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Extraction and analysis of signatures from the Gene
Expression Omnibus by the crowd
Zichen Wang1, Caroline D. Monteiro1, Kathleen M. Jagodnik1,2,3, Nicolas F. Fernandez1, Gregory W. Gundersen1, Andrew D. Rouillard1,

Sherry L. Jenkins1, Axel S. Feldmann1, Kevin S. Hu1, Michael G. McDermott1, Qiaonan Duan1, Neil R. Clark1, Matthew R. Jones1, Yan Kou1,

Troy Goff1, Holly Woodland4, Fabio M.R. Amaral5, Gregory L. Szeto6,7,8,9, Oliver Fuchs10, Sophia M. Schüssler-Fiorenza Rose11,12,

Shvetank Sharma13, Uwe Schwartz14, Xabier Bengoetxea Bausela15, Maciej Szymkiewicz16, Vasileios Maroulis17, Anton Salykin18,

Carolina M. Barra19, Candice D. Kruth20, Nicholas J. Bongio21, Vaibhav Mathur22, Radmila D. Todoric23, Udi E. Rubin24,

Apostolos Malatras25, Carl T. Fulp26, John A. Galindo27, Ruta Motiejunaite28, Christoph Jüschke29, Philip C. Dishuck30, Katharina Lahl31,

Mohieddin Jafari32,33, Sara Aibar34, Apostolos Zaravinos35,36, Linda H. Steenhuizen37, Lindsey R. Allison38, Pablo Gamallo39,

Fernando de Andres Segura40, Tyler Dae Devlin41, Vicente Pérez-Garcı́a42 & Avi Ma’ayan1

Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of

themed collections from these studies may provide new insights, but requires further human curation.

Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression

profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over

70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures,

839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are

unique and are manually validated for quality. Global analysis of these signatures confirms known asso-

ciations and identifies novel associations between genes, diseases and drugs. The manually curated

signatures are used as a training set to develop classifiers for extracting similar signatures from the entire

GEO repository. We develop a web portal to serve these signatures for query, download and visualization.
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O
mics repositories such as the NCBI Gene Expression
Omnibus (GEO)1 and EBI ArrayExpress2 accumulate
and serve gene expression data from thousands of

studies. It is clear that these data contain much more
information than what has typically been extracted from each
individual dataset for the accompanying initial publication.
However, currently, performing integrative analysis of large
collections of gene expression studies to obtain a global integrated
view of cellular regulation requires a significant data wrangling
effort, that is, manually unifying data formats, adding metadata
and converting the data to be more machine readable.

Due to high cost, gene expression profiling data are typically
produced on a small scale, in targeted studies that are diverse with
respect to tissue or cell type, genetic or chemical perturbation,
disease model, expression assay platform and model organism.
When submitted into public repositories such as GEO, the
requirement for metadata annotation is minimal. Lack of
standards for extensive metadata collection, and the diversity of
individual studies, prohibits the easy reuse and integration of this
type of data.

One of the advantages of carefully annotating studies from
databases such as GEO is the potential for developing a signature
search engine that operates at the data level. Tools such as
SIGNATURE3, SPIED4, Cell Montage5, ProfileChaser6,
ExpressionBlast7 and SEEK8 automatically attempt to compute
differentially expressed signatures from GEO to provide a
signature search engine at the data level. However, these tools
are prone to mistakes because they automatically select the
control and perturbation samples, as well as other aspects of
signature generation and annotation, without relying on an
extensive high-quality gold standard, which is needed for training
better-quality classifiers.

Manual extraction of collections of gene expression signatures
from GEO has been demonstrated to be highly useful. It was
applied for drug repurposing9, suggesting novel drugs for
many diseases10, and explaining mechanisms of action for many
approved drugs11. Several efforts have attempted to further
annotate datasets from GEO manually; one example is Gene
Expression data Mining Toward Relevant Network Discovery
(GEM-TREND)12. The disadvantage of manual curation is that it
does not scale up to cover the thousands of studies currently
available. For similar challenges, crowdsourcing projects have been
developed as a potential solution to overcome this obstacle.

Crowdsourcing projects fall into two categories: microtasks and
megatasks13,14. Microtasks consist of relatively trivial tasks that
require a large number of participants; for example, extracting
features from images of cells15. Crowdsourcing microtask projects
in biomedical research have been established to improve
automated mining of biomedical text for annotating diseases16,
curation of gene-mutation relations17, identifying relationships
between drugs and side-effects18, drugs and their indications19, as
well as annotation of microRNA functions20. These efforts
produce large collections of high-quality datasets that can be
further utilized by algorithms that can extract new knowledge
from already-published data that require better annotation,
cleaning and reprocessing.

