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Abstract

In this paper a method for separating spikes from a noisy data series, where the
data change and evolve over time, is presented. The method is applied on mea-
surements of the total heat load for a single family house. It relies on the fact
that the domestic hot water heating is a process generating short-lived spikes in
the time series, while the space heating changes in slower patterns during the
day dependent on the climate and user behavior. The challenge is to separate
the domestic hot water heating spikes from the space heating without affecting
the natural noise in the space heating measurements. The assumption behind the
developed method is that the space heating can be estimated by a non-parametric
kernel smoother, such that every value significantly above this kernel smoother
estimate is identified as a domestic hot water heating spike. First, it is showed
how a basic kernel smoothing approach is too simple to deliver reliable results.
Therefore the problem is generalized to a local least squares problem, which
makes it possible to design a robust kernel smoother, which estimate is not af-
fected by the spikes. Furthermore, the generalized model makes it possible to
estimate higher order local polynomials. Finally, the results are evaluated and
it is found that the method is capable of calculating a reliable separation of the
total heat load into the two components.

Keywords:
Separation of total heat load, kernel smoother, robust estimation, statistical
modeling, time series analyses, smart grid, smart metering, heat metering
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1. Introduction

The energy performance of buildings can be assessed in many ways. As more
and more data is collected on the actual energy consumption data driven assess-
ment becomes feasible. When analyzing the total energy consumption of a build-
ing it is important to acknowledge that it is composed of several components. In
many cases the two most important components are related to the building en-
velope and the occupancy behavior, and for labeling the energy performance of
a building it is important to consider which components to include - often the
interest is in the envelope.

In this paper a method for separating the total heat load into domestic hot water
(DHW) heating and space heating is presented. Data from an individual residen-
tial building located in Denmark is used. It consists of a time series of 10 minute
values of total heat load, which is the sum of DHW and space heating. DHW is
used by the inhabitants for showering, dish washing, etc., and the space heating
is used to heat the house. The DHW heating generates spikes added to the (or on
top of) the space heating. This is due to the fact that showering and dish washing
use intense amount of energy in a short period. A commercial opportunity for
this study is that the number of sensors needed can be reduced, since the DHW
and space heating don’t need to be measured separately, i.e. the same informa-
tion can be retrieved with a single heat flow meter instead of two. Thus system
costs can be decreased and often only the total heat load is available, thus the
method can be useful in such cases for data analysis purposes.

The described method for separating the total heat load is quite generic and can
therefore easily be used for other applications, where spikes must be separated
from other signals. The separation can be useful for building energy perfor-
mance estimation based on data ([1] and [2]) and for load forecasting where the
presented method was actually used [3]. The separated DHW load can be used
for example for constructing load profiles for DHW ([4] and [5]), the latter using
in-homogeneous Markov chain models providing a fully data-driven stochastic
modelling approach. Another important application is in control for heating sys-
tems enabling demand response for integration of renewables, for example by
using a hot water tank [6] or the building structures [7] for energy storage.

Separating consumption signals into sub-components has been studied quite in-



tensively the last decades, mainly for electrical appliance load monitoring ([8]
and [9]), where the electrical load is dis-aggregated into event categories. Also
residential water consumption dis-aggregation into end-use categories has been
studied [10], where high resolution readings (5 sec.) were used. Such methods
are event based, where patterns are matched and related to the properties of ap-
pliances or events. Methods for spike detection has been studied in-depth in for
example medical applications such as electroencephalography (EEG). Several
approaches for determining amplitude thresholds are used. For example differ-
ent statistical approaches [11], as well as filtering and wavelet approaches [12].
A comprehensive review of different techniques is given by [13].

In the present study a statistical time series approach [14] based on kernel smooth-
ing techniques for time series ([15] and [16]) is used and combined with robust
estimation (see [17] and [18]). The proposed method enables separation of very
high spikes to be carried out without interfering with the remaining signal. The
method is based on the idea of using a non-parametric model (i.e. the kernel
smoother) to estimate the space heating. The space heating changes over time
as it is a low-pass filtered response of mainly the outdoor temperature and the
solar radiation. Consequently, the space heating changes at frequencies related
to those variables, thus in a slow moving and rather smooth pattern. The DHW
generates spikes (a noisy and high frequency component) added to the slower
changing space heating signal. The method is therefore designed such that the
non-parametric estimate follows the slower changes only, without being influ-
enced by the spikes - which is possible by using a robust estimation scheme.
Since the estimate is not affected by the spikes they can be identified and sepa-
rated from the space heating signal.

