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RESEARCH ARTICLE Open Access

Activation of innate immune genes in
caprine blood leukocytes after systemic
endotoxin challenge
Øyvind Salvesen1, Malin R. Reiten1, Peter M. H. Heegaard2, Michael A. Tranulis1, Arild Espenes1,
Kerstin Skovgaard2 and Cecilie Ersdal1*

Abstract

Background: Sepsis is a serious health problem associated with a range of infectious diseases in animals and
humans. Early events of this syndrome can be mimicked by experimental administration of lipopolysaccharides
(LPS). Compared with mice, small ruminants and humans are highly sensitive to LPS, making goats valuable in
inflammatory models. We performed a longitudinal study in eight Norwegian dairy goats that received LPS
(0.1 μg/kg, Escherichia coli O26:B6) intravenously. A control group of five goats received corresponding volumes
of sterile saline. Clinical examinations were performed continuously, and blood samples were collected throughout
the trial.

Results: Characteristic signs of acute sepsis, such as sickness behavior, fever, and leukopenia were observed
within 1 h of LPS administration. A high-throughput longitudinal gene expression analysis of circulating
leukocytes was performed, and genes associated with the acute phase response, type I interferon signaling, LPS
cascade and apoptosis, in addition to cytokines and chemokines were targeted. Pro-inflammatory genes, such as
IL1B, CCL3 and IL8, were significantly up-regulated. Interestingly, increased mRNA levels of seven interferon
stimulated genes (ISGs) were observed peaking at 2 h, corroborating the increasing evidence that ISGs respond
immediately to bacterial endotoxins. A slower response was manifested by four extrahepatic acute phase
proteins (APP) (SAA3, HP, LF and LCN2) reaching maximum levels at 5 h.

Conclusions: We report an immediate induction of ISGs in leukocytes in response to LPS supporting a link
between the interferon system and defense against bacterial infections. The extrahepatic expression of APPs
suggests that leukocytes contribute to synthesis of these proteins at the beginning of a systemic inflammation.
Taken together, these findings provide insights into the dynamic regulation of innate immune genes, as well as
raising new questions regarding the importance of ISGs and extrahepatic APPs in leukocytes after systemic
endotoxin challenge.

Keywords: Interferon stimulated genes, Extrahepatic acute phase proteins, Systemic inflammation,
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Background
Sepsis is a life-threatening condition caused by a dysregu-
lated host response that can occur in a range of bacterial,
viral, or toxic diseases in animals and humans [1]. Initial
events of this syndrome can be mimicked by experimental
administration of LPS, derived from the cell-wall of gram-
negative bacteria. The host response to LPS is complex
and reveals major species differences [2–4]. Interestingly,
some species such as mice and the Rhesus monkey, have
developed tolerance by limiting harmful inflammation
even when the pathogen loads are high [4]. At the other
end of the sensitivity spectrum are humans, rabbits
and small ruminants, which are extremely sensitive to
endotoxins [2–4]. This marked difference in sensitivity
towards LPS has led scientists to question the validity
of extrapolation of rodent inflammatory responses to
human medicine [5].
LPS is a potent stimulator of the innate immune system

that provides the first line of defense against pathogens
and initiates the acute phase response (APR) [6]. Among
leukocytes, circulating monocytes and neutrophils are the
primary target cells involved in protection against LPS.
These cells constitutively express membrane-bound CD14
and Toll-like receptor 4 (TLR4), important for endotoxin
recognition and activation of the innate immune system
[6, 7]. Upon LPS stimulation, the CD14-MD-2-TLR4-
complex initiates signaling through MyD88-dependent or
TRIF-dependent pathways [8], leading to the expression of
pro-inflammatory cytokines, chemokines and enzymes
[6, 9, 10]. The ensuing physiological response culminate in
a behavioral state referred to as sickness behavior [11].
Activated immune cells release pro-inflammatory medi-

ators, such as IL-1, IL-6, IL-8 and TNF-α, which stimulate
the liver to produce positive acute phase proteins (APPs)
[12] and simultaneously down-regulate negative APPs
[13]. The major APPs in goat, serum amyloid A (SAA)
and haptoglobin (HP), serve several functions in the APR
[14] and are valuable diagnostic indicators of inflamma-
tion [13, 15]. APPs are also released from extrahepatic tis-
sues such as mammary gland [16, 17], lungs [18], adipose
tissue [19, 20], colon [20], and lymphoid organs [12], but
their patho-physiological significance is incompletely
understood. The role of APPs released from leukocytes
during infections or endotoxemia has been the subject of
only a few previous studies [12].
Increasing evidence show that LPS induces transcription

