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Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy
approximation has proven to be a rather demanding computational task. The main reason is the strong q

dependence of the 2D dielectric function around q = 0 that calls for a much denser sampling of the Brillouin
zone (BZ) than is necessary for similar three-dimensional solids. Here, we use an analytical expression for the
small q limit of the 2D response function to perform the BZ integral over the critical region around q = 0. This
drastically reduces the requirements on the q-point mesh and implies a significant computational speedup. For
example, in the case of monolayer MoS2, convergence of the G0W0 band gap to within ∼0.1 eV is achieved with
12 × 12 q points rather than the 36 × 36 mesh required with discrete BZ sampling techniques. We perform a
critical assessment of the band gap of the three prototypical 2D semiconductors, MoS2, h-BN, and phosphorene,
including the effect of self-consistency at the GW0 level. The method is implemented in the open source code
GPAW.

DOI: 10.1103/PhysRevB.94.155406

I. INTRODUCTION

The past few years have witnessed an explosion in research
on atomically thin two-dimensional (2D) materials. Of partic-
ular interest are the 2D semiconductors including the family
of transition metal dichalcogenides, which have been found to
exhibit a number of unique optoelectronic properties [1–7]. For
understanding and predicting these properties the electronic
band structure of the material is of fundamental importance.
The GW method [8,9], introduced by Hedin [10] in 1965
and first applied to real solids in an ab initio framework by
Hybertsen and Louie [11] and Godby, Sham, and Schlüter [12],
has become the “gold standard” for calculating quasiparticle
(QP) band structures. Over the years its performance has been
thoroughly established for bulk materials [13–15] and more
recently also for molecules [16–19]. In comparison, critical
assessments of the accuracy and numerical convergence of
GW calculations for 2D materials are rather scarce [20–23].
Nevertheless, these studies have shown that (i) a truncated
Coulomb interaction can be used to avoid long range screening
between periodically repeated layers which reduces the QP
band gap, and (ii) when a truncated Coulomb interaction is
used, the convergence of the GW calculation with respect to
the number of k points becomes much slower than is the case
for similar bulk systems.

The slow k-point convergence of the GW band structure
is directly related to the nature of electronic screening in
2D which is qualitatively different from the well-known
three-dimensional (3D) case [24,25]. Specifically, while the
dielectric function ε(q) of bulk semiconductors is approxi-
mately constant for small wave vectors, the dielectric function
of a 2D semiconductor varies sharply as q → 0 [20,21]. As
a consequence, the number of q points required to obtain a
proper sampling of the screened interaction W (q) over the
Brillouin zone (BZ) is much higher for the 2D material than
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what would be anticipated from the 3D case. For example, the
band gap of bulk MoS2 is converged to within ∼0.1 eV with
an in-plane k-point grid of 12 × 12 while the same accuracy
for monolayer MoS2 requires a grid of 36 × 36 when standard
BZ sampling schemes are applied.

Importantly, supercell calculations only describe the char-
acteristic features of screening in 2D materials correctly when
the unphysical screening between the periodically repeated
layers is removed, e.g., using a truncated Coulomb interaction.
Without this, the dielectric function does not approach unity for
q → 0 and the band gap can be significantly underestimated
(by around 0.5 eV for MoS2 with 10 Å vacuum [21]) as a result
of overscreening. Since in this case, the screening is really
intermediate between 3D and 2D, the GW gap shows faster
convergence with k points than is observed using a truncated
Coulomb interaction. This is presumably the reason why most
earlier GW calculations for 2D semiconductors have been
performed with k-point grids ranging from 6 × 6 to 15 × 15
which are much too coarse for describing the truly isolated 2D
material.

Here, we show that the slow k-point convergence of
the GW self-energy in 2D materials can be alleviated by
performing the BZ integral of W (q) analytically in the critical
region around q = 0 where ε(q) varies most strongly. The
analytical expression for W (q) is obtained from a lowest-order
expansion in q of the head, χ0

00(q), and wings, χ0
0G(q), of the

noninteracting density response function. This simple scheme
reduces the required number of q points by an order of
magnitude without loss of accuracy.