Outline
In Section 2 the data used for the study is presented and in Section 3.1 a simple
kernel smoother model applied to separate the DHW spikes from the data is
described. In Section 3.2 a robust estimation scheme is presented, and in Section
3.3 it is described how the method is extended further by using a second order
polynomial model. Finally, in Section 4 the results are analyzed and in Section
5 the conclusions are drawn.
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2. Data

The data used in the study consists of the total heat load of a single-family free
standing residential building with two occupants. The total heat load is the sum
of DHW heating used for heating water for showering, dish washing, etc., and
space heating used for heating the building. Sønderborg Fjernvarme (consumer
owned district heating company) located in the southern part of Denmark deliv-
ered the data. The period used is covering one month from 1st of March to 2st

of April 2010. The data was logged every 10th minute. The total heat load is
represented with the time series{

Qt, t = 1, . . . ,N
}

(1)

where Qt is the value at time t and N = 4607 is the number of observations in
the times series, i.e. equidistant sample points. Per convention Q̇ is used for
denoting the rate of heat, however the dot is left out to simplify the notation,
such that Qt is the heat transferred in the time interval from t− 1 to t and the unit
of the heat series is kept in megajoule per hour [MJ/h]. The upper plot of Figure
1 shows the raw data from this period. Some of the spikes are as high as 160
MJ/h and have been cut off by the frame of the plot in order to make the lower
variations visible. It can be seen that in a two week period from Friday 12th until
Friday 26th there are no spikes and the total heat load has very little variation. It
is assumed that the inhabitants were on holiday and left the house with the usual
space heating during these two weeks. The inclusion of this holiday period in
the evaluation provides a further opportunity to evaluate the separation, since the
models should predict that no DHW heating is used in the period. The lower plot
of Figure 1 shows four days covering the transition to the period with no spikes,
and in this plot also the characteristics of the spikes can be seen in more detail.

3. Models

In the following the applied kernel smoother models are presented. It is assumed
that the spikes represent DHW heating and the remaining signal represents space
heating. The kernel smoother estimates the space heating and thus spikes signif-
icantly higher than the kernel smoother estimate are identified as DHW heating.
First, a simple zero order kernel smoother is presented and thereafter, in Section
3.2 and 3.3, improvements of this simple model are suggested.
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Figure 1: The upper plot is of the total heat for March 2010 and the lower plot is for the four
days period, where the spikes end and it is assumed that the inhabitants leave the house.
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3.1. Zero order kernel smoother

A kernel smoother is a method to estimate the underlying function of some given
noisy measurements. Kernel estimation is a non-parametric estimation tech-
nique, where no explicit description of the true function is needed and only a
bandwidth parameter needs to be set [16]. The kernel smoother is

ĝ(t) =

N∑
i=1

Qik
(

t−i
h

)
∑N

i=1 k
(

t−i
h

) (2)

where ĝ(t) is the kernel estimate for a given time t, k(·) is the kernel function
and h is the bandwidth parameter. From the formula it is seen that the kernel
smoother is a local weighted average around the given time t, hence a zero order
local estimate. The kernel function k(·) determines how the weight should be
put on the neighboring data points. The Gaussian kernel k(u) = 1

2π exp{− u2

2 } is
used. The bandwidth h is a smoothing parameter which determine the width
of the kernel. As h → ∞ the estimate will go towards the average 1

N

∑N
t=1 Qt.

Therefore for too large values of h the kernel estimate will be biased. As h → 0
the kernel estimate would just be equal to the nearest data points and there will
be no bias, but a large variance of the estimate. Hence the bandwidth needs to be
tuned for the particular data. In the present case the value were set according to a
manual tuning, which gave a good result when visually inspecting the separation,
however for applications - where manual tuning is not an option - a scheme for
tuning the bandwidth (and the two other parameters presented below) should be
developed in further studies. In the present case a bandwidth equal to h = 12
(which is 2 hours) is found adequate. This results in the kernel seen in Figure 2.

The separation is carried out by identifying the DHW heating by

Q̂water
t = I

(
Qt > qthres ĝ(t)

) (
Qt − ĝ(t)

)
(3)

where I(·) is the indicator function. Hence spikes above qthres·ĝ(t) are identified as
DHW heating and the value of them are found by subtracting the kernel estimate.
The separation threshold qthres needs to be tuned and it should be set related to
the local variance of noise in the space heating signal, such that the spikes are
significantly higher than this noise level. In the present case qthres is set to 1.3.
Since only one time series is available a scheme for tuning of qthres is left for
future studies where many different series can be included. The space heating is
found simply by subtracting DHW heating from the total heat load

Q̂space
t = Qt − Q̂water

t (4)
6
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Figure 2: The normal kernel with h = 12 used for the smoothing.

