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Statement of Contribution

Under the combined pressure of low freight rates and increased fuel prices observed since
2008, increased attention has been devoted in the maritime community to the determination of
a cost effective speed of oceangoing vessels. The recent (early 2015) drop in fuel prices
coupled with a further drop in freight rates has enhanced the importance of the problem.
Significant work has appeared in the literature on the joint selection of speed and voyages in a
deterministic environment, mainly in the context of the operation of lines. However there
have been few results for the case of vessels operating in a tramp mode, by which we mean
chartering on a voyage to voyage basis at random rates, these voyages being long, oceangoing
ones. In fact, most formulations in the literature assume implicitly repetitions of the same
sequence of voyages at the same known rates, abstracting from the uncertainty in the charter

market.

In this paper we extend the existing models in several directions. First, we generalize the
problem of finding the “optimal cycle” on a graph of origins — destinations and known freight
rates (as introduced by Dantzig and his coworkers almost fifty years ago) to the case where
speed is an additional parameter of choice. Second we consider the same problem when
freight rates between origins — destinations are random variables of known distributions. The
choice of voyage and speed is a joint decision in these models. In the case of charter rates
that are independent from one voyage to the next, the optimal speed is constant in the sense
that it depends on the average freight rate and the fuel cost but is independent of the particular
voyage freight rate. Different speeds are optimal for voyages with differing fuel costs. When
rates depend on an overall market process, speed does depend on the market state and

indirectly on the voyage freight.

The dynamic programming equations in our models differ from the ones that appear in
Markovian decision processes, since in our setting the choice of voyage is made after the
realization of the random charter rates and thus there is an inversion of the expectation and
maximization operations. We develop variations of existing solution methods to solve the
modified dynamic programming equations — stochastic approximation, value iteration, policy

iteration.

Our results lead to “rules of thumb” which might be of use to practitioners in the maritime
industry who are not expected to go into the technical detail of the literature. The suggested
voyage selection rule consists of comparing the available charters to an ideal voyage, and

choosing to undertake the voyage that is best compared to the ideal one. Once the voyage is



selected, the optimal speed is determined by a rule close to the standard economic speed
formulae. For reasonable parameter values uniform changes in fuel prices do not affect the
voyage choice, although non-uniform prices in bunker will affect the voyage selection
through a change in the solution of the dynamic programming equations. The optimal voyage
selection will tend to avoid ports where bunker price is high, unless the freight rate realization
is sufficient to compensate for the high bunker cost. The bunkering problem has recently
been examined in the literature, and we indicate how it might be incorporated in our dynamic

programming formulation.



*1a. Detailed Response to Reviewers

Response to Editor and Reviewers’ comments
Comments to the editor

We would like to thank you and the reviewers for the comments which, hopefully, enhanced
our paper.

The topics of the revision are as follows

- We made a more accurate reference to the early works on the minimum cost to
time ratio cycle, which is due not only to Dantzig et al. (1967) but more accurately
to E. Lawler, as stated in his Combinatorial Optimization textbook (p.9, para. 2)

- We included the very important reference by Besbes and Savin that was pointed out
by Reviewer No. 1. It is actually a nice continuation of Dantzig, Blattner, Rao and
Lawler work in the field of Transportation Research. We showed how to include in
principle their routing - refueling problem within a routing - speed selection context
(p. 30 para. 1)

- We incorporated time charter selection within the dynamic programming
framework by slightly extending the choice of charters (p. 30 para. 2)

- We incorporated and solved the very interesting illustrative example suggested by
Reviewer no. 1 (p. 12, last para.)

- We incorporated the views of a high ranking executive on the managerial
applicability of our models, as a response to state managerial insights (Section 7.2)

- We enriched our references (included some recent work appearing in Trans. Res. B..)



Response to Reviewer #1:

(a)"the ballast and laden voyages
should be traversed at the same
speed" in Line 54-54, Page 6. In
my opinion, the "kj" in Eqg. (2)
should be different ballast and
laden voyages, and hence the
speeds should be different.

We meant exactly the same, but our syntax
was unfortunate. We rephrased this
sentence see p. 6, last paragraph, last 6 lines.

(b) "The expression for (letter)
a" should be ".. for alpha", Line

9, Page 7. Also: Line 30 Page 8
"target (letter) a" and Line 3
Page 26 "rate (letter) a".

Ok

(c)Line 37, Page 7. "increase the
speed by half the percentage".
Check the accuracy of the word

"half" (e.g., the square root of
144% is 120%, not 122%).

We meant ‘by approximately half the
percentage’, and revised... p. 7 last para. of
section 2.1.

(d) This research is mainly based
on Dantzig et al. (1967). Why was
there no relevant research on
this topic in the past half
century?

Except for Besbes and Savin there was
indeed little use of this work in
transportation. We cited a survey on its
application to CAD p. 8, last lines of para. 1

(e)Line 30,
"Dantzig et al.
missing.

Page 9. The reference
(1969)" is

Mistaken reference, meant Dantzig et al.
(1967)

(f)Line 28-34, Page 9. A brief
introduction of how to find a
cycle and the computational
complexity could be added.

We referenced the relevant section in
Lawler’s textbook and added the complexity
estimate. We thought that outlining of say
the Floyd Warshall algorithm would
inordinately lengthen the paper, we could
add an appendix if you insist.. p.9, first 2
paragraphs.

(g) For stochastic parts, you
might contrast your research with
"Besbes, 0., Savin, S., 2009.
Going bunkers: the joint route
selection and refueling problem.
Manufacturing & Service
Operations Management".

We are grateful for bringing to our attention
this paper. We made extensive mention of it
and showed how their viewpoint could be
incorporated in our problem — see the
Conclusions section 7.1

(h) The review paper "Psaraftis,
H.N., Kontovas, C.A., 2013. Speed
models for energy-efficient
maritime transportation: a
taxonomy and survey.
Transportation Research Part C"
could be cited as it provides
extensive information on relevant
topics.

We had mistakenly omitted it, confusing the
2013 and 2014 papers by the same authors.
We corrected this omission in this revision.

(i)Line 1 Page 12. You should

We rephrased the exposition, so that the T,

define "tau w" before Eqg. (10). parameter appears early on.
(3j)Line 29, Page 22. "constrains" OK

should be "constraints".

(k) Line 27, Page 23. "in the OK

Table 3" should be "in Table 3".




(1) Line 31, Page 23. "as
expected from equation (9)".

How? (note that the expected
profit alpha appears in equation
(9), and alpha is related to fuel
price).

Since eq. (9) involves only distance and
freight parameters its solution ( and the h’s)
are independent of the fuel price and so is
the optimal cycle. However the optimal
speed will depend on alpha which will
depend on both Cand the fuel price. We
tried to rephrase the section as well as the
comments following equ. (9). See p. 10, para.
following equ. (5’)

(m) Line 7, Page 31. Delete ".".

