H Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

Wang, Yun; Wu, Qiuwei; Gong, Wenming; Gryning, Mikkel Peter Sidoroff

Published in:
IEEE Transactions on Sustainable Energy

Link to article, DOI:
10.1109/TSTE.2016.2621418

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
H\(_{\infty}\) Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

Yun Wang, Qiuwei Wu, Senior Member, IEEE, Wenming Gong, and Mikkel Peter Sidoroff Gryning

Abstract—This paper proposes an H\(_{\infty}\) robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions are designed to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation and improved robustness.

Index Terms—Doubly fed induction generator (DFIG), grid harmonics, grid voltage distortion, robust control, wind turbine.

NOMENCLATURE

A. Subscripts

\begin{align*}
\text{abc} & \quad \text{Stationary A, B, and C phases} \\
d, q & \quad \text{Synchronous d- and q-axis} \\
n & \quad \text{The } n\text{th order of harmonics } (n = 3, 4, 5, 6, 7) \\
s, r & \quad \text{Stator and rotor} \\
\alpha, \beta & \quad \text{Stationary } \alpha- \text{ and } \beta\text{-axis}
\end{align*}

B. Superscripts

\begin{align*}
* & \quad \text{Reference value for controller} \\
. & \quad \text{Differential operation}
\end{align*}

This work was supported in part by National Natural Science Foundation of China (grant number 51407118) and in part by Shenzhen Government Science Foundation (JCYJ20140509172609161, GJHZ20130408173747552).

Y. Wang is with the College of Mechatronics and Control Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, China (e-mail: wangyun@szu.edu.cn).

Q. Wu is with the Centre for Electric Power and Energy (CEE), Department of Electrical Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark and also with the School of Electrical Engineering, Shandong University, Jinan 25000, China (e-mail: qw@elektro.dtu.dk).

M. Gong is with Electric Power Research Insitute, China Southern Power Grid, Guangzhou 510080, China (e-mail: gongwm@csg.cn).

M. P. S. Gryning is with DONG Energy, Gentofte 2820, Denmark (e-mail: migry@dongenergy.dk).

C. Parameters and variables

1) DFIG

\begin{align*}
F & \quad \text{Vector represents current or voltage of DFIG} \\
L_r, L_s & \quad \text{Rotor and stator leakage inductances} \\
L_{m}, L_r, L_s & \quad \text{Mutual, rotor and stator inductances} \\
P, Q & \quad \text{Wind turbine output active and reactive powers} \\
R_r, R_s & \quad \text{Rotor and stator resistances} \\
U_r & \quad \text{Modulating voltage for rotor side converter} \\
\hat{\upsilon_r}, \hat{\upsilon_s} & \quad \text{Rotor and stator currents} \\
\hat{u}_{d}, \hat{u}_{q} & \quad \text{DC-link voltage} \\
\upsilon_r, \upsilon_s & \quad \text{Rotor and stator voltages} \\
\omega & \quad \text{Angular frequency} \\
\omega_0, \omega_{\text{slip}} & \quad \text{Nominal, slip electrical angular frequencies} \\
\omega_{d}, \omega_{q} & \quad \text{Rotor and stator electrical angular frequencies} \\
\alpha, \beta & \quad \text{Phase angles of rotor and stator voltage vectors}
\end{align*}

2) State-space

\begin{align*}
A, B, C & \quad \text{Parameter matrixes of plant state-space} \\
B_d & \quad \text{Parameter matrixes of external disturbance} \\
C, D & \quad \text{Parameter matrixes of plant state-space} \\
G, K, P & \quad \text{Plant, controller, generalized plant models} \\
d, r, u & \quad \text{Disturbances, reference inputs, control signals} \\
v, x, y & \quad \text{Controller inputs, plant states, plant outputs} \\
y_d, u_d & \quad \text{Input and output vectors of } \Delta \\
w, z & \quad \text{Exogenous inputs and outputs} \\
\Delta & \quad \text{Diagonal matrix with all system uncertainties}
\end{align*}

