : f(cl)
f(∀Y : cl) = ∀xY : f(cl)

f(cl1, · · · , cls) = f(cl1), · · · , f(cls)

Table 3.2: Transformation from LLFP to ALFP.

to u, i.e. ς(u) = a. Therefore, since the variables Y ∈ Y are replaced by xY , we
transform Y (u) into the test xY = u checking essentially the same condition in
ALFP.

Example 5 Continuing Example 4, the LLFP specification of the live variables
analysis can be transformed into ALFP using function f defined in Table 3.2.
The resulting clause for an assignment qs

x:=e−→ qt is of the form:

∀xY : (LV (qt, xY ) ∧ ¬KILL(qs, xY )) ∨GEN(qs, xY )⇒ LV (qs, xY )

Similarly for a test qs
e−→ qt we get

∀xY : LV (qt, xY )⇒ LV (qs, xY )

The resulting clauses are exactly the same as if they were written directly in
ALFP.

The following result captures the relationship between ALFP and LLFP.

Proposition 3.5 If φ is a well formed LLFP formula (a precondition, clause
or a clause sequence), the underlying complete lattice is P(U) and β : U → L is
defined as β(a) = {a} for all a ∈ U , then

(%, ς) |=β φ ⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(φ)
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Proof. See Appendix A.4.

3.3.2 From ALFP to LLFP

Now we show how the ALFP logic can be transformed into LLFP. Let L =
({⊥,>},v) be a complete lattice such that {> = ⊥ and {⊥ = >. Moreover let
function β map all elements of the universe into >; namely ∀a ∈ U : β(a) = >.
First we define the transformation for ALFP clauses and preconditions, which is
accomplished by adding [a], where a ∈ U , as the second component of relations.
The transformation for positive queries and assertions is f ′(R(~u)) = R(~u; [a]);
for negative queries it is f ′(¬R(~u)) = ¬R(~u; [a]). For all other syntactic cate-
gories it is an identity function. Moreover the transformation of the interpreta-
tions of predicate symbols is defined as

f ′(ρ)(R) = λ~u.

{
> whenever ~u ∈ ρ(R)
⊥ otherwise.

Since all occurrences of predicates are transformed by adding [a] in the second
component there are no variables in Y. Hence the transformation of interpre-
tations of variables is defined as f ′(ς) = (ς, [ ]), where [ ] stands for the empty
mapping.

Example 6 As an example let us consider ALFP clauses for transitive closure

(∀x : ∀y : E(x, y)⇒ T (x, y)) ∧ (∀x : ∀z : (∃y : E(x, y) ∧ T (y, z))⇒ T (x, z))

Let a be some constant from U ; then the above clause is transformed into fol-
lowing LLFP formula

(∀x : ∀y : E(x, y; [a])⇒ T (x, y; [a]))∧
(∀x : ∀z : (∃y : E(x, y; [a]) ∧ T (y, z; [a]))⇒ T (x, z; [a]))

Based on the above example, we can see that ALFP can easily be embedded
in LLFP by adding a ’dummy’ lattice component. Note, that neither nesting
depth of quantifiers nor the size of the corresponding formula changes.

3.4 Implementation of LLFP

In this section we present LLFP# logic, which the implementation of LLFP.
The reason for introducing LLFP# is to achieve an efficient implementation of
the logic. The main differences between LLFP and LLFP# are as follows
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• LLFP# formulae do not contain disjunctions of preconditions,

• each variable Y ∈ Y quantified in an LLFP# clause has at most one
defining occurrence in that clause.

The intuition behind the above restrictions is that we want the interpretations
of variables Y ∈ Y to be as large as possible. However, since in LLFP the
given variable may be used as an argument in a number of queries, it cannot
be maximal for all instances. Furthermore, the restrictions allow to handle the
Y (u) construct in an easy and efficient manner. This will become evident in
Section 3.4.3 where we ensure that a given variable Y ∈ Y has at most one
defining occurrence in the given clause.

The rest of this section is organized as follows. We begin with presenting a
syntactic transformation of LLFP formulae into a Horn format in Section 3.4.1.
Section 3.4.2 presents the syntax and semantics of LLFP#. Finally in Sec-
tion 3.4.3 we show how LLFP clauses in Horn format can be transformed into
LLFP# clauses, and establish the semantical equivalence between LLFP and
LLFP#.

3.4.1 From LLFP to Horn format

As a first step towards getting an implementation of LLFP we transform the
clauses into Horn format. This transformation is fairly straightforward since the
Datalog fragment of ALFP (without universal quantifications in preconditions)
corresponds to Horn clauses.

Definition 3.6 An LLFP precondition, clause or clause sequence is in Horn
format if it is defined by the grammar:

u ::= x | a
V ::= Y | [u]

pre′ ::= R(~u;V ) | ¬R(~u;V ) | Y (u) | pre′1 ∧ pre′2
cl′′ ::= R(~u;V ) | 1 | pre′ ⇒ R(~u;V )
cl′ ::= ∀x : cl′′ | ∀Y : cl′′ | cl′′
cls′ ::= cl′1, · · · , cl′s

This means that all clauses can be written in the form

( ~∀α1 : cl′′1 ) ∧ · · · ∧ ( ~∀αm : cl′′m)
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where each cl′′j has the form R(~u;V ), 1, or pre′ ⇒ R(~u;V ) and ~αj is a (pos-
sibly empty) sequence of quantifiers over variables in X ∪ Y. Furthermore, no
preconditions pre′ contain disjunctions.

The transformation proceeds in a number of stages:

1. First the variables introduced by the quantifiers are renamed so that they
are pairwise distinct. This is needed in order to avoid name captures.

2. All existential quantifiers in preconditions are turned into universal quan-
tifiers for clauses. Thus (∃x : pre) ⇒ cl becomes ∀x : (pre ⇒ cl) and
similarly (∃Y : pre)⇒ cl becomes ∀Y : (pre⇒ cl).

3. Preconditions of all clauses are transformed into the form pre′1∨· · ·∨pre′k
where each of the pre′i is a conjunction of queries of the form R(~u; ~V ),

¬R(~u; ~V ), and Y (~u) (so they adhere to the grammar for pre′ given above).

4. Then the clauses are transformed so that they do not use disjunction
in preconditions, that is, all occurrences of (pre′1 ∨ · · · ∨ pre′k) ⇒ cl are
replaced by the k conjuncts (pre′1 ⇒ cl) ∧ · · · ∧ (pre′k ⇒ cl).

5. All (universal) quantifiers are moved to the outermost level in the clauses.
Thus pre′ ⇒ (∀x : cl) becomes ∀x : (pre′ ⇒ cl) and similarly pre′ ⇒ (∀Y :
cl) becomes ∀Y : (pre′ ⇒ cl).

6. Finally all clauses of the form ∀~α : (pre′ ⇒ cl1 ∧ cl2) are replaced by
clauses of the form (∀~α : (pre′ ⇒ cl1))∧ (∀~α : (pre′ ⇒ cl2)) and all clauses
of the form ∀~α : (pre′ ⇒ (pre′′ ⇒ cl)) are replaced by clauses of the form
∀~α : (pre′ ∧ pre′′ ⇒ cl). Since there can be more than one conjunction or
implication in the conclusion, this step is performed iteratively until no
more transformations can be done.

We can then establish:

Lemma 3.7 If cl is an LLFP clause, then h(cl) is in Horn format and:

(%∗, ς∗) |=β cl ⇔ (%∗, ς∗) |=β h(cl)

Proof. See Appendix A.5.

Example 7 Continuing Example 4, we can transform the Live Variables Anal-
ysis specification into the Horn format. The LLFP clause for an assignment
qs

x:=e−→ qt can be written in the Horn format as follows:

∀Y : LV (qt;Y ) ∧ ¬KILL(qs;Y )⇒ LV (qs;Y )
∀Y : GEN(qs;Y )⇒ LV (qs;Y )
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Similarly for qs
e−→ qt we have:

∀Y : LV (qt;Y )⇒ LV (qs;Y )

3.4.2 The Logic LLFP#

In this section we introduce the variant LLFP# of the logic. In LLFP the
semantics of a positive query R(~u;Y ) states that %(R)(ς(~u)) w ς(Y ); in LLFP#

we want to have %(R)(ς(~u)) = ς(Y ) so that the interpretation of Y is as large
as possible.

However, a number of queries using the same variable Y implicitly impose some
restrictions on the interpretation of the variables meaning that it cannot be
chosen to be maximal in all instances; e.g. this is the case in the clause in
Example 4. In LLFP# these implicit operations have to be explicit. As a
consequence an LLFP clause as

∀Y : (LV (qs;Y ) ∧ ¬KILL(qs;Y )) ∨GEN(qs;Y )⇒ LV (qt;Y )

now has to be rewritten as

∀Y1 : ∀Y2 : LV (qs;Y1) ∧KILL(qs;Y2)⇒ LV (qt;Y1 u {Y2) ∧
∀Y3 : GEN(qs;Y3)⇒ LV (qt;Y3)

so that it is in Horn format, uses distinct variables, and performs the explicit
operations on the variables in the assertions.

To summarize the logic, LLFP# is patterned after the Horn format introduced
above but extended to allow terms W to be used in applied positions:

Definition 3.8 Given fixed countable and pairwise disjoint sets X and Y of
variables, a non-empty and finite universe U , and a finite alphabetR of predicate
symbols, we define the set of LLFP# formulae (or clause sequences) cls, together
with clauses cl, and preconditions pre, by the grammar:

u ::= x | a
V ::= Y | [u]
W ::= V |W1 uW2 | {W | L
pre ::= R(~u;V ) | ¬R(~u; [u]) |W (u) | pre1 ∧ pre2

cl′ ::= R(~u;W ) | 1 | pre⇒ R(~u;W )
cl ::= ∀x : cl | ∀Y : cl | cl′
cls ::= cl1, · · · , cls
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Here x ∈ X , a ∈ U , Y ∈ Y, L ∈ L, R ∈ R and s ≥ 1.

The term W can be either a variable Y , a lattice element [u], the greatest lower
bound of two lattice elements, the complement of a lattice element, or it can
be the top element as denoted by constant L. The terms W can be used in
all applied occurrences, that is the queries Y (u) of LLFP have been generalized
to W (u) and the assertions R(~u;V ) have been generalized to R(~u;W ). Note
that negated queries are only of the form ¬R(~u; [u]), which is a consequence of
the transformation form LLFP in Horn format into LLFP#. The details of the
transformation are given in the next section.

To specify the semantics of LLFP# we make use of the interpretations % and ς
used for LLFP. We again make use of function β : U → L; the details are given
in Table 3.3; here we extend the interpretation ς of variables to the terms W as
follows:

ς([u]) = β(ς(u))
ς(W1 uW2) = ς(W1) u ς(W2)

ς({W ) = {ς(W )
ς(L) = >

The interpretation for W (u) then amounts to β(ς(u)) v ς(W ). The inter-
pretation for assertions R(~u;W ) amounts to ς(W ) v %(R)(ς(~u)) as shown in
Table 3.3.

3.4.3 From LLFP in Horn format to LLFP#

We have seen that LLFP clauses can be transformed into Horn format and now
we show that LLFP clauses in Horn format can be transformed into LLFP#

clauses. So let us consider a clause cl of the form

∀~α : ∀~Y : pre⇒ R(~u;V )

where ~α is a (possibly non-empty) sequence of variables from X , and ~Y is
(possibly non-empty) sequence of variables Y ∈ Y – we can without loss of
generality assume that variables from Y are the last variables in the sequence of
universally quantified variables. Let us assume that pre contains k ≥ 0 defining
occurrences of the variable Y ∈ Y and let Y1, · · · , Yk be k fresh variables from
Y. The LLFP# clause g(cl) is then obtained as follows:

1. Rename the k defining occurrences of Y in pre to be Y1, · · · , Yk, and call
the resulting precondition pre′.
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(%, ς) |=#
β R(~u;V ) iff

{
%(R)(ς(~u)) = ς(V ), if V ∈ Y.
%(R)(ς(u)) w ς(V ), otherwise

(%, ς) |=#
β ¬R(~u; [u]) iff {%(R)(ς(u)) w ς([u])

(%, ς) |=#
β W (u) iff β(ς(u)) v ς(W )

(%, ς) |=#
β pre1 ∧ pre2 iff (%, ς) |=# pre1 and (%, ς) |=#

β pre2

(%, ς) |=#
β R(~u;W ) iff %(R)(ς(~u)) w ς(W )

(%, ς) |=#
β 1 iff true

(%, ς) |=#
β pre⇒ cl iff (%, ς) |=# cl whenever (%, ς) |=#

β pre

(%, ς) |=#
β ∀x : cl iff (%, ς[x 7→ a]) |=# cl for all a ∈ U

(%, ς) |=#
β ∀Y : cl iff (%, ς[Y 7→ l]) |=# cl for all l ∈ L6=⊥

(%, ς) |=#
β cl1, · · · , cls iff (%, ς) |=#

β cli for all i, 1 ≤ i ≤ s

Table 3.3: Semantics of LLFP#.

2. Replace all occurrences of ¬R(~u;Y ) by R(~u;Yi)

3. Replace all occurrences of Y (u′) by WY
pre′(u

′) (defined below).

Then the transformation g will return the clause

g(cl) = ∀~α : ∀Y1 : · · · ∀Yk : pre′ ⇒ R(~u;WV
pre′)

where WV
pre′ (and WY

pre′) is a term that captures how the variables Y1, · · · , Yk
are used in the precondition pre′ to produce V (and Y , respectively). The term
is defined as follows:

WY
R′(~u′;V )

=

{
Yi if V = Yi for some i
L otherwise

WY
¬R′(~u′;V )

=

{
{Yi if V = Yi for some i
L otherwise

WV
Y (u) = L

WY
pre1∧pre2 = WY

pre1 uW
Y
pre2

W
[u]
pre′ = [u]

The idea is that if Y does not occur in a defining position in pre′ then WY
pre′ is

equal to L meaning that no restrictions have been imposed on the interpretation
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of Y . If Y occurs in a positive query as Yi then we record Yi and if it occurs
in a negative query as Yi then we record {Yi. In case of a conjunction of
two preconditions we take the greatest lower bound of the terms from the two
conjuncts. The last clause in the definition above takes care of the special case

where an assertion has the form R(~u; [u]) and W
[u]
pre′ just have to record [u]

independently of the form of pre′.

Lemma 3.9 Assume that pre contains k defining occurrences of Y and that

(%, ς[Y 7→ l]) |=β pre

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)

where li v l for 1 ≤ i ≤ k. Then

ς[Y1 7→ l1] · · · [Yk 7→ lk](WY
pre) = l

If Y does not occur in a defining position in pre then WY
pre = L.

Proof. See Appendix A.6.

The following result shows that satisfiability of the LLFP# clause g(cl) implies
satisfiability of the LLFP clause cl:

Lemma 3.10 Assume that (%, ς) |=#
β g(cl). Then (%, ς) |=β cl.

Proof. The proof is by a case analysis of the conclusion of the clause cl
and makes use of Lemma 3.9 above. The details of the proof can be found in
Appendix A.6.

Lemma 3.11 Assume that (%, ς) |=β cl. Then (%, ς) |=#
β g(cl).

Proof. The proof is by a case analysis of the conclusion of the clause cl
and makes use of Lemma 3.9 above. The details of the proof can be found in
Appendix A.6.

Example 8 As an example we can formulate the detection of signs analysis
in LLFP#. Assume that we have a program graph with three kinds of actions:
x := y ? z, e, and skip.

The analysis is defined by the predicate SA; whenever we have qs
x:=y?z−−−−→ qt in

the program graph we generate the clauses

∀v : ∀S : SA(qs, v;S) ∧ v 6= x⇒ SA(qt, v;S) ∧
∀sy : ∀sz : ∀S : SA(qs, y; [sy]) ∧ SA(qs, z; [sz]) ∧R?(sy, sz;S)⇒ SA(qt, x;S)
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where we assume that we have a relation R? for each arithmetic operation ?.
The first conjunct expresses that for all variables v and signs S, if the variable
is different than x and at state qs it has sign S, then it will have the same sign
at state qt. The second conjunct states that for all possible values S, sy and sz,
if at state qs the signs of variables y and z are sy and sz, respectively, and the
sign of the result of evaluating the arithmetic operation ? is S, then at state qt

variable x will have sign S. Similarly whenever qs
e−→ qt or qs

skip−−−→ qt in the
program graph we generate the clause

∀v : ∀S : SA(qs, v;S)⇒ SA(qt, v;S)

The clause simply propagates the signs of all variables along the edge of the
program graph, without altering it.

In the next section we show an alternative specification of the detection of signs
analysis using function symbols. Notice, that since the analysis is defined over
a powerset domain, it could also be expressed in ALFP or Datalog.

3.5 Extension with monotone functions

In this section we present an extension of LLFP that allows function terms as
arguments of relations. For convenience we refer to the extension as LLFP. Since
functions over the universe U can be represented as relations, we do not consider
them here. Instead, we focus on functions over a complete lattice JfK : Lk → L,
and we restrict our attention to monotone functions only. Recall that a function
JfK : L1 → L2 between partially ordered sets L1 = (L1,v1) and L2 = (L2,v2)
is monotone if

∀l, l′ ∈ L1 : l v1 l
′ ⇒ JfK(l) v2 JfK(l′)

The following definition introduces the syntax of LLFP.

Definition 3.12 Given fixed countable and pairwise disjoint sets X and Y of
variables, a non-empty and finite universe U , finite alphabets R and F of predi-
cate and function symbols, respectively, we define the set of LLFP formulae (or
clause sequences), cls, together with clauses, cl, preconditions, pre, terms u and
lattice terms V and V ′ by the grammar:
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u ::= x | a
V ::= Y | [u]

V ′ ::= V | f( ~V ′)
pre ::= R(~u;V ) | ¬R(~u;V ) | Y (u) | pre1 ∧ pre2 | pre1 ∨ pre2

| ∃x : pre | ∃Y : pre
cl ::= R(~u;V ′) | 1 | cl1 ∧ cl2 | pre⇒ cl | ∀x : cl | ∀Y : cl
cls ::= cl1, . . . , cls

Here x ∈ X , a ∈ U , Y ∈ Y, R ∈ R, f ∈ F , and s ≥ 1. Furthermore, ~u and ~V ′

abbreviate tuples (u1, . . . , uk) and (V ′1 , . . . , V
′
k) for some k ≥ 0, respectively.

Comparing to the Definition 3.1 we added a set F of function symbols. Fur-
thermore, we extended syntax of terms with function terms over a complete
lattice; denoted by f( ~V ′). Note that we allow function terms only as arguments
of assertions.

In order to give a semantics of the logic, in addition to the interpretations %
and ς of predicate symbols and variables from Section 3.1, we introduce an
interpretation of function symbols ζ. The interpretation is defined as follows

ζ :
∏
k

F/k → Lk → L

where F/k is a set of function symbols of arity k. The set F is then defined as
a disjoint union of F/k; namely F =

⊎
k F/k.

The interpretation of variables from X is given by JxK(ζ, ς) = ς(x), where ς(x)
is the element from U bound to x ∈ X . The interpretation of variables from Y
is given by JY K(ζ, ς) = ς(Y ), where ς(Y ) is the element from L 6=⊥ = L \ {⊥}
bound to Y ∈ Y. In order to give the interpretation of [u], we again make use
of the function β : U → L. The interpretation is given by ς([u]) = β(ς(u)). The

interpretation of function terms is defined as Jf( ~V ′)K(ζ, ς) = ζ(f)(J ~V ′K(ζ, ς)). As
already mentioned, we restrict our attention to the monotone functions over the
complete lattice only. The interpretation of terms is generalized to sequences
~u of terms in a point-wise manner by taking ς(a) = a for all a ∈ U , thus
ς(u1, . . . , uk) = (ς(u1), . . . , ς(uk)). The interpretation of lattice terms V ′ is

generalized to sequences ~V ′ of lattice terms in the similar way.

The satisfaction relations for preconditions pre, clauses cl, and clause sequences
cls are denoted by:

(%, ς) |=β pre, (%, ζ, ς) |=β cl and (%, ζ, ς) |=β cls

The formal definition is given in Table 3.4.
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(%, ς) |=β R(~u;V ) iff %(R)(ς(~u)) w ς(V )
(%, ς) |=β ¬R(~u;V ) iff {(%(R)(ς(~u))) w ς(V )
(%, ς) |=β Y (u) iff β(ς(u)) v ς(Y )
(%, ς) |=β pre1 ∧ pre2 iff (%, ς) |=β pre1 and (%, ς) |=β pre2

(%, ς) |=β pre1 ∨ pre2 iff (%, ς) |=β pre1 or (%, ς) |=β pre2

(%, ς) |=β ∃x : pre iff (%, ς[x 7→ a]) |=β pre for some a ∈ U
(%, ς) |=β ∃Y : pre iff (%, ς[Y 7→ l]) |=β pre for some l ∈ L6=⊥

(%, ζ, ς) |=β R(~u;V ′) iff %(R)(J~uK(ζ, ς)) w JV ′K(ζ, ς)
(%, ζ, ς) |=β 1 iff true

(%, ζ, ς) |=β cl1 ∧ cl2 iff (%, ζ, ς) |=β cl1 and (%, ζ, ς) |=β cl2
(%, ζ, ς) |=β pre⇒ cl iff (%, ζ, ς) |=β cl whenever (%, ς) |=β pre
(%, ζ, ς) |=β ∀x : cl iff (%, ζ, ς[x 7→ a]) |=β cl for all a ∈ U
(%, ζ, ς) |=β ∀Y : cl iff (%, ζ, ς[Y 7→ l]) |=β cl for all l ∈ L6=⊥

(%, ζ, ς) |=β cl1, · · · , cls iff (%, ζ, ς) |=β cli for all i, 1 ≤ i ≤ s

Table 3.4: Semantics of LLFP.

Now we establish a Moore family result for the logic extended with the function
terms.

Proposition 3.13 Assume cls is a stratified LLFP clause sequence, ς0 and ζ0
are interpretations of free variables and function symbols in cls, respectively.
Furthermore, %0 is an interpretation of all relations of rank 0. Then

{% | (%, ζ0, ς0) |=β cls ∧ ∀R : rank(R) = 0⇒ %0(R) v %(R)}

is a Moore family.

Proof. See Appendix A.7.

Now, let us present the LLFP specification of the detection of signs analysis
in the extension of the logic using function terms over the underlying complete
lattice.

Example 9 Analogously to Example 8 we assume that we have a program graph
with three kinds of actions: x := y ? z, e, and skip. The analysis is defined by

the predicate SA, and whenever we have qs
x:=y?z−−−−→ qt in the program graph we

generate the clauses

∀v : ∀S : SA(qs, v;S) ∧ v 6= x⇒ SA(qt, v;S) ∧
∀Sy : ∀Sz : SA(qs, y;Sy) ∧ SA(qs, z;Sz)⇒ SA(qt, x; f?(Sy, Sz))
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where we assume that we have a function f? for each arithmetic operation ?.
The first conjunct expresses that for all variables v and signs S, if the variable
is different than x and at state qs it has possible signs S, then it will have the
same signs at state qt. The second conjunct states that for all possible values Sy
and Sz, if at state qs the sets of possible signs of variables y and z are Sy and
Sz, respectively, then at state qt the set of possible signs of variable x is updated
with the set being the result of evaluating the arithmetic operation ?. Notice
that in contrast to Example 8 the variables Sy and Sz belong to Y, hence they
range over sets of signs, not a single sign. Furthermore, the transfer function is

captured by f? instead of predicate R?. Similarly whenever qs
e−→ qt or qs

skip−−−→ qt
in the program graph we generate the clause

∀v : ∀S : SA(qs, v;S)⇒ SA(qt, v;S)

The clause simply propagates the signs of all variables along the edge of the
program graph, without altering it, and is exactly as in the Example 8.
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Chapter 4

Layered Fixed Point Logic

In this chapter we present a logic for the specification of static analysis problems
that goes beyond the logics traditionally used. Its most prominent feature is
the direct support for both inductive computations of behaviors as well as co-
inductive specifications of properties. Two main theoretical contributions are a
Moore Family result and a parametrized worst case time complexity result.

The chapter is organized as follows. In Section 4.1 we define the syntax and
semantics of Layered Fixed Point Logic. In Section 4.2 we establish a Moore
Family result and estimate the worst case time complexity. We continue in
Section 4.3 with an application to the Constraint Satisfaction Problem.

4.1 Syntax and Semantics

In this section, we introduce Layered Fixed Point Logic (abbreviated LFP).
The LFP formulae are made up of layers. Each layer can either be a define
formula which corresponds to the inductive definition, or a constrain formula
corresponding to the co-inductive specification. The following definition intro-
duces the syntax of LFP.
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Definition 4.1 Given a fixed countable set X of variables, a non-empty uni-
verse U , a finite set of function symbols F , and a finite alphabet R of predicate
symbols, we define the set of LFP formulae, cls, together with clauses, cl, con-
ditions, cond, constrains, con, definitions, def, and terms u by the grammar:

u ::= x | f(~u)
cond ::= R(~x) | ¬R(~x) | cond1 ∧ cond2 | cond1 ∨ cond2

| ∃x : cond | ∀x : cond | true | false
def ::= cond⇒ R(~u) | ∀x : def | def1 ∧ def2
con ::= R(~u)⇒ cond | ∀x : con | con1 ∧ con2

cli ::= define(def) | constrain(con)
cls ::= cl1, . . . , cls

Here x ∈ X , R ∈ R, f ∈ F and 1 ≤ i ≤ s. We say that s is the order of the
LFP formula cl1, . . . , cls.

We allow to write R(~u) for true ⇒ R(~u), ¬R(~u) for R(~u) ⇒ false and we ab-
breviate zero-arity functions f() as f ∈ U . Occurrences of R(~x) and ¬R(~x) in
conditions are called positive and negative queries, respectively. Occurrences
of R(~u) on the right hand side of the implication in define formulas are called
defined occurrences. Occurrences of R(~u) on the left hand side of the impli-
cation in constrain formulas are called constrained occurrences. Defined and
constrained occurrences are jointly called assertions. In the following we refer
to ALFP relations interchangeably as relations or predicates.

In order to ensure desirable properties in the presence of negation, we impose a
notion of stratification similar to the one in ALFP and LLFP.

Definition 4.2 The formula cl1, . . . , cls is stratified if for all i = 1, . . . , s the
following properties hold:

• Relations asserted in cli must not be asserted in cli+1, . . . , cls

• Relations occurring in positive queries in cli must not be asserted in
cli+1, . . . , cls

• Relations occurring in negative queries in cli must not be asserted in
cli, . . . , cls

The function rank : R → {0, . . . , s} is then uniquely defined as

rank(R) =

{
i if R is asserted in cli,
0 otherwise.
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Intuitively, the definition states that every relation can be asserted in at most
one clause. Furthermore is ensures that a negative query is not performed until
the predicate has been fully asserted. The following example illustrates the use
of negation in the LFP formulae.

Example 10 Using the notion of stratification we can define equality eq and
non-equality neq predicates as follows

define(∀x : true⇒ eq(x, x)),

define(∀x : ∀y : ¬eq(x, y)⇒ neq(x, y))

According to Definition 4.2 the formula is stratified, since predicate eq is nega-
tively used only in the layer above the one that defines it. More precisely, the
predicate eq is fully defined before it is negatively queried in the clause asserting
predicate neq.

Alternatively, we can use a greatest fixed point specification (using constrain
clause) to define equality and non-equality predicates

constrain(∀x : neq(x, x)⇒ false),

constrain(∀x : ∀y : ¬neq(x, y)⇒ eq(x, y))

Again the formula is stratified, since predicate neq is negatively used only in the
layer above the one that asserts it.

To specify the semantics of LFP we introduce the interpretations %, ζ and ς of
predicate symbols, function symbols and variables, respectively. Formally we
have

% :
∏
kR/k → P(Uk)

ζ :
∏
k F/k → Uk → U

ς : X → U
In the above R/k stands for a set of predicate symbols of arity k, then R is a
disjoint union of R/k, hence R =

⊎
kR/k. Similarity F/k is a set of function

symbols of arity k and F =
⊎
k F/k. The interpretation of variables is given by

JxK(ζ, ς) = ς(x), where ς(x) is the element from U bound to x ∈ X . Furthermore,
the interpretation of function terms is defined as Jf(~u)K(ζ, ς) = ζ(f)(J~uK(ζ, ς)).
It is generalized to sequences ~u of terms in a point-wise manner by taking
JaK(ζ, ς) = a for all a ∈ U , and J(u1, . . . , uk)K(ζ, ς) = (Ju1K(ζ, ς), . . . , JukK(ζ, ς)).