of interferon stimulated genes (ISGs), originally considered
exclusively anti-viral, but with accumulating data indicating
a range of other immunomodulatory properties [21]. The
in vivo regulation of these genes in leukocytes, however,
has not been described in detail.
In 2013, the worldwide population of small ruminants

comprised about 1006 million goats and 1073 million
sheep [22]. Large herds and intensive production increase

the number of endotoxin-related diseases such as acute
ruminal acidosis, per-acute mastitis, toxic metritis, and
septic peritonitis. Additionally, failure of, or insufficient,
passive transfer of colostral immunoglobulins is a com-
mon cause of neonatal sepsis in lambs and goat kids [23].
Circulating leukocytes play a crucial role in initiating the
APR in all sepsis-related diseases. Thus, investigation of
changes in blood leukocyte gene expression will provide a
better understanding of the biological processes during
endotoxemia. In a microarray study of human mono-
nuclear cells, more than 800 genes were differentially
expressed 6 h post challenge, highlighting the complexity
of the response to systemic endotoxins [24]. Here, we re-
port a longitudinal in vivo LPS study in goat comprising
clinical, biochemical, and hematological responses, as well
as leukocyte transcriptional profiles of selected immune
genes.

Methods
Goats
A total of 13 Norwegian dairy goats, non-pregnant females,
were recruited from a research herd at the Norwegian
University of Life Sciences (NMBU). The mean age ± SD
was 7.1 ± 1.8 months and the mean body weight ± SD was
25.1 ± 4.1 kg. Before the experiment, the goats were
housed for at least 21 days to acclimatize. They were kept
under a 16 h light/8 h dark cycle and housed in groups of
2–4 goats. Hay and water was provided ad libitum, and
they were fed a commercial goat pellet concentrate twice a
day. During this period, a full clinical examination was
performed three times, and all goats were clinically nor-
mal. Fecal parasite egg counts were low and hematology
was within reference values before the experiment.

LPS challenge
LPS (Escherichia coli O26:B6, L2654 Sigma-Aldrich, USA)
was diluted in 0.9 % sterile saline to a concentration of
1.5 μg/ml. The goats were divided into two groups as fol-
lows: Eight goats receiving 0.1 μg/kg LPS intravenously,
and a control group of five goats receiving corresponding
volumes of sterile saline. The dosage was based on existing
literature [25–27] and a pilot titration study involving
three animals (data not included).

Clinical examination
After LPS challenge, clinical examination was performed
at 12 time points during the first 7 h and once the next
morning (24 h). The general condition was determined
evaluating body posture (standing, lying), head- and ear-
position, pupil size, appetite, grooming, shivering and
social interaction. Respiratory frequency was recorded
by observation, and ruminal contraction and heart fre-
quency by auscultation. To ensure accurate rectal tem-
peratures, all measurements were repeated three times
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at each time point. Clinical examination was performed
at corresponding time points in control animals.

Blood samples
Blood samples (EDTA, whole blood and PAX blood tubes)
were drawn from v. jugularis using a vacutainer system (BD
Company, USA). Baseline samples (0 h) were taken within
half an hour of the LPS challenge. The other sampling
times were 1 h, 2 h, 5 h and 24 h after LPS administration.
To investigate if handling stress itself affects the quantified
parameters, two blood samples were taken from the con-
trols, a baseline sample (0 h) before saline administration
and another sample 1 h later.

Hematological and biochemical analysis
A complete blood cell count including differential count
was performed immediately after sampling using the
ADVIA 120 Hematology system (caprine analyzing
program) (Siemens, Germany). Whole blood was cen-
trifuged and serum stored at −20 °C until biochemical
analysis. Serum total protein, albumin and glucose
were analyzed by ABX Pentra 400 (Horiba, France).
Circulating levels of serum amyloid A (SAA) were an-
alyzed by an ELISA method (Tridelta multispecies
assay kit, Ireland) at three of the sampling time points
(0 h, 5 h and 24 h).