3) H\(_{\infty}\) controller

\begin{align*}
I & \quad \text{Nominal matrix} \\
K & \quad \text{State space realization of the } H\(_{\infty}\) \text{ controller} \\
N & \quad \text{System with } P, K \text{ and their interconnections} \\
N_{11,12-21,22} & \quad \text{Blocks of the state-space realization of } N \\
M & \quad \text{Equal to } N_{11} \\
P & \quad \text{Shaped generalized plant model} \\
P_{11,12-21,22} & \quad \text{Blocks of the state-space realization of } P \\
S & \quad \text{System sensitivity function} \\
W_{u} & \quad \text{Weighting function of } H\(_{\infty}\) \text{ controller outputs} \\
W_{p} & \quad \text{Weighting function of } H\(_{\infty}\) \text{ controller inputs} \\
det() & \quad \text{Determinant of a Matrix} \\
diag{} & \quad \text{Diagonal matrix} \\
\delta & \quad \text{Peak of the singular value of a matrix}
\end{align*}

4) PIR controller

\begin{align*}
K_I & \quad \text{Integral parameter} \\
K_P & \quad \text{Proportional parameter} \\
K_{Ri} & \quad \text{Resonant parameter of the } i \text{ th harmonic} \\
s & \quad \text{Laplace coefficient} \\
\omega_{ci} & \quad \text{The } i \text{th cut-off frequency of the resonant factor}
\end{align*}
The ith harmonic frequency

I. INTRODUCTION

Wind turbines (WTs) are increasingly integrated into weak grids such as the collector system of offshore wind farms and distribution networks. Due to the existence of reactive power compensation equipment, nonlinear load, unbalanced load, etc., grid voltage distortions occur more frequently, including grid background harmonics (typically the $5th$ and $7th$ harmonics) [1]-[2] and unbalanced grid voltages due to asymmetric faults or other causes [3]. Grid codes in many countries require that WTs stay connected and maintain output currents quality under a certain range of grid voltage distortions [4]-[5]. In this regard, higher harmonics suppression ability and stability are required.

Doubly fed induction generator (DFIG) based WTs have many advantages such as lower cost, smaller size, and smaller power electronics capacity [6]. However, the DFIG is more sensitive to grid voltage distortions and the impact is more harmful. The impact of grid voltage distortions on the DFIG have been intensively studied [7]-[8]. Because the stator windings are directly connected to the grid, the stator voltage of DFIGs can be directly distorted. Distorted stator voltage will cause both stator and rotor currents harmonics, and induce a significant electromagnetic torque oscillation [7]-[9]. The grid voltage distortions can cause a series of problems on the DFIG, such as overheating of the generator windings and the drive-train damage. Moreover, the generator parameters tend to change under grid voltage distortions, due to the windings overheat with unbalanced currents, the change of flux density and the flux saturation effect [10]-[11]. Therefore, the parameter perturbation of the DFIG brings another challenge to the generator control system under grid voltage distortions, and its control performance and stability will become worse.

As [7]-[15] show, the mitigation of the effects of grid voltage distortions mainly depends on the DFIG current control. Various current control strategies have been developed to deal with grid voltage distortions. The commonly used scheme is adding more regulators to the conventional proportional integral (PI) regulator. The typical methods are dual-currents control, PI plus resonant (PIR) control and P plus resonant (PR) control [7],[8]-[13]. The resonant regulator can track the AC reference signal at the resonant frequency, such that the PR/PIR controller does not require the decomposition of positive and negative sequence components. The PR/PIR controller shows better performance than the dual-currents control and is widely used to suppress harmonics under grid voltage distortions [7],[12]-[15].

During a grid voltage distortion, there are several orders of currents harmonics to be suppressed simultaneously. Therefore, parallel resonant regulators with corresponding harmonic frequencies are required. The parameters tuning of parallel resonant controllers is iterative because the frequency characteristics at different resonant frequencies interact with each other. As [13]-[14] investigated, without adding phase correction, the system is easy to be unstable. Several resonant parameter tuning methods have been proposed [14]-[15]. The PIR controller design and tuning are based on the classical single-input single-output (SISO) control theory, and depend on the certain model of the generator, which is usually simplified as a first order nominal model in the DFIG current control design [7],[8],[15],[16]. The system robust stability (RS) and robust performance (RP) with the DFIG parameters perturbation are not considered. Therefore, a well-tuned PIR controller can achieve good performance for the nominal model and may achieve acceptable performance for a non-nominal system if it has enough stability margins. However, the robust performance for all the possibilities of the uncertain system cannot be guaranteed. A few other methods such as sliding mode control [17]-[18], repetition control [19]-[20] and predictive direct power control [21]-[22] have been used under grid voltage distortions. However, the parameters perturbation and robustness are not fully considered.

