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Abstract

Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of domi-
nant vibration modes of a flexible structure and their efficiency relies on precise calibration of the shunt
components. In the present paper improved calibration accuracy is attained by an extension of the local
piezoelectric transducer displacement by two additional terms, representing the flexibility and inertia
contributions from the residual vibration modes, not explicitly targeted by the shunt damping. This re-
sults in an augmented dynamic model for the targeted resonant vibration mode, in which the residual
contributions, represented by two correction factors, modify both the apparent transducer capacitance
and the shunt impedance. Explicit expressions for the correction of the shunt circuit inductance and re-
sistance are presented in a form that is generally applicable to calibration formulae derived on the basis
of an assumed single-mode structure, in which the modal interaction has been deliberately neglected.
A design procedure is devised and subsequently verified by numerical examples, demonstrating that ef-
fective mitigation can be obtained for an arbitrary vibration mode when the residual mode correction is
included in the calibration of theRL shunt.

1. INTRODUCTION

Piezoelectric resistive-inductive (RL) shunt damping is a robust concept for response mitigation of
flexible structures, as it passively targets the dominant vibration modes of the structure by a supplemental
resonance introduced by the shunt inductance that is calibrated accurately such that the shunt resistance
can optimally dissipate the vibration energy. The efficiency of resonantRL shunt damping depends on
a precise calibration of the supplemental system frequencyand energy outtake. Numerous design ap-
proaches and calibration formulae have been derived in for example [1] - [8], based on the assumption
that the vibrating structure is sufficiently described by its dominant resonant mode. However, piezoelec-
tric transducers are commonly placed locally on a flexible structure, thereby activating residual modes
not specifically addressed by the shunt damping approach. InFig. 1 a piezoelectric laminate transducer
acts on the bending deformation of a cantilever, thus in principle activating all vibration modes of the
flexible beam structure. The energy spill-over from residual modes changes the closed-loop dynamics
of the structure and thus deteriorates the performance whenusing calibration principles based on an
assumed structural response with only a single mode shape, hereby neglecting any modal interaction
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Figure 1: Discretized beam with piezoelectric shunt system.

inherently present in the original flexible structure with multiple modes. A calibration approach has been
presented in [9] forRL shunts, based on a quasi-static representation of the residual mode effects.

In vibration problems commonly addressed by piezoelectricRL shunts the largest energy content
can furthermore occur in intermediate vibration modes, as for example in the case of acoustic vibrations
of membranes and plates. In the underlying calibration procedures a correction with respect to non-
resonant modes both below and above the targeted resonance may therefore be needed. Recently, a
consistent correction format has been proposed by Krenk andHøgsberg [10], where both flexibility
and inertia contributions from the non-resonant modes havebeen represented. In the present paper this
consistent residual mode correction is formulated in the context of piezoelectricRL shunt damping,
based on the theoretical results in [11]. It is demonstratedthat general expressions for the correction of
the shunt inductor (L) and resistor (R) can be obtained in explicit form, making the present approach
generic and thus applicable to a large variety of calibration formulae and principles derived on the basis
of a simplified single-mode structure, where the modal interaction is present because the piezoelectric
transducer acts locally on the flexible structures.

2. ELECTROMECHANICAL STRUCTURE

PiezoelectricRL shunts are effectively applied for passive damping of flexible structures exposed
to resonant loading. In the present section the governing equations of the flexible structure and the
corresponding modal properties are initially derived, followed by a brief introduction to the piezoelectric
forcing. Finally, the performance of single-mode calibration is illustrated for the parallelRL shunt.

2.1 Flexible structure

The equation of motion of the vibrating structure to be damped by the piezoelectric transducer force
f can be written in the frequency domain as

(

− ω2M + K
)

u + wf = fe (1)

whereω is the driving frequency of the harmonic loading with amplitude vectorfe. In this equation of
motion the complex vibration amplitudes are contained in vectoru, whileM andK are the correspond-
ing mass and stiffness matrix of the structure with short-circuit transducer electrodes. The placement of
the transducer on the structure is represented by the connectivity vector w, which therefore simultane-
ously determines the transducer displacement as

u = wTu (2)
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Thus, the displacementu is by construction complementary with respect to work to theapplied transducer
forcef .