When computing gene expression signatures, the
computational method used to identify the differentially
expressed genes (DEGs) has a significant impact on the results.
Using several benchmarks, including matching expression
changes after transcription factor perturbations with ChIP-seq
data, we previously showed that a method we developed called the
Characteristic Direction (CD) significantly improves the
prioritization of differentially expressed genes21 when compared
with several commonly applied methods such as fold change,
T-test or ANOVA, SAM22, limma23 or DESeq24.

In this study, we present the results of a crowdsourcing
microtask project implemented to annotate and extract gene
expression signatures from GEO. Our analysis of the
crowdsourced gene expression signatures demonstrates that our
collection of signatures is of high quality and can be used to
recover prior knowledge, as well as discover new knowledge,
about associations between drugs, genes and diseases. We also
develop a web portal for users to visually identify associations
between signatures, download the signatures for further
computational analyses, and search the collections of gene
expression signatures created for this project with their own
signatures or by keywords. To scale up the collection of signatures
for the three themes: disease, drug and gene perturbation, we use
the manually extracted signature collections as a gold standard to
train classifiers that automatically extract signatures from GEO.

Results
Crowdsourcing gene expression signatures. The crowdsourcing
challenge we designed followed several steps and consisted of
several components and processes (Fig. 1). First, participants were
asked to identify GEO studies in which single-gene or -drug
perturbations were applied to mammalian cells, or in which
normal versus diseased tissues were compared. After identifying
relevant studies, participants extracted metadata from the studies
and computed differential expression using GEO2Enrichr25, a
Chrome extension we developed that makes the signature
extraction process easy for non-experts. Extracted signatures
were stored in a local database and sanitized by automated filters
and manual inspection for improving accuracy and quality.
The cleaned database of extracted signatures was used to visualize
and analyse these signatures on the CRowd Extracted Expression
of Differential Signatures (CREEDS) web portal. To scale up the
collections, the human-extracted signatures were used as a gold
standard for training machine learning classifiers for automated
signature extraction. To date, the manual component of the
signature database contains 3,100 submissions for single-gene
perturbations, covering 1,186 genes from 1,635 studies; 1,081
disease signature submissions covering 450 diseases from 748
studies; as well as 1,238 submissions for drug perturbations
covering 343 drugs from 443 studies (Supplementary Fig. 1a).
After sanitizing the collections of signatures, a total of 2,177;
828 and 1,221 unique and valid signatures remained in the
CREEDS database for single-gene perturbations, disease
signatures, and drug perturbation signatures, respectively. The
automated expansion of the signatures resulted in an additional
set of 8,620 single-gene, 1,430 disease and 4,295 single-drug
signatures extracted from 2,543 GEO studies.

We observe a skewed distribution with a long tail for the
number of submissions per contributor (Supplementary Fig. 1b).
A few enthusiastic curators contributed many more signatures
than most others. The median number of signatures submitted
per person was 16. We found no significant correlation between
the number of signatures submitted per user and the quality of
submissions (Supplementary Fig. 1c, Spearman’s r¼ � 0.08,
P value ¼ 0.42). The leaderboard generally incentivized
volunteers to submit more gene expression signatures. We found
a significant negative correlation (Spearman’s r¼ � 0.64,
P valueo8.0e� 51) between the scaled ranks of contributors
and the number of newly submitted studies per day
(Supplementary Fig. 1d). This suggests that highly ranked
curators were inclined to continue to submit more.

Quality improvement of crowdsourced gene expression signatures.
To improve the quality of the gene expression signatures derived
from thousands of GEO studies, we first checked for batch effects.
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To achieve this, we obtained the ‘scan date’ from the raw
microarray data files as an indicator of a potential source for
batch effects. We then estimated the magnitude of such batch
effect using principal variation component analysis26,27. We
estimate that batch effects on average account for B18.7% of the
variance in the gene expression dataset collections, whereas
the perturbation versus control on average accounts for B16.7%
of the variance (Supplementary Fig. 2a).

To correct for these batch effects, we applied the surrogate
variable analysis (SVA)28 algorithm and generated new signatures
using both the CD and limma methods to call the DEGs. To
benchmark the quality of these signatures with or without the
batch correction, we used collections of genes that are expected to

be differentially expressed: direct protein interactions for gene
perturbation, disease-gene associations for disease signatures, and
targets of drugs for the drug-induced signatures. We observe that
the batch correction improves the signal and quality of signatures
(Fig. 2). We also found that the CD method outperformed limma
in ranking the expected DEGs with these benchmarks.