The H_∞ robust control has been successfully used in many electrical control fields such as voltage source inverter (VSI) [23], dynamic voltage restorer (DVR) [24], uninterruptible power supplies [25], etc. As an advanced control method, the controlled system of the H_∞ robust control is uncertain and can be a multi-input multi-output (MIMO) structure. The system RS and RP performance can be guaranteed by introducing the H_∞ norm to constrain all the possibilities of the uncertain system into a bound [26]-[27]. In this paper, an H_∞ robust rotor current controller is developed for the DFIG based WTs to realize rotor current harmonic suppression and improve its RS and RP subject to grid voltage distortions and parameter perturbation.

The main contributions of this paper are: (A) develop an uncertain DFIG model for robust rotor current control; (B) propose rotor current control requirements for DFIG based WTs subject to grid voltage distortions and generator parameter perturbation; (C) develop an H_∞ rotor current controller to suppress multiple harmonics of the 2nd, 4th and 6th orders simultaneously and guarantee the system RS and RP under grid voltage distortions and DFIG parameter perturbation.

The paper is organized as follows. Section II describes an uncertain MIMO DFIG model, analyzes the influence of the grid voltage distortions on the rotor currents, and proposes the control requirements. In Section III, the H_∞ rotor current controller is designed, including the weighting function design and parameter tuning, and the RS and RP are validated by the structured singular value μ. Case studies are presented in Section IV to demonstrate the harmonic suppression performance and the robustness of the developed H_∞ controller under grid voltage distortions with parameter perturbation, followed by conclusions.

II. UNCERTAIN MODEL AND CONTROL REQUIREMENTS

A. Uncertain system model

The whole system modeling consists of the DFIG based WT model and the network model. The mitigation of the impact of grid voltage distortions mainly depends on the rotor current loop control [7]-[8], so the WT model focuses on the generator. Compared with the rapid current response of the generator, the responses of the speed control loop and the
mechanical part are slow. Therefore, the wind speed of the DFIG WT is regarded as constant. The grid structure and parameters influence the harmonics order, the total harmonic distortion (THD) [2] and the voltage dip depth [28], which do not affect the controlled system. Therefore, the network model at the generator side is usually considered as a controlled voltage source, with harmonics and unbalanced distortions [7]-[8], [15]-[23], [16], [33]-[29]. Based on the basic DFIG model in the time domain [6], a 4th order generator model at the synchronously rotating dq frame can be described by the state-space realization in (1), marked as \mathbf{G}. All the model parameters used in this paper are listed in the Appendix.

\[
\mathbf{x} = \mathbf{Ax} + \begin{bmatrix} B_1 & B_2 \end{bmatrix} [\mathbf{u}, \mathbf{d}]^T
\]

\[
y = \mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{u}
\]

(1)

where $\mathbf{x} = [i_{sd} \ i_{sq} \ i_{rd} \ i_{rq}]^T$, $\mathbf{y} = [i_{rd} \ i_{rq}]$, $\mathbf{u} = [u_{rd} \ u_{rq}]$ and $\mathbf{d} = [u_{sd} \ u_{sq}]$. All variables and parameters are transformed into the nominal system and the parameter matrices are,

\[
\mathbf{A} = \begin{bmatrix}
\begin{array}{cccc}
L_s & 0 & -L_{ps} & 0 \\
0 & L_t & 0 & -L_{tq}
\end{array}
\end{bmatrix}, \quad
\mathbf{B}_1 = \begin{bmatrix}
\begin{array}{c}
0 \\
0
\end{array}
\end{bmatrix}, \quad
\mathbf{B}_2 = \begin{bmatrix}
\begin{array}{c}
0 \\
L_m
\end{array}
\end{bmatrix}, \quad
\mathbf{C} = \begin{bmatrix}
0 & 0 & 0 & 1
\end{bmatrix}, \quad
\mathbf{D} = 0
\]

The system uncertainties focus on two aspects in this paper. One is the DFIG parameter perturbation. The other is the grid voltage disturbance. The DFIG parameter perturbation refers to the uncertainties of L_m, L_s, L_t, R_p. Each parameter uncertain range is (\pm50%) which can include all the possible parameters perturbation [10]-[11]. The uncertain parameters and matrices of (1) are reorganized as the nominal part plus its uncertain part, i.e. $\mathbf{A} + \mathbf{AA}$.