II. THE GW SELF-ENERGY

We split the GW self-energy into the exchange and
correlation part, respectively. The former does not present
particular problems in 2D materials and is calculated using
a Wigner-Seitz truncated Coulomb interaction as described
elsewhere [26]. In a plane wave expansion the correlation part
of the self-energy, evaluated for an electronic state |nk〉, takes
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the general form [27]

〈nk|�c(ω)|nk〉

= 1

(2π )3

∫
BZ

dq
∑
GG′

i

2π

∫ ∞

−∞
dω′WGG′(q,ω′)

×
∑
m

[
ρ

mk+q
nk (G)

][
ρ

mk+q
nk (G′)

]∗

ω + ω′ − εmk+q + iη sgn(εmk+q − μ)
, (1)

where m runs over all electronic bands, εmk+q are single
particle energies, μ is the chemical potential, and η is a broad-
ening parameter set to 0.1 eV. The pair densities are defined
as ρ

mk+q
nk (G) = 〈nk|ei(G+q)·r|mk + q〉, and WGG′(q,ω) is the

correlation part of the dynamical screened potential given by

WGG′(q,ω) =
√

vG(q)
[
ε−1

GG′(q,ω) − δGG′
]√

vG′(q), (2)

where vG(q) = 4π/|G + q|2 is the Coulomb interaction. In
most implementations the BZ integral is evaluated numerically
with a standard quadrature method using a regular q-point grid
matching the k-point grid of the ground-state density func-
tional theory (DFT) calculation. Since the screened potential,
Eq. (2), diverges for G = 0, q = 0 (for bulk materials) this
point is generally handled separately, so the integral may be
written∫

BZ
dqS(q,ω) → �

Nq

∑
qn 	=0

S(qn,ω) +
∫

�0

dqS(q,ω), (3)

where S(q,ω) denotes the entire integrand, � is the volume
of the BZ, Nq is the total number of q points in the grid, and
�0 denotes a small region around q = 0. For bulk systems �0

is normally defined as a sphere centered at q = 0. For a 2D
material, the BZ integral in Eq. (1) reduces to a 2D integral
with an in-plane sampling of q, and �0 represents an area. For
the �0 region we assume that all the terms in the integrand
but the screened potential is constant in q and therefore take
the q = 0 value. As a result, the integral can be written on the
following form:∫

�0

dqW (q,ω)G(q,ω) ≈ G(0,ω)
∫

�0

dqW (q,ω).

We now focus on how to calculate the contribution to the
integral around the special point q = 0 in the 3D versus the
2D case.

Within the random phase approximation (RPA) the dielec-
tric matrix is given by

εGG′(q,ω) = δGG′ − vG(q)χ0
GG′(q,ω), (4)

with the noninteracting response function

χ0
GG′(q,ω) = 1

V

BZ∑
k

∑
n,n′

fnk − fn′k+q

ω + εnk − εn′k+q + iη

× [
ρ

n′,k+q
nk (G)

][
ρ

n′k+q
nk (G′)

]∗
,

where fnk are the occupation factors and V the volume of the
unit cell. For a solid with a finite band gap it can be shown that
the head of the noninteracting response function χ0

00(q,ω) ∝
q2 for small q [28]. Since v0(q) = 4π/q2 it follows that in
3D the head of the dielectric function ε00(q,ω) converges to a

finite value > 1 when q → 0. Moreover, this value is typically
a reasonable approximation to ε00(q,ω) in a relatively large
region around q = 0. This means that in the BZ integration in
Eq. (1) around the singular point G = G′ = q = 0, all factors,
except 4π/q2, can be assumed to be constant and the integral
can be performed analytically over a sphere centered at q = 0
[11] or numerically on a fine real-space grid [29].