OK

(n)Eg. (10), Page 11. I could not
follow this equation. My
questions are as follows. First,
Is tau w a constant or a decision
variable for the shipping
company? It seems that it is a
constant according to "we assume
a minimum wait time tau w and we
arbitrarily set tau w=10 days" in
Lines 39-41 on Page 22. Second,
what does the phrase "a minimum
wait time tau w" mean? Do you
mean if the revenue is low, then
the ship should wait at a port
for at least tau w days? What if
the revenue is very high in the
next day? Third, how to determine
when the ship should wait (still
related to the definition of

tau w)? Fourth, how often is the
revenue of a voyage updated?
Every day? In sum, I am sure that
Eg. (10) is one of the major
contributions of the study.
Therefore, I suggest using the
following example to demonstrate
this equation: There are two
ports 1 and 2. The revenue of a
voyage from port 1 to 2 is always
0, the revenue of a voyage from
port 2 to 1 has equal probability
of $1

and $2. Therefore, the ship will
never wait at port 1, but may (I
am not sure) wait at port 2 for
the higher revenue of $2. The
speed can be considered fixed
such that it takes one day from
port 1 to port 2 and one day from
2 to 1, and the fuel cost can be
assumed 0. I would like to see
the optimal policy for this
example, and how the optimal
policy is derived.

Adding the possibility to wait for a time
quantum tw is indeed a form of optimal
stopping. In this formulation we might have
to wait for an integral number of t,, intervals
until a satisfactory charter is observed, i.e.
some destination value is greater than the
value of waiting at the same port for a tw
quantum. The restrictive assumption here is
that freight rate observations a quantum
distance apart are independent. A more
satisfactory optimal stopping formulation
would entail introducing stochastic
processes for all rates, requiring a huge
number of states, so we settled for the
compromise model stated in the paper. See
the rephrasing in p 10 last paragraph, p. 11
first lines.

We thank the reviewer for the example. We
include it as well as its solution which is quite
interesting and is a nice application of
dynamic programming methods. We could
add a more complicated example with 2
ports and speed variation, but it would take
too much space. See p. 12 last paragraph




Response to Reviewer #2

- There are some sentences
with typing errors (for
example line 4-5 in second
paragraph in Introduction).

Ok!

- The introduction is quite
long.

We tried to shorten it, actually splitting it in
subsections 1.1 and 1.2 for better readability

- One section for the
structure of the paper.

We added a subsection, splitting the
introductory section. See section 1.2

- Consistent use of indexes
(for example dj or dij, vj or
v in Section 2.1).

We would like, if possible, to keep the letter
d for distance and v for speed. The indices
are usually double, except in section 2. We
warn the reader when we move from one
index to two indices. See p. 8 line 3.

- I would like to see some
managerial insight in the
conclusion.

We added a subsection (7.2) at the end with
a report on conversations with an
experienced maritime industry executive.
His comments were indeed revealing




*Highlights (for review)

Highlights
The Economic Speed of an Oceangoing Vessel in a Dynamic Setting
Evangelos Magirou, Harilaos Psaraftis, Theodore Bouritas

e Examines the simultaneous selection of charters and speed of tramp vessels in an
infinite horizon setting, for deterministic of stochastic rates

e For a known voyage ensemble the optimal speed on each voyage depends on its fuel
cost and the average and not the individual freight rate

e For avoyage graph it is shown how to determine the optimal cycle of voyages and
their optimal speeds. Again optimal speed on each voyage depends on its fuel cost
and the optimal average profit rate

e For stochastic rates, independent for each voyage we determine the optimal choice
of voyages and speeds. Again optimal speed depends on the average profit rate

e For stochastic rates and a Markovian description of freight rates, the optimal speed
depends on the state as well, favourable states corresponding to higher speeds

e Solutions to the relevant dynamic programming equations are obtained through
novel algorithms.
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Abstract

The optimal (economic) speed of oceangoing vesssbecome of increased importance due to the
combined effect of low freight rates and volatilenker prices. We examine the problem for vessels
operating in the spot market in a tramp mode. him ¢ase of known freight rates between origin
destination combinations, a dynamic programmingnfdation can be applied to determine both the
optimal speed and the optimal voyage sequence.ofaak results are derived for random freight
rates of known distributions. In the case of irelegent rates the economic speed depends on fuel
price and the expected freight rate, but is inddpah of the revenue of the particular voyage. For
freight rates that depend on a state of the maulieekovian random variable, economic speed depends
on the market state as well, with increased speedsponding to good states of the market. The
dynamic programming equations in our models diffem those of Markovian decision processes so
we develop modifications of standard solution mdfh@nd apply them to small examples.

Keywords

Economic speed, Dynamic programming, Markov and iSetarkov Decision Processes, Policy

Iteration, Value Iteration, Stochastic Approximatio



O©CO~NOOOTA~AWNPE

1. Introduction

1.1 The economic speed problem

From 2008 and until the middle of 2014 a combovatf low freight rates and high fuel prices led to
a widespread practice of low speed (slow steanimgpeangoing vessels. The desire to reduce CO
emissions in view of environmental regulations atsmtributed to the use of lower speed; see
Kontovas and Psaraftis (2011). At the time of wgt we are witnessing a precipitous drop in bunker
prices — see Figure 1 - coupled with a further drofreight rates, and the overall effect on spised
ambiguous!These developments have led to significant reseamchow speed is to be incorporated
in fleet and line management models; see for instahe survey of speed models in maritime
transportation by Psaraftis and Kontovas (2013).c@trast, as stated by Ronen (2011), Christiansen
et al. (2007), in the years following the 1970’sarises and up to 2008 the literature on the tapbic
optimal speed for a tramp vessel was limited, artlets did not change significantly from the
approach presented in Ronen (1982). To our knayelethe extent to which economic speed models
have been used by practitioners has not been daotache see the mention of this problem by the

authors’ previous work in Magirou, Psaraftis andi§€bdoulakis (1992).
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Figure 1. BunkerWorld Bunker Index, January 2015
http://www.bunkerworld.com/prices?tag=1-149695- 178 9-0-BW

Most economic speed models optimize from the pofntiew of the ship-owner, on a voyage to

voyage basis, assuming thus tramp operation. Attemmias also been paid to the optimal speed from
the point of view of the vessel’'s charterer. Imgmal, the viewpoint of charterer and owner are
different, although as shown in Devanney (2010) auttined in Psaraftis and Kontovas (2013), their
speed optimization problems turn out to be equivalender the assumption that the charterer will

! In the formulations in Psaraftis and Kontovas @Qthe optimal speed is a function of the ratidusfl price
divided by the market spot rate, so if both dragirthatio may increase, decrease or stay the same.



O©CO~NOOOTA~AWNPE

have to charter additional tramp ship capacityeiéded or charter out excess capacity at pregailin
rates. In this paper we take the point of viewhaf vessel’s operator. We consider the operati@n o

single vessel, ignoring interactions that may oagien managing a fleet.

In situations where a vessel has to undertake @eseg of voyages at known loads, freight rates tim
windows etc., the speed of each voyage might beobrtbe decision variables in a mathematical
programming formulation. Such models have beereldped for several situations of practical
importance, as in Norstad et al. (2011), Fagerébhl. (2010), and Christiansen et al. (2013). The
objective in these works is the total benefit antl the profit per time unit; accordingly the allaive
speed variation is limited, speed being an operatioather than a strategic parameter. Speed
selection is also important when scheduling a fidédiners, their number being a decision parameter
as in Ronen (2011) and Noteboom and Vernimmen (200®liner management applications, when
striving to maintain an acceptable level of servédteminimum cost speed selection can take into
account voyage and port uncertainties; this has bremlelled as a stochastic programming problem in
Wang and Meng (2012).