Comparing the collections with other similar resources. Next,
we compared the collection of the crowdsourced gene expression
signatures with MSigDB29, which contains 8 collections of gene
sets. The collection C2 has curated gene sets extracted manually
from tables and figures within publications. We compared the
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Chemical and Genetic Perturbations (CGP) subset within C2
from the latest version of MSigDB (v5.1) with our collections of
signatures. The CGP subset has 3,396 gene sets, 33% of which
have GEO identifiers (GSE) (Supplementary Fig. 3a). We first
compared the overlapping GSEs and found that our collection
covers 2,066 microarray studies, whereas the CGP subset covers
361 microarray studies with 54 shared studies (Supplementary
Fig. 3b). Breaking down the overlap into the three collections, the
shared GSEs with MSigDB are 31, 21 and 7 for the gene, disease
and drug perturbations, respectively (Supplementary Fig. 3b).
To compare the concordance of the gene-set for the 31 shared
gene perturbations, we plotted the cumulative distribution from
uniform distribution of the scaled ranks of the genes from our
collection and those matching from MSigDB, and found that
these gene sets are significantly similar (Supplementary Fig. 3c).
Overall, we find that the MSigDB signatures overlap significantly
with matched crowd-generated signatures, with only a few
exceptions (Supplementary Fig. 3d, Supplementary Table 1).
The discrepancies were due to a figure from He et al.30 that
only reported genes related to the cell-cycle as opposed to all
DEGs; the Sagiv et al.31 study reported DEGs in both siRNA
knockdown and mAb treatment, whereas the DEGs in our
database were derived from knockdown versus control only; and
the gene sets curated from Soucek et al.32 by MSigDB do not
match the original figure from that paper. However, overall, our
analysis shows strong agreement between the matched signatures
in both databases.

Assessment of signature associations within each collection.
We next asked whether signature similarity within and across the
three collections can recover prior knowledge and discover novel
connections. To globally assess associations between signatures
within each collection, we used various methods to compute
similarity between all pairs of signatures, and compared ranked
signature associations with prior knowledge. Our results show
that all of the three signature collections recover prior knowledge
associations between genes, drugs and diseases (Supplementary
Tables 2–4), and these associations are more discernable when
computing differential expression with the CD method (Fig. 3).
For example, individual independent studies that perturbed
Prkag3 by either knockout or gain-of-function mutation were
identified as opposing signatures33 (Supplementary Table 2).
An example that emerged from comparing disease signatures
was the high similarity between hypercholesterolaemia and
hepatocellular carcinoma signatures (Supplementary Table 3). It
was shown that cholesterol metabolism is indeed deregulated in
hypercholesterolaemia and hepatocellular carcinoma34,35.
There are some top-ranked drug pairs that induce similar gene
expression changes. For instance, the gene expression signatures
for diethylstilbestrol, estradiol and tamoxifen from independent
studies are very similar (Supplementary Table 4). The
confirmation with prior knowledge associations suggests that
we can predict novel associations with these data. In other words,
top-ranked associations or top-ranked opposing signatures
between drugs, diseases or genes that do not have literature

0.0 0.2 0.4 0.6 0.8 1.0
Scaled ranks

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

CD
SVA CD
Limma
SVA Limma
Log2 fold change

Single-gene perturbations

0.0 0.2 0.4 0.6 0.8 1.0
Scaled ranks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

CD
SVA CD
Limma
SVA Limma
Log2 fold change

0.0 0.2 0.4 0.6 0.8 1.0
Scaled ranks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
en

si
ty

CD
SVA CD
Limma
SVA Limma
Log2 fold change

Single-drug perturbations

Disease signatures
a b

c

Figure 2 | Batch effect correction influence on the quality of gene expression signatures. Line plots show the probability density distribution of the

scaled ranks of expected DEGs in gene expression signatures from the three collections: (a) single-gene perturbations, (b) disease signatures, and

(c) single-drug perturbations. The colours indicate which algorithm was used to call the differentially expressed genes: Characteristic Direction (CD),

limma, or fold change; and whether batch effect correction was applied with surrogate variable analysis (SVA).
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support should be considered as high-quality predictions. Given
the observation that drugs with highly similar chemical structure
induce slightly more similar gene expression signatures than
expected by chance (Fig. 3c), we further investigated whether the
correlation between chemical similarity and gene expression
signature similarity also applied to drugs pairs with lower
chemical similarity scores. By binning the signed Jaccard index
by Tanimoto coefficients, we found no correlation between lower
chemical similarity and gene expression signature similarity
(Supplementary Fig. 4), suggesting that partial chemical similarity
is not predictive of expression similarity.