For GW calculations of 2D materials performed with
periodic boundary conditions in the out-of-plane direction,
the direct use of Eq. (1) leads to significant overscreening
due to the interaction between the repeated images [21].
One way of dealing with this is to subtract the artificial
interlayer contribution calculated from a classical electrostatic
model [30]. A more direct way of avoiding the spurious
interactions is to truncate the Coulomb potential in the
direction perpendicular to the layers. Thus in Eqs. (4) and
(2), vG(q) should be replaced by [20,31]

v2D
G (q‖) = 4π

|q‖ + G|2 [1 − e−|q‖+G‖|L/2 cos(GzL/2)], (5)

where qz = 0 such that only in-plane q are included in the
sampling of the BZ. L is the length of the unit cell in the
nonperiodic direction and the truncation distance is set to L/2,
which simplifies the expression. In the long wavelength limit,
G = 0, qz = 0, q‖ → 0, the truncated interaction becomes
v2D

0 (q‖) ≈ 2πL
q‖

. We see that the q = 0 divergence in the
truncated Coulomb potential is reduced by a power of q
compared to that of the full Coulomb interaction. As will
be shown in the following, this has important consequences
for the form of the screened interaction. However, before
presenting the form of the screened interaction of a 2D
semiconductor evaluated using the full expression for the
response function and truncated Coulomb interaction, it is
instructive to consider a simplified description of the 2D
material.

Let us consider a strict 2D model of a homogeneous and
isotropic semiconductor. In the small q limit, the density
response function takes the form χ0(q) = −α2Dq2, where
α2D is the 2D polarizability [25]. Using that the 2D Fourier
transform of 1/r equals 2π/q, the leading order of the
dielectric function becomes

ε2D(q) ≈ 1 + 2πα2Dq. (6)

Some examples of macroscopic dielectric functions for a
representative set of 2D semiconductors are shown in Fig. 1
(see Ref. [21] for a precise definition of this quantity). The
linear form (6) is clearly observed in the small q regime.
Importantly, if we use the same strategy for evaluating the
BZ integral in Eq. (1) as in 3D, i.e., assuming ε−1(q) to be
a slowly varying function and evaluating it on the discrete
q-point grid, we obtain zero contribution for the q = 0 term
because 1/ε2D − 1 = 0 for q = 0 [see Eq. (2)]. On the other
hand, it is clear that the screened interaction takes the form
W

2D
(q) = −4π2α2D/(1 + 2πα2Dq) for small q. In particular,

W
2D

(q) takes a finite value for q = 0, which is qualitatively
different from the 3D case where W (q) diverges for q → 0.

In the Appendix we show, following an analysis similar to
that of Ref. [32] adapted to the case of a truncated Coulomb
interaction, that for a general nonisotropic 2D material, the
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FIG. 1. Static macroscopic dielectric functions of a representative
set of 2D semiconductors as a function of q along the  → M

direction for the hexagonal structures and along the path from 

to X or Y in the case of phosphorene.

small q‖ limit of the head of the screened potential takes the
form

W 00(q‖) = −
(

4π
(
1 − e−|q‖|L/2

)
|q‖|

)2

× q̂‖ · Aq̂‖
1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖

, (7)

where q̂‖ = q‖/|q‖| and A is a second rank tensor which also
depends on the frequency. We see that we have W 00(q‖ =
0) = −(2πL)2q̂‖ · Aq̂‖. In addition to Eq. (7), there are
similar expressions for the wings and body of the screened
interaction [see Eqs. (A25)–(A28)], which are all included
in the subsequent calculations. These expressions must be
integrated over the �0 region, that we now define as the
primitive cell in the 2D BZ that surrounds the q‖ = 0 point.
The expression is simplified to one that can be integrated
analytically as shown in the Appendix.

The full expression for W in Eqs. (A25)–(A28) is therefore
evaluated numerically on a discrete subgrid, constructed as a
Monkhorst-Pack grid within �0, and the simplified expression
in Eq. (A31) is only used for q‖ = 0 on the subgrid. The
limit of the integral is now given by the radius r�0 , defined as
πr2

�0
= �0/Nq0 , where Nq0 is the number of grid points in the

subgrid. This approach ensures a smooth evaluation of W , that
converges quickly with Nq0 . It is found to be necessary to have
Nq0 ≈ 100 when q‖ = 0 is evaluated using Eq. (A31) for both
iso- and anisotropic materials whereas Nq0 ≈ 105 is needed if
the analytical correction at q‖ = 0 is omitted.