The effect of speed on voyage selection has beamieed in Psaraftis and Kontovas (2014) using
accurate expressions for fuel consumption as atiimof speed and load. They show that voyage
choice and speed will depend on the variationdi@fship’s hydrodynamic resistance, fuel cost and of
course freight rates. In this paper we also examiie integrated problem of selecting voyage and
speed but in infinite horizon problems. We firgtsider speed selection in the case where the
operator knows all future freight rates. In thigywve sidestep the difficulty of classifying voyages
either income generating or positioning legs (i thtter case charging an opportunity cost to the
voyage days) as in Ronen (1982). Fuel price isidened known, and might vary from port to port.
We assume there is refueling at every port andrgtie possibility of fuel stockpiling strategiesia
Besbes and Savin (2009), Meng et al. (2015). énditerministic models optimal speed depends on
the average revenue, the ship’s hydrodynamic eegistand the fuel cost variations from port to port
but not on the freight of the particular voyagee Wen consider the situation where voyages aboe to
selected on a graph, and show how to determineptimal voyage cycle, the speed of the various
voyages on it, again assuming just sufficient réfigeat every port. Changes in fuel cost might
influence the selection of voyages, in order foaraple to avoid voyages to destinations where fuel i
expensive and are followed by long legs in balladbwever, when fuel prices are the same in all

locations, we show that uniform fuel price changesot affect the voyage selection.

Fluctuations in freight rates are of paramount irtgoace in the operation of a tramp vessel. To our
knowledge, speed models with stochastic rates hat/appeared before except in our previous work,
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Magirou et al. (2013). In case freight rates dfedéent voyages are independent random variables
with time invariant distributions, we show that toptimal speed depends on the expected average
daily profit but not on the freight rate of the peuwlar voyage, a result which contrasts with the
standard economic speed formulae where profitaiyages should be traversed at a higher speed. If
one introduces a state space description of thealbvieeight market, optimal speed is higher in a
favorable market state and conversely in bad orgseed variation should be interpreted from this

viewpoint as an effort to take advantage of gootwks while they last and vice versa.

1.2 Structure of the paper

The structure of the paper is as follows. In Secttowe examine speed selection when facing a
known, repeating sequence of voyages. This isydetito voyage selection on a graph of ports, again
with speed selection an option. In Section 3 wester stochastic freight rates, rates being random
variables which are independent from one voyaghdmext and whose distributions are the same for
each port of origin. Chartering decisions are thleown to be independent of speed selection, and if
fuel price is the same in all locations, the cha€&oyages will not depend on the overall fuekpri
level. In Section 4 we extend the model to incladgtate of the charter market which behaves as a
finite state continuous time Markov Chain. Whelyage times are either small or large with respect
to the average duration of a charter market stage,optimal speed and voyage selection results
simplify and have an intuitively plausible interfaon. Since the dynamic programming equations
used differ from the standard ones for MarkoviartiBien Processes, we develop alternative solution
methods first by stochastic approximation and e quasi-value iteration procedure. In Section 5
we examine models with a discounted net revenueriom and compare them to the average
undiscounted profit ones. Computational resuls aresented in Section 6 while Conclusions,
managerial relevance and the authors’ plans fahéarwork are in Section 7. Several proofs and
other details appear in the Appendices.

2. Deterministic Charter Rates and Fuel Prices

2.1 Speed considerations for a sequence of voyages

Consider a vessel that will undertake a sequengages indexed bij=1,2,..,N which for voyagg
have revenueB;, distances); and port times,.. The fuel consumption for voyagevill depend on the
voyage distance, speegd and the nature of the voyage, be it laden or itegta The daily fuel
consumption is given by a function of the fokn’, the parametek; incorporating the vessel’s
loading and thus depending on the particular voya@éearly, similar results can be obtained for
different consumption function exponents. Theltetyyage fuel cost will depend on the given fuel
price pe; which will depend on the voyage itself, as fortamee when refueling is done in the port of

5
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origin. We do not consider fuel stockpiling, asBasbes and Savin (2009) where extra fuel can be
bought at locations where it is inexpensive. Whbkse assumptions, the fuel cost for voypge
fj:pp;jIq\ﬁ(dj/v):pp;jlqdijvz. We ignore fuel consumption at port, and thusrtbieaverage daily revenue
of the vessel owner for the sequence of voyagegiven by the expression

_ INAPi—fiw)] _ B[P fiw)]
G(vq,..,vy) = TW1,WVN) Y tpi_'_% (1)
We tacitly assumed that all other operating cosés nstant on an average daily basis, and we

denoted byl=T(v,..,w) the total time for all voyages, including port &m

Let us for simplicity assume that we can freely at® speeds for each voyage. In practice charter
party obligations, engine specifications, weathwrditions etc. impose constraints on speed, bgethe
can be handled with standard techniques while alrggthe larger picture, so we will assume that the
optimizing speed is within the allowed range ofth# above constraints. We show how to deal with
simple and upper or lower bounds on speed in Apge@dbut ignore any speed constraints in the
main part of the paper.

To obtain the optimal speed we calculate the gadiéaivatives of (1) with respect to the voyage

speeds and get
96 _XiL(Pi—fiw)) 4 2prdikv;

an T2 sz T
Equating the derivatives to zero we obtain theofeihg expression fo;:
1 1
_ (ZE(Pi—fiwD) /3 _ a /3
yy = (Bt B _(_a 2
2pFjk;T 2prjk;j

The term alpha is defined as the average net profit for the ctitbe of voyages

N p— . .
a = Zi=1(P1 fL(VL)) (3)

T
Thus alpha ) is the optimal net revenue for the entire tripussage. It is independent of the

particular voyagg, depending on the entire set of voyages. The rdkpee of the speed on the
voyage is strictly through the termpgk, the product of the fuel price by the specific lglai
consumption. It follows that there should be Jiwizs in the speed as a function of the daily fupedt

of the voyages. On the other hand the revenuaeparticular voyage is of no importance for the
determination of the voyage's speed, this reverfigeting speed only through its contribution to the
average net profit alphac In this sense, ballast and laden voyages hawal @egntributions to the
average daily profit and thus differences in thagtimal speeds are due to differences in hydraulic
resistance and fuel price. The slow speed recomatiemdon expensive fuel can be interpreted as an

effort to buy less fuel at locations where its prig high.
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In order to compute the value of the average pooiiit terms of the original parameters we substitute

the values off from (2) in (3) to get

. a \/3
P=2land (57)

- _1
T gy (1)
HereTs is the sum of all port time®, is the sum of all freights and we $gtpe k. We will refer toy
as the daily fuel cost at unit speed, or as theipelaily fuel cost. The above expression fquhel
() in conjunction with the expression farin (2), o=2yv® reduces to the following equation fgr

the optimal speed on voyape

2 1
2y;Tpv} + 3y, /317]-2 ( Igzlykhdk) -P=0 4)

Equation (4) implies that a different speed shooédused in every voyage. The optimal speed
depends on the voyage daily fuel cgsis well as on the voyage ensemble characteristcshe total
revenueP, total port timeTp and the weighted voyage distances, but not omp#gcular voyage
revenueP;. In case theyj's are the same for all voyages, the optimal speetbnstanty=v and
satisfies the equation

2yTeV*+3)V*D-P=0
This is the equation appearing in Ronen (1980) abalies to a single laden voyage withthe port
time, P the freight,D the distance. It generalizes provided the fuiglepr consumption characteristics
are independent of the voyage. Furthermore, dltpbrt time is negligible the economic speed is
given by the expression

P/ \ /2

- ()
Interpreting (5) gives us the following rule of thh: increase the speed by about half the percentage
increase in rates, decrease it by about half theeptage increase in fuel. Comparing the optimal
speed in (5) with the original expression (2), aright observe an inconsistency in the exponents; bu
this discrepancy is deceptive since thieerm in (2) is the net profit rate while the noatior in (5) is
the gross profit rate, which is of course larged &ence the higher root in the latter expression is

justified.