The grid voltage disturbance can be described by an \mathbf{H}_∞ norm. The \mathbf{H}_∞ norm means the maximum amplitude or energy from any input variable to the output variable of an MIMO system [30]. By describing the distorted grid voltage as $(1+\delta \mathbf{d})$ with a multiplicative factor marked as $\delta \mathbf{d}$, if $\delta \mathbf{d} = (\pm 100\%)$, it satisfies $\| (1+\delta \mathbf{d}) \mathbf{d}(\omega) \|_\infty \leq 2$. It means the largest gain of uncertain grid voltage is 2 pu. Based on the grid background harmonics analysis [1]-[2] and the grid voltage unbalance analysis [28], the range of the distorted grid voltage variation is between 1 \pm1 pu, so it can describe all the possibilities of grid voltage distortions. Equation (1) can be further described as (2) with uncertainties. The structure diagram of the uncertain system is shown in Fig. 1.

\[
\begin{align*}
\dot{\mathbf{x}} &= (\mathbf{A} + \Delta \mathbf{A}) \mathbf{x} + (\mathbf{B}_1 + \Delta \mathbf{B}_1) \mathbf{u} + (\mathbf{B}_2 + \Delta \mathbf{B}_2) \mathbf{d} \\
y &= \mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{u}
\end{align*}
\]

(2)

Fig. 2 shows the frequency characteristics of the uncertain controlled system. The uncertainty of the system is defined as a parameter interval. The Bode plots represent sampled values of the system parameters within that interval. The Bode diagrams are from u_{sd}, u_{sq}, R_d and u_{eq} to i_{rd}, respectively. The curves marked with *' are obtained with the nominal model, and other curves are for the uncertain models with different parameter perturbation. It is seen the frequency characteristics of i_{rd} have a range of variations between the nominal model and uncertain models, indicating the DFIG parameter perturbation and the input grid voltage disturbance have influence on the controlled system.

B. Grid voltage distortion and control requirements

WTs usually connect to a three-phase three-wire network Fig. 1. Structure diagram of uncertain system model

Fig. 2. Bode plots of the uncertain system model
through step-up transformers. Therefore, the background harmonics of the stator voltage under grid voltage distortions do not have zero-sequence component. The unbalanced fundamental stator voltage can be decomposed into positive-
sequence and negative-sequence parts of the fundamental frequency. The 5th and 7th harmonics of stator voltage are also considered. So in the dq rotating coordinates, the DFIG current vector, marked as F_r, can be decomposed into the 2nd, 4th and 6th harmonics as (3) shows [7]-[8].

$$F_{dq}(t) = F_{dq} + F_{dq2}e^{j2\omega t} + F_{dq4}e^{j4\omega t} + F_{dq6}e^{j6\omega t}$$ \(3\)

Fig. 4 shows the Fast Fourier Transform (FFT) analysis of the rotor current subjected to a distorted grid voltage condition. The fundamental frequency is 50 Hz. It is seen that, under the grid voltage distortion with a single phase voltage drop to 50% together with 10% of the 7th background harmonics, the 100 Hz, 200 Hz and 300 Hz harmonic currents are excited.

Fig. 3. FFT analysis of a specific grid voltage distortion

Based on the above analysis, and considering the DFIG parameter perturbation and recommendations for harmonics control in electrical power systems [31], the rotor current control requirements under grid voltage distortions are proposed as follows.

1) Guarantee tracking performance to the fundamental. Depends on the switching frequency of the PWM modulation, the bandwidth of the current controller commonly is set as 0.1 to 0.2 of the switching frequency. The acceptable bandwidth of the designed controller is 0.4 kHz to 1 kHz.