Results

To investigate how this method performs, we have carried
out test calculations for the three monolayers h-BN, MoS2, and
phosphorene, which have quite different dielectric functions,
as seen in Fig. 1. h-BN is a large gap dielectric with a low

screening ability leading to a small slope of the dielectric
function at q = 0, while MoS2 has a larger dielectric function
and a quite steep slope at q = 0. Phosphorene has a dielectric
function similar to MoS2 in size and steepness, but is
anisotropic with slopes varying by ∼40% between the two
high symmetry directions  → X and  → Y .

All the calculations were performed using the GPAW

electronic structure code [33]. The structures used in the
present calculations are relaxed with DFT using the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation (xc) functional
[34]. The resulting lattice constant for h-BN is 2.504 Å, and
the in-plane lattice constant for MoS2 is 3.184 Å with an S-S
distance of 3.127 Å. For phosphorene the in-plane unit cell
is 4.630 Å by 3.306 Å, the in-plane P-P-P angle is 95.8°,
and the layer thickness is 2.110 Å. A convergence test of
the G0W0 bandgap with respect to the amount of vacuum
between repeating periodic images was carried out and 15 Å
of vacuum was necessary for h-BN and phosphorene whereas
only 10 Å was needed for MoS2 (see Fig. 4). The PBE
eigenvalues and wave functions were calculated with a plane
wave basis cutoff energy of 600 eV and used as the input
in the GW calculations. For the initial investigation of the
q-point convergence, the dielectric function and the correlation
self-energy were calculated using a cutoff of 50 eV. This
cutoff is insufficient to ensure properly converged quasiparticle
energies, but it is adequate to describe the trends related to the
improved q-point sampling relevant for this study. The fully
converged results reported in Table I were carried out using
a 1/Npw extrapolation to the complete basis set limit using
cutoff energies of up to 200 eV [35–37].

In Fig. 2 we compare the analytical small q expression,
Eq. (7), for the head of the screened potential W 00(q) with
the numerical values obtained using a fine and coarse q-point
sampling. In all the cases the q = 0 value has been set to the
analytical value. It is evident that the screened potential falls
off quickly, and thus for a coarse q-point sampling, the q = 0
contribution to the integral is by far the largest and should
therefore not be neglected. Similarly, using only the exact value
in q = 0 could also pose a problem as the contribution will be
grossly overestimated due to the convex nature of potential.
We note that the analytical expression follows the numerical
results quite closely and is even accurate far away from the 

point—for MoS2 we have an almost perfect agreement for the
points shown. Thus using the analytical limit within the region
around q = 0 is reasonable. We notice that the anisotropy
of phosphorene makes W 00(q) ill defined at q = 0 (different
limit values depending on the direction of q). For larger q the
dielectric anisotropy becomes negligible. However, because
of the relatively large weight of the q = 0 contribution to the
BZ integral, the anisotropy should be taken into account for
accurate GW calculations.

We note that a similar approach to the treatment of the q = 0
term of the screened potential was suggested in Ref. [20].
That particular method was based on fitting to an empirical
expression for ε(q) calculated from the value at a small but
finite q. The method outlined here is different in that the
analytical expression for W (q) is obtained from a lowest-order
expansion of the head, χ0

00(q), and wings, χ0
0G(q), of the

noninteracting density response function [38] and thus can be
obtained without fitting or using empirical parameters. This
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FIG. 2. The head of the static component of the screened potential
(subtracted the bare interaction) of monolayer (a) h-BN, (b) MoS2,
and (c) phosphorene as a function of q along the  → M direction or
 → X and  → Y in the case of phosphorene. The crosses are the
numerical values obtained on a fine q-point grid while the circles or
triangles represent the values obtained on a coarse q-point grid. The
bars represent a simple numerical approximation to the BZ integral
of W 00(q) performed on the coarse q-point grid. The value of the
screened potential for q = 0 is set to the analytical result Eq. (7). The
solid curve represents the analytical small q approximation, Eq. (7),
and the hatched area shows its contribution to the integral.

also ensures that the effect of in-plane dielectric anisotropy is
explicitly included.