2.2 Simultaneous speed and voyage selection

The operator of a tramp vessel does not know blefore the sequence of voyages his vessel will
undertake, and it will actually depend on the fintigates that will prevail. One can generalize the
tramp scheduling problem posed by Dantzig et &6} to include speed selection: In that work,

voyages are considered as transitions on the rafdegraph which correspond to ports. The revenue
for a voyage between nodes - partsis known and constaf;, while the distance; and a port time
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t%; is also known. We assume that on any voyadhe speed; can be selected without constraints.
Note that from this section on we udg Vv; to denote the distance between pajtais well as the
speed of the corresponding voyage; in the prevsolrsectiord,,v; were the distance and the speed of
voyagej, and the voyages were specified exogenously. Gélecbst per unit time is a known function
depending on the voyaggej — we assume the forpf;k;v’; and the total fuel cost for the voyage is
7;V%;d;, as before. The voyage lengthTig=t" ;+7,d;v; . In Dantzig’s formulation, the objective is to
select voyages so as to maximize revenue per iamét for an infinite horizon, and we extend the
problem by selecting both voyages and the correfipgrspeeds to achieve the same goal. Besbes
and Savin (2009) consider the same problem withpthssibility of the vessel loading added fuel at
ports where prices are low. The authors derivéhau to solve the joint refueling — voyage selectio
problem using dynamic programming, although at exogsly given speed. Their formulation can be
combined with ours as we will show in the conclggdsection. The optimal refueling problem has
recently been formulated using mathematical prograrg, see Meng et al. (2015). Note that the
applicability of the minimum cost to time ratio ptem of Dantzig et al. op. cit. is not limited toet
transportation domain, but has applications to mév€omputer Aided Design problems. See the
survey by Dasdan et al. (1999). In fact, Dantzig his coworkers consider a transportation problem
much more complicated than identifying the minimoost to time ratio cycle; this cycle problem is
just a part of an efficient column generation solutechnique for their full problem.

We model the above situation in the form of a séairkovian decision problem where states
correspond to ports. The decision to undertakertaio voyage determines the next state and the
dwell time with certainty. A straightforward dynanprogramming argument as in Ross (1970) Ch. 7
Theorem 7.6 shows that the optimal policy is chiardzed by a per unit time profit parameter alpha -

a and port valuek;, j=1, 2,.., Nandh;=0 which satisfy the equations
h; = max;.; max, {Pi_j —¥idi v’ —a (tfj + %) + hj} i=12,..,N andh; =0 (6)
The interpretation of (6) is as follows. The vogagglection policy consists of determining a profit

targeta and a port “profit factor’h;; charter selection is based on comparing for qam$sible

destinationj its differential profit net of fuel with respeat &an ideal voyage, i.eP; ; —v; ;d; ,-vz —

a(tfj +%) and then adding the destination port fadipr This is optimized for speed and the

destination is then selected that maximizes thétpro

If destinationj is selected from origin the optimal speed is determined by setting theigbar
derivative of the expression in brackets in (6300, obtaining an expression similar to the cdse o

known voyage sequence (2), namely
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v = (5) ” @

2y,
This shows that the optimal speed depends on thefipdaily fuel costy; but not explicitly on the
voyage freight rate, although the overall ratekigrice the nominator alpha)(@and the destinatignis
determined by the fact that it corresponds to tbktiwely highest rate. If the fuel-speed
characteristics are approximately the same forvajlages, speed should be the almost constant
regardless of the freight rate of the particulayage. However, if the vessel's hydrodynamic
characteristics differ — as for instance for a shipallast in contrast with a laden one, for aagg in
rough seas in contrast with one in predictably cabas, there should be variations in speed. In
practice these variations can be considerable toup0% for VLCC'’s as stated in Psaraftis and
Kontovas (2013) and (2014). Variations in fuel samption parameters should lead to differences in
voyage selection. We show however that in impaértgpecial cases the choice of voyages is

independent of the fuel cost parameters.

Determining the values @f, h can be done through several algorithms and weshidlv some in the
following Sections. It is interesting though tonsaer the following bisection algorithm in the réfpi
of the work of Lawler (1976) Chapter 3.13 and selewily of Dantzig et al. (1967). It is based oe th
following observation

Lawler — Dantzig observation extende@onsider an arbitrarg and select on the voyage

graph speeds as given by (2’). On every edge dengieights
wij(a) = Py j —y;jd; jvii(a) —a <ti’?j + %)
If there is a cycle of nonnegative totalvalue then there is a sequence of voyages thah has
net average profit greater thanConversely, if all cycles have negative totalgiej the value
of o provides an upper bound on the net average profit.
The proof is immediate by summing tiws over the cycle.

The existence or nonexistence of a cycle of negatital value in an n vertex graph can be detertnine
in polynomial complexityO(n®) by several algorithms (Bellman-Ford, Floyd-Warghal see for
instance Lawler's textbook, Chapter 3.11. Basedhism observation Lawler (1976) Chapter 3.13,
constructs a bisection type algorithm whose contfmurtal complexity isO(nflogn), n being the
number of vertices. Since this algorithm doesaimtiously generalize to stochastic rates we show in

the next section algorithms that do not use theckiisn principle.

Equation (2") determines the speed as a functioth@fvalue of the profit rate obtained from the
dynamic programming equation (6), which is statederms of the problem’s parameters. It is thus
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not clear what is the direct dependence of spedeaht rates and fuel parameters, as in the chae

sequence of trips. We would like to obtain thel@gaf equation (4) where the optimal speed was
determined on the basis of the problem parametegstly. We proceed with an analysis similar to
the one that led to (4): For ease of exposition filg assume that port times are negligible.

Substituting the optimal speed)th (6) with zero port times we have after songehta

3 1/, 2 .
h'i =r5131X{PLJ—E(2yU) 30( /3dl’]+h]} l :1,2,..,N andh1 =0 (7)
Setting = a /3, d;j = E(Zyi_j) d; ; the previous equation (7) becomes
h; = max;{P; ; — Bdj; + h;} i=12,..,N andh; =0 (8)
These equations correspond to a minimum cost te tiatio cycle problem i.e. voyage selection
without speed considerations. Solving it fowe obtain the analog of the optimal speed fornigia

namely

v, = ﬁl/z( 1 )1/3 (2)

2Yij
In case the daily fuel cost fuel parametgrare the same for all voyages and equal égquation (7)

becomes

hl=maX]{Pl‘]—(d”+h]} i = 1,2,,N andh1=0 (9)

Here = ;(2)/)1/3612/3. The dynamic programming equation (9) is idetttoathat in the original

minimum cycle problem, so its solutiondnh is the same as before, and does not depend od spee
fuel considerations. Furthermore, the selectioohairters is the same as in the problem with theesa
distancedd; (although expressed in time units) and freighes&;. The optimal speed can then be

expressed in terms of by substituting in (2 the expression ofa in terms of ¢

ie.a = (23—5)3/2 (2y)~Y? | to obtain
1

v=(5) E 9
Optimal speed is indeed a function of the fuel @@tametey and the average profit rafeand the
latter does not depend on fuel cost. It is thdagnaf equation (5) in the problem with a known
voyage sequence. We thus have a separation of @ajagice from optimal speed selection, and the
rule proposed for the known voyage sequence,ric@ease speed by about half the percentage of a
freight rate increase etc. is still valid.