RNA isolation
After blood sampling, PAX-gene blood RNA tubes
(PreAnalytiX, Switzerland) were gently inverted 8–10
times. The tubes were incubated overnight at room
temperature followed by storage at −80 °C. The isolation
of total RNA was performed according to the manufac-
turer’s instructions using PAXgene Blood miRNA kit
(Qiagen, Germany). Isolated RNA was quantified at optical
density (OD) 260, and purity evaluated by OD260/280 and
OD260/230 ratios using DeNovix DS-11 spectrophotom-
eter. RNA integrity was analyzed by RNA 600 Nano chips
in compliance with the Bioanalyzer 2100 system (Agilent,
USA) and each sample was assigned a RNA integrity
number (RIN) from 1 to 10, with 10 being non-degraded
RNA. The mean RIN value of included samples ± SD was
9.1 ± 0.30. All samples were treated with DNase while
bound to columns to remove any contaminating genomic
DNA, and stored at −80 °C.

cDNA synthesis
Two separate cDNA replicates were made for each sample.
250 ng of total RNA was converted into first strand cDNA
using QuantiTect Reverse Transcription Kit (Qiagen,
Germany) according to the manufacturer’s instructions. A
non-reverse transcriptase control (NoRT) and no template
control (NTC) were included, and all cDNA samples were
stored at −20 °C.

Primer design
A total of 44 genes associated with the LPS signaling
cascade, early pro-inflammatory response, cytokines,
chemokines, ISGs, APPs and apoptosis were chosen for
investigation. Primer sequences and gene abbreviations
can be found in Additional file 1.
Nucleic acid sequences were obtained from online

genome databases and primers were designed by the
Primer 3 software [28]. For previously untested primer
assays, two primer pairs were designed for each tran-
script to validate that the correct transcript was being
amplified. Additionally, the primer specificity was veri-
fied in silico using nucleic BLAST search against the
Capra hircus genome. Primers were synthesized by
Sigma-Aldrich (Germany). When possible, primers were
designed to span exon/exon boundaries and to cover all
known splice variants.

Fluidigm biomark HD qPCR
Preamplification and endonuclease treatment
A preamplification of target genes was performed to en-
sure adequate amounts of templates for high-throughput
quantitative real time PCR (qPCR). Equal amounts of all
primers used in the study were pooled in a 200 nM pri-
mer mix in low Tris-EDTA (TE) buffer, pH 8.0. A total
of 10 μl comprising 2.5 μl primer mix, 2.5 μl of cDNA
and 5 μl of TaqMan PreAmp was prepared per sample.
Preamplification was carried out in a thermal cycler
using the following program: Initial denaturation for
10 min at 95 °C followed by 20 cycles of 15 s at 95 °C
and 4 min at 60 °C for annealing and elongation. To pre-
vent carry-over of unincorporated primers after pream-
plification, 4 μl of 4U/μl exonuclease was added to the
samples and incubated for 30 min at 37 °C and 15 min
at 80 °C. Finally, cDNA was diluted 1:5 in TE buffer be-
fore qPCR.

Preparation of primer and sample assays
For each primer assay, a primer mix consisting of 3 μl of
2X Assay loading Reagent (Fluidigm, USA) and 3 μl of
20 μM specific forward/reverse primer was prepared. A
sample mix consisting of 3 μl 2X TaqMan Gene Expres-
sion Mastermix, 0.3 μl 20X DNA binding Dye, 0.3 μl
EvaGreen 20X, 0.9 μl TE buffer and 1.5 μl preamplified
and exonuclease treated cDNA was made for each
sample line.

Dynamic array qPCR analysis
Preparation and loading of Fluidigm 96.96 Dynamic
Array IFC (integrated fluidic circuit), which combines 96
samples with 96 primer assays in 9216 simultaneous
reactions, was performed according to manufacturer’s
instructions and as previously described [29]. Using
Fluidigm Real-Time Analysis software 3.0.2, expression
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data were visualized as a heat map based on Cq values. All
amplifications and melting curves were evaluated and only
genes with a single melting peak were accepted. Each chip
included a NTC, a NoRT and three interplate calibrators.
NTCs and melting curves were used to assess non-specific
amplification or sample contamination. NoRT controls
were used to evaluate potential genomic DNA background
signals. No sample contamination or interfering genomic
DNA signals were detected.
For each primer assay, a pool of all preamplified and

exonuclease-treated cDNA samples were used to make
three separate dilution series with the following dilutions:
1:2, 1:10, 1:50, 1:250 and 1:1250. Standard curves were
constructed to obtain primer amplification efficiencies,
correlations and dynamic range. To cover the dynamic
range of genes with low expression, an additional standard
dilution was made using four “high responding” samples.
In 6 of the 96 primer assays, construction of standard
curves was not possible and they were not included in fur-
ther analyses. Primer efficiencies of included assays varied
between 0.95 and 1.11 and had a correlation coefficient
above 0.95. Four of the genes (IL6, IL12, CCL20 and
MMP8) and one reference gene (ACACA) had very low
expression in the samples and not subject to further
investigation.