In Fig. 3 we show the minimum QP band gap of monolayer
h-BN, MoS2 and phosphorene as a function of 1/Nk, where
Nk is the total number of k points in the BZ sampling
(the q-point grid for the GW integration is the same as the
k-point grid used in DFT). We compare the results obtained
using two methods: (i) neglecting the q = 0 contribution to
head and wings of the screened potential and (ii) evaluating
Eqs. (A25)–(A28) as described. It is clear that method (i) in
all cases underestimates the correlation self-energy due to the

FIG. 3. The G0W0 quasiparticle band gap of monolayer (a)
2H -MoS2, (b) h-BN, and (c) phosphorene, calculated using two
different treatments of the q = 0 term in Eq. (1). The dashed (green)
line shows the contribution obtained when the head and wing elements
of the q = 0 term are neglected, corresponding to the standard
treatment used for 3D systems. The solid (blue) line shows the
contribution obtained when using the analytical results, Eq. (7), to
perform the integral over the q = 0 element. The insets shows the
results for the largest k-point grids on a reversed linear scale in 1/Nk.
Notice the zero point is at the right side of the x axis.

underestimation of the screening. In order to get the band gap
converged to within ∼0.1 eV, one would have to use a k-point
sampling of minimum 36 × 36 × 1 for h-BN, 36 × 36 × 1
for MoS2, and 22 × 30 × 1 for phosphorene. We also note
that for large k-point grids the band gaps using this method
converge approximately as 1/Nk as the missing contribution
is almost proportional to the area of the q = 0 region. Clearly,
the latter approach varies significantly less with the k-point
grid and in fact the gap is converged to within 0.2 eV already
for a k-point grid in the order of 6 × 6 × 1 and to within
∼0.1 eV with a 12 × 12 × 1 grid (in the worst case). We have
performed test calculations for other 2D semiconductors and
obtained similar conclusions although the number of k points
required to reach convergence within 0.1 eV following the
conventional approach (q = 0 term neglected) is somewhat
system dependent; materials with efficient screening, e.g.,
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FIG. 4. The band gap of monolayer 2H -MoS2 calculated with
different amounts of vacuum between repeated layers. The solid and
dashed lines are with and without the q = 0 correction, respectively.
As the vacuum is increased, the weight of the correction is decreased
and it is necessary to use denser in-plane k-point sampling to achieve
convergence.

MoS2 and NiS2, require larger k-point grids than materials
with poor screening, e.g., h-BN and HfO2 (see Fig. 1).

To obtain converged band gaps it is necessary to use a unit
cell with enough vacuum between repeated layers to avoid
an artificial interaction. This is true even when a truncated
Coulomb interaction is used as the finite vacuum affects
wave functions and energies, in particular, for higher lying
unbound states. As the amount of vacuum is increased, the
Brillouin zone shrinks and the analytical correction around
q = 0, applied only for G = 0, has smaller weight. This means
a slower convergence with respect to in-plane k points. This is
shown in Fig. 4 for MoS2, where it is clear that the correction
is less effective for larger vacuum. The calculations converge
toward the same value, indicating that for MoS2, 10 Å of
vacuum is sufficient. The most efficient procedure to obtain
converged band gaps is therefore to first converge the amount
of vacuum at a low k-point sampling without applying the
correction and then afterwards converge the k-point sampling
with the correction at the given vacuum.

In Table I we report the converged values for the quasipar-
ticle band gaps. For h-BN the band gap is indirect between
the K and  point, and for MoS2 and phosphorene it is direct
at the K and  point, respectively. For these calculations we
used 18 × 18 × 1 k points for h-BN, 18 × 18 × 1 k points for
MoS2, and 10 × 14 × 1 for phosphorene with the analytical
integration of W (q) around q = 0. According to Fig. 3, this
is sufficient to ensure convergence to within 0.05 eV. We note
that spin-orbit interactions are not included in the reported
values. Inclusion of spin-orbit interactions split the valence
band of MoS2 at the K point by 0.15 eV, thereby lowering
the QP gap by around 0.07 eV [23,39]. Spin-orbit interactions
have a negligible effect on h-BN and phosphorene.