We can obtain similar results when port times aglieitly taken into account. Substituting the

optimal speed (2in (6) we get the equation

3 1
hi = m]aX{Pi,j _E(ZYLJ) /3a2/3di,j - tfja + h]} i= 1,2,..,N and hl =0

10
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1
Settingf = a’/3, di; = %(Zyi_j) /3di,j the previous equation becomes

hy = max; {P,; — fdj; — /82 + b} i=12,.,N andhy =0 ¢
This last equation can be solved by the same metfedbisection method will work since the right
hand side is decreasing i to determings andh, « and the optimal speed by'Yand (2). In this
case there does not seem to be any straightfomegkationship between optimal speed and the various

voyage parameters or fuel cost. In Section 6 veegnt computations illustrating the above results.

3. Stochastic Freight Rates - Independence

3.1 Model formulation

The models presented in Sections 2.1, 2.2 havelithieus drawback that they assume known freight
rates. We will show in this and the following Seas that we can preserve the same voyage - speed
selection principle even for random freight rat&®¥e will do so by extending the dynamic
programming approach to the stochastic case. @Gen§irst a simple model with stochastic freight
rates. The rates to all destination pgrfeom origini become known to the vessel's operator upon
arriving at porti (unavailability of charters to some specific destion would correspond to a null
freight rate). We also assume that the operatorfregly select his voyage speed and knows the fuel
costs. As stated earlier, we will not addresdignrhain part of the paper constraints on speedybut

will show in Appendix C how to incorporate uppeddawer bounds on speed.

The problem for the vessel’s operator is to seleetoptimal destination-speed combinatijpandv;,

after having observed the prevailing rags Upon arriving at the destinatigrthe process is repeated
i.e. the operator observes new rd@gdo all destination&. We assume in this Section that the r&es
are independent between any voyage and the futee. 0A more satisfactory modelling approach
would be to consider at each port a set of avalabhrters. Each charter would be characterized by
its destination, its freight rate if it is laderhet vessel's payload etc. We could include more
complicated charters, i.e. travel frdnto load at port’ and unload at, or even time charters. The
vessel's hydrodynamic resistance coefficikrand other voyage parameters will then depend en th
charter choice and not simply the destination. Wenalt include such considerations here but present
these alternative formulations in the Concludingtise. We assume that the resistance coefficient
will depend on the voyage, thus implicitly categorg voyagesj as laden, ballast, or partial load
ones. The owner’s objective is to maximize the eigxkvalue of the net revenue per unit time for an
infinite horizon, and assume that freight ratesiadependent from one voyage to the next. In other

Sections we will consider discounted objectives aiwb allow implicit rate dependence between

11
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voyages. Finally, in case the rates observed megoort are unsatisfactory, we allow the vessel to
wait for a better freight rate for a fixed, exogaaavait time intervat,; after that interval a different
realization of rates can be observed, independehidnitial one, and if even these are unsatisfgc

to wait once more for the intervgl, etc. A more satisfactory — but intractable -rapgh would be to
model the freight rates as stochastic processesargider the corresponding continuous time optimal

stopping problems.

We again employ the theory of Semi Markov DecisRmcesses for infinite horizon, time average
profit, as stated in Ross (1970). States correspombrts. The dynamic programming equations are
written in terms of an optimal average profitailitand port valuek;, relative to say port for which
h,=0. The optimab,h satisfy equations similar to the Markovian DeaisRrocess ones, namely

hi = Emax([r?jix max, (B, — fi,;(v) — ary;(v) + h,-)] s—at, + hi) i=12..,n andh, =0 (10)
In (lO),Pi_j is the freight random variablg(v) the fuel cost at speadandz;(v) the total voyage time
at speed at sea The random variables are independent from omgeyo the next, but there can be
dependence between them for the destinafiond/e allow a stay at the same port awaiting aebett
charter for a fixed time intervad,, incorporating thus in the formulation a rudimeptaptimal
stopping problem.

Equation (10) is analogous to those in semi Makowecision problems, as in Ross (1970) Section
7.4, with deterministic state transition times.cdn be justified as followsy, is the expected value of
locationi before the rates are observed, hence the exmectagperator precedes the maximization
ones. After observing the rates we either setestil to destinatiopat the optimal speed or decide to
wait for a periody,. In the first case we subtract from the net veypopfit the implicit costiz; and
addh;, the value of the destination j. In the secorskaaait we incur the implicit cost,, and addh,

the benefit of remaining @& The correctness of equation (10) can be progerguhe same methods
as in Ross op. cit.,, namely by proving that if (h@¥ a solution im, h there is an optimal policy and

conversely.

A simple example could clarify the above modelwedl as the dynamic programming formulation
incorporated in (10). Consider a world with twatgal,2 and a vessel which moves at given speed,
the voyages between 1 and 2 being of unit timetkenghere are no charters from 1 to 2, Pe=0.

On the other handP,; can be either 1 or 2 with probability 50%. Thésea waitt, between
observations of the freight rate at 2. Naturally Zero wait time the vessel will wait until a raiE2
occurs, giving a 1-2 cycle with an average profiio On the other hand i, is large, the ship upon

arriving at port 2 will accept the first freight sdrved. Thus the average profit will be % (1 tumé

12
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obtaining no revenue and the other time unit obtgian average revenue of 3/2). To determine the
critical value ofz, we use equation (10) which gives for por£0=0-0+h, and hencé,=0=3/2.

For the no wait policy to be optimal at port 2, teadition is—az,+h,<1-a or 7,>2/3. In case,<2/3,
equation (10) foh, givesa = [(- aruta)+(2-a)]/2 and hence=(1+ 7,/2) . Thus the optimal mean
profit is a decreasing function of the wait tim@®ne can extend the model it to include speed, which
will then depend on the profit rate. A decreaseddt wime will increase profits and thus indirectly

speed!

As far as speed selection is concerned, equatiOh l{as the same structure as the deterministic
problem treated previously. For fuel cost funcsi@md voyage times as in the previous Section, once

1
a voyags is selected it should be carried out at spged= <$) ’ showing thus that optimal speed
L

does not depend on the observed freight rate bthiedestination selected. Of course the reatinati
of the freight rate random variables will affecettioyage selection and thus indirectly the relevant
speed, but speed will not necessarily be an ingrgdanction of the freight rate. If the fuel cost
speed parameters are uniform, the speed is indepera individual charter rates and voyage
selection.

Substituting the expression for the optimal speedlD) we get the analog of the voyage selection

1
equation (8) in the deterministic case: Settingia@ = a2/3, di; = %(Zyi,j) /3di,j equation (10)

specializes to
h;=E (max [max{ﬁi'j — Bdj; + hj}; —B*/*t,, + hi]) i=12,..,N andh; =0 €]
J
For negligible port times and uniform fuel-speedapaetersg;=y the dynamic programming equation

reduces to the following one, similar to (9) in theterministic rate case

h; =E (max [m_ax{ﬁij —{dy + hi}; —q¢®/?t, + hiD i=12,..,N andh; =0 (12)
J
Equation (11) follows directly from (8’) by setting = ;(2)/)1/30(2/3 , keeping the distanced;

unaffectedy stands for the expressi¢®/3)*%(2y)™ which results from setting = q¢3/2. The daily

profit ratea follows once (11) has been solved for

Equation (11) is the stochastic analog of the mimmrtost to time ratio cycle problem and has been
studied by the authors; see Magirou and Bourit@4@2 One must select voyages on a graph where
rates are random and speed is exogenous; the tfredtds become known upon arriving at the
destination of the previous voyage and are indeginlom one voyage to the next. The profit rates

for the voyages are net of fuel costs, and héntlee optimal profit rate, does not explicitly dageon

13
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1
fuel cost which is included in the ratBg The optimal speed is as in)(v = (%) /2. Therefore a

uniform multiplicative change in rates or in fuglrpmeters affects the optimal speed in a squate roo

law fashion, and does not influence the choiceoyfige.