Signature associations across the three collections. Using the
signed Jaccard index, we computed an adjacency matrix for all
possible pairs of signatures from the three collections (Fig. 4a)
and observed many clusters. These clusters are heterogeneous,
containing connections between genes, diseases and drugs.
We highlight a few of these clusters (Fig. 4c,d), while others can
be explored using the interactive clustergram or packed circles
plot on the CREEDS web portal. In the first cluster that we chose
to highlight, imatinib, a small molecule that is known to be a
tyrosine kinase inhibitor36, has signatures that were generated
from multiple cell lines, including K562 leukaemia cell line
(GSE1922), chronic myelogenous leukaemia (CML) CD34þ cells
(GSE12211) and three other CML cell lines (KU-812, KCL-22,

JURL-MK1) (GSE24493), which cluster together with knockdown
signatures of NRAS in melanoma cell lines (GSE12445) (Fig. 4b).
This strongly suggests that NRAS is targeted by imatinib.
Although NRAS is currently not considered a direct target of
imatinib, a recent study showed that melanoma patients with
NRAS mutations are resistant to imatinib therapy37. This raises
the possibility that the wild-type form of NRAS is at least a key
downstream effector of imatinib.

In the second cluster that we chose to highlight, multiple
myelodysplastic syndrome (MDS) signatures from CD34þ cells
(GSE4619, GSE19429) and ERBB2 overexpression signature from
MCF10A cells (GSE14990) cluster together (Fig. 4c), suggesting
that the up-regulation of ERBB2 may have a role in MDS. Indeed,
it was shown that ERBB2 amplification is present in 35% of a
cohort of MDS patients38. In the third example, endometrial
cancer signatures (GSE17025) are shown to cluster with
estradiol signatures derived from MCF7 cells from multiple
independent studies (GSE4668, GSE11352, GSE53394), as well as
MIR34A overexpression signature from HCT116 cells (GSE7754),
PPARG overexpression signature from NIH-3T3 cells (GSE2192),
and IGF1 stimulation signature from MCF7 cells (GSE7561)
(Fig. 4d). Estradiol has been shown to increase the risk for
endometrial cancer39,40 and was previously discovered in a
meta-analysis study of this disease41. Insulin-like growth factor 1
(IGF1) and its receptor IGF1R are known to be indirectly
activated by estradiol42–44. Downstream of the IGF1R receptor
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Figure 3 | Benchmarking signature connections with prior knowledge. Signed Jaccard index and absolute Jaccard index are used to measure the similarity

between signatures, and plotted in dashed and solid lines, respectively. Different methods for identifying differentially expressed genes include: the

Characteristic Direction (CD), limma with Benjamini–Hochberg (BH) correction, and limma with Bonferroni correction. These are plotted in blue, orange and

green, respectively. ROC curves are plotted for (a) recovering the same perturbed genes; (b) recovering similar diseases; and (c) recovering drugs with
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phosphoinositide kinase 3 (PI3K), the mammalian target of
rapamycin (mTOR) and MAPK signalling promote protein
synthesis, cell growth, and cell proliferation, potentially driving
the progression of endometrial cancer45,46. Peroxisome
proliferator-activated receptor gamma (PPARG) has also been
shown to induce the development of multiple types of cancers47,
and it is known to play a role downstream of adiponectin during
insulin resistance48, which is a significant risk factor for
endometrial cancer49. The fourth cluster contains a YY1
knockout (GSE39009) signature produced in mice soleus, and
an autosomal muscular dystrophy signature from a mouse model
sourced from the diaphragm (GSE3252). This association
suggests that YY1 may be disrupted in muscular dystrophy
tissues. Literature supports that almost all facioscapulohumeral

muscular dystrophy patients carry deletions of repetitive elements
(D4Z4) that contain binding sites for YY150,51. All of the
aforementioned examples are just a small portion of the signature
connections our integrative analysis offers. These examples
illustrate how novel associations between diseases, genes and
drugs can be discovered through a crowdsourcing project.