TABLE I. Band gaps in eV calculated with DFT-PBE,
G0W0@PBE, and GW0@PBE using the PBE-relaxed structures. The
GW calculations were performed using analytic integration of W (q)
around q = 0 without including spin-orbit interactions. Here, 10 Å of
vacuum was used for MoS2 and 15 Å for h-BN and phosphorene. The
following k-point grids were used: h-BN, 18 × 18 × 1; 2H -MoS2,
18 × 18 × 1; and phosphorene, 10 × 14 × 1.

Transition DFT-PBE G0W0@PBE GW0@PBE

h-BN K →  4.64 7.06 7.49
K → K 4.72 7.80 8.25

2H -MoS2 K → K 1.65 2.54 2.65
Phosphorene  →  0.90 2.03 2.29

For MoS2 the converged G0W0@PBE band gap of
2.54 eV agrees well with our previously reported value of
2.48 eV (with spin-orbit coupling) obtained using a Wigner-
Seitz truncated Coulomb interaction and 30 × 30 × 1 k points
[23]. Other reported gaps range from 2.40 to 2.82 eV [40–45].
However, these calculations were performed (i) without the
use of a truncated Coulomb interaction and including 15–25 Å
vacuum, (ii) employing relatively small k-point grids of 6 ×
6 × 1 to 18 × 18 × 1, and (iii) using different in-plane lattice
constants varying between 3.15 and 3.19 Å. These different
settings can affect the band gap by as much as 0.5 eV [46],
and therefore we refrain from providing a detailed comparison
of our result with these earlier calculations. An overview of
previous GW results for MoS2 can be found in Ref. [46].

In Ref. [22] a G0W0@LDA (local density approximation)
band gap for MoS2 of 2.70 eV is reported using a truncated
Coulomb interaction and a calculation of the screened potential
at q = 0 based on the method in Ref. [20]. In that study,
the lattice constant of MoS2 was 3.15 Å. With this lattice
constant we obtain a gap of 2.64 eV, which is in fair agreement
with Ref. [22]. Our result is very close to the experimental
value of 2.5 eV inferred from photocurrent spectroscopy
[47]. Performing partially self-consistent GW0 the band gap
increases to 2.65 eV (2.58 eV including spin-orbit coupling).

For h-BN, we obtained a G0W0 band gap of 7.06 eV which
increases to 7.49 eV with GW0. In Ref. [48] the G0W0 band gap
was calculated to be 7.40 eV. Instead of a truncated Coulomb
interaction the band gap was extrapolated to infinite vacuum.
The treatment of the q = 0 term is not mentioned nor is the
size of the k-point grid. Despite the difference at the G0W0

level, they report a similar increase of the band gap of 0.4 eV
when doing a GW0 calculation.

For phosphorene we calculate a G0W0 band gap of 2.03 eV,
which agrees well with the previously reported value of
2.0 eV [49] using the method of Ref. [20]. The band gap
increases to 2.29 eV with GW0.

III. CONCLUSION

In conclusion, we have discussed the connection between
the form of the q-dependent dielectric function of a 2D
semiconductor and the slow k-point convergence of the GW
band structure. We have derived an analytical expression for
the q → 0 limit of the screened potential of a semiconductor
when a 2D truncation of the Coulomb potential is used. The
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method accounts for dielectric anisotropy in an approximate
way [see the discussion below Eq. (A29)] and does not rely
on any additional parameters or fitting. Using this expression,
we have shown that convergence of the GW self-energy with
respect to the size of the k-point grid is drastically improved.
For the specific case of monolayer MoS2, we found that the use
of the analytical form alone reduces the k-point grid required
to achieve convergence of the GW self-energy contribution
to the band gap to within ∼0.1 eV from around 36 × 36 × 1
to 12 × 12 × 1—a reduction in the number of k points by
an order of magnitude. This method may therefore enable
future large-scale GW calculations for 2D materials without
compromising accuracy.
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APPENDIX: CALCULATION OF THE q → 0 LIMIT
OF THE SCREENED POTENTIAL

In the following, we derive the analytical form of the
screened potential, Eq. (2), for 2D materials in the limit
q‖ → 0. We largely follow the approach of Ref. [32] where
the same limit for bulk systems was considered. As explained
in the main text, we use a truncated Coulomb interaction of
the form

v(r‖,z) = θ (R − |z|)√|r‖|2 + z2
. (A1)