The satisfaction relations for conditions cond, definitions def and constrains con
are denoted by:

(%, ς) |= cond, (%, ζ, ς) |= def and (%, ζ, ς) |= con

The formal definition is given in Table 4.1; here ς[x 7→ a] stands for the mapping
that is as ς except that x is mapped to a.
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(%, ς) |= R(~x) iff J~xK([ ], ς) ∈ %(R)
(%, ς) |= ¬R(~x) iff J~xK([ ], ς) /∈ %(R)
(%, ς) |= cond1 ∧ cond2 iff (%, ς) |= cond1 and (%, ς) |= cond2

(%, ς) |= cond1 ∨ cond2 iff (%, ς) |= cond1 or (%, ς) |= cond2

(%, ς) |= ∃x : cond iff (%, ς[x 7→ a]) |= cond for some a ∈ U
(%, ς) |= ∀x : cond iff (%, ς[x 7→ a]) |= cond for all a ∈ U
(%, ς) |= true iff true
(%, ς) |= false iff false

(%, ζ, ς) |= R(~u) iff J~uK(ζ, ς) ∈ %(R)
(%, ζ, ς) |= def1 ∧ def2 iff (%, ζ, ς) |= def1 and (%, ζ, ς) |= def2
(%, ζ, ς) |= cond⇒ R(~u) iff (%, ζ, ς) |= R(~u) whenever (%, ς) |= cond
(%, ζ, ς) |= ∀x : def iff (%, ζ, ς[x 7→ a]) |= def for all a ∈ U

(%, ζ, ς) |= R(~u) iff J~uK(ζ, ς) ∈ %(R)
(%, ζ, ς) |= con1 ∧ con2 iff (%, ζ, ς) |= con1 and (%, ζ, ς) |= con2

(%, ζ, ς) |= R(~u)⇒ cond iff (%, ς) |= cond whenever (%, ζ, ς) |= R(~u)
(%, ζ, ς) |= ∀x : con iff (%, ζ, ς[x 7→ a]) |= con for all a ∈ U

(%, ζ, ς) |= cl1, . . . , cls iff (%, ζ, ς) |= cli for all 1 ≤ i ≤ s

Table 4.1: Semantics of LFP.
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4.2 Optimal Solutions

Moore Family First we establish a Moore family result for LFP, which guar-
antees that there always is a unique best solution for LFP formulae. A Moore
family was formally defined in Section 2.1.

Let ∆ = {% | % :
∏
kR/k → P(Uk)} denote the set of interpretations % of

predicate symbols in R over U . We define a lexicographical ordering v defined
by %1 v %2 if and only if there is some 0 ≤ j ≤ s , where s is the order of the
formula (number of layers), such that the following properties hold:

(a) %1(R) = %2(R) for all R ∈ R with rank(R) < j,

(b) %1(R) ⊆ %2(R) for all R ∈ R with rank(R) = j and either j = 0 or R is a
defined relation,

(c) %1(R) ⊇ %2(R) for all R ∈ R with rank(R) = j and R is a constrained
relation,

(d) either j = s or %1(R) 6= %2(R) for some relation R ∈ R with rank(R) = j.

Notice that in the case s = 1 the ordering v coincides with the ordering ⊆ for
defined relations and with the ordering ⊇ for the constrained relations. The use
of the dual orderings for defined and constrained relations stems from the fact
that we are interested in the smallest solution for the defined relations and the
greatest solution for the constrained ones. Notice also that in the case of defined
relations the definition of the partial order is equivalent to the ones for ALFP
and LLFP. Intuitively, the lexicographical ordering v orders the relations layer
by layer starting with the layer 0. It is essentially analogous to the alphabetical
ordering on strings, which is based on the alphabetical order of their characters.

Lemma 4.3 v defines a partial order.

Proof. See Appendix A.8. �

Lemma 4.4 (∆,v) is a complete lattice with the greatest lower bound given by

(
l
M)(R) =


⋂
{%(R) | % ∈Mrank(R)} if rank(R) = 0 or R is

a defined relation.⋃
{%(R) | % ∈Mrank(R)} if R is a constrained relation.
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where

Mj = {% ∈M | ∀R′ : rank(R′) < j ⇒ (
l
M)(R′) = %(R′)}

Proof. See Appendix A.9. �

Note that
d
M is well defined by induction on j observing that M0 = M and

Mj ⊆Mj−1.

Proposition 4.5 Assume cls is a stratified LFP formula, ς0 and ζ0 are inter-
pretations of the free variables and function symbols in cls, respectively. Further-
more, %0 is an interpretation of all relations of rank 0. Then {% | (%, ζ0, ς0) |=
cls ∧ ∀R : rank(R) = 0⇒ %(R) ⊇ %0(R)} is a Moore family.

Proof. See Appendix A.10. �

Complexity The least model for LFP formulae guaranteed by Proposition 4.5
can be computed efficiently as summarized in the following result.

Proposition 4.6 For a finite universe U , the best solution % such that %0 v %
of a LFP formula cl1, . . . , cls (w.r.t. an interpretation of the constant symbols)
can be computed in time

O(|%0|+
∑

1≤i≤s

|cli||U|ki)

where ki is the maximal nesting depth of quantifiers in the cli and |%0| is the
sum of cardinalities of predicates %0(R) of rank 0. We also assume unit time
hash table operations (as in [39]).

Proof. See Appendix A.11. �

For define clauses a straightforward method that achieves the above complexity
proceeds by instantiating all variables occurring in the input formula in all
possible ways. The resulting formula has no free variables thus it can be solved
by classical solvers for alternation-free Boolean equation systems [25] in linear
time.
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In case of constrain clauses we first dualize the problem by transforming the
co-inductive specification into the inductive one. The transformation increases
the size of the input formula by a constant factor. Thereafter, we proceed in
the same way as for the define clauses.

In addition we need to take into account the number of known facts, which
equals to the cardinality of all predicates of rank 0. As a result we get the
complexity from Proposition 4.6.

4.3 Application to Constraint Satisfaction

Arc consistency is a basic technique for solving Constraint Satisfaction Problems
(CSP) and has various applications within e.g. Artificial Intelligence. Formally
a CSP [38, 60] problem can be defined as follows.

Definition 4.7 A Constraint Satisfaction Problem (N,D,C) consists of a finite
set of variables N = {x1, . . . , xn}, a set of finite non-empty domains D =
{D1, . . . , Dn}, where xi ranges over Di, and a set of constraints C ⊆ {cij | i, j ∈
N}, where each constraint cij is a binary relation between variables xi and xj .

For simplicity we consider binary constraints only. Furthermore, we can repre-
sent a CSP problem as a directed graph in the following way.

Definition 4.8 A constraint graph of a CSP problem (N,D,C) is a directed
graph G = (V,E) where V = N and E = {(xi, xj) | cij ∈ C}.

Thus vertices of the graph correspond to the variables and an edge in the graph
between nodes xi and xj corresponds to the constraint cij ∈ C.

The arc consistency problem is formally stated in the following definition.

Definition 4.9 Given a CSP (N,D,C), an arc (xi, xj) of its constraint graph
is arc consistent if and only if ∀x ∈ Di, there exists y ∈ Dj such that cij(x, y)
holds, as well as ∀y ∈ Dj , there exists x ∈ Di such that cij(x, y) holds. A CSP
(N,D,C) is arc consistent if and only if each arc in its constraint graph is arc
consistent.

The basic and widely used arc consistency algorithm is the AC-3 algorithm
proposed in 1977 by Mackworth [38]. The complexity of the algorithm is O(ed3),
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s1
c11�� c12 // s2

c22 

Figure 4.1: Arc consistency.

where e is the number of constraints and d the size of the largest domain. The
algorithm is used in many constrains solvers due to its simplicity and fairly good
efficiency [57].

Now we show the LFP specification of the arc consistency problem. A domain
of a variable xi is represented as a unary relation Di, and for each constraint
cij ∈ C we have a binary relation Cij ⊆ Di ×Dj . Then we obtain

constrain

(∧
cij∈C

(∀x : Di(x)⇒ ∃y : Dj(y) ∧ Cij(x, y))∧
(∀y : Dj(y)⇒ ∃x : Di(x) ∧ Cij(x, y))

)
which exactly captures the conditions from Definition 4.9.

According to the Proposition 4.6 the above specification gives rise to the worst-
case complexity O(ed2). The original AC-3 algorithm was optimized in [60]
where it was shown that it achieves the worst-case optimal time complexity of
O(ed2). Hence LFP specification has the same worst-case time complexity as
the improved version of the AC-3 algorithm.

Example 11 As an example let us consider the following problem. Assume we
have two processes P1 and P2 that need to be finished before 8 time units have
elapsed. The process P1 is required to run for 3 or 4 time units, the process P2

is required to run for precisely 2 time units, and P2 should start at the exact
moment when P1 finishes.

The problem can be defined as an instance of CSP (N,D,C) where N = {s1, s2}
denoting the starting times of the corresponding process. Since both processes
need to be completed before 8 time units have elapsed we have D1 = D2 =
{0, . . . , 8}. Moreover, we have the following constrains C = {c12 = (3 ≤ s2 −
s1 ≤ 4), c11 = (0 ≤ s1 ≤ 4), c22 = (0 ≤ s2 ≤ 6)}. We can represent the above
CSP problem as a constraint graph depicted in Figure 4.1. Furthermore it can
be specified as the following LFP formulae

define
( ∧

0≤x≤4 C1(x) ∧
∧

0≤y≤6 C2(y) ∧
∧

3≤z≤4 C12(z)
)
,

constrain

(
(∀x : D1(x)⇒ ∃y : D2(y) ∧ C12(y − x))∧
(∀y : D2(y)⇒ ∃x : D1(x) ∧ C12(y − x))

)
where we write y − x for a function fsub(y, x).
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Solvers

In this chapter we describe the design and implementation of the solvers for
ALFP, LLFP, and LFP. In Section 5.1 we present an abstract algorithm that
captures similarities and gives an overall structure for the algorithms presented
later in this chapter. In Section 5.2 we introduce a differential worklist algorithm
for ALFP, originally developed in [44], that is based on a representation of
relations as prefix trees [44]. Section 5.3 presents another algorithm for ALFP,
being a continuation passing style one that is based on a BDD representation of
relations [12]. BDDs, originally designed for hardware verification, have already
been used in a number of program analyses [59, 9] and proven to be very efficient.
We introduce a differential worklist algorithm for LLFP in Section 5.4. The
algorithm is fairly similar to the one presented in Section 5.2; thus our main
focus in that section is to emphasize the distinguishing features of the LLFP
algorithm. Finally, in Section 5.5, we report on a BDD-based algorithm for
LFP, which extends the algorithm from Section 5.3 with direct support for co-
inductive specifications. The implementation of the solving algorithms described
in this chapter was released under an open-source license and is available at
https://github.com/piotrfilipiuk/succinct-solvers.

https://github.com/piotrfilipiuk/succinct-solvers
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5.1 Abstract algorithm

Now, we present an abstract algorithm for solving clause sequences, which forms
the basis for the concrete algorithms presented in the following sections. Al-
though the underlying data structures of the concrete algorithms are very dif-
ferent they share the same overall structure that is captured by the abstract
algorithm. We leave a detailed discussion of the concrete algorithms to the next
sections.

The abstract algorithm operates with (intermediate) representations of the two
interpretations ς and % of the semantics; we shall call them env and result,
respectively, in the following. The result is an imperative data structure that
is updated as we progress. The data structure env is supplied as a parameter
to the functions of the algorithms.

We have one function for each of the three syntactic categories. The function
solve takes a clause sequence as input and calls the function execute on each
of the individual clauses. The pseudo code is as follows

solve(cl1, . . . , cls) = execute(cl1)[ ]; . . . ;execute(cls)[ ]

where we write [ ] for the empty environment reflecting that we have no free
variables in clause sequences.

The function execute takes a clause cl as a parameter and a representation
env of the interpretation of the variables. We have one case for each of the
forms of cl:

execute(R(u1, . . . , uk))env = . . .
execute(1)env = ()

execute(cl1 ∧ cl2)env = execute(cl1)env;execute(cl2)env
execute(pre⇒ cl)env = check(pre,execute(cl))env

execute(∀x : cl)env = let env′ = . . . in execute(cl)env′

In the case of assertions the details depend on the actual algorithm and we return
to those later. The case of conjunction is straightforward as we have to inspect
both clauses. In the case of implication we make use of the function check that
in addition to the precondition and the environment also takes the continuation
execute(cl) as an argument. In the case of universal quantification we perform
a recursive call using an updated environment, the details of which depend on
the actual algorithm.

The function check takes a precondition, a continuation, and an environment
as parameters. The treatment of queries depends on the actual algorithm and
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so does the treatment of disjunction and universal quantification; except from
the fact that the overall structure is:

check(R(u1, . . . , uk), next)env = . . .
check(¬R(u1, . . . , uk), next)env = . . .

check(pre1 ∧ pre2, next)env = check(pre1,check(pre2, next))env
check(pre1 ∨ pre2, next)env = . . .

check(∃x : cl, next)env = let next′ = next ◦ . . .
let env′ = . . .
in check(cl, next′)env′

check(∀x : cl, next)env = . . .

For conjunction we exploit a continuation passing programming style and for
existential quantification we perform a recursive call using an updated environ-
ment and an updated continuation, the details of which depend on the actual
algorithm.

In the following sections we give more details of the data structures used by the
actual (concrete) algorithms and the missing cases in the above definitions.

5.2 Differential algorithm for ALFP

In this section we present the main data structures and the details of the dif-
ferential worklist algorithm for ALFP developed by Nielson et al. [44, 43]. The
algorithm computes the relations in increasing order on their rank, and there-
fore negations present no obstacles. It combines the top-down solving approach
of Le Charlier and van Hentenryck [16] with the propagation of differences [26],
an optimization technique for distributive frameworks that is also known in
the area of deductive databases [5] or as reduction of strength transformations
for program optimization [45]. As mentioned above the main data structures
are env and result representing the (partial) interpretation of variables and
predicates, respectively.

Here env is implemented as a map from variables to their possible values. Thus,
for a given variable it returns either None, which means that the variable is
undefined or Some(a), which means that the variable is bound to a ∈ U . The
main operation on env is the function unify. It is given by

unify(env, u, a) =

{
env if (u ∈ X ∧ env[u] = Some(a)) ∨ u = a
env[u 7→ Some(a)] if u ∈ X ∧ env[u] = None
fail otherwise

It is extended to k-tuples in a straightforward way. The function unifiable



54 Solvers

b

��
a

��

b

��
a

��

c

��

Figure 5.1: Prefix tree representing interpretation of relation R.

will, when applied to env and a tuple (u1, . . . , uk), return the subset of Uk for
which unify will succeed.

The interpretation of the predicate symbols ρ is given by the global data struc-
ture result, which is updated incrementally during computations. It is rep-
resented as a mapping from predicate names to the prefix trees that for each
predicate R record the tuples currently known to belong to R. The prefix trees
themselves are implemented as arbitrarily branching trees and are defined using
the following data structure

RTrie = RNode (Map U RTrie)

where Map k v is a mapping (dictionary) from keys k to values v. Therefore,
each node in the prefix tree contains a mapping from elements of the universe
to its successor nodes (children). The terminal nodes in the tree are repre-
sented simply as nodes without successors (children), represented by the empty
mapping.

As an example, consider the following interpretation ρ of a relation R

ρ(R) = {(a, a), (a, b), (b, c)}

The corresponding prefix tree representation is depicted in Figure 5.1. The
operations on prefix trees boil down to tree traversal. For example the content
of the relation is retrieved by the traversal of the prefix tree from the root to
the leaves.

There are three main operations on the data structure result: the operation
result.has checks whether a tuple of atoms from the universe is associated
with a given predicate, the operation result.sub returns a list of the tuples
associated with a given predicate and the operation result.add adds a tuple
to the interpretation of a given predicate.

Since ρ is not completely determined from the beginning, it may happen that
a query R(u1, . . . , uk) inside a precondition fails to be satisfied at a given point
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Figure 5.2: Prefix tree representing consumers of relation R.

in time, but may hold in the future when a new tuple (a1, . . . , ak) has been
added to the interpretation of R. If we are not careful we will then lose the
consequences that adding (a1, . . . , ak) to R will have on the contents of other
predicates. This gives rise to introducing yet another global data structure infl
that records computations that have to be resumed for the new tuples; these
future computations will be called consumers. The infl data structure is also
represented as a mapping from the predicate names to prefix trees that for each
predicate R records consumers that have to be resumed when the interpretation
of R is updated. The data structure used is defined as

ITrie = INode cons (Map U ITrie)

In addition to the mapping into the successor nodes, each node contains a set
of consumers, denoted by cons. The tree representation of the ITrie for the
relation from Figure 5.1 is depicted in Figure 5.2.

There are two main operations on the data structure infl. The operation
infl.register adds a new consumer for a given predicate. The other operation
is infl.consumers, which retrieves all the consumers currently associated with
a given predicate.

Let us now return to the description of the function execute for the cases that
are specific for the differential algorithm for ALFP, that is, the case of assertion
and the case of universal quantification. In case of assertions the algorithm is
as follows

execute(R(u1, . . . , uk))env =
let iterFun (a1, . . . , ak) =

match result.has(R, (a1, . . . , ak)) with
| true → ()
| false →

result.add(R, (a1, . . . , ak))
iter (fun f → f (a1, . . . , ak)) (infl.consumers R)
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in iter iterFun (unifiable(env,(u1, . . . , uk)))

The function uses the auxiliary function iter, which applies the function iter-
Fun to each element of the list of k-tuples that can be unified with the argument
(u1, . . . , uk). Given a tuple (a1, . . . , ak), the function iterFun adds the tuple
to the interpretation of R stored in result if it is not already present. If the
add operation succeeds, we first create a list of all the consumers currently reg-
istered for predicate R by calling the function infl.consumers. Thereafter,
we resume the computations by iterating over the list of consumers and calling
corresponding continuations.

In the case of universal quantification, we simply extend the environment to
record that the value of the new variable is unknown and then we recurse

execute(∀x : cl)env = execute(cl)(env[x 7→ None])

Turning to the check function let us first consider the algorithm in the case of
positive queries

check(R(u1, . . . , uk), next)env =
let consumer (a1, . . . , ak) =

match unify(env, (u1, . . . , uk), (a1, . . . , ak)) with
| fail → ()
| env’ → next env’

in infl.register(R,consumer); iter consumer (result.sub R)

We first ensure that the consumer is registered in infl, by calling function
register, so that future tuples associated with R will be processed. Thereafter,
the function inspects the data structure result to obtain the list of tuples
associated with the predicate R. Then, the auxiliary function consumer unifies
each tuple with (u1, . . . , uk); and if the operation succeeds, the continuation next
is invoked on the updated new environment.

In the case of negated query, the algorithm is of the form

check(¬R(u1, . . . , uk), next)env =
let iterFun (a1, . . . , ak) =

match result.has(R, (a1, . . . , ak)) with
| true → ()
| false → next (unify(env, (u1, . . . , uk), (a1, . . . , ak)))

in iter iterFun (unifiable(env, (u1, . . . , uk)))

The function first computes the tuples unifiable with (u1, . . . , uk) in the envi-
ronment env. Then, for each tuple it checks if the tuple is already in R and if
not, the tuple is unified with (u1, . . . , uk) to produce new environment in which
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the continuation next is evaluated.

The check function for disjunction of preconditions is as follows

check(pre1 ∨ pre2, next)env =
check(pre1, next)env; check(pre2, next)env

The function simply checks preconditions pre1 and pre2 respectively in the cur-
rent environment env. In order to be efficient we use memoization; this means
that if both checks yield the same bindings of variables, the second check does
not need to consider the continuation, as it has already been done.

The algorithm for existential quantification checks the precondition pre in the
environment extended with the quantified variable. The continuation that is
passed is a composition of functions next and remove x, where the function
remove removes the variable passed as the first argument from the environment
passed as the second argument. The algorithm is as follows

check(∃x : pre, next)env =
check(pre, next ◦ (remove x))(env[x 7→ None])

In the case of universal quantification the function check needs to inspect all
atoms from the universe and find the extensions of env that are compatible with
the precondition pre. In order to do that we iterate over the entire universe,
successively binding the atoms to x and modifying the partial environments
to be compatible with the precondition pre. We enumerate the universe using
the auxiliary function loop, which is initially called with the complete list of
atoms in the universe. The recursive structure of the function loop reflects the
fact that universal quantification is a conjunction over the entire universe. The
pseudo code for the case is as follows:

check(∀x : pre, next)env =
let loop U ′ env’ =

match U ′ with
| hd :: tl → check(pre, loop tl) (env’[x 7→ Some(hd)])
| [ ] → next env’

in loop U (env[x 7→ None])

5.3 BDD-based algorithm for ALFP

We now turn our attention to the BDD-based algorithm for ALFP. This algo-
rithm also makes use of the data structures env and result, but this time they
are represented as binary decision diagrams, or, to be more precise, by reduced
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ordered binary decision diagrams (ROBDDs) [12]. The use of BDDs allows us to
operate on entire relations, rather than on individual tuples (as in the differen-
tial worklist algorithm). Furthermore, the cost of the BDD operations depends
on the size of the BDD and not the number of tuples in the relation; hence dense
relations can be computed efficiently as long as their encoded representations
are compact.

Each BDD is defined over a finite sequence of distinct domain names. The
main operations on BDDs, to be used in the following, are given by means
of operations on the relations they represent. Given two relations with the
same domain names, the operations union, ∪, and non-equality testing, 6=, are
defined as corresponding operations on the set of their tuples. The projection
operation, π, selects the subset of domains from the relation and removes all
other domains. The select operation, σb, selects all tuples from the relation
for which the given condition b holds. The complement operation, {, on the
relation R returns a new relation containing tuples that are not in R. Given
two relations with pairwise disjoint domain names, the product operation, ×, is
defined as a Cartesian product of their tuples. The operation ∀di is the universal
quantification of variables in domain di. It removes tuples from the relation by
universal quantification over domain di.

The environment env and the interpretation of the predicates in result are
represented as ROBDD data structures. We need to keep track of the domain
names of the BDDs so the environments and predicates will be annotated with
subscript [d1, . . . , dk] denoting a list of pairwise disjoint domain names. In the
case of environments env[x1,...,xn] the domain names represent the variables cur-
rently in the scope.

Note, that in contrast to the differential algorithm for ALFP, in the BDD-
based one, due to the use of BDDs, an environment env[x1,...,xn] represents a set
of mappings of variables to their corresponding values, not a single mapping.
Consequently the BDD-based algorithm propagates sets of mappings at a time,
not individual ones.

Also in the BDD algorithm we need to resume computations when the inter-
pretation of the given predicate is updated. Therefore, we again define a data
structure infl. It is implemented as a mapping from predicate names to con-
sumers representing computations to be resumed. The infl data structure has
two main operations register and resume for adding new consumers and
invoking registered computations, respectively.

We now present the parts of the algorithm that are specific for the BDD-based
algorithm for ALFP. We begin with the case of assertion for the execute func-
tion, which is defined as follows
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execute(R[d1,...,dk](u1, . . . , uk))env[x1,...,xn] =
for i = 1 to k do

env[x1,...,xn,d1,...,di] ← σui=di(env[x1,...,xn,d1,...,di−1] × U[di])
oldR[d1,...,dk] ← result[R]
result[R]← oldR[d1,...,dk] ∪ π[d1,...,dk](env[x1,...,xn,d1,...,dk])
if oldR[d1,...,dk] 6= result[R] then

infl.resume(R)

In the for loop the function incrementally builds a product of the current en-
vironment and a relation representing the universe, and simultaneously selects
the tuples compatible with the arguments (u1, . . . , uk). Then, the resulting re-
lation is projected to the domain names of R, and the content of R is updated
with the newly derived tuples. Additionally, if the interpretation of predicate
R has changed, we invoke the consumers registered for predicate R in the data
structure infl by calling the resume function.

The case of universal quantification is of the following form:

execute(∀x : cl)env[x1,...,xn] =
execute(cl)(env[x1,...,xn] × U[x])

The function extends the current environment with a domain for the quantified
variable, and then executes the clause cl.

Turning to the check function, we first present the case for the query, which is
as follows

check(R[d1,...,dk](u1, . . . , uk), next)env[x1,...,xn]=
infl.register R consumer
env’[x1,...,xn,d1,...,dk] ← env[x1,...,xn] × result[R]
for i = 1 to k do

env’[x1,...,xn,d1,...,dk] ← σui=di(env’[x1,...,xn,d1,...,dk])
env’[x1,...,xn] ← π[x1,...,xn](env’[x1,...,xn,d1,...,dk])
next(env’[x1,...,xn])

First, the function registers a consumer for the relation R. Then, it creates an
auxiliary relation, which is a product of the relations representing the current
environment and the predicate R. The for loop selects tuples that are com-
patible with the arguments (u1, . . . , uk) producing a new relation that is then
projected to the domain names of env[x1,...,xn]. The resulting relation is then
applied to continuation next.

The case of negated query is similar, except that the predicate is complemented
first. The algorithm for this case is of the following form

check(¬R[d1,...,dk](u1, . . . , uk), next)env[x1,...,xn] =
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env’[x1,...,xn,d1,...,dk] ← env[x1,...,xn] × ({ result[R])
for i = 1 to k do

env’[x1,...,xn,d1,...,dk] ← σui=di(env’[x1,...,xn,d1,...,dk])
env’[x1,...,xn] ← π[x1,...,xn](env’[x1,...,xn,d1,...,dk])
next(env’[x1,...,xn])

Notice that in the case of negative queries we do not register a consumer for
the relation R. This is because the stratification condition introduced in Defi-
nition 2.18 ensures that the relation is fully evaluated before it is queried neg-
atively. Thus, there is no need to register future computations since the inter-
pretation of R will not change.

The check function for disjunction of preconditions is defined as follows

check(pre1 ∨ pre2, next)env[x1,...,xn] =
check(pre1, λenv

1
[x1,...,xn].

check(pre2, λenv
2
[x1,...,xn].

next(env1
[x1,...,xn] ∪ env

2
[x1,...,xn]))env[x1,...,xn])env[x1,...,xn]

The function first checks both preconditions pre1 and pre2 in the current envi-
ronment env[x1,...,xn]. Unlike in the differential algorithm, the continuation next
is evaluated in the union of env1

[x1,...,xn] and env2
[x1,...,xn], which were produced

by calls to the procedure check for preconditions pre1 and pre2 respectively.
The difference stems from the fact that the BDD-based algorithm works on sets
of environments, not individual ones.

In the case of existential quantification in a precondition, the algorithm is defined
as follows

check((∃x : pre, next)env[x1,...,xn] =
check(pre, next ◦ π[x1,...,xn])(env[x1,...,xn] × U[x])

The function first extends the current environment, in which the precondition
is checked. Furthermore, before calling the continuation next, the domain for
the quantified variable is projected out.

The universal quantification is dealt with in the following way

check(∀x : pre, next)env[x1,...,xn] =
check(pre, next ◦ (∀x))(env[x1,...,xn] × U[x])

The algorithm utilizes universal quantification of variables in a given domain,
denoted by ∀x, which is a standard BDD operation provided by the BDD package
that we use [37]. The operation removes tuples from the given relation by
performing universal quantification over the given domain. Hence in the case of
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the BDD-based algorithm it is enough to extend the current environment with
a quantified variable, check the precondition in the extended environment and
then perform universal quantification on the returned environment.

5.4 Algorithm for LLFP

In this section we present the algorithm for solving LLFP clause sequences. The
algorithm has many similarities to the differential worklist algorithm for ALFP,
and is again based on the abstract algorithm presented in Section 5.1.

Similarly to the ALFP algorithms the main data structures are env and result

representing the (partial) interpretation of variables and predicates, respectively.
The partial environment env is implemented as a map from variables to their
optional values. In the case the variable is undefined it is mapped into None.
Otherwise, depending on the type of the variable is mapped to Some(a) or
Some(l), which means that the variable is bound to a ∈ U , or l ∈ L 6=⊥, respec-
tively. The main operation on env is the function unify, defined as follows

unify(β, env, (~u;V ), (~a; l)) =

{
∅ if unifyU(env, ~u,~a) = fail
unifyL(β, env

′, V, l) if unifyU(env, ~u,~a) = env′

It uses two auxiliary functions that perform unifications on each component of
the relation. For the first component, which ranges over the universe U , the
function is given by

unifyU(env, u, a) =

{
env if (u ∈ X ∧ env[u] = Some(a)) ∨ u = a
env[u 7→ Some(a)] if u ∈ X ∧ env[u] = None
fail otherwise

It performs a unification of an argument u with an element a ∈ U in the en-
vironment env. In case the unification succeeds the modified environment is
returned, otherwise the function fails. The funcion is extended to k-tuples in a
straightforward way. The definition of the function for the lattice component is
more complicated, and is given by

unifyL(β, env, V, l) =



{env[V 7→ Some(l u lV )]}
if V ∈ Y ∧ env[V ] = Some(lV ) ∧ l u lV 6= ⊥

{env[V 7→ Some(l)]}
if V ∈ Y ∧ env[V ] = None ∧ l 6= ⊥

{env} if V = [u]∧
((u ∈ X ∧ env[u] = Some(a)) ∨ u = a) ∧ β(a) v l

{env[u 7→ Some(a)] | β(a) v l}
if V = [u] ∧ u ∈ X ∧ env[u] = None

∅ otherwise
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The function is parametrized with β, which is defined in Section 3.1 and maps
constants from the universe U into elements of the lattice L.

Now, let us explain different cases in the definition of unifyL. If the argument
is a variable from Y and the environment maps that variable to the element
lV ∈ L 6=⊥, then the environment is updated with a new mapping for that
variable. The value for the variable is set to be a greatest lower bound of l and
lV as long as it is not equal to ⊥. In the case the argument V is a variable from
Y that is uninitialized in the environment env, the function returns a singleton
set containing the modified environment where that variable is mapped to l
(provided that l 6= ⊥). The third and fourth case handle the situation where
the argument V is of the form [u]. If u is either a variable from X and the
environment maps it to Some(a), or it is a constant a ∈ U , then provided that
β(a) v l holds, the singleton set containing the unchanged environment env

is returned. Otherwise, if u is an uninitialized variable from X , then a set of
modified environments is returned. The environments contained in the returned
set are as env except that u is mapped to these a ∈ U for which β(a) v l holds.
If none of the above cases holds, the empty set of environments is returned.