2) Suppress harmonics of rotor currents under grid voltage distortions. Rotor currents satisfy $THD \leq 5\%$, with the grid background harmonics and unbalanced grid fault occurring simultaneously.

3) Guarantee system robustness under DFIG parameter perturbation, including RS and RP. The DFIG parameter perturbation refers to L_m, L_s, L_r and R_s, with each uncertainty range is (±50%). The rotor currents satisfy $THD \leq 5\%$ subject to grid voltage distortions with parameter perturbation.

III. H_∞ CONTROLLER DESIGN

A. Controller structure design

Fig. 5 shows the control structure of the rotor side converter (RSC) in the dq synchronously rotating coordinates. In Fig. 5, the rotor current controller K is designed based on the H_∞ control method. The design of the H_∞ controller K is based on the $N\Delta$-structure which is illustrated in Fig. 6, where $B_r = B/2$. The $N\Delta$-structure is a typical description of an uncertain system structure for the H_∞ controller synthesizing design [30]. Each perturbation of the original system shown in Fig 1 can be collected, classified and transformed into a block diagonal matrix marked as A. A is described as diag $\{A_1, A_2, \ldots, A_N\}$, including $A_{Ls}, A_{Lm}, A_{Lr}, A_{Rr}, A_{LmARs}, A_{LrARr}, A_{LmLs}, A_{LmLr}, A_{LsLr}, A_{LmLm}, A_{LrLr}, A_{LmLs}, A_{LsLm}, A_{LmLr}, A_{LsLr}, A_{LmLm}, A_{LmLr}, A_{LsLm}, A_{LsLr}$, $A_{LmLs}, A_{LrLr}, A_{LsLm}, A_{LsLr}$, $A_{LmLm}, A_{LmLr}, A_{LsLm}, A_{LsLr}$ and A_{LrLr}. A satisfies $\|A\|_{\infty} \leq 1$. The input vector of Δ is marked as y_{Δ}, and the output vector of Δ is marked as u_{Δ}.

Fig. 6. Control structure diagram for H_∞ controller design

It is seen from Fig. 5 that K has a multi-input multi-output (MIMO) structure. The reference of the current controller is $y_r = [i_{rd}, i_{rq}]$. The value of y_r is obtained from the outputs of the power controller, to satisfy different control objectives as studied in [8], [33]-[29]. The input vector of the controller K is $y = [y_r, y_q]$, marked as v. The output vector of K is $[V_{rd}, V_{rq}]$, marked as w. r is also regarded as an uncertain external disturbance, satisfying $\|r\|_{\infty} \leq 1$. Together with d, the external disturbance vector can be marked as $w = [r, d]$. The output and input of the controller K, marked as u and v, are shaped along with two weighting functions, marked as W_u and W_v.
The weighted controlled output is marked as \(z = [z_1, z_2] \). The block including the controlled system and weighting functions is called the shaped generalized plant model, marked as \(P \). The block \(P, K \) and their interconnections constitute the closed-loop system, marked as \(N \). The state space realization of \(P \) can be derived as,

\[
\begin{bmatrix}
\Delta \\
\Delta_4 \\
0 \\
0
\end{bmatrix} = P(s) \begin{bmatrix}
\frac{u\Delta}{w} \\
\frac{u\Delta}{u} \\
\frac{u\Delta}{w} \\
\frac{u\Delta}{w}
\end{bmatrix} = \begin{bmatrix}
P_{11}(s) & P_{12}(s) \\
P_{21}(s) & P_{22}(s)
\end{bmatrix} \begin{bmatrix}
\frac{u\Delta}{w} \\
\frac{u\Delta}{u} \\
\frac{u\Delta}{w} \\
\frac{u\Delta}{w}
\end{bmatrix} = \begin{bmatrix}
\Delta_1 & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
0 & \ldots & \Delta_4 & 0 \\
0 & \ldots & 0 & W_u \\
0 & \ldots & 0 & I \\
0 & \ldots & 0 & -G_r B_d \\
0 & \ldots & 0 & -G_s \\
0 & \ldots & 0 & -W_u G_s B_d \\
\end{bmatrix}
\]