Resonant vibration absorbers are calibrated with respect to the properties of the resonant vibration
mode of the structure. The mode shapeuj and natural angular frequencyωj of the vibrating host structure
are governed by the generalized eigenvalue problem associated with the homogeneous form of(1),

(

K − ω2

jM
)

uj = 0 (3)

The calibration of the vibration absorber is conveniently based on a vibration form that is normalized to
unity at the location of the transducer. The modal representation can therefore be written as

u =
∑

j

uj

wTuj

uj (4)

and the modal equation of motion is then subsequently obtained from(1) as

(−ω2mj + kj)uj + f = fj (5)

in which modal mass, modal stiffness and modal load are defined as

mj =
uT
j Muj

(wTuj)2
, kj =

uT
j Kuj

(wTuj)2
, fj =

uT
j fe

wTuj

(6)

The particular normalization in the summation in(4) secures that the transducer forcef appears explic-
itly in the modal equation of motion(5), which is convenient in connection with the shunt calibration in
Section 3.

2.2 The piezoelectric force

The piezoelectric transducer forcef is proportional to the voltageV across the electrodes,

f = θV (7)

introducing the electromechanical coupling coefficientθ. The coupling effect is represented by the sensor
equation

Q = −θu+ CV (8)

whereQ is the charge in the transducer, whileC is the capacitance associated withu = 0. Finally, the
charge is related to the voltage via the impedanceZ(ω) of the supplemental shunt,

V = −iωZ(ω)Q (9)

Elimination ofQ between(8) and(9), followed by substitution of the resulting equation(9) into (7)
gives the apparent mechanical flexibility relation

u =

(

C

θ2
+

1

iωθ2Z(ω)

)

f (10)

in which the capacitance-term represents an apparent spring with stiffnessθ2/C, while the impedance
function defines a viscous dashpot with frequency dependentviscous coefficientθ2Z(ω). The present
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Figure 2: Equivalent models of piezoelectric transducer with parallel shun.

study concerns the calibration of resonantRL shunts, where the series and parallel configurations have
been introduced in [1] and [2], respectively. The impedancefunction for the parallelRL shunt is conve-
niently formulated in terms of the individual reciprocal parameters,

1

Z(ω)
=

1

R
+

1

iωL
(11)

The electrical model of the piezoelectric shunt system is shown in Fig. 2(a), with all three components
placed in parallel. By substitution of(11) into (10) the flexibility relation(10) can be written as

u =

(

C

θ2
+

1

iωθ2R
− 1

ω2θ2L

)

f (12)

This relation between forcef and displacementu corresponds to the mechanical transducer model in
Fig. 2(b), with a spring, damper and inerter placed in series. As demonstrated next the residual mode
contributions are also additive in terms of flexibilities, and they are therefore directly absorbed by the
electrical components in Fig. 2(a). For the seriesRL shunt the residual mode contributions can not be
combined exactly with the shunt components, but as demonstrated in [11] consistent approximations lead
to explicit and accurate solutions.

2.3 Single-mode calibration

Numerous design principles and procedures are available for the components of both series and par-
allelRL shunts. Table 1 summarizes some basic calibration formulaefor the normalized inductance and
resistance,

λr = LCω2

r , ρr = RCωr (13)

In the maximum damping calibration [4] the inductanceλr is determined to create equal modal damping
in the two modes of the assumed single-mode structure, whilethe resistance is chosen according to the
bifurcation point of the two complex roots. However, maximum damping is not equivalent to optimal
response mitigation, since the two vibration modes at the bifurcation point experience constructive in-
terference [1]. Thus, the minimum amplitude calibration derived in [2] leads to alternative expressions
for λr and ρr, as seen in row two of Table 1. Conversely, equal modal damping is not obtained by
the minimum amplitude calibration, although it is a robust design property that it is independent of the

4



ICAST2016: 27

th

International Conferen
e on Adaptive Stru
tures and Te
hnologies

O
tober 3-5, 2016, Lake George, New York, USA

Table 1: Single-mode calibration of parallel RL shunt.