Using this potential we effectively turn off the interaction
between electrons on different 2D layers of the supercell
calculation. We choose R to be half the height of the unit cell,
R = L/2, so that an electron in the center of the layer will
not interact with electrons located in the periodically repeated
layer. This means that the 2D truncated Coulomb interaction
of Eq. (16) in Ref. [20] reduces to

v2D
G (q‖) = 4π

|q‖ + G|2 [1 − e−|q‖+G‖|L/2 cos(|Gz|L/2)], (A2)

where only in-plane q is considered. We note that in the limit
L → ∞ it takes the usual 3D form, vG(q) = 4π

|q+G|2 . In the
long wavelength limit it has the asymptotic behavior

v2D
0 (qz = 0,q‖ → 0) = 2πL

|q‖| , (A3)

diverging slower than the full Coulomb potential with pro-
found consequences for the properties of 2D materials.

In the long wavelength limit q → 0 the noninteracting
density response function or irreducible polarizability has the
following behavior [38],

χ0
00′(q → 0) = q · Pq = |q|2q̂ · Pq̂, (A4)

χ0
G0(q → 0) = q · pG = |q|q̂ · pG, (A5)

χ0
0G(q → 0) = q · sG = |q|q̂ · sG, (A6)

where P is a second rank tensor, pG and sG are proper vectors,
and q̂ = q/|q|. The density response function, and therefore
also P and pG, has a frequency dependence which here and
through the rest of this Appendix has been left out to simplify
the notation. Within the random phase approximation the
dielectric function is given by (schematically)

ε = 1 − vχ0. (A7)

Due to technical reasons [13,50] it is easier to work with a
similar symmetrized version given in Fourier space by

ε̃GG′(q) = δGG′ −
√

vG(q)χ0
GG′(q)

√
vG′(q). (A8)

Inserting the Coulomb potential, Eq. (A2), and the expressions
for the noninteracting response function, Eqs. (A4)–(A6), the
head and wings of the symmetrized dielectric function are

ε̃00(q‖ → 0) = 1 − v2D
0 (q‖)|q‖|2q̂‖ · Pq̂‖

= 1 − 4π
(
1 − e−|q‖|L/2

)
q̂‖ · Pq̂‖ (A9)

ε̃G0(q‖ → 0) = −
√

v2D
G (0)

√
v2D

0 (q‖)q̂‖ · pG

= −
√

v2D
G (0)

√
4π

(
1 − e−|q‖|L/2

)
q̂‖ · pG

(A10)

ε̃0G(q‖ → 0) = −
√

v2D
G (0)

√
v2D

0 (q‖)q̂‖ · sG

= −
√

v2D
G (0)

√
4π

(
1 − e−|q‖|L/2

)
q̂‖ · sG.

(A11)

To determine the inverse dielectric function, we write the
dielectric function as a block matrix in the G,G′ components
with head, wings, and body of the form

ε̃ =
(

H wᵀ

v B

)
. (A12)

The inverse is then given by

ε̃−1 =
(

(H − wᵀB−1v)−1 −(H − wᵀB−1v)−1wᵀB−1

−B−1v(H − wᵀB−1v)−1 B−1 + B−1v(H − wᵀB−1v)−1wᵀB−1

)
. (A13)

From this we see that

ε̃−1
00 =

⎡
⎣ε̃00 −

∑
G,G′ 	=0

ε̃0GB−1
GG′ ε̃G′0

⎤
⎦

−1

, (A14)
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ε̃−1
G0 = − ε̃−1

00

∑
G′ 	=0

B−1
GG′ ε̃G′0, (A15)

ε̃−1
0G = − ε̃−1

00

∑
G′ 	=0

ε̃0G′B−1
G′G, (A16)

ε̃−1
GG′ = B−1

GG′ + ε̃−1
00

⎛
⎝ ∑

G′′ 	=0

B−1
GG′′ ε̃G′′0

⎞
⎠

⎛
⎝ ∑

G′′ 	=0

ε̃0G′′B−1
G′′G′

⎞
⎠. (A17)