The other important operation on the partial environment is given by the func-
tion unifiable. When applied to env and a tuple (~u;V ), the function returns a
set of tuples for which unify would succeed. The function is defined by means
of two auxiliary functions, formally we have

unifiable(env, (~u;V )) = (unifiableU(env, ~u);unifiableL(env, V ))

where

unifiableU(env, u) =

{
{a} if (u ∈ X ∧ env[u] = Some(a)) ∨ u = a
U if u ∈ X ∧ env[u] = None

and

unifiableL(env, V ) =



l if V ∈ Y ∧ env[V ] = Some(l)
> if V ∈ Y ∧ env[V ] = None
β(a) if V = [u] ∧ (u = a∨

(u ∈ X ∧ env[u] = Some(a)))⊔
{β(a) | a ∈ U} if V = [u] ∧ u ∈ X∧

env[u] = None

JfK(l) if V = f(~V )∧
l = unifiableL(env, ~V )

Both auxiliary funcions are extended to k-tuples in a straightforward way.

The interpretation of the predicate symbols % from the semantics is given by
the global data structure result, which is updated incrementally during com-
putations. It is represented as a mapping from predicate names to the prefix
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Figure 5.3: Prefix tree representing interpretation of relation R.

trees that for each predicate R record the tuples currently known to belong to
R. The prefix trees themselves are implemented as arbitrarily branching trees;
the formal definition is as follows

RTrie = RNode (Map U RTrie) | RLeaf L

We have two constructors; one for an internal node that contains mapping from
elements of U to the successors nodes. The second constructor represents a
terminal node (leaf) and it contains a lattice element l ∈ L. Note, that the im-
plementation of prefix trees in the LLFP solver differs from the one in the solver
for ALFP. This is due to the difference in the definition of the interpretations
of predicate symbols between ALFP and LLFP. Recall that for a k-ary relation
in ALFP we have ρ(R) ⊆ Uk whereas in LLFP the interpretation is given by
%(R) : Uk → L.

As an example, consider the following interpretation % of a relation R

%(R)(a, a) = l1

%(R)(a, b) = l2

%(R)(b, c) = l3

The corresponding prefix tree representation is depicted in Figure 5.3. Notice
that tuples are retrieved by the traversal of the prefix tree from the root to the
leaves.

There are three main operations on the data structure result. The operation
result.has acts as a lookup and checks whether a given tuple (~a, l) is associated
with a given predicate. More precisely, it checks whether the lattice element in
the leaf of the branch labelled with ~a is greater or equal to l. Therefore, it
checks the exact condition in the semantics of assertions and queries in LLFP.
The operation result.sub returns a list of the tuples associated with a given
predicate and the operation result.add adds a tuple to the interpretation of
a given predicate. More precisely in the case the prefix tree for the predicate
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R does not contain a branch labeled with ~a, the operation result.add R (~a, l)
adds such a branch and sets the value of the lattice element in the leaf to l.
Alternatively, if the prefix tree contains a branch labeled with ~a ending with
a leaf l′, then the value of the leaf is set to the least upper bound of l and l′,
i.e. l t l′.

Since % is updated as the algorithm progresses, we again make use of the data
structure infl to record computations that have to be resumed for the new
tuples. Similarly to the differential algorithm, described in Section 5.2, infl is
represented as a prefix tree, and two main operations are infl.register and
infl.consumers.

Similarly to the algorithms from Section 5.1, we have one function for each of
the three syntactic categories. The function solve takes a clause sequence as
input and will call the function execute on each of the individual clauses

solve(cl1, . . . , cls) = execute(cl1)[ ]; . . . ;execute(cls)[ ]

where we write [ ] for the empty environment reflecting that we have no free
variables in the clause sequences.

Let us now turn to the description of the function execute. Again, the function
takes a clause cl as a parameter and a representation env of the interpretation
of the variables. We have one case for each of the forms of cl; and let us consider
the case of an assertion first. The algorithm is as follows

execute(R(~u;V ))env =
let iterFun (~a; l) =

match result.has(R, (~a; l)) with
| true → ()
| false →

result.add(R, (~a; l))
iter (fun f → f (~a; l)) (infl.consumers R)

in iter iterFun (unifiable(env,(~u;V )))

The function uses the auxiliary function iter, which applies the function iter-
Fun to each element of the list of tuples that can be unified with the argument
(~u;V ). Given a tuple (~a; l), the function iterFun adds the tuple to the inter-
pretation of R stored in result if it is not already present. If the add operation
succeeds, we first create a list of all the consumers currently registered for pred-
icate R by calling the function infl.consumers. Thereafter, we resume the
computations by iterating over the list of consumers and calling corresponding
continuations.

The cases of the always true clause, 1, conjunction of clauses, and implication
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are exactly as defined in Section 5.1, whereas the case of universal quantification
follows the definition from Section 5.2.

Now, let us present the function check. It takes a precondition, a continuation,
and an environment as parameters. We first consider the algorithm in the case
of positive queries

check(R(~u;V ), next)env =
let consumer (~a; l) =

match unify(env, (~u;V ), (~a; l)) with
| fail → ()
| envs → iter next envs

in infl.register(R,consumer); iter consumer (result.sub R)

We first ensure that the consumer is registered in infl, by calling function
register, so that future tuples associated with R will be processed. Thereafter,
the function inspects the data structure result to obtain the list of tuples
associated with the predicate R. Then, the auxiliary function consumer unifies
each tuple with (~u;V ); and if the operation succeeds, the continuation next is
invoked on each of the updated new environments in the returned set envs.

In the case of negated query, the algorithm is of the form

check(¬R(~u;V ), next)env =
let iterFun (~a; l) =

match result.has(R, (~a; l)) with
| true → ()
| false → iter next (unify(env, (~u;V ), (~a; l)))

in iter iterFun (unifiable(env, (~u;V )))

The function first computes the tuples unifiable with (~u;V ) in the environment
env. Then, for each tuple it checks whether the tuple is already in R and if not,
the tuple is unified with (~u;V ) to produce a set of new environments. Thereafter,
the continuation next is evaluated in each of the environments contained in the
returned set.

Now, let us consider the function check in the case of Y (x), where x ∈ X . The
algorithm is as follows

check(Y (x), next)env =
let env’ = if env(Y ) = Some(l) then env else env[Y 7→ >]
in let f a = if Some(β(a)) v env’(Y ) then next env’[x 7→ a] else ()
in match env’(x) with
| Some(a) → f a
| None → iter f U
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The function begins with creating an environment env’ that is exactly as env

except that the binding for the variable Y is set to > in the case Y is undefined
in env. Then, we define an auxiliary function that checks whether env’(Y )
over-approximates the abstraction of an argument a, denoted by β(a), and if so
the continuation is called in the environment env’[x 7→ a]. Finally, the function
checks the binding for the variable x in the environment env’ and if it is bound
to Some(a) the function f applied to a is called. Otherwise, the function f is
called for each element of the universe, using the iter function. In the case the
argument of Y is a constant a ∈ U the function is given by

check(Y (a), next)env =
let env’ = if env(Y ) = Some(l) then env else env[Y 7→ >]
in if Some(β(a)) v env’(Y ) then next env’ else ()

This is essentially the same as the case explained above, except that we do not
have to handle the case when x ∈ X is undefined in env.

All the other cases are exactly as defined in Section 5.2, and hence omitted.

5.5 Algorithm for LFP

In this section we present an algorithm for solving LFP formulae. The algorithm
is based on a BDD representation of relations and it is fairly similar to the BDD-
based algorithm for ALFP, presented in Section 5.3.

Similarly to the case of the ALFP algorithm, it operates with (intermediate)
representations of the two interpretations ς and % of the semantics presented
in Table 4.1; we call them env and result, respectively. In the algorithm
result is an imperative data structure that is updated as we progress. The data
structure env is supplied as a parameter to the functions of the algorithms. Both
data structures are represented as reduced ordered binary decision diagrams
(ROBDDs). Consequently the algorithm operates on entire relations, rather
than on individual tuples.

In the following we use exactly the same BDD operations as the ones introduced
in Section 5.3. Similarly in order to keep track of the domain names of the
BDDs the environments and predicates are annotated with subscript [d1, · · · , dk]
denoting a list of pairwise disjoint domain names.

In the algorithm the infl data structure is implemented as a mapping from
predicate names to functions, again called consumers, that are used to resume
computations when the interpretation of the given predicate is updated. The
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infl data structure has two main operations register and resume for adding
new consumers and invoking registered computations, respectively.

We have one function for each of the syntactic categories. The function solve
takes a clause sequence as input and calls the function execute on each of
the individual clauses. Hence it is exactly the same as the abstract algorithm
presented in Section 5.1.

Similarly to other algorithms, we have one function for each of the syntactic
categories. The function execute takes a clause cl as a parameter and calls
the appropriate function depending on whether a given clause is a define or a
constrain clause. The pseudo code is as follows

execute(define(cl)) = executedef(cl)[ ]
execute(constrain(cl)) = executecon(cl)[ ]

where we write [ ] for the empty environment reflecting that we have no free
variables in the clause sequences.

The function executedef is defined exactly as the execute function in the
BDD-based algorithm for ALFP, and hence omitted. The novelty of the LFP
logic and thus the algorithm is its direct support for co-inductive specifications.
Therefore, let us focus on the function executecon, which handles the con-
strain clauses. Let us first consider the case of the assertion, which is the most
interesting. The function is defined as follows

executecon R[d1,...,dk](u1, . . . , uk) env[x1,...,xn] =
env′[x1,...,xn] ← {env[x1,...,xn]

for i = 1 to k do
env′[x1,...,xn,d1,...,di] ← σui=di(env

′
[x1,...,xn,d1,...,di−1] × U[di])

oldR[d1,...,dk] ← result[R]
result[R]← oldR[d1,...,dk] ∩ {(π[d1,...,dk](env

′
[x1,...,xn,d1,...,dk]))

if oldR[d1,...,dk] 6= result[R] then
infl.resume R

The function begins with complementing the current environment and assigning
the result to variable env′[x1,...,xn]. In the for loop the function incrementally
builds a product of the complemented environment and a relation representing
the universe, and simultaneously selects the tuples compatible with the argu-
ments (u1, · · · , uk). Since we aim at computing the greatest set of tuples for re-
lation R, we assign the content of R with an intersection of the current interpre-
tation of R and the complement of the relation denoted by env′[x1,...,xn,d1,...,di]

projected to the domain names of R. Additionally, if the interpretation of pred-
icate R has changed, we invoke the consumers registered for predicate R in the
data structure infl by calling the resume function.
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The case of conjunction is straightforward as we again have to inspect both
clauses in the same environment env[x1,...,xn]. The pseudo code is as follows

executecon(con1 ∧ con2)env[x1,...,xn] =
executecon(con1)env[x1,...,xn];executecon(con2)env[x1,...,xn]

In the case of implication we again make use of the function check that in
addition to the condition and the environment also takes the continuation
executecon partially applied to R[d1,...,dk](u1, . . . , uk) as an argument. The
function is defined as

executecon(R[d1,...,dk](u1, . . . , uk)⇒ cond)env[x1,...,xn] =
check(cond,executecon(R[d1,...,dk](u1, . . . , uk)))env[x1,...,xn]

The case of universal quantification is of the following form:

executecon(∀x : con) env[x1,...,xn] = executecon con (env[x1,...,xn] × U[x])

The function extends the current environment with a domain for the quantified
variable, and then executes the constrain clause con.

The function check takes a condition, a continuation and an environment as
parameters. The definition is the same as the one presented in Section 5.3 and
hence omitted.

In order to conclude this chapter, in Figure 5.4 we provide an overview of the
data structures used in the presented algorithms. Clearly that the differential
ALFP solver and LLFP solver use very similar data structures. The difference
in the implementation of RTrie follows from the definition of the interpretation
of predicate symbols. In the ALFP algorithm RTrie represents a set of tuples,
whereas in the LLFP one, for each tuple in the prefix tree we additionally have
a corresponding lattice value. In both algorithms, the environment env maps
variables to their optional values. However, since in ALFP values of variables
range over a finite universe U , we have U as the range of the mapping. In LLFP,
on the other hand, we distinguish between variables ranging over a universe U
and a complete lattice L, hence the range of the mapping is given by an auxiliary
data structure Val. When we compare the BDD-based ALFP solver with the
LFP one, it is evident that they use the same data structures. This is because
the underlying logics are very similar — the main difference is the direct support
for co-inductive specifications in the case of LFP. This allows us to share some
of the code-base of the two solvers.
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differential ALFP solver BDD-based ALFP solver LLFP solver LFP solver

result Map R RTrie Map R BDD Map R RTrie Map R BDD

RTrie RNode (Map U RTrie) - RNode (Map U RTrie) | RLeaf L -
infl Map R ITrie Map R cons Map R ITrie Map R cons

ITrie INode cons (Map U ITrie) - INode cons (Map U ITrie) -
env Map Var U BDD Map Var Val BDD

Val = ValU U | ValL L

Figure 5.4: Overview of the data structures.
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Chapter 6

Magic set transformation for
ALFP

In this chapter we present how magic set transformation [7, 8, 50], known from
deductive databases [30], can be applied to increase the efficiency of bottom-up
evaluation of analysis problems expressed in ALFP. The transformation pre-
sented is essentially equivalent to the magic set transformation for Datalog. The
novelty of our method lies in handling universal quantification in preconditions
of ALFP formulae, which goes beyond expressiveness of Datalog. Even though,
the developments of this chapter are presented for ALFP, we believe that they
could also be applied to the other logics presented in this dissertation.

In the classical formulation of the ALFP logic in order to answer a specific
query, the entire solution has to be computed, followed by selection of tuples of
interest. This is inefficient since many irrelevant tuples are discovered during
the computations.

Here we present a remedy for that problem by first adding the ability to specify
queries. Secondly, in order to avoid generating irrelevant tuples, we perform the
magic set transformation, which is a compile-time transformation of the original
clauses based on the supplied query. More precisely, having a query q the idea is
to transform the ALFP clause sequence cls into a clause sequence clsq such that
they both give the same answer set to the query q. As a result we narrow down
the exploration of the state space and the bottom-up computation focuses on
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ALFP
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Figure 6.1: Overview of the chapter.

relevant tuples. The transformation presented in this chapter proceeds strata by
strata, and hence negation presents no obstacles. For a stratified ALFP formula,
the result of the transformation is also stratified. Moreover, the theoretical
worst-case time complexity of solving the resulting formula increases linearly.

The structure of this chapter is depicted in Figure 6.1. In order to simplify the
transformation, but with no loss of expressive power, we introduce in Section 6.1
a restricted syntax of ALFP logic. We present the first step of the transforma-
tion, namely the adorn algorithm, in Section 6.2. The magic set transformation
algorithm is presented in Section 6.3.

6.1 The restricted syntax of ALFP logic

In order to make the presentation of the magic set transformation easier, we
assume that the ALFP formula is in a restricted syntax called ALFPs. The
following definition introduces the syntax of ALFPs.

Definition 6.1 Given a fixed countable set X of variables, a non-empty and
finite universe U and a finite alphabet R of predicate symbols, we define the
set of ALFPs formulae (or clause sequences), cls, together with clauses, cl, and
preconditions, pre, by the grammar:

u ::= x | a
pre ::= R(~u) | R(~u) | pre1 ∧ pre2 | ∀x : pre | ∃x : pre
cl′ ::= R(~u) | 1 | pre⇒ R(~u)
cl ::= ∀x : cl | cl′
cls ::= cl1, . . . , cls

Here u ∈ (X ∪ U), a ∈ U , x ∈ X , R ∈ R and s ≥ 1.

The transformation of ALFP formulae into ALFPs ones proceeds in a number
of stages:
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1. First the variables introduced by the quantifiers are renamed so that they
are pairwise distinct. This is needed in order to avoid name captures.

2. All universal quantifications in preconditions ∀x : pre are transformed as
follows. We introduce a fresh predicate name P and create a new clause
asserting P of the following form ∀~y : pre⇒ P (~y), where ~y is a sequence of
free variables in pre excluding constants from U . Furthermore, we modify
the original precondition into ∀x : P (~y). This step is needed in order to
be able to further transform the preconditions so that they do not contain
disjunctions (which is done in step 5). In particular if the precondition pre
does not contain disjunctions this step may be omitted. More formally,
the step is defined as follows

f i∀(∀x : pre) =
let ~y be a vector of free variables in pre
let P be a fresh predicate symbol
insert a clause ∀~y : pre⇒ P (~y) before cli into cls
transform ∀x : pre into ∀x : P (~y)

where the superscript i of the function denotes the index of the current
clause.

3. Similarly all existential quantifiers in preconditions of the form ∃x : pre1∨
pre2 are transformed into (∃x : pre1) ∨ (∃x : pre2). Formally

f i∃(∃x : pre1 ∨ pre2) = (∃x : pre1) ∨ (∃x : pre2)

4. The preconditions of all clauses are transformed into the form pre′1 ∨ · · · ∨
pre′k where each of the pre′i is a conjunction of preconditions of the form
R(~u), ¬R(~u), ∃x : pre and ∀x : pre (so they adhere to the grammar for
pre given above).

5. The clauses are transformed so that they do not use disjunction in pre-
conditions, that is, all occurrences of (pre′1 ∨ · · · ∨ pre′k)⇒ cl are replaced
by the k conjuncts (pre′1 ⇒ cl) ∧ · · · ∧ (pre′k ⇒ cl).

6. All (universal) quantifiers are moved to the outermost level in the clauses.
Thus pre′ ⇒ (∀x : cl) becomes ∀x : (pre′ ⇒ cl).

7. All clauses of the form ∀~α : (pre′ ⇒ cl1 ∧ cl2) are replaced by clauses
of the form (∀~α : (pre′ ⇒ cl1)) ∧ (∀~α : (pre′ ⇒ cl2)) and all clauses of
the form ∀~α : (pre′ ⇒ (pre′′ ⇒ cl)) are replaced by clauses of the form
∀~α : (pre′ ∧ pre′′ ⇒ cl). Since there can be more than one conjunction or
implication in the conclusion, this step is performed iteratively until no
more transformations can be done.
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The worst-case time complexity of solving the corresponding ALFPs clauses
increases linearly. This is because the maximal nesting depth of quantifiers
does not change and the number of fresh predicates and clauses asserting them
is proportional to the number of original ALFP clauses.

The following lemma states that the transformation is semantics preserving.

Lemma 6.2 Let cls be a closed and stratified clause sequence in ALFP, and
cls′ be a corresponding clause sequence in ALFPs. Then

(ρ, σ) |= cls⇔ (ρ, σ) |= cls′

Proof. See Appendix A.12.

6.2 Adorned ALFPs clauses

In this section we present the first step of the transformation; namely creat-
ing the adorned ALFPs clauses [55]. Informally, the adorned clauses show the
flow of sideways information between relations in the formula. They are cre-
ated by adding annotations to predicates and for the purpose of the magic set
transformation we annotate derived predicates only. As already mentioned in
Section 2.3 a derived predicate is one that is defined solely by clauses with non-
empty preconditions. The goal of a magic set transformation is to reduce the
number of irrelevant tuples generated during the bottom-up computation. We
do not adorn base predicates, since they are fully evaluated, and querying them
retrieves only relevant tuples anyway.

For an occurrence of a literal R(u1, . . . , un) the adornment α is a n-tuple of
characters b and f standing for bound and free, respectively. In the case the
argument ui is bound then there is b at the i-th position in α, otherwise there is
an f . As an example take a query R(a,w, c), where a and c are constants and w
is an unbound variable. Then the adorned version of the query is Rbfb(a,w, c).

The adorned clauses are the result of a sideways information passing strategy
(SIPS) [8], which captures what information is passed by a predicate (or a set
of predicates) to another predicate. More precisely, for an ALFPs clause a SIPS
represents a strategy for evaluating the given clause. Namely, it describes in
which order the literals in the precondition are evaluated, and how values of
variables are passed from literal to literal during the bottom-up computation of
the least model. As emphasized in [6], the SIPS does not say how the information
is passed i.e. it does not specify whether information is passed one tuple at a
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time or a set of tuples at a time. In [8] this component is called a control
component and it is not discussed here.

It is important to note that the generated SIPS depends on the form of the
supplied query. The query form can be seen as a generic way of representing a
set of queries, and it can be written as an adorned predicate name. For example
having two different queries R(a,w) and R(c, w), where a and c are constants
and w is a free variable, the resulting adorned predicate name is exactly the
same, namely Rbf . On the other hand, the two queries R(w, a) and R(c, w) give
rise to two different query forms: Rfb and Rbf , respectively.

As mentioned above SIPS describes how bindings of an asserted predicate are
passed and used to evaluate the precondition. Hence, a SIPS depicts how the
clause is evaluated when a given set of arguments of the asserted predicate is
bound to constants. As an example, let us consider the following ALFPs clauses
specifying the transitive closure of a relation E.

∀x : ∀y : E(x, y)⇒ T (x, y) ∧
∀x : ∀y : (∃z : E(x, z) ∧ T (z, y))⇒ T (x, y)

Let us also assume that we are interested in computing all the states reachable
from s1. This corresponds to a query T (s1, w), where w is a free variable. Since
the first argument is bound to s1, by unification the variable x in the second
clause is bound to s1. The second clause can be evaluated using that binding
and as a result we obtain the bindings for z, due to E(x, z). These are passed to
literal T (z, y) and generate new subgoals that have the same binding pattern,
namely T bf . We can generalize the above reasoning and may say that a SIPS
aims to evaluate a set of predicates, and use the result to bind the variables
appearing as arguments of other predicates.

The formal definition of SIPS is adopted from [6] and is given below. We first
define a notion of connectedness as follows.

Definition 6.3 Let cl be an ALFPs clause containing literals R(~u) and S(~v).
We say that R(~u) and S(~v) are connected if

• R(~u) and S(~v) share a common variable as an argument; or

• there exists a literal Q(~w) in cl such that R(~u) is connected to Q(~w) and
Q(~w) is connected to S(~v).

Thus connectedness is essentially a transitive closure of sharing a common ar-
gument.
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Let Pre(cl) be the set of literals in the precondition of cl, in the case cl does
not have a precondition the set Pre(cl) is empty. Formally we define Pre(cl) as
follows

Pre(R(~v)) = ∅
Pre(1) = ∅
Pre(pre⇒ cl) = Pre′(pre)
Pre(∀x : cl) = Pre(cl)

Pre′(R(~v)) = {R(~v)}
Pre′(¬R(~v)) = {¬R(~v)}
Pre′(pre1 ∧ pre2) = Pre′(pre1) ∪ Pre′(pre2)
Pre′(∀x : pre) = Pre′(pre)
Pre′(∃x : pre) = Pre′(pre)

The SIPS are defined as follows.

Definition 6.4 Let Rα(~u) be an adorned version of a literal asserted in cl.
Sideways Information Passing Strategy (SIPS) for cl is a ternary relation G ⊆
V1×P(X )×V2 where V1 = P(Pre(cl)∪ {Rα(~u)}), V2 = Pre(cl), and where the
following conditions hold

1. Each tuple is of the form (V,W, P β(~v)), where V ∈ V1 and P β(~v) ∈ V2.
Furthermore, W stands for a nonempty set of variables that satisfies the
following conditions

(a) each variable in W appears in the argument of P β(~v), and in either
a bound argument position of Rα(~u), or a positive literal in V (or
both),

(b) each literal in V is connected to P β(~v).

2. There exists a total order ≤ on Pre(cl) ∪ {Rα(~u)} in which:

(a) For all Qγ(~w) ∈ Pre(cl) : Ra(~u) ≤ Qγ(~w),

(b) ∀Qγ(~w) ∈ (Pre(cl) ∪ {Rα(~u)}) : ∀Sβ(~y) /∈ (Pre(cl) ∪ {Rα(~u)}) :
Qγ(~w) ≤ Sβ(~y),

(c) for each tuple (V,W, P β(~v)) we have ∀Qγ(~w) ∈ V : Qγ(~w) ≤ P β(~v).

A tuple (V,W, P β(~v)) ∈ G means that by evaluating the join of the literals
in V , where some of the arguments are bound to constants, we obtain values
for the variables in W, which are then passed to P β(~v) and used to restrict
the retrieved tuples. For that reason it is required by condition (1a) that all
variables appearing in W appear in the argument of P β(~v), since including in
W variables that do not appear in the argument of P β(~v) does not influence
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the evaluation of P β(~v). Furthermore, by condition (1b) only literals that are
connected to the P β(~v) are included in V . This is because a literal that is not
connected does not serve any useful role when performing the join. The intuition
behind imposing the condition (2) is to provide a consistency condition on SIPS.
More precisely, it forbids cyclic dependencies in the SIPS; namely the situation
where different strategies make cyclic assumptions about variables being bound.

Now, we explain how the tuples of the SIPS are used to evaluate ALFPs clauses.
Assume that we want to evaluate a clause asserting a predicate Rα(~u) with some
arguments in ~u bound to constants. The evaluation begins with the literals that
do not appear as the third component of any tuple in the SIPS. These literals
are evaluated with all arguments free, except if a given argument is a constant.
Then, literals appearing as the third component in the tuples are evaluated
with values supplied by the second component of a given tuple. Finally, having
all predicates evaluated, we perform a join followed by the projection to the
arguments of the asserted predicate Rα(~u).

In the following we write a tuple (V,W, P β(~v)) ∈ G as V →W P β(~v) to follow
existing notation [6]. As an example we again consider the clauses specifying
the transitive closure of a relation E, and the corresponding query is T (s1, w),
where w is a free variable. The adorned version of the query is T bf(s1, w). The
SIPS for the first clause is

{T bf(x, y)} →{x} E(x, y)

whereas for the second one we have two different SIPS

{T bf(x, y)} →{x} E(x, z)

{T bf(x, y), E(x, z)} →{z} T bf(z, y) (6.1)

and

{T bf(x, y)} →{x} E(x, z)

{E(x, z)} →{z} T bf(z, y) (6.2)

It is important to point out the difference between the above two SIPS; thus
let us focus on (6.1) and (6.2). In the first one, the literal T bf(z, y) is evaluated
based on the information passed from evaluating the conjunction of T bf(x, y)
and E(x, z), whereas in the second one it is based on the information passed
from E(x, z) alone. As a consequence, (6.1) may be more efficient since it may
restrict more irrelevant tuples. As we will see in the next section, in practice
it is always best to use the normalized SIPS, defined in Definition 6.5. Notice
that in both SIPS the predicate E is not adorned, since it is a base predicate
(it is defined only by facts).
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6.2.1 The adorn algorithm

In order to create an adorned version of the original clauses, we begin by creating
an adorned query in the way described at the beginning of this section. The
adorned version of the original clauses is created by the adorn algorithm, which
is based on the algorithm by Balbin et al. [6], and whose pseudo-code is given in
Figure 6.2. The algorithm takes three arguments: the adorned predicate name,
a clause sequence and SIPS. It maintains a worklist W containing adorned
predicate names that still need to be processed. The worklist is initialized with
the adorned version of the query, and the algorithm terminates when the worklist
becomes empty. In each iteration, an adorned predicate name is removed from
the worklist and added to the set of processed items. Then for each clause
that asserts the given predicate, the algorithm creates an adorned version of
the clause by adorning predicates in the precondition. Additionally, it adds
newly created adorned predicate names into a worklist. Since there is a finite
number of clauses and a finite number of possible adorned predicate names, the
algorithm is guaranteed to terminate. The algorithm in Figure 6.2 makes use
of a function h that creates adornments of predicates

h(W, v) =

{
b if v ∈ W
f otherwise

The function is extended to tuples ~v in a straightforward manner.

In order to simplify the algorithm, we assume that all SIPS are normalized in a
way described in [6], and formally defined in the following definition (adopted
from [6]).

Definition 6.5 A normalized SIPS has the property that whenever there are
n tuples in a SIPS, n > 0, (Vi,Xi, R(~u)), 0 ≤ i ≤ n, agreeing in the third
component then (

⋃
Vi,
⋃
Xi, R(~u)) is also valid SIPS.

The above definition states that different strategies for sideways information
passing can be combined together in the case they match on the last component,
producing a normalized strategy. As a result we know that for a given clause
there is at most one edge in the SIPS with a given adorned version of a predicate,
or in other words there is a following functional dependency

V2 →cl V1 × P(X )

which simplifies the magic set algorithm presented in Section 6.3.

Continuing with the running example the adorned clauses defining the transitive
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adorn(Rα, cls, S)
W := {Rα}
let cls′ be an empty sequence of clauses
S′ := D := ∅
while W 6= ∅ do

let P β be an adorned predicate name from W
W := W \ P β
D := D ∪ P β
let clsP be a copy of the clauses from cls asserting P
foreach cl of the form ∀~x : pre⇒ P (~v) in clsP do

let Scl be a copy of the SIPS associated with clause cl
cl := ∀~x : pre⇒ P β(~v)
foreach derived literal Q(~v) in pre do

γ := h(W, ~v) where (V,W, Q(~v)) ∈ Scl
pre := pre[Qγ(~v)/Q(~v)]
replace all occurrences of Q(~v) in Scl by Qγ(~v).
if Qγ /∈ D then W := W ∪ {Qγ}

od
add cl into cls′

S′ := S′ ∪ {Scl}
od

od
return (cls′, S′)

Figure 6.2: Algorithm for creating adorned ALFPs clauses.
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closure of the relation E are as follows

∀x : ∀y : E(x, y)⇒ T bf (x, y) ∧
∀x : ∀y : (∃z : E(x, z) ∧ T bf (z, y))⇒ T bf (x, y)

Notice that, as mentioned before, only derived predicates are adorned (in this
case predicate T ).