The result of the separation is shown in Figure 3. The uppermost plot shows the
original data together with 1.3 · ĝ(t). The middle plot shows the DHW heating.
The lower plot shows the space heating. Therefore, the sum of the two lower
plots is equivalent to the uppermost plot. It is seen that the estimated space
heating has many short-lived spikes especially during periods with many spikes,
this is not appropriate. The reason is that the kernel estimate is too affected by
the spikes, which leads to smaller spikes being below 1.3 · ĝ(t). The next sections
are dedicated to show how a modification by using a suggested robust kernel
smoother can prevent the estimate from being affected by the high spikes.

3.2. Robust zero order kernel smoother

The idea behind robust estimation is to make the estimation method robust against
outliers or extremes [18]. Optimization methods generally try to minimize some
function ρ(ε) of the residuals ε. In this case the simple zero order kernel es-
timator in Equation (2) is a zero order local regression model [19] and can be
formulated as

ĝ(t) = arg min
θ

1
N

N∑
i=1

k
(

t−i
h

)
(Qi − θ)2 (5)
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Figure 3: Result of the separation with the zero-order kernel smoother. The red dashed line is
1.3 · kernel estimate.

where the residuals minimized are εi = Qi − θ, hence the least squares method
minimizes the sum of the squared residuals ρLS(ε) = ε2. The estimation is made
robust by replacing the quadratic function with Tukey’s biweight function, also
known as the bisquare function, see [17]. The biweight estimation minimizes the
following function

ρbiweight(ε) =

 1
6
ε2(ε4−3 ε2γ2+3 γ4)

γ4 if |ε| ≤ γ
1
6 γ

2 if |ε| > γ
(6)

The biweight function is approximately quadratic for small residuals and con-
stant for residuals larger than γ. A plot of ρbiweight(ε) and a scaled version of
ρLS(ε), together with their derivatives are shown in Figure 4. The derivative is
also known as the influence function. The biweight function induces that outliers
do not cause displacement of the resulting estimate. For residuals further away
than the γ limit the influence function ρ′(ε) is zero. The parameter γ is a se-
lected threshold determining when residuals are considered large. For the actual
heating data a reasonable value found to be γ = 7 Mj/h.

For a given time t the robust zero order estimate is found by solving the opti-
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Figure 4: Left: Tukey’s biweight and a square function. Right: The derivatives also known as
the influence function.

mization problem

ĝ(t) = arg min
θ

1
N

N∑
i=1

k
(

t−i
h

)
· ρbiweight

(
Qi − θ

)
(7)

Hence the residuals are εi = Qi − θ. The result of the separation using this model
is shown in Figure 5. It is seen that almost all of the spikes in the heating are
removed compared to the separation using the simple kernel, and thus by using
the robust kernel the problem of the estimate being too affected by the large
spikes is solved.

3.3. Robust second order kernel smoother

The previous models were based on a zero order local estimate (i.e. the locally
weighted average). Applying a higher order polynomial kernel smoother might
improve the performance of the estimator, since then the higher order moments
of the local estimation functions are included in the model. This can be important
when for load profiles with fast changes e.g. caused by a nightly set-back result-
ing in a significant diurnal profile. A robust second order local model, which
includes the curvature of the locally estimated function, is applied by using the
cost function

θ(t) = arg min
θ

1
N

N∑
i=1

k
(

t−i
h

)
· ρbiweight

(
Qi − θ0 + θ1(ti − t) + θ2(ti − t)2) (8)

ĝ(t) = θ0(t) (9)
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Figure 5: Result of the separation with robust zero order kernel smoother. The red dashed line is
1.3 · kernel estimate.

Hence for any given time t the minimization of the cost function is carried out for
θ = (θ0, θ1, θ2) and the intercept θ0 of the locally fitted polynomial is the estimate.
This model has less tendency to get biased in high curvature points. Therefore
a higher bandwidth can be used making it even less affected by the spikes. The
bandwidth is increased to h = 18. The result of separating the total heat load into
DHW and space heating using the robust second order kernel smoother is shown
in Figure 6. Comparing the plots for the separation using the robust zero order
and the robust second order smoother only marginal differences are seen. Hence
for the present heating series it is not found necessary to use an higher order
estimator and the robust zero order smoother is found to be a sufficient model.