λr ρr

Maximum damping 1

√

1

4κr

Minimum amplitude
1

1− 1
2
κr

√

1

2κr

Balanced calibration 1

√

1

2κr

particular loading condition. The balanced calibration principle introduced in [7] for piezoelectricRL
shunt damping determines the inductanceλr based on equal damping, while the resistanceρr is chosen√
2 smaller than the value associated with the bifurcation point to avoid the interference. This principle

has been derived for the mechanical tuned mass damper [12], for which the classic frequency calibration
actually corresponds to equal damping of the two modes. The balanced calibration finally gives an ex-
plicit relation between the gain or coupling parameterκr of the resonant system and the attainable level
of modal dampingζdes,

κr = 8ζ2des (14)

This simple relation constitutes a suitable starting pointfor a consistent design procedure based onζdes,
while the optimal inductance and resistance are then determined from the expressions summarized in
Table 1. Thus, in the following results are determined by thebalanced calibration. The corresponding
calibration formulae for the seriesRL shunt may be obtained from [4] or [11].

In most shunt calibration procedures theRL shunt is calibrated based on the system properties of the
structure, where the displacementu is approximated by the modal displacement of the targeted vibration
form: ur = wTur. However, this ignores the modal interaction with the vibration modes of the flexible
structure, not targeted by the shunt damping. Figure 3 showsthe frequency response curves for the tip
deflection of the structure in Fig. 1. The blue dashed curves are the actual response amplitudes of the
flexible structure when loaded by the modal load distribution, while the red solid curves represent the
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Figure 3: Dynamic amplification curve for transducer placed at element 2 and 6.
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desired solution obtained by the balanced calibration procedure for an idealized single mode structure.
It is seen that a severe detuning of the calibration occurs because of the local transducer placement on a
flexible structure. In the following the interaction with the residual vibration modes is taken into account
by a consistent augmentation of the transducer displacement, whereby the frequency response curves
retain the properties of the desired (red) curves in Fig. 3. The desired damping level for the calibration
in the figure isζdes = 0.05, and the dynamic amplification factor of the optimal (red) curve corresponds
almost exactly toDAF = 1/(2ζdes) = 10.

3. SHUNT CALIBRATION

The substantial detuning experienced for the calibration of piezoelectricRL shunt damping acting on
a flexible structure is due to the modal interaction introduced by the local attachment of the transducer.
If the spatial distribution of the transducer can not be sufficiently aligned with the shape of the resonant
vibration form, the interaction with the residual vibration modes must instead be taken into account via
the calibration procedure. An augmented modal analysis is now presented, leading to explicit corrections
of the calibration formulae for the parallelRL shunt components.

3.1 Augmented modal representation

The single-mode approximationu = ur is often inadequate because the displacementu in (2) con-
tains contributions from both the targeted resonant mode (j = r) and the other residual modes (j 6= r).
As recently demonstrated in [10] the influence of the interaction with the non-resonant modes may in-
stead be represented by the augmented modal representation

ur = u+

(

1

k′r
− ω2

r

ω2

1

k′′r

)

f (15)

The residual mode flexibility coefficients inside the parenthesis are effectively computed as

1

k′r
= wTK−1

r w − 1

kr
+

1

k′′r
,

1

k′′r
= wTK−1

r KK−1

r w −wTK−1

r w (16)

where the modified stiffness matrixKr is shifted by the inertia contained in the resonant vibration mode,

Kr = K− ω2

r

(

M− (Mur)(Mur)
T

uT
r Mur

)

(17)

It is observed that the resonant mode dynamics are not altered by this modification of the stiffness matrix,
as verified by the modal stiffnessuT

r Krur = uT
r Kur = kr. As demonstrated in detail in [10] both the

flexibility coefficient1/k′r and the corresponding inertia coefficient1/k′′r are non-negative whereby the
total residual mode contribution is consistently divided into the two supplemental contributions inside
the parenthesis in(15).

3.2 Equivalent mechanical model

The modal force-displacement relation, representing the mechanical characteristics of the piezoelec-
tric shunt damper, are now obtained by substitution of(15) into (12). The augmented modal force
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equation can then be written as

(C

θ2
+

1

iωθ2R
− 1

ω2θ2L
+

C ′

θ2
− 1

ω2θ2L′′

r

)

f = ur (18)

where the residual mode flexibility and inertia terms can be represented by a supplemental capacitance
and inductance,

C ′

r =
θ2

k′r
, L′′

r =
k′′r

ω2
rθ

2
(19)

The two capacitance and inductance terms in the model can be combined to introduce equivalent single
modal parameters

Cr = C + C ′

r ,
1

Lr

=
1

L
+

1

L′′

r

(20)

Thus, for the parallelRL shunt the residual mode corrections are directly absorbed by the electrical
components.