As pointed out in [6], this normalization is essentially equivalent to the approach
taken in [8]. Their approach handles multiple edges leading to a given predi-
cate by introducing auxiliary predicates, and then by defining additional clause
to join the information from these predicates. We believe that the normaliza-
tion approach from [6] is superior, since it eliminates the need for introducing
auxiliary predicates and further simplifies the magic set algorithm.

Definition 6.6 Let cls1 and cls2 be two closed and stratified ALFPs formulae
over a universe U , and R1(~v) and R2(~v) two queries of arity k on cls1 and cls2,
respectively. Let ρ1 and ρ2 be two least models such that (ρ1, [ ]) |= cls1 and
(ρ2, [ ]) |= cls2. We say that formulae cls1 and cls2 are equivalent with respect

to R1(~v) and R2(~v), written cls1 ≡R1(~v)
R2(~v) cls2, if

∀~a ∈ ς~v(U) : ~a ∈ ρ1(R1)⇔ ~a ∈ ρ2(R2)

where

ςv(S) =

{
{v} if v ∈ S
S otherwise

and
ς(v1,...,vk)(S) = ςv1

(S)× . . .× ςvk(S)

Proposition 6.7 Let cls be a closed and stratified ALFPs formula and R(~v) be
a query on cls. Let cls′ and Rα(~v) be the result of the adorn algorithm and the

corresponding adorned query, respectively. Then cls ≡R(~v)
Rα(~v) cls

′.

Proof. See Appendix A.13.

6.3 Magic sets algorithm

In this section we extend the magic set transformation algorithm to ALFPs. The
transformation is done at compile time and it transforms the adorned ALFPs

clauses with respect to a given query, into clauses that give the same answer



6.3 Magic sets algorithm 81

to the query as the original ones. The intuition behind the transformation is
that during the bottom-up evaluation of the transformed ALFPs formula, facts
that may contribute to the answer to the query are discovered (the transforma-
tion narrows down the search space). The transformation makes the following
changes to the adorned clauses:

• It adds new predicates, called magic predicates, into the preconditions of
the existing clauses,

• It defines additional clauses, called magic clauses, asserting the magic
predicates.

The magic predicates are created for derived relations only; ideally for only
some of them. In particular, for a predicate Rα(~u) where adornment α contains
exactly k b’s, we create a predicate MagicRα(~u′) whose arity is k and the argu-
ments are those ui that are indicated as bound in α. More formally, the magic
predicates are created by function mkMagic defined as follows

mkMagic(Rα(~u)) = MagicRα(ui | αi = b, ~u = u1, . . . , un, α = α1, . . . , αn)

Thus, for an adorned predicate Rα we create the magic predicate MagicRα,
whose rank is equal to the rank of Rα i.e. rank(Rα) = rank(MagicRα). The
ranking function was formally defined in Section 2.3. The arguments of the
magic predicate are these ui that are indicated as bound by the adornment α.
The set of tuples computed during the bottom-up evaluation of the transformed
clauses is called magic set. Even though the aim of the algorithm is to transform
the original clauses such that during bottom-up evaluation only relevant facts
are discovered, irrelevant tuples are usually generated. The reason for that is
that it is not possible to know in advance which tuples are relevant and which
are not. The pseudo code of the magic set transformation is given in Figure 6.3,
and is based on the algorithm by Balbin et al. [6]. The algorithm takes an
adorned query, adorned clause sequence and normalized SIPS as arguments. It
uses function mkPre, that creates a precondition for the magic clauses and is
defined as follows

mkPreQ(V ) =
∧

Rα(~u)∈V∧
rank(R)≤rank(Q)

Rα(~u) ∧
∧

¬Rα(~u)∈V∧
rank(R)<rank(Q)

¬Rα(~u)

The function simply creates a conjunction of positive literals whose correspond-
ing predicate has rank less or equal to the rank of the predicate Q as well as
these negative literals whose corresponding predicate has rank strictly less than
the rank of the predicate Q. The above restrictions on literals occurring in the
resulting precondition are needed in order to ensure that for a stratified ALFPs
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doMagic(Rα(~u), cls, S)
let cls′ be an empty sequence of clauses
foreach cl of the form ∀~x : pre⇒ P β(~v) in cls do

cls′ := cls′,∀~x : mkMagic(P β(~v)) ∧ pre⇒ P β(~v)
foreach (V,Y, Qγ(~w)) in Scl do

if P β(~v) ∈ V ∧ rank(P β) ≤ rank(Qγ) then
cls′ := cls′,∀~y : mkMagic(P β(~v)) ∧mkPreQ(V )⇒ mkMagic(Qγ(~w))

else
cls′ := cls′,∀~y : mkPreQ(V )⇒ mkMagic(Qγ(~w))

fi
od

od
return cls′

Figure 6.3: Magic set transformation.

clauses, the resulting clauses are also stratified. This approach essentially cor-
responds to performing the magic set transformation strata by strata. Notice
that in the case when none of the literals satisfies the conditions, the result of
mkPre is true. In the algorithm we also use Scl to denote the subset of SIPS S
associated with clause cl i.e. Scl ⊆ S. The algorithm iterates over the adorned
clauses, transforms them and accumulates the result in the set cls′. For each
adorned clause cl, it first creates a new clause by inserting the corresponding
magic predicate into the precondition. Furthermore, for each tuple in the SIPS
associated with cl it creates a magic clause defining the corresponding magic
predicate.

As mentioned at the beginning of this chapter, the novelty of the magic set
algorithm for ALFP is the ability to handle universal quantification in precon-
ditions. In our approach we treat all kinds of preconditions uniformly, which
greatly simplifies the algorithm. The drawback is that some magic predicates
may contain more irrelevant tuples. To illustrate this let us present the following
example.

Example 12 We consider two clauses. The first one uses existential quantifi-
cation in precondition

∀x : (∃y : E(x, y) ∧ S(y))⇒ S(x)

and the other uses universal quantification in precondition

∀x : (∀y : E(x, y) ∧R(y))⇒ R(x)
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Assume that E is a base predicate, and the queries we are interested in are S(a)
and R(a) for some a ∈ U . The adorned version of the queries are Sb(a) and
Rb(a), and the adorned versions of the clauses are

∀x : (∃y : E(x, y) ∧ Sb(y))⇒ Sb(x)

and
∀x : (∀y : E(x, y) ∧Rb(y))⇒ Rb(x)

The magic set transformation results in the following. For both queries we create
seeds magicSb(a) and magicRb(a), respectively, and magic clauses

∀x : ∀y : E(x, y) ∧magicSb(x)⇒ magicSb(y)

and
∀x : ∀y : E(x, y) ∧magicRb(x)⇒ magicRb(y)

Furthermore, the original clauses are modified into

∀x : magicSb(x) ∧ (∃y : E(x, y) ∧ Sb(y))⇒ Sb(x)

and
∀x : magicRb(x) ∧ (∀y : E(x, y) ∧Rb(y))⇒ Rb(x)

Since the magic clauses are exactly the same (modulo magic predicate names)
in both cases, the magic predicates magicSb and magicRb contain exactly the
same sets of tuples. Intuitively, the magic predicate magicRb should contain
fewer tuples, since the precondition of the clause asserting predicate R is more
restrictive. In the current version of the transformation, however, it is not the
case, and in the presence of universal quantification in precondition the magic
predicates may contain more irrelevant tuple.

Notice that for a stratified input formula, the result of the magic set transfor-
mation is also stratified. First we note that, as already mentioned, the rank
of the magic predicate is equal to the rank of the corresponding derived predi-
cate. The transformation alters the input clauses in two ways. First, it inserts
magic predicate into the precondition of the clause asserting the given derived
predicate. Since the ranks of both predicates are the same, the resulting clause
is stratified. The second change is the addition of the clauses defining magic
predicates. This clauses are also stratified by definition of the function mkPre
and due to the fact that the magic literal mkMagic(P β(~v)) is included in the
precondition only in the case when rank(P β) ≤ rank(Qγ). Since both changes
preserve stratification, the resulting clause sequence is stratified.

Notice also that the worst-case time complexity of solving the resulting clauses
increases linearly. This is firstly because the maximal nesting depth of quanti-
fiers does not change. Secondly, the number of new clauses (magic clauses) is
proportional to the number of input clauses.
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Continuing with the running example; the result of the magic set transformation
is

MagicT bf (s1) ∧
∀x : ∀z : MagicT bf (x) ∧ E(x, z)⇒ MagicT bf (z) (6.3)

∀x : ∀y : MagicT bf (x) ∧ E(x, y)⇒ T bf (x, y) ∧
∀x : ∀y : MagicT bf (x) ∧ (∃z : E(x, z) ∧ T bf (z, y))⇒ T bf (x, y)

The first clause is the seed; created based on the supplied query. It is simply an
assertion of the magic predicate with the constant corresponding to the bound
argument of the query of interest. The second clause, (6.3), is a magic clause
defining the magic predicate MagicT bf . It corresponds to the following tuple in
the SIPS

{T bf(x, y), E(x, z)} →{z} T bf(z, y)

and is obtained by applying function mkMagic to the adorned versions of derived
predicates in the first and third component of the tuple. The precondition of
the clause is a conjunction of literals in the first component of the tuple. The
last two clauses are modified versions of the corresponding adorned clauses.
They are a result of inserting the magic predicate corresponding to the asserted
predicate into the precondition of each clause.

Notice that the last clause is equivalent to the following one

∀x : ∀y : ∀z : MagicT bf (x) ∧ E(x, z) ∧ T bf (z, y)⇒ T bf (x, y) (6.4)

The result of the magic set transformation can be further optimized by per-
forming common subexpression elimination. As an example notice that during
evaluation of clause (6.4) the precondition from clause (6.3) is reevaluated. The
inefficiency can be avoided by applying a supplementary magic sets algorithm
that was introduced in [51] and then generalized in [8]. The general idea is to
use this supplementary predicates to store the intermediate results that can be
used later, and hence eliminate redundant computations. Continuing with the
example, the result of applying the supplementary magic sets algorithm (us-
ing supplementary predicate Sup) to the above clauses results in the following
clauses

MagicT bf (s1) ∧
∀x : ∀z : MagicT bf (x) ∧ E(x, z)⇒ Sup(x, z)

∀x : ∀y : Sup(x, y)⇒ MagicT bf (y)

∀x : ∀y : MagicT bf (x) ∧ E(x, y)⇒ T bf (x, y) ∧
∀x : ∀y : ∀z : Sup(x, z) ∧ T bf (z, y)⇒ T bf (x, y)

In the above, the result of evaluating the precondition of clause (6.3) is stored
in the supplementary predicate Sup, which is then used to define predicate
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MagicT bf . Furthermore, in order to avoid redundant computations during eval-
uation of the precondition of clause (6.4) we use the supplementary predicate
Sup and join it with predicate T bf .

Even though, we do not present the supplementary magic sets algorithm here,
in order to achieve better efficiency the algorithm should always be applied. For
the detailed presentation of the algorithm, we the reader should refer to [8].

Proposition 6.8 Let cls be a closed and stratified adorned ALFPs formula and
Rα(~v) be a query on cls. Let cls′ be the result of the magic set transformation.

Then cls ≡R
α(~v)

Rα(~v) cls
′.

Proof. See Appendix A.14.

Example 13 As another example let us consider the following ALFPs clauses

∀x : P (x)⇒ S(x)

∀x : ∀y : S(y) ∧ E(x, y)⇒ S(x)

and let the query be S(error). The adorned version of the above clauses is as
follows

∀x : P (x)⇒ Sb(x)

∀x : ∀y : Sb(y) ∧ E(x, y)⇒ Sb(x)

The SIPS used to create the adorned clauses are

{Sb(x)} →{x} P (x)

{Sb(x)} →{x} E(x, y)

{Sb(x), E(x, y)} →{y} Sb(y)

The result of magic set transformation is

MagicSb(error)

∀x : ∀y : MagicSb(x) ∧ E(x, y)⇒MagicSb(y)

∀x : MagicSb(x) ∧ P (x)⇒ Sb(x)

∀x : ∀y : MagicSb(x) ∧ E(x, y) ∧ Sb(y)⇒ Sb(x)

The result of applying the supplementary magic sets algorithm (using supple-
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mentary predicate Sup) to the above clauses is as follows

MagicSb(error)

∀x : ∀y : MagicSb(x) ∧ E(x, y)⇒ Sup(x, y)

∀x : ∀y : Sup(x, y)⇒MagicSb(y)

∀x : MagicSb(x) ∧ P (x)⇒ Sb(x)

∀x : ∀y : Sup(x, y) ∧ Sb(y)⇒ Sb(x)



Chapter 7

Case study: Static Analysis

This chapter aims to show how logics and associated solvers introduced in this
dissertation can be used for rapid prototyping of new static analyses. More pre-
cisely, we present that many analysis problems can be specified as logic programs
using logics of this thesis. Since analysis specifications are generally written in a
declarative style, logic programming presents an attractive model for producing
executable specifications of analyses, and has been successfully used in practice
[59, 11]. Furthermore, the declarative style of the specifications makes them
easy to analyse for complexity and correctness.

This chapter is organized as follows. We begin in Section 7.1 by presenting LFP
specification of the Bit-Vector Frameworks. We continue in Section 7.2 with
LFP formulation of context-insensitive points-to analysis. Section 7.3 presents
the constant propagation analysis and the corresponding LLFP specification.
Finally, we present the specification of the interval analysis by means of LLFP
in Section 7.4.

7.1 Bit-Vector Frameworks

Datalog has already been used for program analysis in compilers [59, 48, 56].
In this section we present how the LFP logic can be used to specify analyses
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that are instances of Bit-Vector Frameworks, which are a special case of the
Monotone Frameworks [41, 32].

A Monotone Framework consists of (a) a property space that usually is a com-
plete lattice L satisfying the Ascending Chain Condition, and (b) transfer func-
tions, i.e. monotone functions from L to L. The property space is used to repre-
sent the data flow information, whereas transfer functions capture the behavior
of actions. In the Bit-Vector Framework, the property space is a power set of
some finite set and all transfer functions are of the form fn(x) = (x\killn)∪genn.

Throughout this section we assume that a program is represented as a control
flow graph [33, 41], which is a directed graph with one entry node (having no
incoming edges) and one exit node (having no outgoing edges), called extremal
nodes. The remaining nodes represent statements and have transfer functions
associated with them. The control flow graphs were formally defined in Sec-
tion 2.2.2.

Backward may analyses. Let us first consider backward may analyses ex-
pressed as an instance of the Monotone Frameworks. In the analyses, we require
the least sets that solve the equations and we are able to detect properties satis-
fied by at least one path leading to the given node. The analyses use the reversed
edges in the flow graph; hence the data flow information is propagated against
the flow of the program starting at the exit node. The data flow equations are
defined as follows

A(n) =

{
ι if n = nexit⋃
{fn(A(n′) | (n, n′) ∈ E} otherwise

where A(n) represents data flow information at the entry to the node n, E is a
set of edges in the control flow graph, and ι is the initial analysis information.
The first case in the above equation, initializes the exit node with the initial
analysis information, whereas the second one joins the data flow information
from different paths (using the revered flow). We use

⋃
since we want be able

detect properties satisfied by at least one path leading to the given node.

The LFP specification for backward may analyses consists of two conjuncts
corresponding to two cases in the data flow equations. Since in case of may
analyses we aim at computing the least solution, the specification is defined in
terms of a define clause. The formula is given by

define

(
∀x : ι(x)⇒ A(nexit, x)∧

(s,t)∈E ∀x : (A(t, x) ∧ ¬kills(x)) ∨ gens(x)⇒ A(s, x)

)
The first conjunct initializes the exit node with initial analysis information,
denoted by the predicate ι. The second one propagates data flow information
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agains the edges in the control flow graph, i.e. whenever we have an edge (s, t)
in the control flow graph, we propagate data flow information from t to s, by
applying the corresponding transfer function. More precisely, x holds at the
entry to node s if it either holds at the entry to the node t (the successor of s)
and is not killed at node s or it is generated at node s.

Notice that there is no explicit formula for combining analysis information from
different paths, as it is the case in the data flow equations, but rather it is done
implicitly. Suppose there are two distinct edges (s, p) and (s, q) in the flow
graph, then we get

∀x : (A(p, x) ∧ ¬kills(x)) ∨ gens(x)︸ ︷︷ ︸
condp(x)

⇒ A(s, x)

∀x : (A(q, x) ∧ ¬kills(x)) ∨ gens(x)︸ ︷︷ ︸
condq(x)

⇒ A(s, x)

which is equivalent to

∀x : condp(x) ∨ condq(x)⇒ A(s, x)

Forward must analyses. Let us now consider the general pattern for defining
forward must analyses. Here we require the largest sets that solve the equations
and we are able to detect properties satisfied by all paths leading to a given
node. The analyses propagate the data flow information along the edges of the
flow graph starting at the entry node. The data flow equations are defined as
follows

A(n) =

{
ι if n = nentry⋂
{fn(A(n′)) | (n′, n) ∈ E} otherwise

where A(n) represents analysis information at the exit from the node n. Since
we require the greatest solution, the greatest lower bound

⋂
is used to combine

information from different paths.

The corresponding LFP specification is obtained as follows

constrain

(
∀x : A(nentry, x)⇒ ι(x)∧

(s,t)∈E ∀x : A(t, x)⇒ (A(s, x) ∧ ¬killt(x)) ∨ gent(x)

)
Since we aim at computing the greatest solution, the analysis is given by means
of constrain clause. The first conjunct initializes the entry node with the initial
analysis information, whereas the second one propagates the information along
the edges in the control flow graph, i.e. whenever we have an edge (s, t) in the
control flow graph, we propagate data flow information from s to t, by applying
the corresponding transfer function. More precisely, if x holds at the exit from
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the node t then it either holds at the exit from the node s (the successor of t)
and is not killed at node t or it is generated at node t.

The specifications of forward may and backward must analyses follow similar
pattern. In the case of forward may analyses the data flow information is prop-
agated along the edges of the flow graph and since we aim at computing the
least solution, the analyses are given by means of define clauses

define

(
∀x : ι(x)⇒ A(nentry, x)∧

(s,t)∈E ∀x : (A(s, x) ∧ ¬killt(x)) ∨ gent(x)⇒ A(t, x)

)
Backward must analyses, on the other hand, use reversed edges in the flow
graph and are specified using constrain clauses, since the analysis results are
represented by the greatest sets satisfying given specifications

constrain

(
∀x : A(nexit, x)⇒ ι(x)∧

(s,t)∈E ∀x : A(s, x)⇒ (A(t, x) ∧ ¬kills(x)) ∨ gens(x)

)

In order to compute the least solution of the data flow equations, one can use a
general iterative algorithm for Monotone Frameworks. The worst case complex-
ity of the algorithm is O(|E|h), where |E| is the number of edges in the control
flow graph, and h is the height of the underlying lattice [41]. For Bit-Vector
Frameworks the lattice is a powerset of a finite set U ; hence h is O(|U|). This
gives the complexity O(|E||U|).

According to Proposition 4.6 the worst case time complexity of the LFP speci-
fication is O(|%0|+

∑
1≤i≤|E| |U||cli|). Since the size of the clause cli is constant

and the sum of cardinalities of predicates of rank 0 is O(|N |), where N is the
number of nodes in the control flow graph, we get O(|N | + |E||U|). Provided
that |E| > |N | we achieve O(|E||U|) i.e. the same worst case complexity as the
standard iterative algorithm.

It is common in compiler optimization that various analyses are performed at
the same time. Since LFP logic has direct support for both least fixed points
and greatest fixed points, we can perform both may and must analyses at the
same time by splitting the analyses into separate layers.

At this point it is worth mentioning that the Bit-Vector Frameworks can also
be expressed using ALFP. The specification of forward may analysis could be
given by

∀x : ι(x)⇒ A(nentry, x)∧
(s,t)∈E ∀x : (A(s, x) ∧ ¬killt(x)) ∨ gent(x)⇒ A(t, x)
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Hence, it is exactly as the corresponding LFP specification except that there is
no explicit define keyword. It is implicit, since in the case of ALFP we always
compute the least solution. In the case of the backward must analysis the
corresponding ALFP specification is more complicated since there is no direct
support for the greatest fixpoints in the logic. To remedy that problem we
need to dualize the specification, hence we give a specification that defines the
complement of the relation of interest i.e. A{. The idea is based on the following
condition: A{(n, x) holds if and only if ¬A(n, x) holds. The complement relation
A{ is defined as follows

∀x : ¬ι(x)⇒ A{(nexit, x)∧
(s,t)∈E ∀x : (A{(t, x) ∨ kills(x)) ∧ ¬gens(x)⇒ A{(s, x)

Now we obtain the definition of the relation of interest by complementing the
A{ predicate for each node in the corresponding control flow graph as follows∧

n∈N ∀x : ¬A{(n, x)⇒ A(n, x)

Based on the ALFP specification, it is evident that the use of LFP has many
benefits. Firstly, the LFP specifications are particularly intuitive and can easily
be extracted from the classical data flow equations, which is a great convenience
for the programmer writing the specification. Secondly, due to direct support for
the co-inductive specifications, in practice the analysis result can be computed
more efficiently using LFP solver. This is because we do not need to compute
the complement of the relation of interest first and then complement it, which
in the case the relation A{ is sparse can be very expensive.

7.2 Points-to analysis

In this section we present LFP specification of points-to analysis, which forms
the basis for many higher-level program analyses and is an integral part of
compiler optimization frameworks. The analysis computes static approximation
of the data that a pointer variable may reference at run time. Here we consider
context-insensitive points-to analysis, which means that the control flow of the
program is ignored and that statements can be executed in any order. We
assume that the call graph is computed prior to the analysis.

Let us begin with a simple specification using three relations

Allocate(var , heap),Assign(to, from) and PointsTo(var , heap)

Assume that the underlying program in addition to condition checking has two
types of actions. First one is an allocation of a heap object and its assignment
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A a;

A b = new A();

a = b;

Figure 7.1: Example program for points-to analysis.

to a variable, denoted x = new X(). The second one is an assignment of a
variable x = y.

The relation Allocate(var , heap) expresses that a variable var references a heap
object heap. More precisely, whenever we have an action x = new X() in the
program graph we generate a fact Allocate(var , heap), where var represents a
variable x and heap corresponds to an allocated heap object.

Furthermore, Assign(to, from) captures that a variable represented by to is as-
signed a value of a variable represented by from. Thus, for each action x = y
in the program graph, we generate a fact Assign(to, from), where to represents
variable x and from corresponds to variable y.

The relation PointsTo represents points-to information; it captures possible
points-to relations from variables to heap objects. PointsTo(var , heap) is true
if a variable var may point to a heap object heap an any point during program
execution.

Based on these relations, a simple points-to analysis can be expressed using
following LFP clauses

define

 (∀x : ∀h : Allocate(x, h)⇒ PointsTo(x, h))∧
(∀x : ∀h : (∃y : Assign(x, y) ∧ PointsTo(y, h))⇒

PointsTo(x, h))

 (7.1)

The first clause initializes the PointsTo relation with the initial points-to in-
formation. The second clause computes the transitive closure of the PointsTo
relation. Whenever a variable y can point to a heap object h and it is assigned
to a variable x, then x can also point to a heap object h. Since the points-to
information is a least model for the above clauses, the specification is given by
means of define clauses.

As an example let us consider a simple program from Figure 7.1. Assume that
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the universe U contains the following values

U = {va, vb, h2}

The values va and vb represent variables a and b, respectively, whereas value h2

represents heap object allocated in line 2 in the program. The object allocation
in line 2 results in

define(Allocate(vb, h2))

The program has one assignment action, represented by

define(Assign(va, vb))

A possible evaluation of the specification given in (7.1) based on the above
facts is as follows. We begin by evaluating first clause, and we derive that
PointsTo(vb, h2) is true. Finally, by evaluating second clause we discover that
PointsTo(va, h2) is true, since both Assign(va, vb) and PointsTo(vb, h2) are true.
As a result, it is clear that both variables a and b can point to the same heap
object h2.

Now, let us add fields to the language, and consider a refinement of the above
analysis, where we add field sensitivity to the analysis. Namely the analysis will
keep track of storing and loading objects to and form object instance fields. As
a result we add three additional relations. The relation Store represents store
actions x.a = y. More precisely, Store(base,field , from) expresses a store field
action from a variable captured by from, to the object referenced by variable
base in the field identified by field . If, for instance, the program graph contains
an action labeled x.a = y, then Store contains a tuple with base being a repre-
sentation of the variable x, field identifying a field a and from corresponding to
y.

Similarly, the Load relation represents the load action. More precisely, the fact
Load(to, base,field) expresses a load field action to a variable represented by to,
from the object referenced by variable base in the field identified by field . Thus,
whenever we have an action labeled x = y.b in the program graph, then the
relation Load contains a tuple (x, y, b).

The third relation, FieldPointsTo, is used to capture which heap object can
point to which other heap object through a given field. Hence we have that
FieldPointsTo(base,field , heap) is true if a heap object represented by base may
point to a heap object heap through a given field at any point during program
execution.

Now the above specification of points-to analysis can be extended by adding
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additional clauses as follows

define(

∀x : ∀h : Allocate(x, h)⇒ PointsTo(x, h) ∧
∀x : ∀h : (∃y : Assign(x, y) ∧ PointsTo(y, h))⇒ PointsTo(x, h) ∧
∀x : ∀hx :

(∃y : ∃hy : ∃f :

Load(x, y, f) ∧ PointsTo(y, hy) ∧ FieldPointsTo(hy, f, hx))

⇒ PointsTo(x, hx) ∧
∀hx : ∀hy : ∀f :

(∃x : ∃y : Store(x, f, y) ∧ PointsTo(x, hx) ∧ PointsTo(y, hy))

⇒ FieldPointsTo(hx, f, hy))

where first two clauses remained unchanged. The third clause handles the load
actions. Namely, given a statement x = y.f , if y may point to hy and hy.f may
point to hx then x may point to hx. The last clause models the effect of store
actions. Whenever we have an action x.f = y, x may point to hx and y may
point to hy then hx.f may point to hy.

In order to illustrate the analysis in action, let us consider the simple program
listed in Figure 7.2. Assume that the universe U contains the following values

U = {va, vb, vc, h2, h3, f}

The values va, vb and vc represent variables a, b and c, respectively. Values h2

and h3 represent object allocated in lines 2 and 3 in the program. The field f
of the type C is represented by value f . The initial facts for the program are as
follows. The object allocations in lines 2 and 3 result in

define(Allocate(vb, h2) ∧Allocate(vc, h3))

The program has one assignment action, represented by

define(Assign(va, vb))

and one store action given by

define(Store(vc, f, va))

The result of the points-to analysis corresponds to the least model of the speci-
fiation above. Thus, let us show an example evaluation of the above clauses.
We begin by evaluating first clause, and we derive that PointsTo(vb, h2) and
PointsTo(vc, h3) are true. Next, by evaluating second clause we discover that
PointsTo(va, h2) is true, since both Assign(va, vb) and PointsTo(vb, h2) are true.
Finally, using the last clause we find out that FieldPointsTo(h3, f, h2) is true
based on the truth of Store(vc, f, va), PointsTo(vc, h3), and PointsTo(va, h2).
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A a;

A b = new A();

C c = new C();

a = b;

c.f = a;

Figure 7.2: Example program for points-to analysis.

7.3 Constant propagation analysis

In this section we present an LLFP specification of constant propagation analy-
sis. The purpose of the analysis is to determine for each program point whether
or not a variable has a constant value whenever that point is reached during
run-time execution. The analysis results can be used to perform an optimiza-
tion called constant folding, which replaces variables that evaluate to a constant
by that constant. In contrast to the analyses discussed in Section 7.1, constant
propagation analysis is not distributive [41]. Recall that a function f : L1 → L2

between partially ordered sets L1 and L2 is distributive (also called additive) if

∀l1, l2 ∈ L1 : f(l1 t1 l2) = f(l1) t2 f(l2)

where t1 and t2 are binary least upper bound operators on corresponding
posets.

As an example, consider the following statements

x := 5;

y := x+ 10;

print y;

By performing constant propagation followed by constant folding the above
statements results in

x := 5;

y := 15;

print 15;
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which can be further optimized by dead code elimination of both x and y.

The analysis is defined over the following complete lattice

CP = ((Var → Z>⊥),v,t,u, λx.⊥, λx.>)

where Var is a finite set of variables appearing in the program and Z>⊥ is a set
of integers (possible values of these variables) extended with bottom and top
elements i.e. Z>⊥ = Z ∪ {⊥,>}. The ordering is defined as follows

∀z ∈ Z : ⊥ vZ z vZ >
∀z1, z2 ∈ Z : z1 vZ z2 ⇔ z1 = z2

We use the bottom element ⊥ to denote that a given variable is not initialized
(no information is available about the possible value of the variable), which
may mean e.g. unreachable code. The top element > indicates that a given
variable is non-constant, whereas all other values z ∈ Z indicate that a value
is z. Thus, Var → Z>⊥ is an environment that maps variables to constants, in
case a given variable is a constant, or indicates that a variable is uninitialized
or non-constant, by means of ⊥ and > elements, respectively.