4. Discussion

Certainly, it is needed to apply the method on many series with different patterns,
and where DHW and space heating are measured separately in order to validate
the performance more thoroughly. This will also enable the construction of a
scheme for automatically tuning the parameters: the kernel bandwidth h, the
separation threshold qthres and the γ threshold for the biweight function in the
robust estimation scheme.
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Figure 6: Results of the separation with the robust second order kernel smoother. The red dashed
line is 1.3 · kernel estimate.

Only marginal differences was found between the results from the zero order
and the second order robust kernel for the present series, however it could be
expected that for series with significant diurnal variation, e.g. from a nightly
setback, that a higher order model is better.

Other explanatory variables can also be included as inputs to the model, e.g.
ambient temperature, solar radiation and electrical consumption. However, one
should not expect to explain all the variation in the data in this way as most
houses represent a relative large thermal mass that combined with thermostats
creates dynamics in the response, hence these slower dynamics are modelled
quite well with the suggested model. Also it is mentioned, that a quantile regres-
sion model could be used, since this is also robust to outliers. For example the
median (50% quantile) or a lower quantile could be estimated. Quantile regres-
sion models can be fitted in a similar non-parametric approach using a kernel
smoother [20] and such models can also be fitted using a recursive scheme [21],
which can enable faster computation times in online applications.

The proportion of the total heat load that is used for space heating obviously
depends on the outdoor climate and therefore on the season. This will lead to
changes in signal to noise ratio and it would also be of interest to investigate how
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this approach works for different periods of the year. Another important consid-
eration is the sampling frequency. In this study a sample is recorded every 10
minutes which is on the same time scale as typical DHW usage for dish washing
and showering while at the same time being frequent relative to the dynamics of
the space heating.

5. Conclusion

A method for separating spikes from a signal is presented using a case study
of the total heat load measured in a single family residential house, where the
DHW heating is separated from the space heating. It is assumed that the DHW
heating are spikes added to the space heating in the total heat load. First a local
average kernel is applied, however the spikes affect the estimates and the results
were not reliable. Therefore a robust estimation is suggested and it is shown that
this enables a much better separation of the DHW and space heating. It is found
that the method is very promising and that it can be concluded that the method
is useful for separating the DHW heating from space heating. However, it is
emphasized that further studies are needed, where the method is applied on many
different heating series and where the DHW and space heating are measured
separately, for a more in-depth development and verification of the method and
its accuracy.

The described method can be used in other fields of operation as well. In any
problem where noisy data includes spikes the described method could possibly
provide a technique for removing the spikes.
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within the control relevant identification for buildings, Control Engineering Practice 21 (1)
(2013) 113–121. doi:http://dx.doi.org/10.1016/j.conengprac.2012.09.017.
URL http://www.sciencedirect.com/science/article/pii/

S0967066112002006

[8] G. Hart, Nonintrusive appliance load monitoring, Proceedings of the IEEE 80 (12) (1992)
1870–1891. doi:10.1109/5.192069.

[9] L. Farinaccio, R. Zmeureanu, Using a pattern recognition approach to disaggregate the to-
tal electricity consumption in a house into the major end-uses, Energy and Buildings 30 (3)
(1999) 245–259. doi:http://dx.doi.org/10.1016/S0378-7788(99)00007-9.
URL http://www.sciencedirect.com/science/article/pii/

S0378778899000079

[10] K. Nguyen, R. Stewart, H. Zhang, An intelligent pattern recognition model to automate the
categorisation of residential water end-use events, Environmental Modelling & Software
47 (0) (2013) 108–127. doi:http://dx.doi.org/10.1016/j.envsoft.2013.05.

002.
URL http://www.sciencedirect.com/science/article/pii/

S1364815213001084

[11] L. E. Christian, D. O. Everson, S. L. Davis, A statistical method for detection of hormone
secretory spikes, Journal of Animal Science 46 (3) (1978) 699–706. arXiv:http://www.
journalofanimalscience.org/content/46/3/699.full.pdf+html.
URL http://www.journalofanimalscience.org/content/46/3/699.short