The equation for the case where fuel consumptigrenids on the voyage and port times are not
negligible is similar to that in the deterministase — equation (9") (for convenience we do not
include the wait option) namely

hy = E {max;; [P, — pdj — /872 + ]} i=12,.,nandh, =0 (12)

1 13
As beforef = a’/3, di; = ;(Zyi‘j) /3di‘,- andv; ; = g2 (ﬁ) . If port times are negligible and
L
freights change uniformly by a multiplicative pareter, namelyﬁ’i,j = Aﬁi,j for a constant, it is
clear that equation (12) has a solution in whiahhh parameters have been multiplied hyand
hence speed increases by the square robt 8imilarly if all fuel prices increase By optimal speed
decreases by the square roottofWe thus get an extension of the previously dtapeed selection

rule.

3.2 Solution methods

The equations in the previous Section differ fréma standard dynamic programming ones because of
the reversal of the order of the expectation andimiaation operators; therefore modified solution
methods must be used. We examine the followingrivethods: The first is an application of the
stochastic approximation of Robbins and Munro (39&fplied to the multidimensional case, as
analyzed by Blum (1954). The second was develapede authors’ previous work and is to some
extent related to Lawler’s bisection argument al a® value iteration, and we refer to it as Quasi
Value lteration.

a. Stochastic approximation

For ease of exposition, we describe the methoghjplsed to equation (8’) without the wait optiors it
application to the other equations being similar.
We form the random sequencehp$ indexed byn:

hP*Y = hl' + ny[max; (P, ; — B"d;; + h'} — h?'] i=2,.N

B+t = B + np[max;{Py ; — B dy; + B} — B"]
The P;; are realizations of the freight rate random vdeisb The second relation which is used to
updatep relies on the normalization;=0. The parameters, must satisfy the conditions of the
stochastic approximation algorithms, namely7 n*. We have not examined theoretically the

properties of these procedures in the spirit olB(1954), and have used in our computations ad hoc

14
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methods to achieve convergence by empirically didigighe » parameters. To rectify this, upon
apparent convergence to some valuesffolh we performed a verification step by substitutihg t
candidate values to the right hand side of the mhyogrogramming equation and obtaining the
sample mean. We then checked that the sample nileamgenerated were sufficiently close to the

values off, h being tested.

This verification method can in principle be anagzas follows: Take for instance equation (10)
without the wait option, namely

h; = E{ﬂ%[ﬂ'i - fi,j(v) —at;;(v) + hj] } i=12,..,N andh; =0

Assume that some patrticular values dph have been determined by stochastic approximatiany

other method. We can estimate the right hand lsydking a large sample of the random variable

been computed, one can assign (under a normastynrgstion) a probability that the equalities are
satisfied up t@ namely

hi < max[P;; — f; ;(v) —at;(v) + hj] < h; + ¢
v

Then one can claim using Lemma 2 of Appendix A thatpolicy implied by the parametershise
close to the optimal with probabili;

b. Quasi value iteration

Various forms of this algorithm were applied in theevious work of the authors Magirou et al.
(1997), Magirou and Bouritas (2010), Magirou (2Q1®jagirou et al. (2013) in infinite horizon
Markovian decision problems with the average valtigerion. The algorithm can be used in the
obvious way when a speed choice is involved as Wl ease of exposition we exhibit the method as
applied to equation (11) without the option of wegt namely

h; = E[max;{P;; — ¢d;j + hj})]  i=12,..,N andh; =0 (11

We informally describe the procedure in the follogvsteps

Step 0.Start with arbitrary location valuég, and sayn=1
Step 1 Find a "good" average rabeby solving the stochastic programming problem
max b
Such that
hin < E(max;{P;; — bd;j + hj,}) i=12,..,N andhy, =0

Call the maximunb found «,.

15
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A practical method to solve the above problem isbigection as in the Lawler
algorithm already cited, based on the observatiahthe right hand side is monotonic
in b: start with a large value &f so that the constraints are not satisfied, kebpriza
b until the constraints are satisfied, and proceed the desired accuracy is obtained.
The satisfaction of the constraints with a despegbability is verified by computing
the sample mean oﬁaxj{Pi_j —bd;; + hj}. It is shown in Appendix A that if we
follow a policy based on, andh;, we obtain a return greater than
Step 2 Update thdn's by setting
hint1 = E(maxj{Pi,j —apd;; + hjn}) i=2,..,Nandhy, =0
It follows by the definition ofx, thathy,.1 = h,,.
Step 3 If E(max;{P;; — an,d;j + hjn}) — hin <, foralli stop.
(&, is the desired accuracy )
Otherwise return to Step 1 witlrn+1 using the updatel,+1's

The justification of the Algorithm is as followsyB.emma 2 of Appendix A we know that if the gap
in the inequalities in Step 1 is less thathe policy implied bya,, h, ise close to the optimal value.
If we are not satisfied with the current approxiimate, repeating Step 1, will improve the policy:
Indeed, if we perform Step 1 we will get an imprdwelueon.s, in the sense that.; =>a, . This is
due to the inequality

hint1 = E(maxj{Pi_j —apd;j + hjn}) < E(maxj{Pi_j —apd;j + hjn+1})
which follows from the inequalityy..; = h, of the updating Step 2. Thug is feasible for the
problem in Step 1; hence its solutien,;, provides an equal or higher value thgn In the case of
equality ofa, andan.4, it can be shown that using fbrthe average dfi, andhi.; will give a strict
increase ina, see Appendix A. In Appendix A we also provideregal other results needed to
establish the correctness of the algorithm andvafidity of the verification procedure in the stastic
approximation method.

4. Stochastic Freight Rates - Markovian Freight Market States

An extensive theory exists about the maritime freignarket. In particular several continuous state
Markovian - stochastic differential equation modese been used, see Dixit and Pindyck (1994), and
the appealing geometric mean recurrent processImodé&vedt (1997), (2003). However, the freight
market's explosive rise up to 2008 followed byétwially dramatic fall might provide grounds for a
consideration of simpler models. In this vein, agsume that the charter market (or for a particular

sector, say bulk carriers of a certain type) caimbene of a small number of states indexedloy I.
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The freight rates observed between various podsaasumed to be independent random variables
whose distributions depend on the prevailing mastatek, i.e. we observe ratd%’fj which have a
densitygijx but are otherwise independent. We model thegtftemarket as a continuous time
Markov chain model. The freight market will thusmain in statek for a random time interval
governed by an negative exponential distributiorpafameterl, and will then move to a different
statel with probabilitypg, with p=0. Thus the expected dwell time in staties 1/, The transition
probabilitiesP{Z(t)=1|Z(0)=k}=P «(t), Z(t) being the state of the process at time t, folloezChapman
Kolmogorov equations, again see Ross (1970)

dPy

Frake A Cmak Piem Pmi (£) — P (£)) (13)

For constanp, A's these are linear and can be explicitly solved.