Identifying drug mimickers. To further demonstrate the utility
of the crowdsourced gene expression signatures of drug pertur-
bations, we queried these signatures against the database of drug
or other small molecule compound signatures derived from the
LINCS L1000 dataset. We then recorded the ranks of the matched
drugs out of 430,000 LINCS L1000 signatures and found that
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many crowdsourced drug perturbation signatures are significantly
highly ranked (Rank sum P value o4.8e� 24) (Fig. 5a,b, Table 1).
Similarly, the results can also be reproduced when querying the
drug perturbation signatures against 46,000 signatures from
the Connectivity Map dataset52 (Supplementary Fig. 5). We
additionally queried the gene perturbation signatures against
109,000 shRNA knockdown and over-expression profiles from
the LINCS L1000 data and found similar consistency (Fig. 5c,d).
These results suggest that some drugs induce similar
transcriptional changes in small-scale studies, when compared
with results from large-scale studies such as LINCS L1000 and the
original Connectivity Map. This means that we can identify
potential mimickers using the LINCS L1000 dataset for drugs
whose signatures are highly similar between the LINCS L1000
dataset and the GEO studies. Interestingly, we found that
dexamethasone signatures in the LINCS L1000 dataset were
ranked in the top 10 using dexamethasone-induced gene
expression signatures from three independent GEO studies:
GSE34313, GSE7683 and GSE54608 (Supplementary Table 5).
The three studies treated dexamethasone in different cell types:
human airway smooth muscle cells, mice primary chondrocytes,
and in a human oviductal cell line, suggesting that the effect of
this glucocorticoid agonist is robust across mammalian cells.
Among the top-ranked potential mimickers of dexamethasone,
flumetasone and betamethasome are both corticosteroids
indicated for inflammation, confirming that the approach is
able to identify drugs with similar physiological effects. Moreover,

we found a small molecule compound 5,6-epoxycholesterol
(BRD-K61480498) with gene expression profiles highly similar
to that of dexamethasone. 5,6-epoxycholesterol also has a similar
chemical structure, but unknown anti-inflammatory effects. As
such, it is an example of a strong candidate for further
experimental validation.

Web portal to visualize and query the signatures database. To
provide easier access to the three collections of the gene
expression signatures for knowledge reuse and exploration, we
developed a web portal (Supplementary Fig. 6). This portal
visualizes all of the signatures in a packed circles layout in which
similar signatures are closer to each other. Furthermore, the
portal has interactive heatmaps of hierarchically clustered
matrices of all signatures. The web portal is available at:
http://amp.pharm.mssm.edu/creeds. The portal also has a search
engine that enables users to search by text or by providing lists of
up and down DEGs. Since DEGs for the gene expression profiles
in the CREEDS database were computed with the CD method,
which is not a standard method, we tested whether signatures
computed via other methods would produce similar results. We
found that most signatures computed by fold change or limma
are ranked similarly (Supplementary Fig. 7). However, some
signatures were not ranked as expected. The CD is a multivariate
method, whereas fold change and limma are univariate; a gene
can be identified as significantly differentially expressed by a
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univariate method but may not contribute to the joint expression
changes of large sets of genes.

Finally, to scale up the three collections of signatures, we
developed machine learning classifiers that use the manually
curated signatures as a training set. The classification task was
divided into two parts: (1) classify whether a GEO dataset is likely
to contain gene, disease or drug signatures, and (2) label the
samples as control and perturbation. The features for the
classifiers were extracted from the text associated with the each
GEO study in our manually curated collection as well as from all
currently available studies on GEO where genome-wide expres-
sion was assessed by microarrays to profile human, mouse or rat
cells and tissues. Overall, we observe that various classifiers
perform very well (Supplementary Fig. 8).

We next asked whether we have collected a sufficient number
of manually curated studies or whether more manual
curation could improve the performance of the classifiers.
We see, for example, that Naı̈ve Bayesian classifiers no longer
improve once B1,000 annotated studies are used for each
collection category (Supplementary Figs 9–13). With these
machine learning classifiers, we automatically identified a
large collection of additional signatures for the three collections.
In total, this process enabled us to add 8,620 gene; 4,295
drug and 1,430 disease automatically extracted signatures.
Each signature carries a P-value for confidence, and all these
signatures are available for download and search on the CREEDS
web portal.

Discussion
Gene expression profiling is arguably the most common type of
omic data. The resource we developed for this project can be
combined with transcriptomics profiling projects such as
Genotype-Tissue Expression53, the Cancer Genome Atlas54, the
Cancer Cell-Line Encyclopaedia55, and the Library of Integrated
Network-based Cellular Signatures (LINCS). Here we show, for
example, how combining drug perturbation signatures collected
from GEO with the LINCS L1000 data can be used to identify
potential novel drug mimickers.