Light cycler 480 qPCR
The expression of IFNB1 gene was investigated by Light
cycler 480 qPCR using SYBR Green PCR Master Mix
under the following conditions: Initial denaturation for
5 min at 95 °C, followed by 40 amplification cycles (10 s at
95 °C, 10 s at 60 °C and 15 s at 72 °C) and construction of
melting curves. IFNB1 primer sequences were adapted
from [30] and can be found in Additional file 1.

Preprocessing of data
Heat map data were analyzed using GenEx5 software
(MultiD, Sweden). First, interplate calibration was per-
formed and each primer assay was corrected for primer ef-
ficiencies. Six potential reference genes (HPRT 1, HMBS,
ACTB, HSP90AA1, ALAS 1 and GADPH) were validated
using the integrated geNorm and Normfinder software in
GenEx5. HPRT1, HMBS, ACTB and HSP90AA1 were
used for the final normalization. Three of the samples
were excluded due to high variation between cDNA repli-
cates. After averaging cDNA duplicates, genes with more
than 15 % missing data (IL10, INFG and CASP3) were re-
moved and the remaining missing data (1.6 %) were re-
placed with the highest Cq value +1. Expression levels for
each gene were then scaled to 1 for the sample with lowest
expression, and all other samples for that specific gene cal-
culated relative to this. Finally, expression data were trans-
formed from Cq (log2) to relative quantities (relative fold
change, linear scale).

Descriptive and statistical analysis
Data are presented as mean ± standard error of the mean
(SEM). Graphical and statistical analyses were performed
in GraphPad Prism 6 (GraphPad software Inc., USA)
and Microsoft Excel 2013. To account for multiple com-
parisons, a one-way ANOVA and Dunnett’s post hoc test
was performed on Log2 transformed expression data.
Differential expression was assessed by a limit of ± 2 fold
change in expression compared with baseline samples and
p values with the following significance levels: P < 0.05;
P < 0.01; P < 0.001.

Results
Clinical and hematological responses
The mean rectal temperature increased in a biphasic
manner from 38.9 °C (±0.09) to 40.5 °C (±0.28) 3.5 h
after LPS injection (Fig. 1). Within the first 45 min, the
goats displayed tachypnea, head shaking, anorexia and
reduced locomotor activity, accompanied by a period of
shivering, lasting 15–25 min. In five of the goats, a sec-
ond period of shivering was observed between 1 h 45 m
and 2 h 30 m after LPS administration. Also, all goats
displayed an elevated heart frequency and decreased
rumen motility. Overall, clinical signs were most prom-
inent during the first five hours, which correlated with
profound leukopenia, acute in neutrophils and more
gradual in lymphocytes. The number of basophils and
eosinophils declined significantly (data not shown), and
a distinct monocytopenia was observed throughout all
post-injection time points (Fig. 1). The goats gradually
improved and by 7 h post injection all were considered
clinically normal, but with an elevated heart frequency.
The number of neutrophils had normalized at 5 h post
challenge, but was elevated at 24 h compared with base-
line levels. None of the control animals displayed alter-
ations in clinical or hematological parameters during the
experimental period.

Blood chemistry
Total protein and albumin decreased throughout the ex-
periment, and albumin levels were significantly reduced
24 h after LPS injection. Circulating SAA was below de-
tection limit (470 ng/ml) in all animals before challenge,
and reached 215 000 ± 55 600 ng/ml at 24 h (Fig. 2).
Serum glucose increased significantly towards 2 h,
followed by a decrease at 5 h, but all values were within
the reference range.