Let us return to the problem of economic speedanrinfinite horizon and using the average profit
criterion, the dynamic programming equation is agai terms of the average profit per unit time
alpha. This time though, the port parameteshiould include the market state. We consider {port
market state parametehs, and sayh; ;=0 but not necessarilir =0 for k different from 1. The

dynamic programming equation is

hijx, =E {max (52?5 [ﬁilfj = fi,jw) —at;;(v) + X, Py (Tij(v)) hj,l] ;—aty, + X Pu(ty) hi,l) }

fori=12,..,N,k=1.2,..,M andh;; =0 (14
The interpretation of (14) is straightforward. pdrti, statek one observes the ratéf?‘j and selects

destinationj and speedj. Upon arriving at destinatiopafter timez;(v) the process has moved to

statel with probabilityPy; (Tij(v)) and thus at locationthe transition t¢ has an expected locational

benefit equal tQd;; Py; (Tij(v)) h;;. The vessel can opt to waitidbr z, time units, after which there

is a new observation of the rates, at possiblyvamarket state. A proof for (14) follows the stardi
dynamic programming arguments and is similar toofém 7.6 in Ross (1970).

To determine the optimal speed once destingtibas been selected we differentiate the expression
inside brackets in (14). For ease of expositibnyé neglect port times the optimality condition
becomes

1 ! ap ( !
—f; W) — at'y (@) + 5, D1 () g, =0

Primes denote differentiation lwin the case of, z. The derivatives of the transition probabilitees

determined by the Chapman Kolmogorov equationshande in principle the speed equations can be

solved. These equations do not provide an exmigiression for the optimal speed, since the speed

17
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appears as an argument in the derivativBpfand hence of the, themselves. Even when we have
solved the Chapman Kolmogorov equations, as wedwsilin a simple example, ttis will be of an
exponential form, leading to an implicit expressimn the speed in contrast to the usual explicit

economic speed formulae.

We consider two important and common market siouati and refer to them as tBeesady Market
Case and as theVolatile Market Case. The Steady Market Case is when the market state is
unlikely to change during any particular voyage.hisTwill happen provideds;<<1/i for any
reasonable speed and all market st&tesThe Volatile Market Case is when the opposite holds,
73 >

Consider thevolatile Market case first. The transition probabilities are tiessentially independent
of the voyage speed and equal the steady statsitioanprobabilitiesP,(«)=Py; thus their time
derivatives vanish. The optimal speed is independéithe state and is, as before, equabitp=

a 1/3 . A .. . . .
(;) . Ignoring the possibility of waiting at the samert, the dynamic programming equation

Lj
simplifies to

hix =E {m]ax[ﬁil,(j — 3d;¥ijvf + Yz Prahyi }
for i=12,..,N,k=12,..,M andh;; =0 (15)

The speed is constant in case the daily fuel edste same for all voyages. This lack of dependefce

speed on the market state is reasonable if the enaskso volatile that it is expected to change

radically by the end of the voyage.

Consider now thestable Market Case. From the theory of continuous time Markov chaiings
known that, see Ross (1970)

7(0) :Akpkl fOTk?':l
dP
d’;" (0)=—2A, forallk

For voyage times which are small relative to tteestiwell times we can take the above expressions
as approximations for the derivatives at the voytage r and hence the speed optimality conditions,

assuming‘ij (V)zyijdij\lz, ‘L'ijzdij/V become
—2y;v + % [a_Ak(thk Prihj — hjk]=0

A\
The optimal speed is thus of the form encounteeédrb, namely; ;,, = (;ﬁ—") , Where
LJj
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Ajp = a— Ak(Zlik pklhjl - hjk)-
The voyage speed depends on the market stateritfiie and the destination. Even in the case of
uniform daily specific fuel cost there will be apdmdence of speed on the state and also on the
destination, unlike the previous cases where teedpvas constant for all voyages. We expect this
dependence to be slight for the usual parametersaiitime applications, since it is caused by the
variation in the likelihood of a change of marketts in voyages of different lengths which is indlee
negligible in practice.

The expression for the optimal speed and in pdaticts nominator can be interpreted as follows.al
good statek, the sumd;.j pkl(hﬂ — hjk) is negative and thusy is greater than the average net profit

rate a, the difference being more marked for large i.e. small dwell times; consequently the
economic speed is higher than average. We midgértpiret this increased speed in a good state as an
effort to take advantage of the good times whilytlast. Conversely, when the state is bad, amdste

to slow down so that the transition to a betterkebecomes more likely.

To derive the approximate dynamic programming dqonafor stable markets, we express the
transition probabilities a®(r)=Agpr  for k£l and Py(r)=1-Ax, since Py(z)=Pq(0)+P’(0)r and
Pu(0)=dw. Then equation (14) specializes to

d;j
— 4+ h;
v Ik

- (tx—lkz Dia(hy — hik)) Ty + hi,k) ]

£k

hue = E [max (52?5 [‘5 o~ digyyv® = [“—Ak ; P (Bt = hic)
fori=12,.,N,k=12,..,,M andh;; =0 (14)
Using the expression for the optimal spggénd simplifying we get from (13
hi,k = E{max(maxjii[ﬁi’fj - 3dijyijvj2k + hj,k]' - ai,k‘[w + hi,k) }
fori=12,..,N,k=12,..,M andh;; =0 (16)

Alternatively, this can be written in terms of theas

2
3

~ 1
hi,k =F {max (maxj#- [Pl"(] - ;dij(Zyijﬁajk + hj,k] ,— ai_k‘rw + hi,k) }
fori=12,..,N,k=12,..,M andh;; =0 (16)
The solution of these expressions characterizesothignal speeds. They can be solved by a

modification of the methods stated earlier, stotbapproximation and quasi value iteration. Wé wi

show numerical results in Section 6.
In the case where the state dwell times are large,shown in Appendix B that the solution can be

approximated by the solution M problems with independent freight rates, one fahestate. These

dynamic programming equations are

19



O©CO~NOOOTA~AWNPE

hix =E {I?%X[Pil,{j — fi; (W) — @t (V) + By | }
fori=12,..,N,k=12,..,M and hy; =0
They are decoupled in the sense thatthk values do not depend aR, hi, for k#zm, and we need to

solve M problems inN variables each rather than oneNWN variables. Consequently, the speed
depends on the state; for uniform fuel cost ihessame for the voyages in the same market state.

We will need for the numerical examples in Sectébthe analytic solution of a two market state
model, consisting of a good and a bad state, irlbyey andb respectively. The parameters are the
state dwell timesly”, A", the transition probabilitie®g, P,y being unity. The solution of the

Kolmogorov equation gives

__ (Mgt _ A _ (g +2p)t
Pgb(t)_/’lg+/’lb(1 e~ b)) Pbg(t)_/’lg+/1b(1 e s b)

The optimal speed is determined by the condition

aPy (1) —
(I;;T T,ij(v) hj,l—O

—f'ij) —at';;(v) + 3,
This specializes to the equations — wighig+ A,
3 _ad: /59
Zyij(ﬁfj) = a — Ag(hj, — hyg)e A4ij/%j  for the good state and

2y (72))° = @ — Ay (hyp — hjz)e 4/ "} for the bad state

This is an implicit expression for the optimal sphedn contrast to the approximate expressiongspe
depends on the distance parameter as well. Thenmtahdetermination of the optimal speed is not
difficult since the expressions are already of mnfg=f(v) and a simple iterative scheme of the form
vh+1=f(vy) is effective. To solve the problem completely foe a, hvalues, the expressions of the
optimal speed must be substituted in the dynamagnamming equations. As we show in Section 6,
the stochastic approximation scheme succeeds ainitiy numerical answers, and these answers are

in agreement with the approximation results derivadier.