The block \(N \) is described as \(z = N(s)w \). \(N(s) \) is the closed-loop transfer function. \(N(s) \) can be obtained through the linear fractional transformation (LFT) between \(P \) and \(K \). Based on (4) and define the system sensitivity function as \(S = (I + G_r K)^{-1} \), \(N(s) \) is,

\[
N(s) = \begin{bmatrix}
N_{11}(s) & N_{12}(s) \\
N_{21}(s) & N_{22}(s)
\end{bmatrix} = P_{11} + P_{12} K (I - P_{22} K)^{-1} P_{21}
\]

The design of the \(H_\infty \) optimal controller is to find a stabilizing function \(K \) to minimize the largest gain for any input direction from \(w \) to \(z \), which is the peak of the singular value of the closed-loop transfer function \(N(s) \), and can be described by an \(H_\infty \) norm as,

\[
\| N \|_{\infty} = \max_{\omega} \| \tilde{S}(\omega) \| = \gamma_{\text{min}} < \gamma
\]

The optimal solution of (6) is marked as \(\gamma_{\text{min}} \), which can be obtained by solving the standard two-Riccati formula [27]. The \(\gamma \)-iteration algorithm is adopted which defines a proper value \(\gamma > \gamma_{\text{min}} \) to approach the optimal value \(\gamma_{\text{min}} \) as an \(H_\infty \) suboptimal problem. For a nominal system, \(\gamma \) can be set as 1.

B. Weighting functions design

Weighting functions can be regarded as filters to shape the uncertain perturbation of controller outputs and inputs. It is shown in Fig. 6, \(u \) and \(v \) are shaped along with two transfer functions \(W_u \) and \(W_v \). It is seen from (5) that \(KS \) is shaped by \(W_u \), where \(KS \) is the transfer function between \(d \) and the control signals. It is important to include \(KS \) as a mechanism for limiting the gain and bandwidth of the controller, and the size of \(KS \) is also important for robust stability [30]. As such, \(W_u \) regulates the controller bandwidth and system robust stability through shaping \(KS \). \(W_p \) reflects \(\gamma \), as a mechanism to influence the tracking performance of the external disturbance. \(W_a \) can be a constant gain. For a normalized system, a reasonable range of the \(W_u \) is satisfied as,

\[
W_u \leq 1
\]

Different values of \(W_u \) have little influence on the tracking performance of the controller as shown by the tracking error in Fig. 7. The bandwidth of the singular value curves from \(r \) to \(v \) with different \(W_u \) are all around 150Hz.

![Fig. 7. Singular values from r to v with different W_u](image)

The system stability is greatly influenced by \(W_u \), as shown in Table I. With different values of \(W_u \), the \(\gamma \) value varies. It is seen the \(\gamma \) value exceeds 1 when \(W_u \) is above 0.7, meaning the \(H_\infty \) control requirement in (6) is no longer satisfied.

<table>
<thead>
<tr>
<th>Table I</th>
<th>The (Y) value under different (W_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_u)</td>
<td>0.05</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

As the reflection of the controller tracking performance, \(W_p \) must be designed to guarantee the tracking performance to the fundamental. A low pass filter is designed as the first part of \(W_p \) to shape the fundamental frequency characteristic,

\[
W_p = \frac{s}{M + \omega_1}
\]

where the low-frequency gain of the tracking error, shaped as \(1/|W_p(j\omega)| \), is \(A \). The high-frequency gain of \(1/|W_p(j\omega)| \) is \(M \). The asymptote of the amplitude-frequency curve crosses 1 at \(\omega_1 \). So the parameter tuning should satisfy \(A \approx 0 \) and \(M \geq 1 \) to limit the controller bandwidth. In order to guarantee the harmonic suppression performance, a band-pass filter with the resonance frequencies at the 2nd, 4th and 6th orders are introduced as the second part of \(W_p \),

\[
W_p^2 = \sum_{i=2,4,6} \frac{k_i \omega_1 s}{s^2 + 2\xi_i \omega_1 s + \omega_1^2}
\]

where \(\omega_1 \) is the resonance frequency, \(\xi_i \) is the damping ratio,
and k_1 is the gain ratio. Based on (8) and (9), W_p is

$$W_p = W_{p1} + W_{p2}$$ \hspace{1cm} (10)

The system closed-loop characteristic is obvious different with the parameter change of W_p. As Fig. 8 shows, with different ζ, the bandwidth of the closed-loop system varies from 200 Hz to 600 Hz.