Gene expression analysis
The regulated genes and fold changes are summarized
in Table 1. The magnitude of the fold change reflects the
gene expression alterations relative to baseline levels
(0 h) scaled to 1. Of the 37 target genes analyzed after
preprocessing, 28 were significantly regulated at least at
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one time point after LPS injection, with a minimum fold
change of ± 2 compared with baseline levels. Expression
levels of TNF, BPI, BCL2, BAX, ITGAM, ANAX1, C3
and STIP1 were not significantly altered at any of the
time points.
The transcription of CXCL10 and ISG15 increased

already 1 h after LPS challenge. All ISGs (CXCL10, ISG15,
IFI6, ISG20, OAS1, IFIT1 and MX1) and STAT1, involved
in interferon signaling [31], were significantly up-regulated

at 2 h and 5 h post injection. IFNB1 increased of about 2-
fold at 2 h, but this was not statistically significant. The ex-
pression of IFI6 and ISG15 remained elevated at 24 h, but
only with a fold change of 3 and 4, compared with baseline
levels (Fig. 3).
The mRNA levels of APP genes, HP, LF, LCN2 and

SAA3 increased 1 h post injection, and peaked at 5 h be-
fore returning to baseline levels at 24 h, except SAA3
which remained up-regulated (Fig. 2). SAA3 was by far

Fig. 2 Acute phase protein (APP) genes and serum levels of SAA after systemic LPS challenge. a Relative mRNA expression of serum amyloid A3
(SAA3), haptoglobin (HP), lactoferrin (LF) and lipocalin 2 (LCN2), compared with baseline levels (0 h) scaled to 1. Real time qPCR was performed
on RNA extracted from circulating leukocytes at the indicated time points. Results are shown as mean relative fold change ± SEM. b Circulating
levels of serum amyloid A (SAA) shown as mean serum concentration (ng/ml) ± SEM. The y-axis dotted line indicates the lower detection limit of
the ELISA (470 ng/ml). n = 8

Fig. 1 Rectal temperature and hematology after systemic LPS challenge. Rectal temperature (a), and blood leukocyte count including neutrophils
(b), lymphocytes (c) and monocytes (d) following 0.1 μg/kg intravenous LPS administration. Values are mean ± SEM, n = 8
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the most up-regulated gene, reaching a fold change of 412
at 5 h post LPS challenge, and its expression strongly cor-
related with that of S100A9 (R = 0.90), which is involved
in leukocyte extravasation [32]. Expression levels of
LPS pathway genes (TLR4, CD14, MyD88, TRAF6)
were stable throughout the experiment, however TLR4
was slightly (3-fold) up-regulated after 5 h. Three early
pro-inflammatory cytokines (IL1B, IL8 and CCL3) were
up-regulated during the first few hours.
Overall, genes involved in the LPS pathway, cell migra-

tion, and apoptosis displayed fold changes below 5,
whereas most ISGs, APPs and genes involved in the later
response were regulated by more than 10-fold.

Discussion
Despite the many endotoxin-related diseases in small
ruminants and the advantage as a model for human
endotoxemia, studies of LPS-induced inflammation are
limited in these species. In the present study we de-
scribe 28 genes that were significantly (±2 fold change,
p < 0.05) regulated in blood leukocytes during a 24 h
experimental period.
Interestingly, all ISGs investigated were significantly

up-regulated, peaking already at 2 h after LPS injection.
Of these, CXCL10 showed the greatest up-regulation
with an 85-fold increase compared with baseline levels.
In murine peripheral leukocytes, a 2-fold to 3-fold increase
in the expression of CXCL10 and IFIT1 was observed 48 h
after a single intraperitoneal LPS administration, but the
immediate response was not studied [33].

ISGs, which are induced by type I interferon (IFN) ac-
tivation, are multifunctional genes traditionally ascribed
important roles in anti-viral defense, including chemo-
taxis, cell differentiation, and apoptosis [21, 34, 35]. The
fact that bacterial products such as LPS stimulate the ex-
pression of ISGs, has led to experiments addressing the
role of type I IFN signaling during bacterial challenge.
Two different lines of transgenic mice with genetic
knock-out of IFN-β or the IFN-α/β receptor, displayed
reduced survival against both streptococci and Escherichia
coli compared with wild type mice [36]. This suggests an
essential role of type I IFN-signaling in host resistance
against both gram-positive and gram-negative bacteria.
Previous in vitro studies describe a TLR4-mediated
IFNβ-dependent induction of ISGs in monocyte-derived
macrophages [37–39] and an IFN-independent induction
of ISGs (MX1 and ISG15) in neutrophils [38]. However,
transcriptional activity in neutrophils is considered low
compared with other leukocytes [40], and their contribu-
tion to the total ISG pool is presumably limited. Although
STAT1 phosphorylation levels were not analyzed in this
study, we observed increased expression of STAT1, sug-
gesting that interferon signaling was stimulated. IFNB1
was not significantly altered, but as leukocytes expressing
IFNB1 and STAT1 extravasate after LPS challenge, the
initial transcription levels of these genes are probably
underestimated. Thus, a subtle or transient induction
of IFNB1 will be difficult to detect in our model. To
our knowledge, the present study is the first report of
an immediate induction of ISGs in leukocytes upon
LPS challenge, and it further supports a link between