The manually extracted and cleaned signatures were proven to
be useful as a training set that enabled us to scale up the three
collections of signatures using machine learning. However, we are
aware that the quality of the automatically generated signatures is
not as good as the signatures created by the human annotators.
One solution to improve the process is to intelligently integrate
machine learning with crowdsourcing by using active learning.
With active learning, unlabelled instances are presented to human
annotators with suggestions; this allows the classifiers to be
improved dynamically while reducing the effort required of the
curators56. Active learning methods have been shown to achieve
improved performance in similar settings57,58.

This project highlights the commitment of citizen scientists to
spare their time in pursuit of a common goal that can advance
science and medicine. Indeed, we show how this collective effort
was used to identify novel relationships between genes, drugs and
diseases. While we highlighted several top predictions that

Table 1 | Top hits for drug signatures extracted from GEO queried against drug perturbations from the LINCS L1000 dataset
processed using the Characteristic Direction method.

Drug name PubChem ID GEO Accession organism GEO platform Rank

Dexamethasone 5743 GSE34313 human GPL6480 1
Doxorubicin 31703 GSE58074 human GPL10558 1
Azacitidine 9444 GSE29077 human GPL571 1
Azacitidine 9444 GSE29077 human GPL571 1
Azacitidine 9444 GSE29077 human GPL571 1
Lapatinib 208908 GSE38376 human GPL6947 2
Methylprednisolone 6741 GSE490 rat GPL85 2
Lapatinib 208908 GSE38376 human GPL6947 2
Dexamethasone 5743 GSE54608 human GPL10558 3
Lapatinib 208908 GSE38376 human GPL6947 3
Tretinoin 444795 GSE1588 mouse GPL81 3
Methylprednisolone 6741 GSE490 rat GPL85 3
Tretinoin 444795 GSE32161 human GPL570 3
Methylprednisolone 6741 GSE490 rat GPL85 3
Methylprednisolone 6741 GSE490 rat GPL85 4
Trichostatin A 444732 GSE1437 mouse GPL81 4
Dexamethasone 5743 GSE7683 mouse GPL1261 5
Cycloheximide 6197 GSE8597 human GPL570 5
Methylprednisolone 6741 GSE490 rat GPL85 6
Sorafenib 216239 GSE39192 human GPL6947 7
Vemurafenib 42611257 GSE37441 human GPL10558 8
Methylprednisolone 6741 GSE490 rat GPL85 10
Curcumin 969516 GSE10896 human GPL570 14
Curcumin 969516 GSE10896 human GPL570 15
Vemurafenib 42611257 GSE37441 human GPL10558 15
Lapatinib 208908 GSE38376 human GPL6947 16
Methylprednisolone 6741 GSE490 rat GPL85 17
Tretinoin 444795 GSE1588 mouse GPL81 20
Vemurafenib 42611257 GSE42872 human GPL6244 23
Azacitidine 9444 GSE29077 human GPL571 24
Troglitazone 5591 GSE21329 rat GPL341 31
Decitabine 451668 GSE29077 human GPL571 36
Vemurafenib 42611257 GSE37441 human GPL10558 36
Thapsigargin 446378 GSE19519 human GPL570 37
Methylprednisolone 6741 GSE490 rat GPL85 48
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emerged from our analysis, many more hypotheses can be
formed by interacting with the CREEDS portal at:
http://amp.pharm.mssm.edu/creeds.

Methods
Extracting gene expression signatures from GEO by the crowd. Three
crowdsourcing microtasks were established to collect gene expression
signatures from GEO. These are: single-gene perturbations, comparison between
diseased and normal tissues, and single-drug perturbations. These three types of
signatures were extracted using the Google Chrome extension GEO2Enrichr25