Fig. 8. Bode plots of the closed-loop response with different W_p

C. The RS and RP validation

The nominal system stability and control performance of \mathcal{H}_∞ controller is guaranteed by (6). For an uncertain model, the RS and RP should be further validated to guarantee system stability and satisfy control requirements with all the possible models, which can be validated by the structured singular value μ [30]. The system $N\Delta$-structure in Fig. 6 can be rearranged as a $M\Delta$-structure in Fig. 9, in which $M=N_{II}$.

![MΔ-structure diagram for μ analysis](image)

Fig. 9. $M\Delta$-structure diagram for μ analysis

The real non-negative function $\mu_\Delta(M)$, called the structured singular value, is obtained by the DK iteration [30]. The criteria of the RS and RP are given in (11). A_{μ} is a full complex matrix.

$$\begin{align*}
&RS \iff \mu_\Delta(N_{II}) < 1, \forall \omega \\
&RP \iff \mu_\Delta(N) < 1, \forall \omega, \Delta = \begin{bmatrix}
\Delta & 0 \\
0 & \Delta_R
\end{bmatrix}
\end{align*}$$ \hspace{1cm} (11)

The parameters of the weighting functions are iteratively tuned to satisfy both the \mathcal{H}_∞ suboptimal bound in (6), and the RS and the RP properties determined by the structured singular value μ in (11). The parameters of the \mathcal{H}_∞ controller designed in this paper are listed in Table II.

TABLE II

<table>
<thead>
<tr>
<th>A</th>
<th>M</th>
<th>ω_1</th>
<th>2nd</th>
<th>4th</th>
<th>6th</th>
<th>W_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>15</td>
<td>1000r</td>
<td>$\zeta_0,01$</td>
<td>$\zeta_0,01$</td>
<td>$\zeta_0,01$</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Using the Matlab-Robust control toolbox with the μ-toolbox, the γ is calculated as 0.45, satisfying (6). The detailed closed-loop Bode plots of the designed \mathcal{H}_∞ controller with the possible uncertain models are given in Fig. 10. It is shown the bandwidth is more than 400 Hz for all the models, satisfying the control requirement. The tracking performance from i_{rd},i_{rq} to i_{rd},i_{rq}, as well as the damping performance from i_{rd},i_{rq} to i_{rd},i_{rd} at the resonant frequencies, are also guaranteed. The μ-curves of the RS and RP are shown in Fig. 11 and Fig. 12. All values in the μ-curves are smaller than 1, proving that the robustness of the designed \mathcal{H}_∞ controller is guaranteed for all the uncertain models.

![Closed-loop Bode plots of the uncertain system by \mathcal{H}_∞ control](image)

Fig. 10. Closed-loop Bode plots of the uncertain system by \mathcal{H}_∞ control

![The μ-curves for RS](image)

Fig. 11. The μ-curves for RS

![The μ-curves for RP](image)

Fig. 12. The μ-curves for RP

IV. CASE STUDY

Case studies were performed using Matlab/Simulink SimPower Systems with a 1.5 MW DFIG WT model to verify the control performance of the \mathcal{H}_∞ rotor current controller. The control objective is to suppress rotor current distortions. The
PIR controller was also simulated to compare the performance. The wind speed was set as a constant of 15 m/s, and the reactive power reference was set as 0. The transfer function of the PIR controller is,

$$G_{PIR} = \frac{K_p + \frac{K_i}{s} + \sum_{j=3,4,5} \frac{K_p\omega_j}{s + \omega_j}}{s + \omega_c}$$ \hspace{1cm} (12)

The parameters of the PIR current controller are tuned based on the frequency domain design method [15]. The parameters of the PIR controller are listed in Table III.

<table>
<thead>
<tr>
<th>Parameters of the PIR controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_p</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

A. Performance under grid background harmonics

From 3s to 3.3s, the grid background harmonics including 10% of the 5th harmonic and 10% of the 7th harmonic are added to the idea grid voltage. Fig. 13 shows the comparison of the rotor current with the H_∞ control and the PIR control. Fig. 14 shows the results of the WT output power.