The set Z>⊥ is indeed a complete lattice with the binary least upper bound
operator given by

∀z ∈ Z : ⊥ tZ z = z = z tZ ⊥
∀z ∈ Z : > tZ z = > = z tZ >
∀z1, z2 ∈ Z : z1 6= z2 ⇒ z1 tZ z2 = ⊥
∀z1, z2 ∈ Z : z1 = z2 ⇒ z1 tZ z2 = z1 = z2

The partial order in the analysis lattice is defined as

∀σ1, σ2 ∈ (Var → Z>⊥) : σ1 v σ2 ⇔ (∀x ∈ Var : σ1(x) vZ σ2(x))

The binary least upper bound operator is defined as follows

∀σ1, σ2 ∈ (Var → Z>⊥) : ∀x ∈ Var : (σ1 t σ2)(x) = σ1(x) tZ σ2(x)

In the following we again assume that the program of interest is represented as
a control flow graph.

Since constant propagation is a forward analysis, and we are interested in the
least solution, the data flow equations are defined as follows

A(n) =

{
ι if n = nentry⊔
{fn(A(n′)) | (n′, n) ∈ E} otherwise
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[x := a]n fn(σ) = σ[x 7→ ACPJaKσ]

[skip]n fn(σ) = σ

[b]n fn(σ) = σ

Table 7.1: Transfer functions for Constant Propagation Analysis.

ACPJxKσ = σ(x)

ACPJnKσ = n

ACPJa1 ? a2Kσ = ACPJa1Kσ ?Z>⊥ ACPJa2Kσ

Table 7.2: Function for analyzing expressions.

where A(n) represents analysis information at the exit from the node n. The
initial analysis information ι is defined as λx.>, hence it initializes all variables
with non-constant value. Since we require the least solution, the least upper
bound

⊔
is used to combine information from different paths. The mapping

of nodes to transfer functions is given in Table 7.1. The definition of trans-
fer functions uses function ACP for evaluating expressions, which is defined in
Table 7.2. The operations on Z are lifted to Z>⊥ in the following way

?Z>⊥ ⊥ z2 >
⊥ ⊥ ⊥ ⊥
z1 ⊥ z1 ?Z z2 >
> ⊥ > >

where ?Z is the corresponding arithmetic operation on Z. Let us briefly ex-
plain the definition of the transfer functions in Table 7.1. In the case of an
assignment the environment is updated with a new mapping for the assigned
variable and mappings for all other variables remain unchanged. The transfer
functions for skip and boolean conditions b are just identities; they propagate
the environment unaltered.

Now let us turn into the LLFP specification of the analysis. For simplicity
we assume that the assignments are in three-address form. The universe U is
the union of all variables x ∈ Var , constants z ∈ Z appearing in the analysed
program and the set of nodes in the underlying control flow graph. The complete
lattice used is (Z>⊥,vZ). The representation function β : U → Z>⊥ maps each
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constant z ∈ Z in the universe U into a lattice value z, whereas all other elements
of the universe are mapped to ⊥. Formally we have

β(a) =

{
a if a ∈ Z
⊥ otherwise

As we will see, in the case of constant propagation only the first case of the
above definition is ever applied i.e. the application to an integer appearing in
the analysed program.

The LLFP specification for the analysis is given by the predicate A. It consists
of two kinds of clauses corresponding to the two cases in the data flow equa-
tions. The first equation that initializes the entry node with the initial analysis
information corresponds to a conjunction of facts of the form

A(nentry, x;>)

for all x ∈ Var ; hence it initializes all variables with non-constant value. Notice
that for all other nodes and all variables the predicate A is implicitly initial-
ized with the bottom element ⊥. For the second equation we distinguish three
cases depending on the kind of action, corresponding to the transfer functions.
Whenever we have an edge (s, t) ∈ E where [x := y ? z]t in the control flow
graph we generate the clauses

∀vy : ∀vz : A(s, y; vy) ∧A(s, z; vz)⇒ A(t, x; f?(vy, vz)) ∧
∀w : ∀v : w 6= x ∧A(s, w; v)⇒ A(t, w; v)

where function f? : Z>⊥ × Z>⊥ → Z>⊥ evaluates arithmetic operations. Similarly,
for assignments of the form [x := y ? c]t and [x := c]t the corresponding LLFP
clauses are

∀vy : A(s, y; vy)⇒ A(t, x; f?(vy, [c])) ∧
∀w : ∀v : w 6= x ∧A(s, w; v)⇒ A(t, w; v)

and

A(t, x; [c]) ∧ (∀w : ∀v : w 6= x ∧A(s, w; v)⇒ A(t, w; v))

respectively. Notice, that in the case the expressions in the control flow graph
contain constants, we make use of the lattice terms [u] in the resulting LLFP
clauses. We do that in order to map constants from the universe into the
corresponding lattice values. Moreover, whenever we have an edge (s, t) ∈ E
where [b]t or [skip]t in the control flow graph we generate the clause

∀w : ∀v : A(s, w; v)⇒ A(t, w; v)
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[x := 3]n1 ;

if [x = y]n2 then [y := x+ 2]n3 ; else [y := x− 2]n4 ;

[skip]n5 ;

Figure 7.3: Example program.

[x := 3]n1

��
[x = y]n2

''ww
[y := x+ 2]n3

''

[y := x− 2]n4

ww
[skip]n5

Figure 7.4: Control flow graph corresponding to program from Figure 7.3.
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In order to present the analysis in action, consider a simple program from Fig-
ure 7.3. The corresponding control flow graph is depicted in Figure 7.4.

The LLFP clauses for constant propagation for this program are as follows. We
have two clauses asserting the analysis predicate for the entry node

A(nentry, x;>) ∧A(nentry, y;>)

The assignment in node n1 gives rise to

A(n1, x; 3) ∧ (∀w : ∀v : w 6= x ∧A(nentry, w; v)⇒ A(n1, w; v))

The condition in node n2 simply propagates the analysis information

∀w : ∀v : A(n1, w; v)⇒ A(n2, w; v)

The assignments in nodes n3 and n4 are captured by

∀vx : A(n2, x; vx)⇒ A(n3, y; sum(vx, [2])) ∧
∀w : ∀v : w 6= y ∧A(n2, w; v)⇒ A(n3, w; v) ∧

and

∀vx : A(n2, x; vx)⇒ A(n4, y; sum(vx, [−2])) ∧
∀w : ∀v : w 6= y ∧A(n2, w; v)⇒ A(n4, w; v) ∧

respectively. Finally the information from both branches of the if statement is
joined using the following clauses

∀w : ∀v : A(n3, w; v)⇒ A(n5, w; v) ∧
∀w : ∀v : A(n4, w; v)⇒ A(n5, w; v)

All the clauses are a straightforward application of the specification defined
above. The result of the analysis, being the least model, is presented in Table 7.3.
The assignment at node n1 results in variable x being mapped to value 3. The
assignments in nodes n3 and n4 cause variable y to be mapped to values 5 and
1, respectively. Finally, both mappings for variable y are joined at node n5

resulting in the mapping to a non-constant value denoted by >, which is as
expected.
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x y
nentry > >
n1 3 >
n2 3 >
n3 3 5
n4 3 1
n5 3 >

Table 7.3: Analysis result.

7.4 Interval analysis

In this section we present Interval Analysis and show how it can be specified in
LLFP. The purpose of the analysis is to determine for each program point an
interval containing possible values of variables whenever that point is reached
during run-time execution. The analysis results can be used for Array Bound
Analysis, which determines whether an array index is always within the bounds
of the array. If this is the case, a run-time check can safely be eliminated, which
makes code more efficient.

We begin with defining the complete lattice that we later use to define the anal-
ysis. The lattice (Interval ,vI) of intervals is defined as follows. The underlying
set is

Interval = ⊥ ∪ {[z1, z2] | z1 ≤ z2, z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {∞}}

where Z is a finite subset of integers, Z ⊆ Z, and the integer ordering ≤ on
Z is extended to an ordering on Z′ = Z ∪ {−∞,∞} by taking for all z ∈ Z:
−∞ ≤ z, z ≤ ∞ and −∞ ≤ ∞. In the above definition, ⊥ denotes an empty
interval, whereas [z1, z2] is the interval from z1 to z2 including the end points,
where z1, z2 ∈ Z. The interval [−∞,∞] is equivalent to >. In the following we
use i to denote an interval from Interval.

The partial ordering vI in Interval uses operations inf and sup

inf(i) =

{
∞ if i = ⊥
z1 if i = [z1, z2]

sup(i) =

{
−∞ if i = ⊥
z2 if i = [z1, z2]
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and is defined as

i1 vI i2 iff inf(i2) ≤ inf(i1) ∧ sup(i1) ≤ sup(i2)

The intuition behind the partial ordering v in Interval is that

i1 vI i2 ⇔ {z | z belongs to i1} ⊆ {z | z belongs to i2}

Hence the intervals over-approximate the set of possible values. For example,
the set of possible values {2, 5, 7} is represented by the interval [2, 7].

The least upper bound operator is defined as follows⊔
I

Y =

{
⊥ if Y ⊆ {⊥}
[inf ′({inf(i) | i ∈ Y }), sup′({sup(i) | i ∈ Y })] otherwise

where inf ′ and sup′ are the infimum and supremum operators on Z′ correspond-
ing to the ordering ≤ on Z′. They are defined as

inf ′(Z) =

 ∞ if Z = ∅
z′ ∈ Z if ∀z ∈ Z : z′ ≤ z
−∞ otherwise

Similarly, the supremum operator is given by

sup′(Z) =

 −∞ if Z = ∅
z′ ∈ Z if ∀z ∈ Z : z ≤ z′
∞ otherwise

The interval analysis is defined over the following complete lattice

IA = ((Var → Interval),v,t,u, λx.⊥, λx.>)

where Var is a finite set of variables appearing in the program. The underlying
set acts as an environment, mapping variables to intervals. Thus for each vari-
able in the program it gives the interval of possible values. The partial ordering
on environments is defined as follows

∀σ1, σ2 ∈ (Var → Interval) : σ1 v σ2 ⇔ (∀x ∈ Var : σ1(x) vI σ2(x))

where vI is the partial ordering on intervals defined at the beginning of this
section. The binary least upper bound is defined as follows

∀σ1, σ2 ∈ (Var → Interval) : ∀x ∈ Var : (σ1 t σ2)(x) = σ1(x) tI σ2(x)

Similarly to other case studies in this chapter, we assume in the following that
the program of interest is represented as a control flow graph.
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[x := a]n fn(σ) = σ[x 7→ AIJaKσ]

[skip]n fn(σ) = σ

[b]n fn(σ) = σ

Table 7.4: Transfer functions for Interval Analysis.

In interval analysis, we require the least solution of the equations and we use
the forward edges in the flow graph. The data flow equations are defined as
follows

A(n) =

{
ι if n = nentry⊔
{fn(A(n′)) | (n′, n) ∈ E} otherwise

where A(n) represents analysis information at the exit from the node n. The
initial analysis information ι is defined as λx.>, hence it initializes all variables
with top value. The mapping of nodes to transfer functions is given in Table 7.4.
The definition of transfer functions uses function AI for evaluating expression,
which is defined in Table 7.5. In the case of a variable x the function AI simply
returns the corresponding interval indicated by the environment σ. When eval-
uating constant c, a possible over-approximation of an interval [c, c] is returned.
This is because we need to make sure that both ends of the interval belong to
Z. We achieve that by using functions inf ′ and sup′. Notice that in the case
c ∈ Z, the exact interval [c, c] is returned. The case of arithmetic expressions
is handled by first recursively evaluating the sub-expressions, followed by per-
forming the corresponding arithmetic operation on returned intervals, denoted
by ?I . Finally, in order to make sure that the ends of the returned interval are
in Z, we again make use of functions inf ′ and sup′.

Now, we shortly explain the definition of transfer functions from Table 7.4. In
the case of assignment the transfer function returns an environment identical
to σ, except that mapping for variable x is updated with the interval being the
result of evaluating the arithmetical expression a. For two other kinds of actions
the transfer functions are simply identities.

Now let us give an LLFP specification of interval analysis. The analysis is
defined by the predicate A; the underlying universe U is a set of all variables x ∈
Var and constants z ∈ Z appearing in the program, as well as the set of nodes
in the control flow graph. The analysis is defined over the lattice (Interval ,vI),
defined at the beginning of this section. The representation function β maps
each constant z ∈ Z into an interval [z, z], whereas all other elements of the
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AIJxKσ = σ(x)

AIJcKσ = [sup′({z′ ∈ Z | z′ ≤ c}), inf ′({z′ ∈ Z | c ≤ z′})]

AIJa1 ? a2Kσ =
[
sup′({z′ ∈ Z | z′ ≤ z1}), inf ′({z′ ∈ Z | z2 ≤ z′})

]
where [z1, z2] = AIJa1Kσ ?I AIJa2Kσ

Table 7.5: Function for analyzing expressions.

universe are mapped to ⊥. Formally we have

β(a) =

{
[a, a] if a ∈ Z
⊥ otherwise

The first case in the above definition is obvious i.e. each constant z ∈ Z is
mapped into an interval [z, z]. The second case is defined only so that β is defined
for all elements in the universe. As we shall see in the ananlysis specification, β
is only applied to constants z ∈ Z.

The specification consists of two kinds of clauses corresponding to two cases in
the data flow equations. The following clause schema corresponds to the first
equation, and an instance of it is generated for each variable x ∈ Var appearing
in the program

A(nentry, x;>)

Intuitively, it captures the fact that at the beginning all variables may have all
possible values, here denoted by interval >. For the second equation schema we
distinguish three cases depending on the corresponding action. Whenever we
have an edge (s, t) ∈ E where [x := y ? z]t in the control flow graph we generate
the clauses

∀iy : ∀iz : A(s, y; iy) ∧A(s, z; iz)⇒ A(t, x; f?(iy, iz))

∀w : ∀i : w 6= x ∧A(s, w; i)⇒ A(t, w; i)

where function f? : Interval × Interval → Interval evaluates the arithmetic
operation ?. The first clause expresses that if at the exit from node s variables
y and z are mapped to intervals iy and iz, respectively, then at the exit from node
t variable x gets mapped to f?(iy, iz). The second clause propagates the analysis
information for all variables except x, which is assigned at node t. Similarly,
for assignments of the form [x := y ? c]t and [x := c]t the corresponding LLFP
clauses are

∀iy : A(s, y; iy)⇒ A(t, x; f?(iy, [c]))

∀w : ∀i : w 6= x ∧A(s, w; i)⇒ A(t, w; i)
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[x := 3]n1 ;

if [x = y]n2 then [y := x+ 2]n3 ; else [y := x− 2]n4 ;

[skip]n5 ;

Figure 7.5: Example program.

[x := 3]n1

��
[x = y]n2

''ww
[y := x+ 2]n3

''

[y := x− 2]n4

ww
[skip]n5

Figure 7.6: Control flow graph corresponding to program from Figure 7.5.

and

A(t, x; [c]) ∧ (∀w : ∀i : w 6= x ∧A(s, w; i)⇒ A(t, w; i))

respectively. Notice, that in the case the expressions in the control flow graph
contain constants, we make use of the lattice terms [u] in the resulting LLFP
clauses. We do that in order to map constants from the universe into the
corresponding lattice values. Moreover, whenever we have an edge (s, t) ∈ E
where [b]t or [skip]t in the control flow graph we generate the clause

∀w : ∀i : A(s, w; i)⇒ A(t, w; i)

The clause simply propagates the analysis information without altering it.

In order to present interval analysis in action, consider the simple program in
Figure 7.5. The corresponding control flow graph is depicted in Figure 7.6.

The LLFP specification of the interval analysis for the program is as follows.
First we have two clauses initializing the entry node

A(nentry, x;>) ∧A(nentry, y;>)
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The assignment in node n1 gives rise to the following clause

A(n1, x; [3]) ∧ (∀w : ∀v : w 6= x ∧A(nentry, w; v)⇒ A(n1, w; v))

The condition in node n2 simply propagates the analysis information as follows

∀w : ∀i : A(n1, w; i)⇒ A(n2, w; i)

Two assignments in nodes n3 and n4 give rise to

∀ix : A(n2, x; ix)⇒ A(n3, y; sum(ix, [2])) ∧
∀w : ∀i : w 6= y ∧A(n2, w; i)⇒ A(n3, w; i) ∧

and

∀ix : A(n2, x; ix)⇒ A(n4, y; sum(ix, [−2])) ∧
∀w : ∀i : w 6= y ∧A(n2, w; i)⇒ A(n4, w; i) ∧

where function sum : Interval × Interval → Interval is defined as

sum(int1, int2) = [inf(int1) + inf(int2), sup(int1) + sup(int2)]

Finally, for node n5 we have two clauses propagating the analysis information
from two branches of the if statement

∀w : ∀i : A(n3, w; i)⇒ A(n5, w; i) ∧
∀w : ∀i : A(n4, w; i)⇒ A(n5, w; i)

By evaluating the above clauses we obtain the analysis result presented in Ta-
ble 7.6. The assignment at node n1 results in variable x being mapped to interval
[3, 3]. The assignments in nodes n3 and n4 cause variable y to be mapped to
intervals [5, 5] and [1, 1], respectively. Finally, both mappings for variable y are
joined at node n5 resulting in the mapping to the interval [1, 5], as expected.
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x y
nentry > >
n1 [3, 3] >
n2 [3, 3] >
n3 [3, 3] [5, 5]
n4 [3, 3] [1, 1]
n5 [3, 3] [1, 5]

Table 7.6: Analysis result for the program in Figure 7.5.
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Chapter 8

Case study: Model Checking

In this chapter we present applications of the LFP logic to specify model check-
ing problems for two modal logics: Computation Tree Logic (CTL) [17] and
Action Computation Tree Logic (ACTL). By doing so, we show that LFP may
be used to specify a prototype model checker. We believe that this chapter
enhances our understanding of the interplay between static analysis and model
checking by showing that model checking can be seen as static analysis of modal
logic formulae. This chapter builds on the developments of Steffen and Schmidt
[53, 52] on one hand, and on work by Nielson and Nielson [42] on the other.

8.1 CTL Model Checking

This section is concerned with the application of the LFP logic to the CTL
model checking problem [4]. In particular we show how LFP can be used to
specify a prototype model checker for a special purpose modal logic of interest.
Here we illustrate the approach on the familiar case of Computation Tree Logic
(CTL) [17]. Throughout this section, we assume that the transition system,
defined in Section 2.2, is finite and has no terminal states.

CTL distinguishes between state formulae and path formulae. CTL state for-
mulae Φ over the set AP of atomic propositions and CTL path formulae ϕ are
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formed according to the following grammar

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | Eϕ | Aϕ
ϕ ::= XΦ | Φ1UΦ2 | GΦ

where a ∈ AP . The satisfaction relation |= is defined for state formula by

s |= true iff true
s |= a iff a ∈ L(s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Eϕ iff π |= ϕ for some π ∈ Paths(s)
s |= Aϕ iff π |= ϕ for all π ∈ Paths(s)

where Paths(s), defined in Section 2.2, denote the set of maximal path fragments
π starting in s. The maximal path fragment is an infinite path fragment (since
we assumed that the are no terminal states) that cannot be prolonged. The
satisfaction relation |= for path formulae is defined by

π |= XΦ iff π[1] |= Φ
π |= Φ1UΦ2 iff ∃j ≥ 0 : (π[j] |= Φ2 ∧ (∀0 ≤ k < j : π[k] |= Φ1))
π |= GΦ iff ∀j ≥ 0 : π[j] |= Φ

where for path π = s0s1 . . . and an integer i ≥ 0, π[i] denotes the i-th state of
π, i.e. π[i] = si.

Now, let us briefly explain the sematnics of CTL. We begin with the state for-
mulas. The boolean value true is satisfied by all states. An atomic proposition
a holds in a state s if and only if state s is labelled with a by the labelling
function L. A state s satisfies the formula ¬Φ if and only if s does not satisfy Φ.
The formula Eϕ is valid in state s if and only if there exists a path starting in s
that satisfies ϕ. Finally, Aϕ is valid in state s if and only if all paths starting in
s satisfy ϕ. Now, let us turn into the path formulae. The path formula XΦ is
valid for a path π if and only if Φ is valid in the first state of that path i.e. state
π[1]. The formula Φ1UΦ2 is valid for a path π if and only if π has an initial
finite prefix such that Φ2 holds in the last state of that prefix and Φ1 holds in
all the other states of that prefix. Finally, the path formula GΦ is valid for path
π if and only if for each state on that path the formula Φ holds.

As an example let us consider a transition system depicted in Figure 8.1. The
set of atomic propositions is AP = {a, b}. The labeling function is defined as
follows

L(s1) = {a, b}, L(s2) = {a}, L(s3) = {b}

Table 8.1 contains example CTL formulae with the corresponding sets of states
satisfying them. The formula EX(a ∧ b) is valid in the state s2 since there is
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Φ {s | s |= Φ}
EX(a ∧ b) {s2}

AXb {s2, s3}
E¬aUb {s1, s3}

A(a ∧ b)U(a ∧ ¬b) {s1}
EGa {s1, s2}

AG¬a {s3}

Table 8.1: Example CTL formulae.

s1

!!
s2aa

// s3 ll

Figure 8.1: Example for the semantics of CTL.

a transition from s2 to s1 in which both a and b hold. The formula AXb is
valid in states s2 and s3 since all outgoing transitions from both states lead
to states satisfying b. The formula E¬aUb is valid in states s1 and s3 since b
holds in both of them. The formula A(a ∧ b)U(a ∧ ¬b) is valid only in state s1

because both a and b hold in s1 and the only outgoing transition leads to state
s2 where a hold and b does not hold. The formula EGa is valid in the states s1

and s2 since there is an infinite path s1s2s1s2 . . . along which a holds globally.
Finally, the formula AG¬a holds in state s3 since the only path starting in s3

is s3s3s3 . . . along which a does not hold.

CTL model checking amounts to a recursive computation of the set Sat(Φ) of
all states satisfying Φ, which is sometimes referred to as global model checking.
The algorithm boils down to a bottom-up traversal of the abstract syntax tree
of the CTL formula Φ. The nodes of the abstract syntax tree correspond to the
sub-formulae of Φ, and leaves are either a constant true or an atomic proposition
a ∈ AP .

Now let us consider the corresponding LFP specification, where for each formula
Φ we define a relation SatΦ ⊆ S characterizing states where Φ hold. The
specification is defined in Table 8.2. Notice that there is only a finite number
of subformulae; hence there are only finitely many relations SatΦ to be defined.
The clause for true is straightforward and says that true holds in all states. The
clause for an atomic proposition a expresses that a state satisfies a whenever it is
in La, where we assume that we have a predicate La ⊆ S for each a ∈ AP . The
clause for Φ1∧Φ2 captures that a state satisfies Φ1∧Φ2 whenever it satisfies both
Φ1 and Φ2. Similarly a state satisfies ¬Φ if it does not satisfy Φ. The formula
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define(∀s : Sattrue(s))
define(∀s : La(s)⇒ Sata(s))
define(∀s : SatΦ1(s) ∧ SatΦ2(s)⇒ SatΦ1∧Φ2(s))
define(∀s : ¬SatΦ(s)⇒ Sat¬Φ(s))

define(∀s : (∃s′ : T (s, s′) ∧ SatΦ(s′))⇒ SatEXΦ(s))

define(∀s : (∀s′ : ¬T (s, s′) ∨ SatΦ(s′))⇒ SatAXΦ(s))

define

(
(∀s : SatΦ2(s)⇒ SatE[Φ1UΦ2](s))∧
(∀s : SatΦ1

(s) ∧ (∃s′ : T (s, s′) ∧ SatE[Φ1UΦ2](s
′))⇒ SatE[Φ1UΦ2](s))

)

define

(
(∀s : SatΦ2(s)⇒ SatA[Φ1UΦ2](s))∧
(∀s : SatΦ1(s) ∧ (∀s′ : ¬T (s, s′) ∨ SatA[Φ1UΦ2](s

′))⇒ SatA[Φ1UΦ2](s))

)

constrain

(
(∀s : SatEGΦ(s)⇒ SatΦ(s))∧
(∀s : SatEGΦ(s)⇒ (∃s′ : T (s, s′) ∧ SatEGΦ(s′)))

)

constrain

(
(∀s : SatAGΦ(s)⇒ SatΦ(s))∧
(∀s : SatAGΦ(s)⇒ (∀s′ : ¬T (s, s′) ∨ SatAGΦ(s′)))

)

Table 8.2: LFP specification of satisfaction sets.
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for EXΦ captures that a state s satisfies EXΦ, if there is a transition to state s′

such that s′ satisfies Φ. The formula for AXΦ expresses that a state s satisfies
AXΦ if for all states s′: either there is no transition from s to s′, or otherwise
s′ satisfies Φ. The formula for E[Φ1UΦ2] captures two possibilities. If a state
satisfies Φ2 then it also satisfies E[Φ1UΦ2]. Alternatively if the state s satisfies
Φ1 and there is a transition to a state satisfying E[Φ1UΦ2] then s also satisfies
E[Φ1UΦ2]. The formula A[Φ1UΦ2] also captures two cases. If a state satisfies
Φ2 then it also satisfies A[Φ1UΦ2]. Alternatively state s satisfies A[Φ1UΦ2] if
it satisfies Φ1 and for all states s′ either there is no transition from s to s′ or
A[Φ1UΦ2] is valid in s′. Let us now consider the formula for EGΦ. Since the
set of states satisfying EGΦ is defined as a largest set satisfying the semantics
of EGΦ, the property is defined by means of a constrain clause. The first
conjunct expresses that whenever a state satisfies EGΦ it also satisfies Φ. The
second conjunct says that if a state satisfies EGΦ then there exists a transition
to a state s′ such that s′ satisfies EGΦ. Finally let us consider the formula
for AGΦ, which is also defined in terms of constrain clause and distinguishes
between two cases. In the first one whenever a state satisfies AGΦ, it also
satisfies Φ. Alternatively, if a state s satisfies AGΦ then for all states s′: either
there is no transition from s to s′ or otherwise s′ satisfies AGΦ.

Generating clauses for SatΦ is performed by postorder traversal of Φ; hence the
clauses defining sub-formulas of Φ are defined in the lower layers. More precisely,
the relations corresponding to the sub-formulae of Φ have lower ranks, and hence
are asserted before the relation SatΦ corresponding to the formula Φ. It can
also be shown that the LFP clauses constructed for a CTL formula are both
closed and stratified. It can be accomplished analogously to Section 4 in [42].
Moreover, it is important to note that the specification in Table 8.2 is both
correct and precise. By correctness we mean that whenever we have s |= Φ,
then s ∈ %(SatΦ), where % is the least model of the corresponding LFP clauses.
In addition to correctness, the LFP specification is precise, which is not usually
the case in static analysis where we usually have an over-approximate result.
More precisely, whenever s ∈ %(SatΦ) in the least model % of the LFP clauses,
then s |= Φ. It follows that an implementation of the given specification of CTL
by means of the LFP solver constitutes a model checker for CTL.

We may estimate the worst-case time complexity of model checking performed
using LFP. Consider a CTL formula Φ of size |Φ|; it is immediate that the
LFP clause has size O(|Φ|), and the nesting depth is at most 2. According
to Proposition 4.6 the worst case time complexity of the LFP specification is
O(|S|+|S|2|Φ|), where |S| is the number of states in the transition system. Using
a more refined reasoning than that of Proposition 4.6 we obtain O(|S|+ |T ||Φ|),
where |T | is the number of transitions in the transition system. It is due to the
fact that the ”double quantifications” over states in Table 8.2 really correspond
to traversing all possible transitions rather than all pairs of states. Thus our
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LFP model checking algorithm has the same worst case complexity as classical
model checking algorithms [4].

As an example let us consider the Bakery mutual exclusion algorithm [35]. Al-
though the algorithm is designed for an arbitrary number of processes, we con-
sider the simpler setting with two processes. Let P1 and P2 be the two processes,
and x1 and x2 be two shared variables both initialized to 0. We can represent
the algorithm as an interleaving of two program graphs [4], which are directed
graphs where actions label the edges rather than the nodes. The algorithm is
as follows

while true do
x1 := x2 + 1;
while ¬(x2 = 0 ∨ x1 < x2) do

skip;
od
c := · · · ;
x1 := 0;

od

while true do
x2 := x1 + 1;
while ¬(x1 = 0 ∨ x2 < x1) do

skip;
od
c := · · · ;
x2 := 0;

od

The variables x1 and x2 are used to resolve the conflict when both processes
want to enter the critical section. When xi is equal to zero, the process Pi is not
in the critical section and does not attempt to enter it — the other one can safely
proceed to the critical section. Otherwise, if both shared variables are non-zero,
the process with smaller “ticket” (i.e. value of the corresponding variable) can
enter the critical section. This reasoning is captured by the conditions of busy-
waiting loops. When a process wants to enter the critical section, it simply takes
the next “ticket” hence giving priority to the other process.

The corresponding representation of the two processes as program graphs is
given by

1

x1:=x2+1

��
2

x2=0∨x1<x2
��

¬(x2=0∨x1<x2)mm

3

x1:=0

== 1

x2:=x1+1

��
2

x1=0∨x2<x1
��

¬(x1=0∨x2<x1)mm

3

x2:=0

==

From the algorithm above, we can obtain a program graph corresponding to the
interleaving of the two processes, which is depicted in Figure 8.2.

