Structure-activity investigation of Ni-Ga model catalysts for CO2 hydrogenation to Methanol

Spiga, Cristiano; Almind, Mads Radmer; Silva, Hugo José Lopes; Wagner, Jakob Birkedal; Chorkendorff, Ib; Damsgaard, Christian Danvad

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Structure-activity investigation of Ni-Ga model catalysts for CO\textsubscript{2} hydrogenation to Methanol

Cristiano Spiga1,2,*, Mads R. Almind1,2, Hugo J.L. Silva2, Jakob B. Wagner1, Ib Chorkendorff2, and Christian D. Damsgaard1,2

1Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2Center for Individual Nanoparticle Functionality, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

*: presenting author, email: crispi@cen.dtu.dk

Metal nanoparticles (NPs) dispersed on a high surface area support are widely used as catalysts for heterogeneous catalysis. The atomic structure of the active NPs is highly linked to the performances of the catalyst. An Environmental Transmission Electron Microscope (ETEM) equipped with a differential pumping system to confine a controlled gas flow around the specimen, offers a unique tool to investigate individual NPs at the atomic level in a gaseous environment [1]. Nevertheless, the morphology of the high surface area support tends to complicate the interpretation of TEM micrographs on the atomic level and blurs the spectroscopic information due to limited depth of field and multiple scattering events. One way to circumvent this is to synthesize NPs on a low surface area support representing the “real” high surface area supported catalyst.

δ-Ni\textsubscript{5}Ga\textsubscript{3} catalysts prepared by incipient wetness impregnation on a high surface area SiO\textsubscript{2} support (Figure 1A), have shown promising for CO\textsubscript{2} hydrogenation to methanol with comparable turn-over frequencies to the preferred commercial Cu/Zn/Al\textsubscript{2}O\textsubscript{3} catalyst system[2-3]. This study presents ETEM investigation of Ni-Ga NPs dispersed on ~200 nm SiO\textsubscript{2} spheres. The catalyst shows similar size distribution and activity pr. surface area as the low-surface area supported catalyst.

The SiO\textsubscript{2} spheres supported model catalyst features numerous NPs that can be illuminated directly with the electron beam (Figure 1B). This enables atomic resolved structural (HRTEM) (Figure 1C) and spectroscopic information (EELS) of the individual NPs.

The catalyst formation process and pre-dominant deactivation mechanism at the atomic level are investigated in the ETEM by following the morphology (surface structure, facets, NP size, crystal structure, material composition) during catalyst synthesis and CO\textsubscript{2} hydrogenation to methanol. The investigation is supported by complementary techniques such as \textit{in-situ} X-Ray Diffraction (XRD) and catalytic activity measurements (fixed-bed reactor) using a Gas Chromatograph (GC) and a Mass Spectrometer (MS).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{TEM micrographs of NiGa NPs supported on A) High surface area SiO\textsubscript{2} support B) Ni-Ga NPs on ~200 nm SiO\textsubscript{2} spheres, and C) HRTEM micrograph of Ni-Ga NPs on top of SiO\textsubscript{2} spheres (P(H\textsubscript{2})=110Pa, T=700°C).}
\end{figure}

References