![Fig. 13. Rotor current under grid background harmonics](image)

![Fig. 14. Output power under grid background harmonics](image)

It is seen from Fig.13 both the H_∞ and PIR controllers can mitigate the 5th and 7th harmonics effectively. Table IV lists the FFT analysis results of i_{rd} from 3.1s to 3.2s. The results show the harmonic mitigation performance of the H_∞ controller is better than the PIR controller. It is seen from Fig.14, the power oscillation at steady state by the H_∞ and PIR current control has been decreased, while the dynamic performance of the output power by the H_∞ controller is worse than the PIR controller.

<table>
<thead>
<tr>
<th>FFT analysis results of i_{rd} under grid harmonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>H_∞</td>
</tr>
<tr>
<td>PIR</td>
</tr>
</tbody>
</table>

B. Performance under unbalanced grid voltage

A single phase to ground fault (phase A) with 30% dip depth was applied from 3s to 4s. Fig. 15 shows the comparison of the rotor current with the H_∞ and PIR control. Table V lists the FFT analysis results of i_{rd} from 3.5s to 3.6s with the H_∞ and PIR controllers, showing the H_∞ controller with better harmonics suppression performance. Fig. 16 shows the results of the output power of wind turbine. It is seen the oscillation of the output power with the H_∞ controller is more severe than the PIR controller. It is because the H_∞ control focuses on the overall performance of the uncertain system with parameter perturbation. For the nominal model, the dynamic performance of the PIR control is better than the H_∞ control.

![Fig. 15. Rotor current under asymmetric grid fault](image)

![Fig. 16. Output power under asymmetric grid fault](image)

<table>
<thead>
<tr>
<th>FFT analysis results of i_{rd} under unbalanced grid voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>H_∞</td>
</tr>
<tr>
<td>PIR</td>
</tr>
</tbody>
</table>

C. Performance with generator parameter perturbation

A single phase to ground fault (phase A) with 30% dip depth, and grid background harmonics with 10% of the 5th
and 10% of the 7th order were applied from 3s to 4s. Fig. 17 shows the comparison of the rotor current with the H_∞ and PIR control with the parameters of L_m, L_s, L_r and R_r all reduced to 70% of the nominal value. Fig. 18 shows the results of the WT output power. The FFT analysis results of i_{rd} with generator parameter perturbation from 3.5s to 3.7s are listed in Table VI.

It can be seen from Fig. 17 that the performance of the H_∞ controller is not much influenced by the parameter perturbation. The THD is 1.67% with the H_∞ control, indicating the good tracking performance and robust stability with parameter perturbation. While for the PIR controller, the current control performance is obviously influenced by the parameter perturbation, with the THD being up to 10.79%.

The above simulation results show both the H_∞ and PIR control have good harmonics suppression performance with the nominal model. The dynamic performance of the PIR controller with the nominal model is better than the H_∞ controller. Under the parameter perturbed conditions, the stability and robust performance of the H_∞ controller is better than the PIR controller.

V. CONCLUSION

In this paper, an H_∞ robust controller was designed for the DFIG rotor current regulation in order to improve the robustness and harmonic suppression performance subject to grid voltage distortions and generator parameter perturbation. The H_∞ controller is designed based on an uncertain MIMO DFIG model and the RS and RP of the H_∞ controller is verified by the structured singular value μ. Case studies show that the designed H_∞ controller can effectively suppress current harmonics with 2nd, 4th and 6th orders under grid voltage distortions. The H_∞ current controller can improve the robustness of the DFIG based wind turbine subject to grid voltage distortions, guarantee harmonics suppression performance as well as the stability with parameter perturbation.

The designed H_∞ controller can also be applied to other WTs, such as PMSG based wind turbine with some modification of the controller parameters, and will be investigated in the future work. Experiments will also be conducted to validate the proposed control in the future work.
APPENDIX

| TABLE VII |
| The parameters of 1.5 MW DFIG model |

Rated power	1.5 MW
Stator voltage	0.69 kV
Electrical base frequency	50 Hz
Stator resistance	0.023 pu
Rotor resistance	0.016 pu
Stator leakage inductance	0.18 pu
Rotor leakage inductance	0.16 pu
Mutual inductance	2.9 pu
Nominal frequency	50 Hz

REFERENCE