Table 1 Fold change in gene expression of selected immune genes after LPS challenge

Gene mRNA fold change P Gene mRNA fold change P

1 h 2 h 5 h 24 h 1 h 2 h 5 h 24 h

Interferon stimulated genes CXCL10 4 85 11 2 <0.001 LPS-pathway TLR4 −2 2 3 1 <0.05

ISG15 2 43 17 4 <0.001 CD14 −4 1 1 1 <0.01

ISG20 1 9 7 3 <0.001 MyD88 −3 1 1 1 <0.05

IFIT1 1 9 3 1 <0.01 TRAF6 1 −2 −2 −2 <0.01

OAS1 1 14 7 2 <0.001 IFN-pathway STAT1 1 2 2 1 <0.001

IFI6 1 5 5 3 <0.001 Cytokines and chemokines IL1B 2 2 3 2 <0.01

MX1 1 17 11 2 <0.001 IL8 2 3 2 1 <0.01

Acute phase proteins SAA3 4 80 412 10 <0.001 CCL3 3 2 4 1 <0.001

LF 3 5 17 2 <0.001 CCL5 −4 −3 −1 −5 <0.001

HP 8 14 54 1 <0.001 IL18 −3 −3 −3 1 <0.01

LCN2 2 2 3 −2 <0.01 IL1RN 1 14 7 1 <0.05

Enzymes HSPA1A 1 3 13 1 <0.001 Other immune- related genes TICAM 1 −3 −3 −2 <0.001

S100A9 1 8 18 3 <0.001 ITGB2 −2 −2 −4 1 <0.001

SOD2 −3 3 3 1 <0.001 MHCII 1 −2 −3 1 <0.001

Relative gene expression following intravenous LPS (0.1 μg/kg) administration in goats. Fluidigm qPCR was performed on RNA extracted from circulating
leukocytes at the indicated time points. Results are expressed as mean fold change relative to baseline samples (0 h) scaled to 1. The most regulated time point
for each gene is highlighted in bold, and significance level at this time point is given
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Fig. 3 Gene expression of leukocyte ISGs (a-f), IFNB1 (g) and STAT1 (h) after systemic LPS challenge. Relative mRNA fold change compared with
baseline levels (0 h) scaled to 1. Real time qPCR was performed on RNA extracted from circulating leukocytes at the indicated time points. Results
are expressed as mean relative fold change ± SEM, n = 8. NS = not significant. *P < 0.05; **P < 0.01; ***P < 0.001
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interferon signaling and defense against bacterial infec-
tions [21, 36, 39].
APPs are a group of proteins that undergo substantial

quantitative changes following external or internal stress,
such as inflammation, neoplasia, or trauma [13]. As part
of the innate immune system, these proteins contribute
in basic defense mechanisms. Although APPs are mainly
generated by the liver, increasing evidence indicate a
local production in a number of tissues and cell types
[12, 16–20, 41, 42]. Strikingly, mRNA levels of serum
amyloid A3 (SAA3), lactoferrin (LF), haptoglobin (HP)
and lipocalin (LCN2) were up-regulated in leukocytes
upon LPS stimulation in the present study. SAA3 had
the highest expression, reaching more than 400 times
the baseline level at 5 h post challenge. This molecule is
one of several SAA isoforms and is thought to be involved
in cholesterol metabolism, modulating the innate immune
response, as well as being a monocyte chemoattractant
[43]. Recombinant SAA3 is also reported to have anti-
microbial activity against Escherichia coli, Streptococccus
uberis and Pseudomonas aeruginosa in the bovine mam-
mary gland [44]. In murine colon, SAA3 synthesis has
been linked to the TLR4 signaling axis and expression of
the SAA3 gene was significantly reduced in mice with gen-
etic knockout of MyD88 [20]. HP, LF and LCN2, also have
bacteriostatic properties [45–47], mediated by binding and
sequestering of iron. The first two are synthesized during
differentiation of neutrophilic granulocytes and stored in
specific granules that can be released upon activation
[42, 48]. LCN2 has recently been reported to be a major
APP in rat and mouse, as mRNA levels dramatically in-
crease in both leukocytes and liver following inflammation
[46, 49, 50]. In the current study, LCN2 mRNA was mod-
estly up-regulated (3-fold), suggesting that this gene
should be considered a minor APP in caprine leukocytes.
It is not clear if the increased mRNA levels of SAA3,