and submitted through the BD2K-LINCS-DCIC Crowdsourcing Portal at:
http://www.maayanlab.net/crowdsourcing/. These crowdsourcing tasks were open
to all participants, but a significant majority of the contributors were students from
the massive open online course Network Analysis in Systems Biology 2015
(NASB2015) offered on the Coursera platform. These participants were given
detailed instructions for finding, labelling, and extracting gene expression profiles
from GEO. Participation was strictly voluntary, and was not required for
completion of any parts of the course. Participants were not provided with a list of
predefined gene expression profiles; instead, they were encouraged to find diverse,
yet relevant, gene expression studies from GEO. Briefly, contributors first had to
locate relevant GEO studies fitting into one of the three themes, and then select the
perturbation and control samples (GSMs) from GEO series (GSE) or GEO datasets
(GDS). Only gene expression studies from selected species of mammals (human,
mouse and rat) were considered valid. Participants were also asked to submit
additional metadata about the cell or tissue type, and gene, disease or drug used in
each experiment and associate these with common published identifiers. Standard
names of genes, diseases, and drugs were provided as autocomplete options in the
submission forms, created from controlled vocabularies: HGNC for genes59,
disease names from the Disease Ontology60 and drug names from DrugBank61. To
incentivize participants, a real-time leaderboard was developed to display the
number of submissions from each user, and modest prizes were promised to the
top ten contributors (custom T-shirt and headphones). Additionally, co-authorship
on the published research resulting from these crowdsourcing tasks was promised
to contributors of a minimum of 15 valid entries.

Sanitization of the crowdsourced gene expression signatures. Multiple steps of
quality control filters were applied to improve the collection of the gene expression
signatures extracted by the crowd. We first performed integrity checks using the
association between GEO studies (GSE or GDS) and samples within these studies
(GSMs) by re-processing all the collected gene expression signatures based on the
metadata supplied by the curators. Signatures in which GSMs did not match their
GSE or GDS, as well as signatures with the same GSMs in the control and per-
turbation groups, were automatically detected and removed. The next filter was
applied only to the single-gene perturbation collection. We checked whether gene
symbols submitted by the curators are valid HGNC gene symbols, removing all
entries with invalid genes. The next filter was semi-automatic: we corrected sig-
natures in which the control and perturbation samples were switched. Our final
filter was to manually check if the submitted signatures agree with the descriptions
associated with the original GEO studies. After applying each of these filters, we
recorded the number of invalid submissions by curators and removed the sub-
missions from any curators who had submitted more than 10% invalid signatures.
As a result, B20% of all the submissions were removed from the final collections.

Evaluation of batch effects. To obtain batch information from each study, we
retrieved the ‘scan date’ from the raw microarray CEL files and assumed that the
experiments were performed on the same dates that were listed within the
experimental batch. We then quantified the batch effect using principal variation
component analysis26,27, which attributes the variation in the gene expression data
to known sources such as batches and experimental conditions. Batch effects were
corrected using the surrogate variable analysis (SVA) algorithm28 implemented in
R62 with default parameters.

Construction of expected DEGs from prior knowledge. To generate lists of
expected DEGs for the three collections of signatures for benchmarking, we used:
(1) the known direct physical interactors of the protein product of a gene from a
consolidated protein–protein interaction network we assembled for a previous
study63; (2) a consolidated collection of manually-curated disease-gene associations
from the DISEASES resource64; and (3) known drug targets from DrugBank v4.361.

Measuring similarity between signatures. To compare signatures, we abstracted
signatures to sets of up- and down-regulated genes. The signed Jaccard index for
two signatures Si and Sj is defined as:

SJ Si; Sj
� �

¼
J Sup

i ; Sup
j

� �
þ J Sdown

i ; Sdown
j

� �
� J Sup

i ; Sdown
j

� �
� JðSdown

i ; Sup
j Þ

2

where Supand Sdown denote the up- and down-regulated gene sets, respectively. The
signed Jaccard index considers the direction when comparing a pair of gene

expression signatures. It has a range of ½ � 1; 1� where 1 represents identical
signatures, and � 1 represents signatures of reverse effect, whereas 0 represents
unrelated signatures.

Signature pairs from different GEO studies were ranked based on the signed
Jaccard index. Prior knowledge from various resources about known connections
between genes, diseases and drugs was used to examine whether signature
similarity can be used to recover known associations between genes, drugs and
diseases. Specifically, pairs of diseases were connected through the Disease
Ontology60, and pairs of drugs were connected by the drugs’ molecular structure
fingerprints and considered similar if the Tanimoto coefficient was 40.9.
Structural fingerprints were computed with the extended-connectivity fingerprints
ECFP465. To score the predictions of associations between genes, drugs and
diseases, receiver operating characteristic (ROC) curves were plotted and the area
under the ROC curve (AUC) was calculated. DeLong’s test66 was performed to
compare the difference between ROC curves.