The CTL formulation of the mutual exclusion property is AG¬(crit1 ∧ crit2),
which states that along all paths globally it is never the case that crit1 and crit2
hold at the same time.
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a11 : x1 := x2 + 1
a12 : (x2 = 0) ∨ (x1 < x2)
a13 : ¬((x2 = 0) ∨ (x1 < x2))
a14 : x1 := 0
a21 : x2 := x1 + 1
a22 : (x1 = 0) ∨ (x2 < x1)
a23 : ¬((x1 = 0) ∨ (x2 < x1))
a24 : x2 := 0

Figure 8.2: Interleaved program graph.

As already mentioned, in order to specify the problem we proceed bottom up
by specifying formulae for the sub problems. After simplification we obtain the
following LFP clauses

define(∀s : Lcrit1(s) ∧ Lcrit2(s)⇒ Satcrit(s)),

constrain

(
(∀s : SatAG(¬crit)(s)⇒ ¬Satcrit(s))∧
(∀s : SatAG(¬crit)(s)⇒ (∀s′ : ¬T (s, s′) ∨ SatAG(¬crit)(s

′)))

)
where relation Lcrit1 (respectively Lcrit1) characterizes states in the interleaved
program graph that correspond to process P1 (respectively P2) being in the crit-
ical section. Furthermore, the AG modality is defined by means of a constrain
clause. The first conjunct expresses that whenever a state satisfies a mutual
exclusion property AG(¬crit) it does not satisfy crit. The second one states
that if a state satisfies a mutual exclusion property then all successors do as
well, i.e. for an arbitrary state, it is either not a successor or else satisfies the
mutual exclusion property.

8.2 ACTL Model Checking

In this section we present the application of LFP to the Action Computation Tree
Logic (ACTL) model checking [40]. The developments in this section follows
the work presented in [42], where ALFP logic was used. The advantage of using
LFP is the ability of directly expressing formulas characterized by the greatest
fixpoints, which was not directly possible using ALFP.
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The prerequisite for model checking is a model of the system under considera-
tion. Here, we assume that the underlying model is given by a labelled transition
system (LTS) as defined in Section 2.2. We also assume that the underlying la-
belled transition system is finite and has no terminal states.

First let us present syntax and semantics of ACTL. Similarly to the syntax of
CTL, we distinguish between state and path formulae. ACTL state formulae
over the set of atomic propositions AP are formed according to the following
grammar

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | Eϕ | Aϕ

where a ∈ AP and ϕ is a path formula. ACTL path formulae are formed
according to the following grammar

ϕ ::= XΩΦ | Φ1Ω1
UΩ2

Φ2 | GΩΦ

where Φ, Φ1 and Φ2 are state formulae, and Ω, Ω1 and Ω2 are subsets of Act .
The satisfaction relation |= is defined for state formula by

s |= true iff true
s |= a iff a ∈ L(s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Eϕ iff ρ |= ϕ for some ρ ∈ Execs(s)
s |= Aϕ iff ρ |= ϕ for all ρ ∈ Execs(s)

where Execs(s), defined in Section 2.2 denote the set of maximal execution
fragments ρ starting in s. The satisfaction relation |= for path formulae is
defined by

ρ |= XΩΦ iff ρAct [0] ∈ Ω ∧ ρS [1] |= Φ
ρ |= Φ1Ω1

UΩ2
Φ2 iff ∃j ≥ 0 : (ρAct [j] ∈ Ω2 ∧ ρS [j + 1] |= Φ2∧

(∀0 ≤ k < j : ρAct [k] ∈ Ω1 ∧ ρS [k + 1] |= Φ1))
ρ |= GΩΦ iff ∀j ≥ 0 : ρAct [j] ∈ Ω⇒ ρS [j + 1] |= Φ

where for execution ρ = s0α0s1α1 . . . and i ≥ 0, ρS [i] and ρAct [i] denote the i-th
state and action of ρ, respectively; i.e. ρS [i] = si and ρAct [i] = αi.

As an example, let us now consider the labelled transition system (S,Act ,→
, I,AP , L), where S = {1, 2, 3}, Act = {α, β, γ, δ}, AP = {err}, and L(3) =
{err}, L(1) = L(2) = ∅. The transition relation is given in Figure 8.3. Let
Sat(Φ) ⊆ S denote the set of states satisfying modal formula Φ, and consider
formulas and corresponding satisfaction sets in Table 8.3. The sets of states
satisfying given formulas are fairly straightforward; hence let us focus on the
last formula only, namely AG{γ}err . Notice that the only action that the
formula mentions is γ. By looking at the transition relation in Figure 8.3 we
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``
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Figure 8.3: Example labelled transition system.

Φ Sat(Φ)
EXActerr {2, 3}
AXActerr {3}

E(trueActUActerr) {1, 2, 3}
A(trueActUActerr) {3}

EGActerr {2, 3}
AGActerr {3}
AG{γ}err {1, 2, 3}

Table 8.3: Example ACTL formulae and corresponding satisfaction sets.

see that the only transition labelled γ leads to state satisfying predicate err ,

namely state 3. Thus the transition 2
γ−→ 3 satisfies the semantics’ condition for

property AG{γ}err . For all the other transitions the condition holds trivially
since the left hand site of the implication is false. As a result the formula is
satisfied by all three states.

Notice that we do not get the equivalent CTL formulae by merely setting Ω to
Act . For example, consider again the above transition system and transition
relation depicted in Figure 8.3. The set of states satisfying the CTL formula
EGerr according to the semantics of CTL from Section 8.1 is {3}, whereas
according to Table 8.3 the satisfaction set for an ACTL formula EGActerr is
{2, 3}. Our choice of the semantics aims to illustrate how LFP can be used to
specify a prototype model checker for a special purpose modal logic of interest.
Other choices are also possible and they would follow similar pattern as the one
presented here.

For a given ACTL formula, model checking aims at computing the set Sat(Φ) ⊆
S of states that satisfy the modal formula Φ. Similarly to the case of CTL, the
algorithm usually proceeds in a syntax directed manner on the formula Φ. More
precisely, the algorithm traverses the abstract syntax tree of the ACTL formula
Φ in a bottom-up manner. The nodes of the abstract syntax tree correspond
to the sub-formulae of Φ, and leaves are either the constant true or an atomic
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define(∀s : Sattrue(s))
define(∀s : La(s)⇒ Sata(s))
define(∀s : SatΦ1

(s) ∧ SatΦ2
(s)⇒ SatΦ1∧Φ2

(s))
define(∀s : ¬SatΦ(s)⇒ Sat¬Φ(s))

define(∀s : (∃a : ∃s′ : T (s, a, s′) ∧ Ω(a) ∧ SatΦ(s′))⇒ SatEXΩΦ(s))

define(∀s : (∀a : ∀s′ : ¬T (s, a, s′) ∨ (Ω(a) ∧ SatΦ(s′)))⇒ SatAXΩΦ(s))

define


(∀s : (∃a : ∃s′ : T (s, a, s′) ∧ Ω2(a) ∧ SatΦ2

(s′))⇒
SatE[Φ1Ω1

UΩ2
Φ2](s))∧

(∀s : (∃a : ∃s′ : T (s, a, s′) ∧ Ω1(a) ∧ SatΦ1(s′)∧
SatE[Φ1Ω1UΩ2Φ2](s

′))⇒ SatE[Φ1Ω1UΩ2Φ2](s))



define

 (∀s : (∀a : ∀s′ : ¬T (s, a, s′) ∨ (Ω2(a) ∧ SatΦ2
(s′))∨

(Ω1(a) ∧ SatΦ1
(s′) ∧ SatA[Φ1Ω1

UΩ2
Φ2](s

′)))⇒
SatA[Φ1Ω1

UΩ2
Φ2](s))


constrain

(
∀s : SatEGΩΦ(s)⇒ (∃a : ∃s′ : T (s, a, s′)∧

(¬Ω(a) ∨ SatΦ(s′)) ∧ SatEGΩΦ(s′))

)

constrain


(∀s : SatAGΩΦ(s)⇒

(∀a : ∀s′ : ¬T (s, a, s′) ∨ ¬Ω(a) ∨ SatΦ(s′)))∧
(∀s : SatAGΩΦ(s)⇒

(∀a : ∀s′ : ¬T (s, a, s′) ∨ SatAGΩΦ(s′)))


Table 8.4: LFP specification of satisfaction sets.

proposition a ∈ AP .

The LFP specification follows the similar pattern as in the CTL case, namely for
each formula Φ we define a relation SatΦ ⊆ S characterizing states where Φ hold.
The specification is defined in Table 8.4. The clause for true is straightforward
and says that true holds in all states. The clause for an atomic proposition a
expresses that a state satisfies a whenever it is in La, where we assume that
we have a predicate La ⊆ S for each a ∈ AP . The clause for Φ1 ∧ Φ2 captures
that a state satisfies Φ1 ∧ Φ2 whenever it satisfies both Φ1 and Φ2. Similarly
a state satisfies ¬Φ if it does not satisfy Φ. Notice, that all the propositional
operators are given by means of define clauses, since they represent the least
sets satisfying the specifications.
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Now, let us focus on the modal operators. In the following we assume that for all
subsets Ω of Act we have a corresponding relation Ω on actions, i.e. Ω ⊆ Act .
The formula for EXΩΦ captures that a state s satisfies EXΩΦ, if there is a
transition labelled a, where Ω(a) holds, to state s′ such that s′ satisfies Φ. The
formula for AXΩΦ expresses that a state s satisfies AXΩΦ if for all actions
a and states s′: either there is no transition labelled a from s to s′, or other-
wise Ω(a) holds and s′ satisfies Φ. The formula for E[Φ1Ω1

UΩ2
Φ2] captures two

possibilities. The first one states that a state s satisfies E[Φ1Ω1
UΩ2

Φ2], if there
is a transition labelled a, where Ω(a) holds, to state s′ satisfying Φ2. Alter-
natively if there is a transition from s labelled a, where Ω(a) holds, to a state
satisfying both Φ1 and E[Φ1Ω1UΩ2Φ2] then s also satisfies E[Φ1Ω1UΩ2Φ2]. The
formula for A[Φ1Ω1UΩ2Φ2] expresses that a state s satisfies the modal formula
A[Φ1Ω1

UΩ2
Φ2] if for all states s′ and actions a either there is no transition from

s to s′ labelled with a, or Ω2(a) holds and Φ2 is valid in s′, or alternatively
Ω1(a) holds and both Φ1 and A[Φ1Ω1

UΩ2
Φ2] are valid in s′. Notice, that since

all the above LFP formulas represent the smallest sets of states satisfying cor-
responding modal formulas, they are given by means of a define clause. Let us
now consider the formula for EGΩΦ. Since the set of states satisfying EGΩΦ
is defined as a largest set satisfying the semantics of EGΩΦ, the property is
defined by means of constrain clause. The clause expresses that whenever a
state satisfies EGΩΦ then there exist a state s′ and an action a such that there
is a transition labelled a from s to s′ and either Ω(a) does not hold or s′ satis-
fies Φ, and furthermore s′ satisfies EGΩΦ. Finally let us consider the formula
for AGΩΦ, which is also defined in terms of constrain clause and distinguishes
between two cases. In the first one whenever a state satisfies AGΩΦ, then it
must be the case that for all actions a and states s′ either there is no transition
labelled a from s to s′, or otherwise either Ω(a) does not hold or s′ satisfies
Φ. Alternatively, if a state s satisfies AGΩΦ then for all actions a and states
s′: either there is no transition labelled a from s to s′ or otherwise s′ satisfies
AGΩΦ.

Now, let us make an analysis of the worst case time complexity of ACTL model
checking performed by means of LFP. Thus, let us assume that the state space
S has size |S|, whereas the size of the transition relation → is |T |. Notice
also that for the ACTL formula Φ of size |Φ|, the corresponding LFP clause
has size O(|Φ|), and the quantifier nesting depth is at most 3. According
to Proposition 4.6 the worst case time complexity of the LFP specification is
O(|S| + |S|3|Φ|). In the above we assumed that the number of atomic propo-
sitions is bounded by a constant. If we additionally assume that the number
of action labels is also bounded by some constant, then the worst case time
complexity of the LFP specification become O(|S| + |S|2|Φ|). The reason for
that is the fact that the quantification over actions can be ignored and hence
the maximal nesting depth of quantification becomes 2. Using a more refined
reasoning than that of Proposition 4.6 we obtain O(|S|+ |T ||Φ|). It is due to the
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fact that the ”double quantifications” over states in Table 8.4 really correspond
to traversing all possible transitions rather than all pairs of states. As a conse-
quence, our LFP model checking algorithm has the same worst-case complexity
as classical model checking algorithms [4].



Chapter 9

Conclusions and future work

In this dissertation we presented a framework for succinctly expressing static
analysis and model checking problems. The framework facilitates rapid pro-
totyping and consists of variants of ALFP logic and associated solvers. Since
analysis specifications are usually written in a declarative style, logical formu-
lations are convenient for creating their executable specifications. We also be-
lieve that the logical specifications of analysis problems are clearer and simpler
to analyse for complexity and correctness than their imperative counterparts.
Moreover, they give a clear distinction between specification of the analysis, and
the computation of the best analysis result.

The great advantage of the framework is its applicability to various problems
arising in both static analysis and model checking. For that reason we believe
that this dissertation enhances our understanding of the interplay between static
analysis and model checking - to the extent that they can be seen as essentially
solving the same problem.

The main ingredients of the framework are as follows:

• ALFP logic developed by Nielson et al. [44], and the associated solv-
ing algorithms for computing the least model of a given ALFP formula.
Currently there are two algorithms available; a differential algorithm de-
veloped by Nielson et al. [44] as well as a BDD-based one.
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• LLFP logic that allows interpretations over complete lattices satisfying
Ascending Chain Condition. We established a Moore Family result for
LLFP that guarantees that there always is single best solution for a prob-
lem under consideration. We also developed a solving algorithm, that
computes the least solution guaranteed by the Moore Family result. The
key features of the algorithm is the use of prefix trees and its combination
of continuation-passing style with propagation of differences.

• LFP logic, which has direct support for both inductive computations of
behaviors as well as co-inductive specifications of properties. Two main
theoretical contributions are a Moore Family result and a parametrized
worst-case time complexity result. We also presented a BDD-based solving
algorithm, which computes the least solution guaranteed by the Moore
Family result with worst-case time complexity as given by the complexity
result.

We showed that the logics and the associated solvers can be used for rapid
prototyping. We illustrated that by a variety of case studies from static analysis
and model checking.

As a future work we would like to implement a front-end for automatically
extracting analysis specifications from program source code. This would al-
low to conduct a performance evaluation of the presented solving algoritms on
the real-world systems. In order to enhance the efficiency of the algorithms it
would be beneficial to extend the existing logic into a many-sorted ones. This
would mean that the underlying universe would be partitioned into domains,
and then each relation would be defined over specific domains. It would also
be interesting to investigate the applicability of the magic set transformation
described in Chapter 6 to other logics of this thesis. In particular, it is not
entirely clear how it could be applied to LFP logic in the case of co-inductive
specifications. Another direction for future work would be to lift the Ascending
Chain Condition for the complete lattice over which the LLFP formulae are
defined and use e.g. widening operator [20, 21] in order to ensure termination of
the fixed point computation. The expressivity of the LLFP logic could also be
extended by adding universal quantification of variables in preconditions. This
would allow to express modal logic formulae that universally quantify over the
paths e.g. AXϕ or AFϕ. Moreover, we would like to enhance the framework
by adding more logics, e.g. multi valued logics, that are more expressive and
can handle problems that currently are beyond the current capabilities of the
framework.
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A.1 Proof of Lemma 3.2

Proof.

Reflexivity ∀% ∈ ∆ : % � %.

To show that % � % let us take j = s. If rank(R) < j then %(R) = %(R) as
required. Otherwise if rank(R) = j then from %(R) = %(R) we get %(R) v %(R).
Thus we get the required % � %.

Transitivity ∀%1, %2, %3 ∈ ∆ : %1 � %2 ∧ %2 � %3 ⇒ %1 � %3.

Let us assume that %1 � %2 ∧ %2 � %3. From %i � %i+1 we have ji such that
conditions (a)–(c) are fulfilled for i = 1, 2. Let us take j to be the minimum of j1
and j2. Now we need to verify that conditions (a)–(c) hold for j. If rank(R) < j
we have %1(R) = %2(R) and %2(R) = %3(R). It follows that %1(R) = %3(R),
hence (a) holds. Now let us assume that rank(R) = j. We have %1(R) v %2(R)
and %2(R) v %3(R) and from transitivity of v we get %1(R) v %3(R), which gives
(b). Let us now assume that j 6= s, hence %i(R) < %i+1(R) for some R ∈ R and
i = 1, 2. Without loss of generality let us assume that %1(R) < %2(R). We have
%1(R) < %2(R) and %2(R) v %3(R), hence %1(R) < %3(R), and (c) holds.

Anti-symmetry ∀%1, %2 ∈ ∆ : %1 � %2 ∧ %2 � %1 ⇒ %1 = %2.

Let us assume %1 � %2 and %2 � %1. Let j be minimal such that rank(R) = j
and %1(R) 6= %2(R) for some R ∈ R. Then, since rank(R) = j, we have %1(R) v
%2(R) and %2(R) v %1(R). Hence %1(R) = %2(R) which is a contradiction. Thus
it must be the case that %1(R) = %2(R) for all R ∈ R. �
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A.2 Proof of Lemma 3.3

Proof. First we prove that
d

∆M is a lower bound of M ; that is
d

∆M � % for
all % ∈M . Let j be maximum such that % ∈Mj ; since M = M0 and Mj ⊇Mj+1

clearly such j exists. From definition of Mj it follows that (
d

∆M)(R) = %(R) for
all R with rank(R) < j; hence (a) holds. If rank(R) = j we have (

d
∆M)(R) =

λ~a.
d
{%′(R)(~a) | %′ ∈Mj} v %(R) showing that (b) holds. Finally let us assume

that j 6= s; we need to show that there is some R with rank(R) = j such that
(
d

∆M)(R) < %(R). Since we know that j is maximum such that % ∈ Mj , it
follows that % /∈ Mj+1, hence there is a relation R with rank(R) = j such that
(
d

∆M)(R) < %(R); thus (c) holds.

Now we need to show that
d

∆M is the greatest lower bound. Let us assume
that %′ � % for all % ∈ M , and let us show that %′ �

d
∆M . If %′ =

d
∆M

the result holds vacuously, hence let us assume %′ 6=
d

∆M . Then there exists
a minimal j such that (

d
∆M)(R) 6= %′(R) for some R with rank(R) = j.

Let us first consider R such that rank(R) < j. By our choice of j we have
(
d

∆M)(R) = %′(R) hence (a) holds. Next assume that rank(R) = j. Since we
assumed that %′ � % for all % ∈ M and Mj ⊆ M , it follows that %′(R) v %(R)
for all % ∈ Mj . Thus we have %′(R) v λ~a.

d
{%(R)(~a) | % ∈ Mj}. Since

(
d

∆M)(R) = λ~a.
d
{%(R)(~a) | % ∈ Mj}, we have %′(R) v (

d
∆M)(R) which

proves (b). Finally since we assumed that %′(R) 6= (
d

∆M)(R) for some R with
rank(R) = j, it follows that (c) holds. Thus we proved that %′ �

d
∆M . �
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A.3 Proof of Proposition 3.4

In order to prove Proposition 3.4 we first state and prove two auxiliary lemmas.

Lemma A.1 If % =
d

∆M , pre occurs in clj and (%, ς) |=β pre then also
(%′, ς) |=β pre for all %′ ∈Mj.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the precondition pre occurring in clj .
Case: pre = R(~u;V )
Let us take % =

d
∆M and assume that

(%, ς) |=β R(~u;V )

From Table 3.1 we have:
%(R)(ς(~u)) w ς(V )

Depending on the rank of R we have two cases. If rank(R) = j then %(R) =
λ~a.

d
{%′(R)(~a) | %′ ∈Mj} and hence we have

l
{%′(R)(ς(~u)) | %′ ∈Mj} w ς(V )

It follows that for all %′ ∈Mj

%′(R)(ς(~u)) w ς(V )

Now if rank(R) < j then %(R) = %′(R) for all %′ ∈ Mj hence we have that for
all %′ ∈Mj

%′(R)(ς(~u)) w ς(V )

which according to Table 3.1 is equivalent to

∀%′ ∈Mj : (%′, ς) |=β R(~u;V )

which was required and finishes the case.
Case: pre = Y (u)
Let us take % =

d
∆M and assume that

(%, ς) |=β Y (u)

According to the semantics of LLFP in Table 3.1 we have

β(ς(u)) v ς(Y )

It follows that
∀%′ ∈Mj : β(ς(u)) v ς(Y )
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which according to the semantics of LLFP in Table 3.1 is equivalent to

∀%′ ∈Mj : (%′, ς) |=β Y (u)

which was required and finishes the case.
Case: pre = ¬R(~u;V )
Let us take % =

d
∆M and assume that

(%, ς) |=β ¬R(~u;V )

From Table 3.1 we have:

{(%(R)(ς(~u))) w ς(V )

Since rank(R) < j then we know that %(R) = %′(R) for all %′ ∈ Mj hence we
have that

∀%′ ∈Mj : {(%(R)(ς(~u))) w ς(V )

Which according to Table 3.1 is equivalent to

∀%′ ∈Mj : (%′, ς) |=β ¬R(~u;V )

which was required and finishes the case.
Case: pre = pre1 ∧ pre2

Let us take % =
d

∆M and assume that

(%, ς) |=β pre1 ∧ pre2

According to Table 3.1 we have

(%, ς) |=β pre1

and
(%, ς) |=β pre2

From the induction hypothesis we get that for all %′ ∈Mj

(%′, ς) |=β pre1

and
(%′, ς) |=β pre2

It follows that for all %′ ∈Mj

(%′, ς) |=β pre1 ∧ pre2

which was required and finishes the case.
Case: pre = pre1 ∨ pre2

Let us take % =
d

∆M and assume that

(%, ς) |=β pre1 ∨ pre2
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According to Table 3.1 we have

(%, ς) |=β pre1

or
(%, ς) |=β pre2

From the induction hypothesis we get that for all %′ ∈Mj

(%′, ς) |=β pre1

or
(%′, ς) |=β pre2

It follows that for all %′ ∈Mj

(%′, ς) |=β pre1 ∨ pre2

which was required and finishes the case.
Case: pre = ∃x : pre′

Let us take % =
d

∆M and assume that

(%, ς) |=β ∃x : pre′

According to Table 3.1 we have

∃a ∈ U : (%, ς[x 7→ a]) |=β pre
′

From the induction hypothesis we get that for all %′ ∈Mj

∃a ∈ U : (%′, ς[x 7→ a]) |=β pre
′

It follows from Table 3.1 that for all %′ ∈Mj

(%′, ς) |=β ∃x : pre′

which was required and finishes the case.
Case: pre = ∃Y : pre′

Let us take % =
d

∆M and assume that

(%, ς) |=β ∃Y : pre′

According to Table 3.1 we have

∃l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β pre
′

From the induction hypothesis we get that for all %′ ∈Mj

∃l ∈ L6=⊥ : (%′, ς[Y 7→ l]) |=β pre
′

It follows from Table 3.1 that for all %′ ∈Mj

(%′, ς) |=β ∃Y : pre′

which was required and finishes the case. �
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Lemma A.2 If % =
d

∆M and (%′, ς) |=β clj for all %′ ∈M then (%, ς) |=β clj.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the clause occurring in clj .
Case: clj = R(~u;V )
Assume that for all %′ ∈M

(%′, ς) |=β R(~u;V )

From the semantics of LLFP we have that for all %′ ∈M

%′(R)(ς(~u)) w ς(V )

It follows that: l
{%′(R)(ς(~u)) | %′ ∈M} w ς(V )

Since Mj ⊆M , we have:

l
{%′(R)(ς(~u)) | %′ ∈Mj} w ς(V )

We know that rank(R) = j; hence %(R) = λ~a.
d
{%′(R)(~a) | %′ ∈Mj}; thus

%(R)(ς(~u)) =
l
{%′(R)(ς(~u)) | %′ ∈Mj} w ς(V )

Which according to Table 3.1 is equivalent to

(%, ς) |=β R(~u;V )

Case: clj = cl1 ∧ cl2
Assume that for all %′ ∈M :

(%′, ς) |=β cl1 ∧ cl2

From Table 3.1 it is equivalent to

(%′, ς) |=β cl1 and (%′, ς) |=β cl2

The induction hypothesis gives that

(%, ς) |=β cl1 and (%, ς) |=β cl2

Which according to Table 3.1 is equivalent to

(%, ς) |=β cl1 ∧ cl2

and finishes the case.
Case: clj = pre⇒ cl
Assume that for all %′ ∈M :

(%′, ς) |=β pre⇒ cl (A.1)
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We have two cases. In the first one (%, ς) |=β pre is false, hence (%, ς) |=β pre⇒
cl holds trivially. In the second case let us assume:

(%, ς) |=β pre (A.2)

Lemma A.1 gives that for all %′ ∈Mj

(%′, ς) |=β pre

From (A.1) we have that for all %′ ∈Mj

(%′, ς) |=β cl

and the induction hypothesis gives:

(%, ς) |=β cl

Hence from (A.2) we get:

(%, ς) |=β pre⇒ cl

which was required and finishes the case.
Case: clj = ∀x : cl
Assume that for all %′ ∈M

(%′, ς) |=β ∀x : cl

From Table 3.1 we have that for all %′ ∈M and for all a ∈ U

(%′, ς[x 7→ a]) |=β cl

Thus from the induction hypothesis we get that for all a ∈ U

(%, ς[x 7→ a]) |=β cl

According to Table 3.1 it is equivalent to

(%, ς) |=β ∀x : cl

which was required and finishes the case.
Case: cl = ∀Y : cl
Assume that for all %′ ∈M

(%′, ς) |=β ∀Y : cl

From Table 3.1 we have that %′ ∈M

∀l ∈ L6=⊥ : (%′, ς[Y 7→ l]) |=β cl
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Thus from the induction hypothesis we get that

∀l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β cl

According to Table 3.1 it is equivalent to

(%, ς) |=β ∀Y : cl

which was required and finishes the case. �

Proposition 3.4. Assume cls is a stratified LLFP clause sequence, and let ς0
be an interpretation of free variables in cls. Furthermore, %0 is an interpretation
of all relations of rank 0. Then

{% | (%, ς0) |=β cls ∧ ∀R : rank(R) = 0⇒ %0(R) v %(R)}

is a Moore family.

Proof. The result follows from Lemma A.2. �
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A.4 Proof of Proposition 3.5

Proposition 3.5: If φ is a well formed LLFP formula (a precondition, clause
or a clause sequence), the underlying complete lattice is P(U) and β : U → L is
defined as β(a) = {a} for all a ∈ U , then

(%, ς) |=β φ ⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(φ)

Proof. We proceed by structural induction on φ.

Positive query. For a positive query R(~u;V ) we have to prove: (%, ς) |=β

R(~u;V )⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u;V )). We have three sub-cases:

Case: R(~u;Y )
We have:

(%, ς) |=β R(~u;Y )

Which according to the Table 3.1 gives:

%(R)(ς(~u)) w ς(Y ) (A.3)

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u;Y ))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= R(~u, xY )

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(xY )) ∈ f(%)(R)

Which according to (3.1) gives:

∀σ ∈ f(ς) : β(σ(xY )) v %(R)(σ(~u))

Which equals to:

∀σ ∈ f(ς) : β(σ(xY )) v %(R)(ς(~u)) (A.4)

(A.3)⇒(A.4): For any σ ∈ f(ς) we have β(σ(xY )) v ς(Y ) according to (3.2);
from (A.3) we have ς(Y ) v %(R)(ς(~u)) and this gives (A.4).
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(A.4)⇒(A.3): Let β(a) = ς(Y ); it then follows from (3.2) that there is σa ∈ f(ς)
such that: σa(xY ) = a. Then from (A.4) we get: β(a) v %(R)(ς(~u)) and since
we assumed that β(a) = ς(Y ) this proves (A.3).

Case: R(~u; [v])
We have:

(%, ς) |=β R(~u; [v])

Which according to the Table 3.1 gives:

ς([v]) v %(R)(ς(~u))

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u; [v]))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= R(~u, v)

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(v)) ∈ f(%)(R)

From (3.2) it follows that:

(ς(~u), ς(v)) ∈ f(%)(R)

Which is equivalent to:
β(ς(v)) v %(R)(ς(~u))

and finishes the case since ς([v]) = β(ς(v)).

Case: Y (u)
We have:

(%, ς) |=β Y (u)

Which according to the Table 3.1 gives:

β(ς(u)) v ς(Y )

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(Y (u))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= xY = u
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Then according to Table 2.1 we have:

∀σ ∈ f(ς) : σ(xY ) = σ(u)

From (3.2) it follows that:

∀σ ∈ f(ς) : β(σ(u)) v ς(Y )

Since ς(u) = σ(u) we have:
β(ς(u)) v ς(Y )

quod erat demonstrandum.