HP, LF and LCN2 in leukocytes contribute to elevated
protein levels in serum, or if the proteins are secreted
after extravasation of the leukocytes. It has been shown
that HP can be released by neutrophils present in milk
following intramammary administration of endotoxin [41].
Thus, it is plausible that activated leukocytes release APPs
after extravasation in response to local stimulation. Base-
line serum concentrations of SAA were below detection
limit (470 ng/ml) in all eight goats and increased dramat-
ically towards 24 h after LPS challenge, reaching a mean
concentration of 215 000 ng/ml. Although the liver must
be considered the main source of SAA, particularly SAA1
and SAA2, it cannot be excluded that leukocyte SAA3
contribute to the circulating pool since the measurements
do not differ between the different isoforms of SAA. In a
murine obesity model, increased SAA3 mRNA expression
in adipocytes did not affect circulating SAA levels [51],
but these cells are extravascular and cannot be directly

compared to cells in blood. Whether stimulated blood leu-
kocytes release their APP products while in circulation, or
just prepare for secretion to occur once migrated into tis-
sues, remains to be investigated.
The decreased expression of CD14 and MyD88 mRNA

detected 1 h post injection, was unexpected because
these genes are crucial for recognition of LPS and initiat-
ing TLR4 signaling [6]. In the present study, mRNA was
extracted from total leukocytes, hence the composition
of circulating white blood cells affects the mRNA levels.
CD14 and MyD88 genes are profoundly expressed in
neutrophils and monocytes, two cell types that were dra-
matically decreased at 1 h due to tissue extravasation
(Fig. 1). Thus, the decreased mRNA levels probably re-
flect the reduced numbers of neutrophils and monocytes
in the circulating cell population, rather than down-
regulation due to LPS.
Among the early pro-inflammatory cytokines we re-

port an increased expression of IL8, CCL3, and IL1B
within the first hours after LPS administration, similar
to that described in an equine model [52]. IL-8 and
CCL3 primarily stimulate chemotaxis of granulocytes, as
well as inducing phagocytosis at the site of infection,
whereas IL1β is a key mediator of the inflammatory re-
sponse, being involved in cell differentiation, prolifera-
tion and apoptosis [53]. Intravenous injection of IL1β
induces sickness behavior and has been directly linked
to fever [54] and anorexia [55]. Consequently, the in-
creased levels of mRNA coding for IL1β is in agreement
with the development of sickness behavior and fever
manifested in the study. We also investigated the anti-
inflammatory IL1 antagonist (IL-1RN) that inhibits IL1
activity by binding the IL1 receptors without generating
signal transduction. Indeed, increased mRNA levels of
IL-1RN were observed simultaneously with increased
IL1B expression, exemplifying the tightly regulated innate
immune response.
The clinical picture, with behavioral changes and alter-

ation in parameters like temperature, heart rate, respir-
ation and rumination described in the present study,
corresponds with the duration of the reported changes
in gene expression, and with previous clinical studies in
goats [25–27]. These signs are characteristic of the acute
phase of a systemic inflammatory response, and reflect
the reorganization of the organism’s priorities to cope
with infection. Notably, the behavioral changes demonstrate
the profound effects systemic inflammation can have on
the CNS [11].

Conclusion
Our results demonstrate a brief and tightly regulated
transcriptional response to systemic LPS administration
in caprine leukocytes. Characteristic clinical signs of sep-
sis were accompanied by leukopenia and the induction
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of a range of immune-related genes. The increased mRNA
levels of several ISGs substantiate the growing evidence
that these genes possess multifunctional roles in the innate
immune response. Extrahepatic expression of four APPs
was also observed in caprine leukocytes, and increased
dramatically upon stimulation, suggesting that leukocytes
contribute to the synthesis of these proteins.

Additional file

Additional file 1: Gene name, gene abbreviations and primer sequences
used in the real time qPCR analysis. For previously untested primer assays,
two primer pairs were designed for each transcript. (DOCX 22 kb)
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