Natural language processing of text from GEO series. The text from each GEO
series including title, summary, and keywords were extracted and processed
separately. Text was first tokenized into words that were then lemmatized using the
WordNet Lemmatizer67 and stemmed using the Porter stemming algorithm68.
Term frequency-inverse document frequency (TF-IDF)69 was used to convert
stems of both unigrams and bigrams into numerical values that measure the
importance of an n-gram to a document in the context of the collection of
documents. Truncated singular value decomposition was used to reduce
dimensionality of the TF-IDF matrices to capture at least 10% of the variance. To
visualize the GEO studies in the textural feature space, t-Distributed Stochastic
Neighbour Embedding70 was used to reduce the dimensionality of the matrices
from the truncated singular value decomposition. To classify whether a GEO series
contains a disease signature, three textural feature matrices representing the title,
summary and keywords were used to train and test a classifier. To measure the
performance of the classification, three-fold cross-validation was applied to
calculate the area under the ROC curve, area under the precision-recall curve,
Matthew’s correlation coefficient and F1 score. Classifiers from the scikit-learn71

package were tested including: random forest72, extra trees73, support vector
classifier and the XGBoost implementation of gradient boosting machines74.
Hyperparameters of the classifiers were optimized using grid search.

Classifying control versus treatment samples based on text. We formulate the
problem of classifying GEO samples as a binary classification problem. This means
that we aim to learn from text-derived features whether a sample is part of the
control or treatment group. Features were extracted from the following text fields
associated with each GEO sample: title, description, characteristics and source
name. These text elements were tokenized and converted to binary vectors
representing the presence or absence of tokens for each sample. The classifier we
used for solving this problem is a Bagging75 of 20 multinomial Bernoulli Naı̈ve
Bayesian69 classifiers after probability calibration with isotonic regression76. To
measure the performance of the classifier, 10-fold cross-validation was applied to
calculate area under the ROC curve, area under the precision-recall curve,
Matthew’s correlation coefficient and F1 score.

Development of the CREEDS web portal. A web portal was developed for
visualizing and querying the collections of the gene expression signatures. Rela-
tionships between all signatures are visualized using the D3.js pack layout and D3.js
clustergrammer. Clustergrammer is a visualization tool we developed starting with
the open-source code example for the matrix co-occurrence visualization on the
D3.js website. All data and metadata of the signatures are stored in a MongoDB
database. The portal uses the Python Flask framework. Signed Jaccard index was
implemented to query signatures in which users input up or down gene lists into
two separate text boxes. The text signature search option queries the metadata text
of all signatures in the database. RESTful application programming interface (API)
endpoints were also developed to enable users to programmatically query and
search the CREEDS database.

Automatic extraction of gene expression signatures from GEO. To
automatically extract gene expression signatures from GEO, we first applied the
gradient boosting machines classifier (described above) to predict the categories of
all GEO studies (n¼ 31,905) performed in human, mouse or rat using microarrays.
The classifier utilized the title, summary and keywords from each study. After this
step, we selected the studies that were predicted to be gene, disease or drug per-
turbations with a probability threshold greater than P40.9. We then applied the
Naive Bayesian-based classifiers described above to predict the probability of
whether samples associated with these studies have controls based on the sample
titles. Next, we computed the pairwise Manhattan distance between the samples
based on features extracted from sample descriptive terms, and then used the
DBSCAN77 algorithm with minimum samples set of 2 to perform clustering on the
distance matrix between samples to identify clusters of semantically similar
samples. We removed any clusters with large standard deviation (P40.2) to reduce
instances of mixture between control and perturbation samples. To determine
whether a cluster of samples is a control group or a perturbation group, we chose
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the average probability P40.7 and Po0.3 from the Naive Bayesian-based classifier
as control group and treatment group, respectively. Next, we enumerated every pair
of valid control groups and perturbation groups within each study as metadata for
valid predicted gene expression signatures.

To properly label the terms associated with each predicted signature, we used
the API of BeCAS78 to tag biological entities from the text associated with each
study, as well as the text associated with the samples, including: genes, cell or tissue,
disease, and drug or other small molecule chemical; and then recorded these term
counts for a final decision of which terms we should use to label each signature. To
process the gene expression data of the predicted gene expression signatures, we
first used SVA28 to correct the batch effect as described above, and then applied the
CD algorithm21 to compute differential expression.

Data availability. All extracted and processed signatures with their accession
numbers and other metadata are freely available for download from the CREEDS
portal at: http://amp.pharm.mssm.edu/creeds. The CREEDS portal also provides
the data through API. Users can search the data by submitting their own signatures
for analysis. The site also provides two modes of visualization of all signatures.
Accession codes for top hits for drug signatures extracted from GEO queried
against drug perturbations can be found in Table 1.
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