3.3 Correction formulae

By the introduction of the modal capacitanceCr and inductanceLr in (20) the modal flexibility
relation(18) reduces to a form similar to(12), but now with respect to the modal displacementur. In
normalized form this relation can be written as

ur =
(Cr

θ2
+

1

iωθ2R
− 1

ω2θ2Lr

)

f =
(

1 +
ωr

iω

1

ρr
− ω2

r

ω2

1

λr

) f

κrkr
(21)

introducing the modal electromechanical coupling coefficient

κr =
θ2

Crkr
(22)

and the non-dimensional modal resistance and inductance

λr = LrCrω
2

r , ρr = RCrωr (23)

The calibration formulae forλr andρr are determined on the basis of an equivalent single-mode structure
and explicit expressions are summarized in Table 1 for some of the most common procedures.

Elimination ofCr andLr in (23) by the definitions in(20) gives the following normalized expressions
for the actual inductanceL and resistanceR for the parallelRL shunt,

LCω2

r =
λr

(1 + κ′r)(1− κ′′rλr)
, RCωr =

ρr
(1 + κ′r)

(24)

where the non-dimensional correction factors are introduced as

κ′r =
C ′

r

C
=

θ2

Ck′r
, κ′′r =

1

L′′

rCrω2
r

=
θ2

Crκ′′r
= κr

kr
k′′r

(25)

Thus, the calibration formulae introduced in Table 1 derived for an idealized single-mode structure can
be explicitly corrected by(24) and thereby used for damping of flexible structures with substantial modal
interaction.
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A design procedure could be conducted as follows. Initially, a desired damping ratiosζdes is de-
termined based on a preliminary dynamic analysis of the flexible structure. The corresponding modal
coupling coefficient is estimated asκ2r = 8ζdes and the piezoelectric transducer is deigned and located
according to the non-dimensional parameterθ2/C = krκr(1 + κ′r). The equivalent single-mode shunt
componentsλr andρr are then determined from the preferred calibration principle (see Table 1) and
the actual inductance and resistance are finally obtained bythe corrections in(24). This procedure is
illustrated by the numerical examples in the next section.

4. DAMPING OF CANTILEVER

Two simple examples are used to illustrate the accuracy of the shunt calibration when including the
residual mode correction in(24). Initially the cantilever beam in Fig. 1 is investigated, with a laminate
transducer covering a single beam element of the numerical model. A severe increase in vibration am-
plitude has already been identified in Fig. 3 for the pure single-mode calibration without residual mode
correction. In the second example a piezoelectric stack transducer act as support instead, thus restraining
the motion of the beam structure.

4.1 Laminate transducer

The cantilever in Fig. 1 is discretized by 20 plane beam elements with transverse displacement and
cross section rotation as the two nodal degrees-of-freedom(dofs). The laminate transducer acts on the
rotational dofs of a single finite element via the connectivity vectorw = [0, . . . , 0,−1, 0, 1, . . . , 0]T

with non-zero entries at the two rotational dofs. The desired damping ratio is chosen asζdes = 0.05,
whereby the electromechanical coupling parameterκr = 8ζ2

des
= 0.02. The supplemental bending

stiffness by the transducer is chosen as100EI/ℓ, whereEI and ℓ are the bending stiffness and the
length of the cantilever, respectively. The single laminate transducer is placed at element2 or 6, and
damping is assessed both for modes1 and3. For damping of mode1 the damping ratios associated
with the resonant mode areζ1 = {0.0499, 0.0499} for both transducer locations, while for the assumed
single-mode calibration the damping ratios of the flexible beam structure areζ0

1
= {0.0676, 0.0274}

and{0.0752, 0.0144} for elements2 and6, respectively. This corresponds to a reduction in attainable
damping by around 50% and 30% compared to the desired value. For mode3 the damping ratios obtained
by the corrected calibration areζ3 = {0.0500, 0.0499} for both locations, while in the uncorrected
case they areζ0

1
= {0.0757, 0.0074} (element2) andζ0

1
= {0.0743, 0.0157} (element6). For mode

3 at element2 the authority of the laminate transducer is significantly limited, with a flexibility factor
κ′
3
= 0.7464 close to unity and a corresponding inertia coefficientκ′′r = 0.0119 comparable in magnitude

to the coupling parameterκr = 0.0200. Thus, for this configuration the smallest damping ratio is only
15% of the targeted value of0.05. This shows that the residual mode correction is of great importance
when the transducer is placed at indirect locations on the structure.