Negative query. For a negative query ¬R(~u;V ) we have to prove: (%, ς) |=β

¬R(~u;V )⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(¬R(~u;V )). We have two sub-cases:

Case: ¬R(~u;Y )
We have:

(%, ς) |=β ¬R(~u;Y )

Which according to the Table 3.1 gives:

{%(R)(ς(~u)) w ς(Y ) (A.5)

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(¬R(~u;Y ))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= ¬R(~u, xY )

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(xY )) /∈ f(%)(R)

Which according to (3.1) gives:

∀σ ∈ f(ς) : β(σ(xY )) 6v %(R)(σ(~u))

Which equals to:

∀σ ∈ f(ς) : β(σ(xY )) 6v %(R)(ς(~u)) (A.6)

(A.5)⇒(A.6): Assume that: β(σ(xY )) v %(R)(ς(~u)), that is, β(σ(xY )) 6v
{%(R)(ς(~u)). Then from (A.5) it follows that: β(σ(xY )) 6v ς(Y ), which is a
contradiction and (A.6) follows.
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(A.6)⇒(A.5): Assume that β(a) v ς(Y ). Then (3.2) gives that there is some
σa ∈ f(ς) such that σa(xY ) = a. Then it follows from (A.6) that: β(a) 6v
%(R)(ς(~u)); hence we get that: β(a) v {%(R)(ς(~u)). Since we assumed that
β(a) v ς(Y ) we get (A.5), which was required.

Case: ¬R(~u; [v])
We have:

(%, ς) |=β ¬R(~u; [v])

Which according to the Table 3.1 gives:

ς([v]) v {%(R)(ς(~u))

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(¬R(~u; [v]))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= ¬R(~u, v)

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(v)) /∈ f(%)(R)

From (3.2) it follows that:

(ς(~u), ς(v)) /∈ f(%)(R)

Which gives:
β(ς(v)) 6v %(R)(ς(~u))

Which is equivalent to:
β(ς(v)) v {%(R)(ς(~u))

Since ς([v]) = β(ς(v)), we have:

ς([v]) v {%(R)(ς(~u))

quod erat demonstrandum.

The cases for pre1 ∧ pre2 and pre1 ∨ pre2 follows directly from the induction
hypothesis.

Case: ∃x : pre. For a precondition ∃x : pre we have to prove: (%, ς) |=β ∃x :
pre ⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(∃x : pre). The induction hypothesis says that
for all a ∈ U : (%, ς[x 7→ a]) |=β pre⇔ ∀σ′ ∈ f(ς[x 7→ a]) : (f(%), σ′) |= f(pre).
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We have:

(%, ς) |=β ∃x : pre

Which according to the Table 3.1 gives:

∃a ∈ U : (%, ς[x 7→ a]) |=β pre

Then, from the induction hypothesis we get:

∃a ∈ U : ∀σ′ ∈ f(ς[x 7→ a]) : (f(%), σ′) |= f(pre)

which from (3.2) gives:

∃a ∈ U : ∀σ ∈ f(ς) : (f(%), σ[x 7→ a]) |= f(pre)

Which equals:

∀σ ∈ f(ς) : ∃a ∈ U : (f(%), σ[x 7→ a]) |= f(pre)

Then from Table 2.1 it follows that:

∀σ ∈ f(ς) : (f(%), σ) |= ∃x : f(pre)

Hence from Table 3.2 we get the required:

∀σ ∈ f(ς) : (f(%), σ) |= f(∃x : pre)

Case: ∃Y : pre. For a precondition ∃Y : pre we have to prove: (%, ς) |=β ∃Y :
pre⇔ ∀σ ∈ f(ς) : (f(%), σ) |= f(∃Y : pre). The induction hypothesis says that
for all l ∈ L 6=⊥ : (%, ς[Y 7→ l]) |=β pre ⇔ ∀σ′ ∈ f(ς[Y 7→ l]) : (f(%), σ′) |=
f(pre).

We have:

(%, ς) |=β ∃Y : pre

Which according to the Table 3.1 gives:

∃l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β pre

Then, from the induction hypothesis we get:

∃l ∈ L6=⊥ : ∀σ′ ∈ f(ς[Y 7→ l]) : (f(%), σ′) |= f(pre)

which from (3.2) gives:

∃l ∈ L6=⊥ : ∀a : β(a) v l : ∀σ ∈ f(ς) : (f(%), σ[xY 7→ a]) |= f(pre)
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Which equals:

∀σ ∈ f(ς) : ∃l ∈ L6=⊥ : ∀a : β(a) v l : (f(%), σ[xY 7→ a]) |= f(pre)

Then from Table 2.1 we have:

∀σ ∈ f(ς) : (f(%), σ) |= ∃Y : f(pre)

Hence from Table 3.2 we get the required:

∀σ ∈ f(ς) : (f(%), σ) |= f(∃Y : pre)

Assertion. For an assertion R(~u;V ) we have to prove: (%, ς) |=β R(~u;V ) ⇔
∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u;V )). We have two sub-cases:

Case: R(~u;Y )
We have:

(%, ς) |=β R(~u;Y )

Which according to the Table 3.1 gives:

%(R)(ς(~u)) w ς(Y ) (A.7)

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u;Y ))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= R(~u, xY )

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(xY )) ∈ f(%)(R)

Which according to (3.2) gives:

∀σ ∈ f(ς) : β(σ(xY )) v %(R)(σ(~u))

Since σ(~u) = ς(~u) it equals to:

∀σ ∈ f(ς) : β(σ(xY )) v %(R)(ς(~u)) (A.8)

(A.7)⇒(A.8) For any σ ∈ f(ς) we have: β(σ(xY )) v ς(Y ). From (A.7) we have
ς(Y ) v %(R)(ς(~u)), which gives the required.
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(A.8)⇒(A.7) Let β(a) = σa(Y ); from (3.2) it follows that there is σa ∈ f(ς)
such that: σa(xY ) = a. Then from (A.8) we get: β(a) v %(R)(ς(~u)), and since
we assumed that β(a) = σa(Y ) we get (A.7), which was required.

Case: R(~u; [v])
We have:

(%, ς) |=β R(~u; [v])

Which according to the Table 3.1 gives:

ς([v]) v %(R)(ς(~u))

On the other hand we have:

∀σ ∈ f(ς) : (f(%), σ) |= f(R(~u; [v]))

Hence, from Table 3.2 we have:

∀σ ∈ f(ς) : (f(%), σ) |= R(~u, v)

Then according to Table 2.1 we have:

∀σ ∈ f(ς) : (σ(~u), σ(v)) ∈ f(%)(R)

From (3.2) it follows that:

(ς(~u), ς(v)) ∈ f(%)(R)

Which is equivalent to:
β(ς(v)) v %(R)(ς(~u))

Since β(ς(v)) = ς([v]) we have:

ς([v]) v %(R)(ς(~u))

quod erat demonstrandum.

The case of 1 follows directly from the definition.

The cases of cl1 ∧ cl2 and pre⇒ cl follow from the induction hypothesis.

Case: ∀Y : cl. For a clause ∀Y : cl we have to prove: (%, ς) |=β ∀Y : cl ⇔
∀σ ∈ f(ς) : (f(%), σ) |= f(∀Y : cl). The induction hypothesis says that for all
l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β cl⇔ ∀σ′ ∈ f(ς[Y 7→ l]) : (f(%), σ′) |= f(cl).

We have:
(%, ς) |=β ∀Y : cl
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Which according to the Table 3.1 gives:

∀l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β cl

Then, from the induction hypothesis we get:

∀l ∈ L6=⊥ : ∀σ′ ∈ f(ς[Y 7→ l]) : (f(%), σ′) |= f(cl)

which from Table 3.2 gives:

∀l ∈ L6=⊥ : ∀a : β(a) v l : ∀σ ∈ f(ς) : (f(%), σ[xY 7→ a]) |= f(cl)

Which is equivalent to:

∀a ∈ U : ∀σ ∈ f(ς) : (f(%), σ[xY 7→ a]) |= f(cl)

Which equals:

∀σ ∈ f(ς) : ∀a ∈ U : (f(%), σ[xY 7→ a]) |= f(cl)

Then from Table 2.1 we have:

∀σ ∈ f(ς) : (f(%), σ) |= ∀xY : f(cl)

Hence from Table 3.2 we get the required:

∀σ ∈ f(ς) : (f(%), σ) |= f(∀Y : cl)

Case: ∀x : cl. For a clause ∀x : cl we have to prove: (%, ς) |=β ∀x : cl ⇔
∀σ ∈ f(ς) : (f(%), σ) |= f(∀x : cl). The induction hypothesis says that for all
a ∈ U : (%, ς[x 7→ a]) |=β cl⇔ ∀σ′ ∈ f(ς[x 7→ a]) : (f(%), σ′) |= f(cl).

We have:

(%, ς) |=β ∀x : cl

Which according to the Table 3.1 gives:

∀a ∈ U : (%, ς[x 7→ a]) |=β cl

Then, from the induction hypothesis we get:

∀a ∈ U : ∀σ′ ∈ f(ς[x 7→ a]) : (f(%), σ′) |= f(cl)

which from (3.2) gives:

∀a ∈ U : ∀σ ∈ f(ς) : (f(%), σ[x 7→ a]) |= f(cl)
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Which equals:

∀σ ∈ f(ς) : ∀a ∈ U : (f(%), σ[x 7→ a]) |= f(cl)

Then from Table 2.1 we have:

∀σ ∈ f(ς) : (f(%), σ) |= ∀x : f(cl)

Hence from Table 3.2 we get the required:

∀σ ∈ f(ς) : (f(%), σ) |= f(∀x : cl)
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A.5 Proof of Lemma 3.7

Lemma 3.7: If cl is an LLFP clause, then h(cl) is in Horn format and:

(%, ς) |=β cl ⇔ (%, ς) |=β h(cl)

Proof. We conduct the proof by showing that each step of the transformation
is semantics preserving.
Step 1: Renaming of variables is semantics preserving.
Step 2: Assume that

(%, ς) |=β (∃x : pre)⇒ cl

From Table 3.1 we have

(%, ς) 6|=β (∃x : pre) ∨ (%, ς) |=β cl

Using Table 3.1 it follows that for all a ∈ U

(%, ς[x 7→ a]) 6|=β pre ∨ (%, ς) |=β cl

Since x 6∈ fv(cl) we have that for all a ∈ U

(%, ς[x 7→ a]) 6|=β pre ∨ (%, ς[x 7→ a]) |=β cl

Which is equivalent to

∀a ∈ U : (%, ς[x 7→ a]) |=β pre⇒ cl

From Table 3.1 we get
(%, ς) |=β ∀x : pre⇒ cl

which was required and finishes the case.
Step 3: Transformation into DNF is semantics preserving.
Step 4: We consider a simplified case for two disjuncts only. Assume that

(%, ς) |=β (pre1 ∨ pre2)⇒ cl

From Table 3.1 we have

(%, ς) 6|=β (pre1 ∨ pre2) ∨ (%, ς) |=β cl

From De Morgan’s laws we get

((%, ς) 6|=β pre1 ∧ (%, ς) 6|=β pre2) ∨ (%, ς) |=β cl

Which is equivalent to

((%, ς) 6|=β pre1 ∨ (%, ς) |=β cl) ∧ ((%, ς) 6|=β pre2 ∨ (%, ς) |=β cl)
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From which it follows that

((%, ς) |=β pre1 ⇒ cl) ∧ ((%, ς) |=β pre2 ⇒ cl)

Hence from Table 3.1 we have

(%, ς) |=β (pre1 ⇒ cl) ∧ (pre2 ⇒ cl)

which was required and finishes the case.
Step 5: Assume

(%, ς) |=β pre⇒ ∀x : cl

From Table 3.1 we have

((%, ς) 6|=β pre) ∨ ((%, ς) |=β ∀x : cl)

Using Table 3.1 we get

((%, ς) 6|=β pre) ∨ (∀a ∈ U : (%, ς[x 7→ a]) |=β cl)

Since x 6∈ fv(pre) the above is equivalent to

∀a ∈ U : ((%, ς[x 7→ a]) 6|=β pre) ∨ ((%, ς[x 7→ a]) |=β cl)

It follows that
∀a ∈ U : (%, ς[x 7→ a]) |=β pre⇒ cl

Which according to Table 3.1 is equivalent to

(%, ς) |=β ∀x : (pre⇒ cl)

which was required and finishes the case.
Step 6: Assume

(%, ς) |=β ∀x : (pre⇒ cl1 ∧ cl2)

From Table 3.1 we have that for all a ∈ U

(%, ς[x 7→ a]) |=β (pre⇒ cl1 ∧ cl2)

Which is equivalent to

((%, ς[x 7→ a]) 6|=β pre) ∨ ((%, ς[x 7→ a]) |=β cl1 ∧ (%, ς[x 7→ a]) |=β cl2)

It follows that

((%, ς[x 7→ a]) 6|=β pre ∨ (%, ς[x 7→ a]) |=β cl1)

and
((%, ς[x 7→ a]) 6|=β pre ∨ (%, ς[x 7→ a]) |=β cl2)
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Hence we have that for all a ∈ U

((%, ς[x 7→ a]) |=β pre⇒ cl1) ∧ ((%, ς[x 7→ a]) |=β pre⇒ cl2)

According to Table 3.1 we have

((%, ς) |=β ∀x : pre⇒ cl1) ∧ ((%, ς) |=β ∀x : pre⇒ cl2)

which was required and finishes the sub-case.
Now let us assume

(%, ς) |=β ∀x : (pre′ ⇒ (pre′′ ⇒ cl))

From Table 3.1 we have that for all a ∈ U

(%, ς[x 7→ a]) |=β pre
′ ⇒ (pre′′ ⇒ cl)

Which is equivalent to

(%, ς[x 7→ a]) 6|=β pre
′ ∨ (%, ς[x 7→ a]) 6|=β pre

′ ∨ (%, ς[x 7→ a]) |=β cl

Using De Margan’s laws we get

(%, ς[x 7→ a]) 6|=β (pre′ ∧ pre′′) ∨ (%, ς[x 7→ a]) |=β cl

Which is equivalent to

(%, ς[x 7→ a]) |=β (pre′ ∧ pre′′)⇒ cl

According to Table 3.1 we have

(%, ς) |=β ∀x : (pre′ ∧ pre′′)⇒ cl

Which was required and finishes the case.

A.6 Proof of Lemma 3.9

Lemma 3.9: Assume that pre contains k defining occurrences of Y and that

(%, ς[Y 7→ l]) |=β pre

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)

where li v l for 1 ≤ i ≤ k. Then

ς[Y1 7→ l1] · · · [Yk 7→ lk](WY
pre) = l
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If Y does not occur in a defining position in pre then WY
pre = L.

Proof. We proceed by the induction on the structure of pre.
Case pre = R′(~u;Y )
Assume:

(%, ς[Y 7→ l]) |=β R
′(~u;Y ), l 6= ⊥

Then from Table 3.1 we have:

l v %(R′)(ς(~u)) (A.9)

Let’s also assume that:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(R′(~u;Y )), li 6= ⊥, (1 ≤ i ≤ k)

where li v l for 1 ≤ i ≤ k. Since WY
pre = Yi and g(R′(~u;Y )) = R′(~u;Yi), we

have:

(%, ς[Yi 7→ li]) |=#
β R′(~u;Yi), li 6= ⊥

From Table 3.3 it follows that:

li = %(R′)(ς(~u)) (A.10)

We have to show:

ς[Y1 7→ l1] · · · [Yk 7→ lk](Yi) = l

From (A.9) and (A.10) we have:

li = %(R′)(ς(~u)) w l

We also know that li v l for 1 ≤ i ≤ k. Thus it follows that:

li = l = ς[Y1 7→ l1] · · · [Yk 7→ lk](Yi)

which finishes the case.

Case pre = R′(~u; [v])
Assume:

(%, ς[Y 7→ l]) |=β R
′(~u; [v]), l 6= ⊥

Then from Table 3.1 we have:

β(ς(v)) v %(R′)(ς(~u)) (A.11)

Let’s also assume that:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(R′(~u; [v])), li 6= ⊥, (1 ≤ i ≤ k)
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where li v l for 1 ≤ i ≤ k. Since WY
pre = L and g(R′(~u; [v])) = R′(~u; [v]), we

have:
(%, ς[Yi 7→ li]) |=#

β R′(~u; [v]), li 6= ⊥

From Table 3.3 it follows that:

β(ς(v)) v %(R′)(ς(~u)) (A.12)

We have to show:

ς[Y1 7→ l1] · · · [Yk 7→ lk](WY
pre) = L = l

which holds trivially and finishes the case.

Case pre = Y (u)
Assume:

(%, ς[Y 7→ l]) |=β Y (u), l 6= ⊥

Then from Table 3.1 we have:

β(ς(~u)) v ς[Y 7→ l](Y )

Let’s also assume that:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(Y (u)), li 6= ⊥, (1 ≤ i ≤ k)

where li v l for 1 ≤ i ≤ k. We have g(Y (u)) = WY
pre(u), and WY

pre = L, thus
we get:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β WY

pre(u), li 6= ⊥, (1 ≤ i ≤ k)

We have to show:

ς[Y1 7→ l1] · · · [Yk 7→ lk](WY
pre) = L = l

which holds trivially and finishes the case.

Case pre = ¬R′(~u;Y )
Assume:

(%, ς[Y 7→ l]) |=β ¬R′(~u;Y ), l 6= ⊥

Then from Table 3.1 we have:

l v {%(R′)(ς(~u)) (A.13)

Let’s also assume that:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(¬R′(~u;Y )), li 6= ⊥, (1 ≤ i ≤ k)
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where li ⊆ l for 1 ≤ i ≤ k. Since g(¬R′(~u;Y )) = R′(~u;Yi) we have:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R′(~u;Yi), li 6= ⊥, (1 ≤ i ≤ k)

From Table 3.3 it follows that:

li = %(R′)(ς(~u))

We have WY
pre = {Yi, and

ς[Y1 7→ l1] · · · [Yk 7→ lk]({Yi) = {li = {%(R′)(ς(~u)) w l

Hence we have that li v l and {li w l, which means that li = ⊥. The assumption
is false; thus the case holds trivially.

Case pre = ¬R′(~u; [v])
Assume:

(%, ς[Y 7→ l]) |=β ¬R′(~u; [v]), l 6= ⊥

Then from Table 3.1 we have:

β(ς(v)) v {%(R′)(ς(~u)) (A.14)

Let’s also assume that:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(¬R′(~u; [v])), li 6= ⊥, (1 ≤ i ≤ k)

where li v l for 1 ≤ i ≤ k. Since WY
pre = L and g(¬R′(~u; [v])) = ¬R′(~u; [v]), we

have:
(%, ς[Yi 7→ li]) |=#

β ¬R
′(~u; [v]), li 6= ⊥

From Table 3.3 it follows that:

β(ς(v)) v {%(R′)(ς(~u)) (A.15)

We have to show:

ς[Y1 7→ l1] · · · [Yk 7→ lk](WY
pre) = L = l

which holds trivially and finishes the case.

Case pre = pre1 ∧ pre2

Assume:
(%, ς[Y 7→ l]) |=β pre1 ∧ pre2

Then from Table 3.1 we have:

(%, ς[Y 7→ l]) |=β pre1 and (%, ς[Y 7→ l]) |=β pre2
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Let’s also assume:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre1 ∧ pre2)

where li v l for 1 ≤ i ≤ k. From Table 3.3 we have:

(%, ς[Y1 7→ l1] · · · [Yk1
7→ lk1

]) |=#
β g(pre1)

and
(%, ς[Yk1+1 7→ lk1+1] · · · [Yk 7→ lk]) |=#

β g(pre2)

The induction hypothesis gives:

ς[Y1 7→ l1] · · · [Yk1
7→ lk1

](WY
pre1) = l (A.16)

and
ς[Yk1+1 7→ lk1+1] · · · [Yk 7→ lk](WY

pre2) = l (A.17)

Since the definition of function g ensures linearity; meaning that variables Yi
(1 ≤ i ≤ k) occurring in pre1 and pre2 are pairwise disjoint, and from WY

pre =

WY
pre1 uW

Y
pre2 , it follows that:

ς[Y1 7→ l1] · · · [Yk1
7→ lk1

] · · · [Yk 7→ lk](WY
pre) = l

which was required and finishes the case.

Lemma 3.10: Assume that (%, ς) |=#
β g(cl). Then (%, ς) |=β cl.

Proof. Case: ∀Y : pre⇒ R(~u;Y ).
Assume:

(%, ς) |=#
β ∀Y1 · · · ∀Yk : g(pre)⇒ R(~u;WY

pre)

That is for all l1, · · · , lk, (li 6= ⊥, 1 ≤ i ≤ k):

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)⇒ R(~u;WY

pre) (A.18)

We want to show that for all l, l 6= ⊥:

(%, ς[Y 7→ l]) |=β pre⇒ R(~u;Y )

Let’s assume:
(%, ς[Y 7→ l]) |=β pre

Hence we need to prove:

(%, ς[Y 7→ l]) |=β R(~u;Y )

Which according to Table 3.1 is equivalent to:

l v %(R)(ς(~u))
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Let’s also assume:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre), li 6= ⊥ (1 ≤ i ≤ k) (A.19)

where li v l for 1 ≤ i ≤ k. Then Lemma 3.9 gives:

(ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) = l (A.20)

Then from (A.18) and (A.19) we have:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R(~u;WY

pre)

Hence:
(ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY

pre) v %(R)(ς(~u))

Then from (A.20) we get the required:

l = (ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) v %(R)(ς(~u))

Case: ∀Y : pre⇒ R(~u; [v]).
Assume:

(%, ς) |=#
β ∀Y1 · · · ∀Yk : g(pre)⇒ R(~u;WY

pre)

That is for all l1, · · · , lk, (li 6= ⊥, 1 ≤ i ≤ k):

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)⇒ R(~u;WY

pre) (A.21)

We want to show that for all l, l 6= ⊥:

(%, ς[Y 7→ l]) |=β pre⇒ R(~u; [v])

Let’s assume:
(%, ς[Y 7→ l]) |=β pre

Hence we need to prove:

(%, ς[Y 7→ l]) |=β R(~u; [v])

Which according to Table 3.1 is equivalent to:

β(ς(v)) v %(R)(ς(~u))

Let’s also assume:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre), li 6= ⊥ (1 ≤ i ≤ k) (A.22)

where li v l for 1 ≤ i ≤ k. Then Lemma 3.9 gives:

(ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) = l (A.23)
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Then from (A.21) and (A.22) we have:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R(~u;WY

pre)

Hence:

(ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) v %(R)(ς(~u))

Since WY
pre = [v], we have:

(ς[Y1 7→ l1] · · · [Yk 7→ lk])([v]) v %(R)(ς(~u))

It follows that:

β(ς(v)) v %(R)(ς(~u))

quod erat demonstrandum.

Lemma 3.11: Assume that (%, ς) |=β cl. Then (%, ς) |=#
β g(cl).

Proof. Case ∀Y : pre⇒ R(~u;Y )
Assume:

(%, ς) |=β ∀Y : pre⇒ R(~u;Y )

Then from Table 3.1 we know that:

∀l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β pre⇒ R(~u;Y ) (A.24)

We want to show that:

(%, ς) |=#
β ∀Y1 · · · ∀Yk : g(pre)⇒ R(~u;WY

pre)

That is for all l1, · · · , lk, li 6= ⊥, (1 ≤ i ≤ k):

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)⇒ R(~u;WY

pre)

Assume:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)

Then, we need to show:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R(~u;WY

pre)

Assume also:

(%, ς[Y 7→ l]) |=β pre (A.25)

where li v l for 1 ≤ i ≤ k. Then from Lemma 3.9 we have:

l = (ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre)
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Then from (A.24) and (A.25) we know:

(%, ς[Y 7→ l]) |=β R(~u;Y )

Hence, from Table 3.1 we know:

ς[Y 7→ l](Y ) v %(R)(ς(~u))

which equals to:
l v %(R)(ς(~u))

Since l = (ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) we have:

l = (ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre) v %(R)(ς(~u))

Thus from Table 3.3 we get:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R(~u;WY

pre)

quod erat demonstrandum.

Case ∀Y : pre⇒ R(~u; [v])
Assume:

(%, ς) |=β ∀Y : pre⇒ R(~u; [v])

Then from Table 3.1 we know that:

∀l ∈ L6=⊥ : (%, ς[Y 7→ l]) |=β pre⇒ R(~u; [v]) (A.26)

We want to show that:

(%, ς) |=#
β ∀Y1 · · · ∀Yk : g(pre)⇒ R(~u;WY

pre)

That is for all l1, · · · , lk, li 6= ⊥, (1 ≤ i ≤ k):

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β g(pre)⇒ R(~u;WY

pre)

Assume:
(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#

β g(pre)

Then, we need to show:

(%, ς[Y1 7→ l1] · · · [Yk 7→ lk]) |=#
β R(~u;WY

pre)

Since WY
pre = [v], it follows form Table 3.3 that we need to show:

β(ς(v)) v %(R)(ς(~u))

Assume also:
(%, ς[Y 7→ l]) |=β pre (A.27)
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where li v l for 1 ≤ i ≤ k. Then from Lemma 3.9 we have:

l = (ς[Y1 7→ l1] · · · [Yk 7→ lk])(WY
pre)

From (A.26) and (A.27) we know:

(%, ς[Y 7→ l]) |= R(~u; [v])

Hence, from Table 3.1 we know:

β(ς[Y 7→ A](v)) v %(R)(ς(~u))

which equals to:
β(ς(v)) v %(R)(ς(~u))

quod erat demonstrandum.
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A.7 Proof of Proposition 3.13

In order to prove Proposition 3.13 we first state and prove an auxiliary lemma.

Lemma A.3 If % =
d

∆M and (%′, ζ, ς) |=β clj for all %′ ∈M then (%, ζ, ς) |=β

clj.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the clause occurring in clj . We only consider cases
involving function terms in the lattice component. For other cases, see Appendix
A.3.
Case: clj = R(~u; f( ~V ′))
Assume that for all %′ ∈M

(%′, ς, ζ) |=β R(~u; f( ~V ′))

From the semantics of LLFP we have that for all %′ ∈M

%′(R)(ς(~u)) w Jf( ~V ′)K(ζ, ς) = ζ(f)J ~V ′K(ζ, ς)

It follows that:
l
{%′(R)(ς(~u)) | %′ ∈M} w Jf( ~V ′)K(ζ, ς) = ζ(f)J ~V ′K(ζ, ς)

Since Mj ⊆M , we have:
l
{%′(R)(ς(~u)) | %′ ∈Mj} w Jf( ~V ′)K(ζ, ς) = ζ(f)J ~V ′K(ζ, ς)

We know that rank(R) = j; hence %(R) = λ~a.
d
{%′(R)(~a) | %′ ∈Mj}; thus

%(R)(ς(~u)) =
l
{%′(R)(ς(~u)) | %′ ∈Mj} w Jf( ~V ′)K(ζ, ς)

Which according to Table 3.1 is equivalent to

(%, ς, ζ) |=β R(~u; f( ~V ′))

and finishes the case, and the proof. �

Proposition 3.13. Assume cls is a stratified LLFP clause sequence, ς0 and
ζ0 are interpretations of free variables and function symbols in cls, respectively.
Furthermore, %0 is an interpretation of all relations of rank 0. Then

{% | (%, ζ0, ς0) |=β cls ∧ ∀R : rank(R) = 0⇒ %0(R) v %(R)}

is a Moore family.

Proof. The result follows from Lemma A.3. �
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A.8 Proof of Lemma 4.3

Proof.

Reflexivity ∀% ∈ ∆ : % v %.

To show that % v % let us take j = s. If rank(R) < j then %(R) = %(R) as
required. Otherwise if rank(R) = j and either R is a defined relation or j = 0,
then form %(R) = %(R) we get %(R) ⊆ %(R). The last case is when rank(R) = j
and R is a constrained relation. Then from %(R) = %(R) we get %(R) ⊇ %(R).
Thus we get the required % v %.

Transitivity ∀%1, %2, %3 ∈ ∆ : %1 v %2 ∧ %2 v %3 ⇒ %1 v %3.

Let us assume that %1 v %2 ∧ %2 v %3. From %i v %i+1 we have ji such that
conditions (a)–(d) are fulfilled for i = 1, 2. Let us take j to be the minimum of j1
and j2. Now we need to verify that conditions (a)–(d) hold for j. If rank(R) < j
we have %1(R) = %2(R) and %2(R) = %3(R). It follows that %1(R) = %3(R), hence
(a) holds. Now let us assume that rank(R) = j and either R is a defined relation
or j = 0. We have %1(R) ⊆ %2(R) and %2(R) ⊆ %3(R) and from transitivity of
⊆ we get %1(R) ⊆ %3(R), which gives (b). Alternatively rank(R) = j and R is
a constrained relation. We have %1(R) ⊇ %2(R) and %2(R) ⊇ %3(R) and from
transitivity of ⊇ we get %1(R) ⊇ %3(R), thus (c) holds. Let us now assume that
j 6= s, hence %i(R) 6= %i+1(R) for some R ∈ R and i = 1, 2. Without loss of
generality let us assume that %1(R) 6= %2(R). In case R is a defined relation
we have %1(R) ( %2(R) and %2(R) ⊆ %3(R), hence %1(R) 6= %3(R). Similarly
in case R is a constrained relation we have %1(R) ) %2(R) and %2(R) ⊇ %3(R).
Hence %1(R) 6= %3(R), and (d) holds.

Anti-symmetry ∀%1, %2 ∈ ∆ : %1 v %2 ∧ %2 v %1 ⇒ %1 = %2.