[12] R. Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with

13

http://dx.doi.org/10.1016/j.buildenv.2006.10.030
http://www.sciencedirect.com/science/article/pii/S0378778813002752
http://www.sciencedirect.com/science/article/pii/S0378778813002752
http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2013.04.022
http://www.sciencedirect.com/science/article/pii/S0378778813002752
http://www.sciencedirect.com/science/article/pii/S0378778813002752
http://www.sciencedirect.com/science/article/pii/S0378778809000413
http://www.sciencedirect.com/science/article/pii/S0378778809000413
http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2009.02.013
http://www.sciencedirect.com/science/article/pii/S0378778809000413
http://www.sciencedirect.com/science/article/pii/S0378778809000413
http://www.sciencedirect.com/science/article/pii/S0378778813006397
http://www.sciencedirect.com/science/article/pii/S0378778813006397
http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2013.10.001
http://www.sciencedirect.com/science/article/pii/S0378778813006397
http://www.sciencedirect.com/science/article/pii/S0378778813006397
http://dx.doi.org/10.1016/j.egypro.2012.11.032
http://dx.doi.org/10.1016/j.egypro.2012.11.032
http://www.sciencedirect.com/science/article/pii/S0967066112002006
http://www.sciencedirect.com/science/article/pii/S0967066112002006
http://dx.doi.org/http://dx.doi.org/10.1016/j.conengprac.2012.09.017
http://www.sciencedirect.com/science/article/pii/S0967066112002006
http://www.sciencedirect.com/science/article/pii/S0967066112002006
http://dx.doi.org/10.1109/5.192069
http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-7788(99)00007-9
http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://www.sciencedirect.com/science/article/pii/S1364815213001084
http://www.sciencedirect.com/science/article/pii/S1364815213001084
http://dx.doi.org/http://dx.doi.org/10.1016/j.envsoft.2013.05.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.envsoft.2013.05.002
http://www.sciencedirect.com/science/article/pii/S1364815213001084
http://www.sciencedirect.com/science/article/pii/S1364815213001084
http://www.journalofanimalscience.org/content/46/3/699.short
http://www.journalofanimalscience.org/content/46/3/699.short
http://arxiv.org/abs/http://www.journalofanimalscience.org/content/46/3/699.full.pdf+html
http://arxiv.org/abs/http://www.journalofanimalscience.org/content/46/3/699.full.pdf+html
http://www.journalofanimalscience.org/content/46/3/699.short
http://dx.doi.org/10.1162/089976604774201631


wavelets and superparamagnetic clustering, Neural Computation 16 (8) (2004) 1661–1687.
doi:10.1162/089976604774201631.
URL http://dx.doi.org/10.1162/089976604774201631

[13] S. B. Wilson, R. Emerson, Spike detection: a review and comparison of al-
gorithms, Clinical Neurophysiology 113 (12) (2002) 1873–1881. doi:http:

//dx.doi.org/10.1016/S1388-2457(02)00297-3.
URL http://www.sciencedirect.com/science/article/pii/

S1388245702002973

[14] H. Madsen, Time Series Analysis, Chapman & Hall/CRC, 2007.
[15] V. A. Epanechnikov, Non-parametric estimation of a multivariate probability density, The-

ory of Probability & Its Applications 14 (1) (1969) 153–158.
[16] P. M. Robinson, Nonparametric estimators for time series, Journal of Time Series Analysis

4 (3) (1983) 185–207. doi:10.1111/j.1467-9892.1983.tb00368.x.
URL http://dx.doi.org/10.1111/j.1467-9892.1983.tb00368.x

[17] P. J. Huber, Robust Statistics, John Wiley & Sons, 2003.
[18] P. J. Rousseeuw, A. M. Leroy, Robust regression and outlier detection, Vol. 589, Wiley.

com, 2005.
[19] J. Friedman, T. Hastie, R. Tibshirani, The elements of statistical learning, Vol. 1, Springer

Series in Statistics, 2001.
[20] R. Koenker, Quantile Regression, Cambridge University Press, 2005.
[21] J. K. Møller, H. A. Nielsen, H. Madsen, Time-adaptive quantile regression, Computational

Statistics and Data Analysis 52 (3) (2008) 1292–1303.

14

http://dx.doi.org/10.1162/089976604774201631
http://dx.doi.org/10.1162/089976604774201631
http://dx.doi.org/10.1162/089976604774201631
http://www.sciencedirect.com/science/article/pii/S1388245702002973
http://www.sciencedirect.com/science/article/pii/S1388245702002973
http://dx.doi.org/http://dx.doi.org/10.1016/S1388-2457(02)00297-3
http://dx.doi.org/http://dx.doi.org/10.1016/S1388-2457(02)00297-3
http://www.sciencedirect.com/science/article/pii/S1388245702002973
http://www.sciencedirect.com/science/article/pii/S1388245702002973
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00368.x
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00368.x
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00368.x

	Introduction
	Data
	Models
	Zero order kernel smoother
	Robust zero order kernel smoother
	Robust second order kernel smoother

	Discussion
	Conclusion
	Acknowledgments
	References