Figure 4 shows the frequency amplitude curves for the tip deflection of the cantilever for all combi-
nations of modes1 and3 and (transducer locations at) elements2 and6. The two top figures for mode
1 correspond to those in Fig. 4 and it is seen that the amplitudecurve obtained by the corrected calibra-
tion (solid blue line) exactly recovers the desired single-mode solution (solid red line) at the predicted
DAF = 10 represented by the horizontal dashed line. As seen from boththe damping ratios and the
dynamic amplification curves the critical mode is the one with the smaller natural frequency, which indi-
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Figure 4: Dynamic amplification curve for transducer placed at element 2 (a) and 6 (b).

cates that the cantilever with a laminate transducer is mainly influenced by the quasi-static residual mode
correction represented byκ′r, whereas the inertia correction factorκ′′r has only limited influence in the
present example.

4.2 Support transducer

In the second example a system is constructed where the inertia correction plays a more prominent
role. This requires that the transducers acts directly on the transverse motion of the structure, as illustrated
in Fig. 5 where a stack-type transducer transversely supports the free end of the cantilever. The axial
stiffness of the stack transducer is100EI/ℓ3, which makes it sufficiently soft to allow enough transverse
displacement at the right end to activate the inertia correction. For mode1 the correction factors are
κ′r = 0.0664 and κ′′r = 0.0092 and the calibration is therefore mostly influenced by the flexibility
correction. However, for mode4 the inertia coefficientκ′′r = 0.0803 is almost two times larger than

LR
1 2 3

n

Figure 5: Cantilever with transverse transducer at free end.
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Figure 6: Dynamic amplification curve for transducer placed at right end.

κ′r = 0.0432. Thus, for mode4 the inertia correction constitutes the main contribution.For the two
modes the desired damping ratiosζ1 = {0.0500, 0.0499} and ζ4 = {0.0499, 0.0500} are accurately
obtained when the corrected calibration is applied, while in the case without correction (κ′r = 0, κ′′r = 0)
the damping ratios are insteadζ0

1
= {0.0600, 0.0365} and ζ0

4
= {0.0387, 0.0555}. For both modes

the attainable damping is reduced by more than25%. However, for mode4 it is now the mode with
smaller frequency that is reduced, indicating that inertiacontributions from the lower residual modes (1
to 3) influence the dynamics of the resonant mode4. This is also observed for the dynamic amplification
curves for the end rotationϕend in Fig. 6, where the undesirable amplification of the (dashed) curve
without correction occurs for the right peak for mode1, while for mode4 the largest amplitude occurs
for the left peak with smaller frequency.

5. CONCLUSIONS

The present paper improves the calibration accuracy for piezoelectricRL shunts by a consistent pro-
cedure taking into account the spill-over from the non-resonant modes of the flexible structure. The
approach is based on the representation of the transducer displacementu in terms of the displacement of
the resonant vibration modeur and two additional terms representing the flexibility and inertia contri-
butions from the residual vibration modes of the structure.Hereby an equivalent single-mode structural
model is established, in which the modal interaction with non-resonant modes is explicitly represented by
two non-dimensional background flexibility and inertia coefficientsκ′r andκ′′r , that are directly available
from the numerical model of the flexible structure. For piezoelectric shunt damping it is demonstrated
that the residual mode flexibility is directly absorbed by the short-circuit transducer capacitance, while
the inertia contribution is equivalent to a supplemental inductance and therefore directly combined with
the actual inductance of the parallelRL shunt. By this reinterpretation of the piezoelectric shuntvia
the residual mode contributions a pair of explicit correction formulae for the shunt circuit inductance
and resistance are obtained, and any set of calibration formulae for (parallel)RL shunts, derived on the
basis of an assumed single-mode structure, can therefore becorrected to take into account the interaction
with non-resonant modes. Finally, numerical examples verify the accurate shunt calibration, also for
intermediate vibration forms, securing both equal dampingof the targeted modes and effective response
reduction by the pole placement based balanced calibrationprinciple.
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