Introducing the vectors aG,bG and the tensor A given by

aG = −
∑
G′ 	=0

B−1
GG′

√
v2D

G′ (0)pG′ , (A18)

bG = −
∑
G′ 	=0

√
v2D

G′ (0)sG′B−1
G′G, (A19)

A = − P −
∑
G 	=0

√
v2D

G (q‖)sG ⊗ aG, (A20)

where ⊗ denotes the tensor product, the long wavelength limit of the inverse dielectric function is seen to be given by

ε̃−1
00 (q‖ → 0) = 1

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A21)

ε̃−1
G0(q‖ → 0) = −

√
4π (1 − e−|q‖|L/2)q̂‖ · aG

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A22)

ε̃−1
0G(q‖ → 0) = −

√
4π (1 − e−|q‖|L/2)q̂‖ · bG

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A23)

ε̃−1
GG′(q‖ → 0) = B−1

GG′ + 4π (1 − e−|q‖|L/2)(q̂‖ · aG)(q̂‖ · bG′)

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
. (A24)

Inserting these expressions in the equation for the correlation part of the screened potential, Eq. (2), we see that the head and
wings are given by

W 00(q‖ → 0) = v2D
0 (q‖)

[
ε̃−1

00 (q‖) − 1
] = −

(
4π (1 − e−|q‖|L/2)

|q‖|
)2 q̂‖ · Aq̂‖

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A25)

WG0(q‖ → 0) =
√

v2D
G (0)ε̃−1

G0(q‖)
√

v2D
0 (q‖) = −4π (1 − e−|q‖|L/2)

|q‖|

√
v2D

G (0)q̂‖ · aG

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A26)

W 0G(q‖ → 0) =
√

v2D
G (0)ε̃−1

G0(q‖)
√

v2D
0 (q‖) = −4π (1 − e−|q‖|L/2)

|q‖|

√
v2D

G (0)q̂‖ · bG

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖
, (A27)

and the body also gets a correction and becomes

WGG′(q‖ → 0) =
√

v2D
G (0)v2D

G′ (0)
[
ε−1

GG′(q‖) − δGG′
]

=
√

v2D
G (0)v2D

G′ (0)

[
B−1

GG′ − δGG′ + 4π (1 − e−|q‖|L/2)(q̂‖ · aG)(q̂‖ · bG′)

1 + 4π (1 − e−|q‖|L/2)q̂‖ · Aq̂‖

]
. (A28)

The q‖ = 0 value is then W 00(q‖ = 0) = −(2πL)2q̂‖ · Aq̂‖.
Introducing the dimensionless quantity x = q‖L/2 and the rotational average A = 1

2π

∫ 2π

0 x̂(φ) · Ax̂(φ)dφ, we can define a
new dimensionless function, w̃(x),

w̃(x) = −
(

1 − e−|x|

|x|
)2

1

1 + 4πA(1 − e−|x|)
, (A29)
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from which the head of W can be written W (2x/L) = (2πL)2Aw̃(x). Using the rotational average of A is an approximate way
of taking anisotropy of the system into account. It is possible to go beyond the approximation and to do it exactly, as was done
for the three-dimensional case in Refs. [32,51], however, this goes beyond the purpose of the present paper.

It is evident that the polar integral of Eq. (A29), over a small circle with radius r�0 , cannot be evaluated analytically:∫
�0

w̃(x)dx = −2π

∫ r�0

0

(
1 − e−x

x

)2 1

1 + 4πA(1 − e−x)
x dx. (A30)

It is, however, noticed that the function ỹ(x) = 1
1+(1+4πA)x agrees very well with the integrand for small x. It has the same

first-order Taylor expansion and it is integrable. This yields∫
�0

w̃(x)dx ≈ −2π

∫ r�0

0

x

1 + (1 + 4πA)x
dx = −2π

(
4πAr�0 + r�0 − ln

(
4πAr�0 + r�0 + 1

))
(4πA + 1)2

. (A31)

Since the expression in Eq. (A31) only holds for small x, it is generally not valid in the entire �0 region.
The rotational average A is also used in the expressions for the wings and body of W but the rest of the terms are not treated

analytically in the same way as the head but sampled numerically within the �0 region.
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