Let us assume %1 v %2 and %2 v %1. Let j be minimal such that rank(R) = j
and %1(R) 6= %2(R) for some R ∈ R. If j = 0 or R is a defined relation, then
we have %1(R) ⊆ %2(R) and %2(R) ⊆ %1(R). Hence %1(R) = %2(R) which is a
contradiction. Similarly ifR is a constrained relation we have %1(R) ⊇ %2(R) and
%2(R) ⊇ %1(R). It follows that %1(R) = %2(R), which again is a contradiction.
Thus it must be the case that %1(R) = %2(R) for all R ∈ R. �
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A.9 Proof of Lemma 4.4

Proof. First we prove that
d
M is a lower bound of M ; that is

d
M v % for all

% ∈ M . Let j be maximum such that % ∈ Mj ; since M = M0 and Mj ⊇ Mj+1

clearly such j exists. From definition of Mj it follows that (
d
M)(R) = %(R)

for all R with rank(R) < j; hence (a) holds.

If rank(R) = j and either R is a defined relation or j = 0 we have (
d
M)(R) =⋂

{%′(R) | %′ ∈Mj} ⊆ %(R) showing that (b) holds.

Similarly, if R is a constrained relation with rank(R) = j we have (
d
M)(R) =⋃

{%′(R) | %′ ∈Mj} ⊇ %(R) showing that (c) holds.

Finally let us assume that j 6= s; we need to show that there is some R with
rank(R) = j such that (

d
M)(R) 6= %(R). Since we know that j is maximum

such that % ∈ Mj , it follows that % /∈ Mj+1, hence there is a relation R with
rank(R) = j such that (

d
M)(R) 6= %(R); thus (d) holds.

Now we need to show that
d
M is the greatest lower bound. Let us assume that

%′ v % for all % ∈ M , and let us show that %′ v
d
M . If %′ =

d
M the result

holds vacuously, hence let us assume %′ 6=
d
M . Then there exists a minimal j

such that (
d
M)(R) 6= %′(R) for some R with rank(R) = j. Let us first consider

R such that rank(R) < j. By our choice of j we have (
d
M)(R) = %′(R) hence

(a) holds.

Next assume that rank(R) = j and either R is a defined relation of j = 0. Then
%′ v % for all % ∈ Mj . It follows that %′(R) ⊆ %(R) for all % ∈ Mj . Thus we
have %′(R) ⊆

⋂
{%(R) | % ∈ Mj}. Since (

d
M)(R) =

⋂
{%(R) | % ∈ Mj}, we

have %′(R) ⊆ (
d
M)(R) which proves (b).

Now assume rank(R) = j and R is a constrained relation. We have that %′ v %
for all % ∈ Mj . Since R is a constrained relation it follows that %′(R) ⊇ %(R)
for all % ∈ Mj . Thus we have %′(R) ⊇

⋃
{%(R) | % ∈ Mj}. Since (

d
M)(R) =⋃

{%(R) | % ∈Mj}, we have %′(R) ⊇ (
d
M)(R) which proves (c).

Finally since we assumed that (
d
M)(R) 6= %′(R) for some R with rank(R) = j,

it follows that (d) holds. Thus we proved that %′ v
d
M . �
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A.10 Proof of Proposition 4.5

In order to prove Proposition 4.5 we first state and prove two auxiliary lemmas.

Definition A.4 We introduce an ordering ⊆/j defined by %1 ⊆/j %2 if and only
if

• ∀R : rank(R) < j ⇒ %1(R) = %2(R)

• ∀R : rank(R) = j ⇒ %1(R) ⊆ %2(R)

Lemma A.5 Assume a condition cond occurs in clj, and let ς be a valuation
of free variables in cond. If %1 ⊆/j %2 and (%1, ς) |= cond then (%2, ς) |= cond.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the condition cond occurring in clj .
Case: cond = R(~x)
Assume %1 ⊆/j %2 and

(%1, ς) |= R(~x)

From Table 4.1 it follows that

J~xK([ ], ς) ∈ %1(R)

Depending of the rank of R we have two sub-cases.
(1) Let rank(R) < j, then from Definition A.4 we know that %1(R) = %2(R) and
hence

J~xK([ ], ς) ∈ %2(R)

Which according to Table 4.1 is equivalent to

(%2, ς) |= R(~x)

(2) Let us now assume rank(R) = j, then from Definition A.4 we know that
%1(R) ⊆ %2(R) and hence

J~xK([ ], ς) ∈ %2(R)

which is equivalent to

(%2, ς) |= R(~x)

and finishes the case.
Case: cond = ¬R(~x)
Assume %1 ⊆/j %2 and

(%1, ς) |= ¬R(~x)
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From Table 4.1 it follows that

J~xK([ ], ς) /∈ %1(R)

Since rank(R) < j, then from Definition A.4 we have %1(R) = %2(R) and hence

J~xK([ ], ς) /∈ %2(R)

Which according to Table 4.1 is equivalent to

(%2, ς) |= ¬R(~x)

Case: cond = cond1 ∧ cond2

Assume %1 ⊆/j %2 and
(%1, ς) |= cond1 ∧ cond2

From Table 4.1 it follows that

(%1, ς) |= cond1 and (%1, ς) |= cond2

The induction hypothesis gives

(%2, ς) |= cond1 and (%2, ς) |= cond2

Hence we have
(%2, ς) |= cond1 ∧ cond2

Case: cond = cond1 ∨ cond2

Assume %1 ⊆/j %2 and
(%1, ς) |= cond1 ∨ cond2

From Table 4.1 it follows that

(%1, ς) |= cond1 or (%1, ς) |= cond2

The induction hypothesis gives

(%2, ς) |= cond1 or (%2, ς) |= cond2

Hence we have
(%2, ς) |= cond1 ∨ cond2

Case: cond = ∃x : cond’
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Assume %1 ⊆/j %2 and
(%1, ς) |= ∃x : cond’

From Table 4.1 it follows that

∃a ∈ U : (%1, ς[x 7→ a]) |= cond’

The induction hypothesis gives

∃a ∈ U : (%2, ς[x 7→ a]) |= cond’

Hence from Table 4.1 we have

(%2, ς) |= ∃x : cond’

Case: cond = ∀x : cond’

Assume %1 ⊆/j %2 and
(%1, ς) |= ∀x : cond’

From Table 4.1 it follows that

∀a ∈ U : (%1, ς[x 7→ a]) |= cond’

The induction hypothesis gives

∀a ∈ U : (%2, ς[x 7→ a]) |= cond’

Hence from Table 4.1 we have

(%2, ς) |= ∀x : cond’

�

Lemma A.6 If % =
d
M and (%′, ζ, ς) |= clj for all %′ ∈M then (%, ζ, ς) |= clj.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the clause cl occurring in clj .

Case: clj = define(cond⇒ R(~u))

Assume
∀%′ ∈M : (%′, ζ, ς) |= cond⇒ R(~u) (A.28)

Let us also assume
(%, ς) |= cond
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Since % =
d
M we know that

∀%′ ∈M : % v %′ (A.29)

Let R′ occur in cond. We have two possibilities; either rank(R′) = j and R′ is a
defined relation, then from (A.29) if follows that %(R′) ⊆ %′(R′). Alternatively
rank(R′) < j and from (A.29) it follows that %(R′) = %′(R′). Hence from
Definition A.4 we have that % ⊆/j %′. Thus from Lemma A.5 it follows that

∀%′ ∈M : (%′, ς) |= cond

Hence from (A.28) we have

∀%′ ∈M : (%′, ζ, ς) |= R(~u)

Which from Table 4.1 is equivalent to

∀%′ ∈M : J~uK(ζ, ς) ∈ %′(R)

It follows that
J~uK(ζ, ς) ∈

⋂
{%′(R) | %′ ∈M} = %(R)

Which from Table 4.1 is equivalent to

(%, ζ, ς) |= R(~u)

and finishes the case.

Case: clj = define(def1 ∧ def2)

Assume
∀%′ ∈M : (%′, ζ, ς) |= def1 ∧ def2

From Table 4.1 we have that for all %′ ∈M

(%′, ζ, ς) |= def1 and (%′, ζ, ς) |= def2

The induction hypothesis gives

(%, ζ, ς) |= def1 and (%, ζ, ς) |= def2

Hence from Table 4.1 we have

(%, ζ, ς) |= def1 ∧ def2

Case: clj = define(∀x : def)
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Assume
∀%′ ∈M : (%′, ζ, ς) |= ∀x : def (A.30)

From Table 4.1 we have that

%′ ∈M : ∀a ∈ U : (%′, ζ, ς[x 7→ a]) |= def

Thus
∀a ∈ U : %′ ∈M : (%′, ζ, ς[x 7→ a]) |= def

The induction hypothesis gives

∀a ∈ U : (%, ζ, ς[x 7→ a]) |= def

Hence from Table 4.1 we have

(%, ζ, ς) |= ∀x : def

Case: clj = constrain(R(~u)⇒ cond)

Assume
∀%′ ∈M : (%′, ζ, ς) |= R(~u)⇒ cond (A.31)

Let us also assume
(%, ζ, ς) |= R(~u)

From Table 4.1 it follows that

J~uK(ζ, ς) ∈
⋃
{%′(R) | %′ ∈M}

Thus there is some %′ ∈M such that

J~uK(ζ, ς) ∈ %′(R)

From (A.31) it follows that
(%′, ς) |= cond

Since % =
d
M we know that

∀%′ ∈M : % v %′ (A.32)

Let R′ occur in cond. We have two possibilities; either rank(R′) = j and R′ is a
constrained relation, then from (A.32) if follows that %(R′) ⊇ %′(R′). Alterna-
tively rank(R′) < j and from (A.32) it follows that %(R′) = %′(R′). Hence from
Definition A.4 we have that %′ ⊆/j %. Thus from Lemma A.5 it follows that

(%, ς) |= cond
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which finishes the case.

Case: clj = constrain(con1 ∧ con2)

Assume
∀%′ ∈M : (%′, ζ, ς) |= con1 ∧ con2

From Table 4.1 we have that for all %′ ∈M

(%′, ζ, ς) |= con1 and (%′, ζ, ς) |= con2

The induction hypothesis gives

(%, ζ, ς) |= con1 and (%, ζ, ς) |= con2

Hence from Table 4.1 we have

(%, ζ, ς) |= con1 ∧ con2

Case: clj = constrain(∀x : con)

Assume
∀%′ ∈M : (%′, ζ, ς) |= ∀x : con (A.33)

From Table 4.1 we have that

%′ ∈M : ∀a ∈ U : (%′, ζ, ς[x 7→ a]) |= con

Thus
∀a ∈ U : %′ ∈M : (%′, ζ, ς[x 7→ a]) |= con

The induction hypothesis gives

∀a ∈ U : (%, ζ, ς[x 7→ a]) |= con

Hence from Table 4.1 we have

(%, ζ, ς) |= ∀x : con

�

Proposition 4.5: Assume cls is a stratified LFP formula, ς0 and ζ0 are inter-
pretations of the free variables and function symbols in cls, respectively. Fur-
thermore, %0 is an interpretation of all relations of rank 0. Then {% | (%, ζ0, ς0) |=
cls∧∀R : rank(R) = 0⇒ %(R) ⊇ %0(R)} is a Moore family. Proof. The result
follows from Lemma A.6. �
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A.11 Proof of Proposition 4.6

Proposition 4.6: For a finite universe U , the best solution % such that %0 v %
of a LFP formula cl1, . . . , cls (w.r.t. an interpretation of the constant symbols)
can be computed in time

O(|%0|+
∑

1≤i≤s

|cli||U|ki)

where ki is the maximal nesting depth of quantifiers in the cli and |%0| is the
sum of cardinalities of predicates %0(R) of rank 0. We also assume unit time
hash table operations (as in [39]). Proof. Let cli be a clause corresponding to
the i-th layer. Since cli can be either a define clause, or a constrain clause, we
have two cases.

Let us first assume that cli = define(def); the proof proceed in three phases.
First we transform def to def’ by replacing every universal quantification ∀x :
defcl by the conjunction of all |U| possible instantiations of defcl , every existen-
tial quantification ∃x : cond by the disjunction of all |U| possible instantiations
of cond and every universal quantification ∀x : cond by the conjunction of all |U|
possible instantiations of cond. The resulting clause def’ is logically equivalent
to def and has size

O(|U|k|def|) (A.34)

where k is the maximal nesting depth of quantifiers in def. Furthermore, def’ is
boolean, which means that there are no variables or quantifiers and all literals
are viewed as nullary predicates.

In the second phase we transform the formula def’, being the result of the first
phase, into a sequence of formulas def” = def’1, . . . , def’l as follows. We first
replace all top-level conjunctions in def’ with ”,”. Then we successively replace
each formula by a sequence of simpler ones using the following rewrite rule

cond1 ∨ cond2 ⇒ R(~u) 7→ cond1 ⇒ Qnew, cond2 ⇒ Qnew, Qnew ⇒ R(~u)

where Qnew is a fresh nullary predicate that is generated for each application
of the rule. The transformation is completed as soon as no replacement can be
done. The conjunction of the resulting define clauses is logically equivalent to
def’.

To show that this process terminates and that the size of def” is at most a
constant times the size of the input formula def’ , we assign a cost to the
formulae. Let us define the cost of a sequence of clauses as the sum of costs of
all occurrences of predicate symbols and operators (excluding ”,”). In general,
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the cost of a symbol or operator is 1 except disjunction that counts 6. Then the
above rule decreases the cost from k + 7 to k + 6, for suitable value of k. Since
the cost of the initial sequence is at most 6 times the size of def, only a linear
number of rewrite steps can be performed. Since each step increases the size at
most by a constant, we conclude that the def” has increased just by a constant
factor. Consequently, when applying this transformation to def’, we obtain a
boolean formula without sharing of size as in (A.34).

The third phase solves the system that is a result of phase two, which can be
done in linear time by the classical techniques of e.g. [25].

Let us now assume that the cli = constrain(con). We begin by transforming
con into a logically equivalent (modulo fresh predicates) define clause. The
transformation is done by function fi defined as

fi(constrain(con)) = define(g(con)), define(hi(con))

g(∀x : con) = ∀x : g(con)
g(con1 ∧ con2) = g(con1) ∧ g(con2)

g(R(~u)⇒ cond) = (¬cond[R{(~u)/¬R(~u)]⇒ R{(~u))

hi(∀x : con) = ∀x : hi(con)
hi(con1 ∧ con2) = hi(con1) ∧ hi(con2)
hi(R(~u)⇒ cond) = let cond’ = cond[true/(R′(~v) | rank(R′) = i)] in

cond’ ∧ ¬R{(~u)⇒ R(~u)

where R{ is a new predicate corresponding to the complement of R. The size
of the formula increases by a number of constraint predicates; hence the size of
the input formula is increased by a constant factor. Then the proof proceeds as
in case of define clause.

The three phases of the transformation result in the sequence of define clauses
of size

O(
∑

1≤i≤s

|cli||U|ki)

which can then be solved in linear time. We also need to take into account the
size of the initial knowledge i.e. the cardinality of all predicates of rank 0; thus
the overall worst case complexity is

O(|%0|+
∑

1≤i≤s

|cli||U|ki)

�
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A.12 Proof of Lemma 6.2

Proof. We conduct the proof by showing that each step of the transformation
is semantics preserving.
Step 1: Renaming of variables is semantics preserving.
Step 2: We need to show that provided that

(ρ, σ) |= ∀x : pre⇒ P (~y) (A.35)

the following holds

(ρ, σ) |= (∀x : pre)⇔ (ρ, σ) |= (∀x : P (~y))

Assume that x ∈ fv(pre) and hence x appears in ~y, since the other case holds
trivially.
(⇒) Assume that

(ρ, σ) |= (∀x : pre)

From Table 2.1 we have

∀a ∈ U : (ρ, σ[x 7→ a]) |= pre

Using (A.35) it follows that

∀a ∈ U : (ρ, σ[x 7→ a]) |= P (~y)

Which according to Table 2.1 is equivalent to

(ρ, σ) |= (∀x : P (~y))

which was required and finishes this direction.
(⇐) Assume that

(ρ, σ) |= (∀x : P (~y))

From Table 2.1 we have

∀a ∈ U : (ρ, σ[x 7→ a]) |= P (~y)

Since the clause (A.35) is the only one asserting predicate P it must be the case
that

∀a ∈ U : (ρ, σ[x 7→ a]) |= pre

According to Table 2.1 it is equivalent to

(ρ, σ) |= (∀x : pre)

which was required and finishes the case.
Step 3: We need to prove that

(ρ, σ) |= (∃x : pre1 ∨ pre2)⇔ (ρ, σ) |= (∃x : pre1) ∨ (∃x : pre2)
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Assume that
(ρ, σ) |= (∃x : pre1 ∨ pre2)

According to Table 2.1 it is equivalent to

∃a ∈ U : (ρ, σ[x 7→ a]) |= pre1 ∨ pre2

It follows that

∃a ∈ U : ((ρ, σ[x 7→ a]) |= pre1 ∨ (ρ, σ[x 7→ a]) |= pre1)

This is equivalent to

(∃a ∈ U : (ρ, σ[x 7→ a]) |= pre1) ∨ (∃a ∈ U : (ρ, σ[x 7→ a]) |= pre1)

Which according to Table 2.1 is equivalent to

(ρ, σ) |= (∃x : pre1) ∨ (∃x : pre2)

and finishes the case.
Step 4: Transformation into DNF is semantics preserving.
Step 5: We consider a simplified case for two disjuncts only. Assume that

(ρ, σ) |= (pre1 ∨ pre2)⇒ cl

From Table 2.1 we have

(ρ, σ) 6|= (pre1 ∨ pre2) ∨ (ρ, σ) |= cl

From De Morgan’s laws we get

((ρ, σ) 6|= pre1 ∧ (ρ, σ) 6|= pre2) ∨ (ρ, σ) |= cl

Which is equivalent to

((ρ, σ) 6|= pre1 ∨ (ρ, σ) |= cl) ∧ ((ρ, σ) 6|= pre2 ∨ (ρ, σ) |= cl)

From which it follows that

((ρ, σ) |= pre1 ⇒ cl) ∧ ((ρ, σ) |= pre2 ⇒ cl)

Hence from Table 2.1 we have

(ρ, σ) |= (pre1 ⇒ cl) ∧ (pre2 ⇒ cl)

which was required and finishes the case.
Step 6: Assume

(ρ, σ) |= pre⇒ ∀x : cl
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From Table 2.1 we have

((ρ, σ) 6|= pre) ∨ ((ρ, σ) |= ∀x : cl)

Using Table 2.1 we get

((ρ, σ) 6|= pre) ∨ (∀a ∈ U : (ρ, σ[x 7→ a]) |= cl)

Since x 6∈ fv(pre) the above is equivalent to

∀a ∈ U : ((ρ, σ[x 7→ a]) 6|= pre) ∨ ((ρ, σ[x 7→ a]) |= cl)

It follows that
∀a ∈ U : (ρ, σ[x 7→ a]) |= pre⇒ cl

Which according to Table 2.1 is equivalent to

(ρ, σ) |= ∀x : (pre⇒ cl)

which was required and finishes the case.
Step 7: Assume

(ρ, σ) |= ∀x : (pre⇒ cl1 ∧ cl2)

From Table 2.1 we have that for all a ∈ U

(ρ, σ[x 7→ a]) |= (pre⇒ cl1 ∧ cl2)

Which is equivalent to

((ρ, σ[x 7→ a]) 6|= pre) ∨ ((ρ, σ[x 7→ a]) |= cl1 ∧ (ρ, σ[x 7→ a]) |= cl2)

It follows that

((ρ, σ[x 7→ a]) 6|= pre ∨ (ρ, σ[x 7→ a]) |= cl1)

and
((ρ, σ[x 7→ a]) 6|= pre ∨ (ρ, σ[x 7→ a]) |= cl2)

Hence we have that for all a ∈ U

((ρ, σ[x 7→ a]) |= pre⇒ cl1) ∧ ((ρ, σ[x 7→ a]) |= pre⇒ cl2)

According to Table 2.1 we have

((ρ, σ) |= ∀x : pre⇒ cl1) ∧ ((ρ, σ) |= ∀x : pre⇒ cl2)

which was required and finishes the sub-case.
Now let us assume

(ρ, σ) |= ∀x : (pre′ ⇒ (pre′′ ⇒ cl))
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From Table 2.1 we have that for all a ∈ U

(ρ, σ[x 7→ a]) |= pre′ ⇒ (pre′′ ⇒ cl)

Which is equivalent to

(ρ, σ[x 7→ a]) 6|= pre′ ∨ (ρ, σ[x 7→ a]) 6|= pre′ ∨ (ρ, σ[x 7→ a]) |= cl

Using De Margan’s laws we get

(ρ, σ[x 7→ a]) 6|= (pre′ ∧ pre′′) ∨ (ρ, σ[x 7→ a]) |= cl

Which is equivalent to

(ρ, σ[x 7→ a]) |= (pre′ ∧ pre′′)⇒ cl

According to Table 2.1 we have

(ρ, σ) |= ∀x : (pre′ ∧ pre′′)⇒ cl

Which was required and finishes the case. �

A.13 Proof of Proposition 6.7

Proof. The proof is based on the proof of Theorem 3.1 by Beeri and Ramakr-
ishnan [8], and it uses the fact that for each clause in cls′ if the adornment is
dropped, we obtain a clause in cls.

First, we show that we can obtain a derivation of a fact in cls from a derivation of
that fact in cls′. In order to do that simply notice that an unadorned version of
the fact can be obtained by dropping the adornments and hence using unadorned
version of the clauses and unadorned facts.

Now we want to show that we can obtain a derivation of a fact in cls′ from a
derivation of that fact in cls. We note an invariant in a bottom-up computation
of cls and cls′: namely that at each iteration the adorned versions of predicates
in cls′ contain the same tuples as the corresponding predicate in cls. �
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A.14 Proof of Proposition 6.8

The proof is based on the proof of Proposition 3 by Balbin et al. [6]. In order
to prove the Proposition 6.8 we state necessary definitions first.

Definition A.7 A ground instance clg of an ALFP clause cl is a clause con-
structed from cl by applying some substitution θ of constants from the universe
U to all variables in cl.

Definition A.8 The set of ground clauses g(cls) of a clause sequence cls is a
subset of ground instances of clauses from cls such that for each clg ∈ g(cls) the
positive literals in preconditions are in the least model of cls.

Definition A.9 The set of relevant ground clauses for a query R(~u) on cls is
a subset gR(~u)(cls) ⊆ g(cls) defined as follows

• Initialize gR(~u)(cls) with each clause in g(cls) whose asserted literal is an
instance of R(~u),

• Recursively, gR(~u)(cls) contains each clause in g(cls) whose asserted literal
appeared as a positive literal in precondition of some clause in gR(~u)(cls).

Definition A.10 The relevant tuples for a query R(~u) on cls is a set of tuples
corresponding to the set of asserted literals in gR(~u)(cls).

Definition A.11 Let R(~a) denote a ground atom appearing in the g(cls), and
let clsg denote a ground clause in g(cls). Define

height(R(~a)) = 1 + min(height(clg) | clg asserts R(~a))

height(clg) =

{
0 if clg is a fact
max(height(Ri(~ai)) | Ri(~ai) ∈ Pre(clg)) otherwise

Intuitively, the height of a ground atom in the least model of cls is the number
of iterations required for that atom to appear as an asserted ground literal in a
ground instance of a clause in g(cls).

Proposition 6.8 Let cls be a closed and stratified adorned ALFPs formula and
Rα(~v) be a query on cls. Let cls′ be the result of the magic set transformation.

Then cls ≡R
α(~v)

Rα(~v) cls
′.

Proof.
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Let ρ1 and ρ2 be two least models such that (ρ1, [ ]) |= cls and (ρ2, [ ]) |= cls′.
(⇒) First we prove that

∀~a ∈ ς~v(U) : ~a ∈ ρ1(Rα)⇒ ~a ∈ ρ2(Rα)

which is equivalent to

{~a ∈ ς~v(U) | ~a ∈ ρ1(Rα)} ⊆ {~a ∈ ς~v(U) | ~a ∈ ρ2(Rα)}

Hence we show that the set of instances of Rα(~v) in ρ1 is a subset of the set
of instances of Rα(~v) in ρ2. Let gR

α(~v)(cls) be a set of ground relevant clauses
corresponding to the query Rα(~v). We also define ρ : R →

⋃
k P(Uk) as an

interpretation of ground atoms asserted in gR
α(~v)(cls). Formally

ρ(P ) = ~a⇔ P (~a) is a ground atom asserted in gR
α(~v)(cls)

We know that

{~a ∈ ς~v(U) | ~a ∈ ρ1(Rα)} ⊆ {~a ∈ ς~v(U) | ~a ∈ ρ(Rα)}

and we show that for all predicates P in R we have

ρ(P ) ⊆ ρ2(P )

In order to show the above, it is sufficient to prove that for all predicates P in
R

~aP ∈ ρ(P )⇒ ~aP ∈ ρ+P (~aP )
2 (P )

where

ρ
+P (~aP )
2 = λ.R

{
~aR if mkMagic(P (~aP )) = R(~aR)
ρ2(R) otherwise

Hence essentially the interpretation ρ
+P (~aP )
2 is exactly as ρ2 except that it is

extended with a fact mkMagic(P (~aP )) which acts as a seed for a fact P (~aP )
that we are trying to derive. We conduct the proof by induction on the height
of each literal P (~a) such that ~a ∈ ρ(P ). In the following we write P (~a) ∈ ρ if
and only if ~a ∈ ρ(P ).

Base case: For each P (~a) ∈ ρ such that height(P (~a)) = 1, P (~a) is a fact in cls

and hence it is also a fact in cls′. It follows that also P (~a) ∈ ρ+P (~a)
2 .

Inductive case: The induction hypothesis gives that for all i < n if P (~a) ∈ ρ
and height(P (~a)) = i, then P (~a) ∈ ρ+P (~a)

2 . We need to show that if a ground

atom P0(~a0) ∈ ρ such that height(P0(~a0)) = n, then also P0(~a0) ∈ ρ+P0(~a0)
2 . Let

cl be a clause in cls asserting P0; thus cl is of the form

∀~x : pre⇒ P0(~v0)
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We know that such clause exists since height(P0(~a0)) = n, where n > 1. The
magic set transformation transforms the clause cl into cl′ by inserting a literal
mkMagic(P0(~v0)) into the precondition of cl. It follows that cl′ is of the form

∀~x : mkMagic(P0(~v0)) ∧ pre⇒ P0(~v0)

In order for P0(~a0) to be in ρ2, there must be a ground instance cl′g of that

clause in gR
α(~v)(cls′). The ground instance would be of the form

mkMagic(P0(~a0)) ∧ preg ⇒ P0(~a0)

Since by the definition of ρ
+P0(~a0)
2 we know that mkMagic(P0(~a0)) is in ρ

+P0(~a0)
2 ,

we need to show that each ground instance Pi(~ai) ∈ Pre(cl′g) is in ρ
+P0(~a0)
2 . Re-

call that the function Pre returns all literals appearing in the given clause; it
was formally defined in Section 6.2. According to the induction hypothesis, each
Pi(~ai) is in ρ, since by definition of the height function, height(Pi(~ai)) = i < n.

Hence we have to show that mkMagic(Pi(~ai)) is in ρ
+P0(~a0)
2 . To show that

mkMagic(Pi(~ai)) ∈ ρ
+P0(~a0)
2 we consider each derived literal in the precondi-

tion of cl′. Let P1(~v1) be the first derived literal in the precondition. By
definition of SIPS, we know that there is a tuple (V1,W1, P1(~v1)), where V1 con-
sists of base literals and possibly P0(~v0). Thus there is a magic clause defining
mkMagic(P1(~v1)), and the precondition consisting of the literals from V1 and
possibly mkMagic(P0(~v0)). Since the facts defining the base predicates in cls

are also in cls′, and mkMagic(P0(~a0)) is in ρ
+P0(~a0)
2 , then mkMagic(P1(~a1)) is in

ρ
+P0(~a0)
2 . By the induction hypothesis it follows that P1(~a1) ∈ ρ+P0(~a0)

2 . Now,
let us consider the next derived literal in the precondition, P2(~v2), in the total
order imposed by SIPS. Let the tuple in the SIPS be (V2,W2, P2(~v2)). From
the definition of the SIPS, we know that V2 may contain P1(~v1) and the cor-
responding magic clause would then contain P1(~v1) in the precondition. Since

we showed that P1(~a1) ∈ ρ+P0(~a0)
2 we can use the analogous arguments to show

that both mkMagic(P2(~a2)) and P2(~a2) are in ρ
+P0(~a0)
2 . Repeating this for all

derived literals in the precondition, we conclude that also P0(~a0) is in ρ
+P0(~a0)
2 .

By induction, the hypothesis holds for all literals P (~a) such that ~a ∈ ρ(P ) and
thus it completes the proof in this direction.

(⇐) Now we need to prove that

∀~a ∈ ς~v(U) : ~a ∈ ρ2(Rα)⇒ ~a ∈ ρ1(Rα)

which is equivalent to

{~a ∈ ς~v(U) | ~a ∈ ρ2(Rα)} ⊆ {~a ∈ ς~v(U) | ~a ∈ ρ1(Rα)}

The proof in this direction simply follows from the fact that clauses in cls′ are
more restrictive than these in cls. This is because the magic set transformation



170 Proofs

modifies the clauses in cls by inserting additional literal (corresponding to the
magic predicate) into the preconditions of the clauses. �
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