5. Discounted Profit Models

In this section we state the previous models irseotinted profit framework. The resulting equation
are in the same spirit as before, and give the sprakitative results for small discount rates, @litph
the equations are more complicated and the opspetd expressions are not as easy to interpret. A
discounted deterministic problem of a graph traalevéith speed selection like the one presented in

Section 2 can be solved using dynamic programménigp &ection 2.2. Using the same terminology,
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the dynamic programming equation can be writteteims of the optimal infinite horizon discounted
net profit starting at poit V;, r being the discount rate:
— —rd;; P
v, = ng{mj?x{Pi,j —y;;d; v+ e T4/} i=1.2,..,n (17)

. .. . .. . “rdijlvy.
The optimal speed satisfies the implicit relatiarf = = 7 4
Lj

For small rates of interest we expect the aboveatému to reduce to the ones we derived for the

average profit criterion. Indeed, one can verifydirect computation that i, h are the solutions of
the average profit problem as stated in (6), thgessionV/; = h; + % approximately satisfies (17), the

approximation improving as r decreases.

For independent stochastic rates as in Section d3 aamliscounted profit criterion, the dynamic

programming equation corresponding to (10) is

V; = Emax [ma,x rr}iax{lsi_j —yi,;dijv? + e T4y e‘”WVi] i=12,..,N a7)

Jj#i

Again for small discount ratesthe solution of (17’) can be approximated by thenfV; = h; +%

with h, athe solution of (10). The solution of (17’) can bletained by stochastic approximation,
policy or value iteration. Calculations are presdrin Section 6 which confirm the above statements

The optimal speed satisfies the implicit expressioown earlier from which the current freight riste
absent, although it influences the speed indirdbtlgugh the choice of destination. This leadthto
following paradox: Assume that a high freight ristebserved for a destinatipof small valuev;, and
thus this destination is selected, the voyage beovgever implemented at a low speed, in contrast to
the principle that profitable voyages should bedraed at high speeds. Conversely, a small freight
rate might lead to the selection of a high valuedtidation and thus the voyage is carried at high

speed.

For the discounted profit version of the marketestaodels in Section 4, one can write by inspection
an optimality condition analogous to (14). Igngrifor simplicity the possibility of waiting, the

|

fori=12,..,N,k=1.2,..,.M (18)

equation becomes

Vik = E {max
’ jw

Pf —f;(w) + e_rd”/vz Py(dij/v)V;,
7
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The optimal speed corresponding to (18) from origimlestinationj and statek is given by the

expression

—rdl-j/v

e d;; di:
vi = Z 7Py ”/v — Py U/v Vii
2vij &

In the calculations shown in Section 5, a two statample was explicitly solved for the transition
probabilities and thus the optimal speed could draputed exactly. For smallit can be shown by
standard methods that (18) reduces to the averegfé model equation (14) with approximate

solutionsVy, = hyy +% . An approximation to the optimal speed for smalyage times can be
obtained using the Kolmogorov equations by sol¢iregequation
1 —rd::

[a —e rd”/mk(lek PrVi — ij)]

2yij
The parameten: is the daily profit introduced in the average graohodel while thepy are the

v3=

transition probabilities of the continuous time IKavr chain.

To solve the discounted problem equation (18) @meuse a stochastic approximation algorithm:
Vi =V + {H}%X [ﬁi’,{j = fij(w) + e_rd”/uz Pi(dij/v) [/I.?:| - Lﬁ} fori=1,..,n
l

In the discounted case there is no special tredtwfeany particular state as was necessary in the
undiscounted case where we arbitrarily lgetd. Upon convergence of the stochastic approximation
algorithm to sayUy, a verification step can be performed by computimg sample mean of the
random variable

rr}?;x[pilfj ~ i) + eV R P (dij /) Ul
The result should then be compared to the candstdigionU; .
In a sense, the stochastic approximation algorithranalogous to value iteration; the analog of a
policy iteration algorithm could be carried outfalows. First start with arbitrary valuég',, n=0.

Then find by stochastic approximation the valuaghaf policy that is based on selecting voyages and

speed by the expression:
(*,v*) = arg {rr}%x [ﬁi’fj — fi () + e Tdij/v Z P (dij/v) Vﬁ”
l
The stochastic approximation algorithm used to fimelvalue of the above policy is of the form

Wit = Wi +nn{

PY. — fi.(0) + e/ Z Pu(dije/v") Wi?] - Wiﬁ} fori=1,.,n
7
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Upon convergence ol to sayW™, we setV"L,=W*%, and repeat. It can be shown with standard
policy iteration arguments that we obtain thus mer@asing sequence of value functions. A similar

policy iteration algorithm can be used in the uodisted case.

6. Computational results

The computations presented in this Section are tresa proof of concept rather than as efficient
calculations suitable for large scale models. ¥legarameters are inspired by the HandyMax type of
bulk carriers; see the description of a HandyMaikRBtarrier that appears in the site of the shipyard
Brodosplit Inc. http://www.brodosplit.hr/Portals/Bulk.pdf. Nominal speed for this type of vessels
is about 15 knots, with a daily consumption of 88st At mid-2014 prices of 600 USD for marine
fuel this is about 18 thousand USD daily. Thes# fuices were way above historical averages, so we
took they parameter to be 12, 15 or 18 and 20 thousand USDday. However, most of our
examples are at the currently reasonable valueof9peed will increase substantially in the future
following a drop in fuel price provided rates impeo and this will incidentally act as an increase i
the supply of shipping as pointed out by maritinober@mists — see Stopford (2008). We count
voyage time in days at nominal speed, most voybgesy of the order of 10 days. In 10 days a vessel
will cover about 3500 miles, the distance from Aal&h to Japan. Speed is presented as a fragtion
of 14 knots, i.e. a speed 0£0.85 meansl1.2knots. Operation constrains on speed, upperveerio
will not be taken into account.

We consider a four origin destination world. Thstahces between them expressed in days at sea at
nominal speed are given in Table 1, and are usall examples. These distances are not symmetric.
Non symmetric distances might be caused by oceamrts, prevailing weather or other voyage
conditions. We ignore port time. As stated int®es 3 and 4 when rates are stochastic, we allow a
vessel to wait at any port for an intervglto get a new freight rate observation which agaight be
accepted or turned down to wait for anothginterval, and so on. We arbitrarily sgtto 10 days.

Table 1
Distances in days at nominal speed
Destination| 1 2 3 4
Origin
1 10 10 10 6
2 8 10 6 10
3 10 7 10 9
4 7 8 8 10
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6.1 A deterministic example
The following example uses the parameters in aipusvpresentation by one of the authors, Magirou
(2012). Rates are deterministic, constant andlavens in Table 2. We want to determine an optimal

cycle of voyages, where choice of speed is possible

Table 2
Rates in thousand USD/Day
Destination 1 2 3 4
Origin
1 - 35 26 17
2 15 - 15 40
3 20 25 - 30
4 20 0 20 -

We solved the example by the iterative methodsradlin Section 2.2 and 3.2 for various fuel costs,
fuel price being the same at all ports. The oatispeed as a function of fuel price is shown ibl&a

3. The optimal voyage cycle is 1-2-4-1 (in caseessel is at port 3 it should go to port 2 andofwll
the cycle thereafter) and is independent of fuéepras expected from the comments following
equation (9). The results verify the inverse squaiot dependence of speed on fuel cost. Similar

results have been obtained for changes in freajbsr

Table 3
Optimal Speed -Nominal speed orl is 14 knots

Case No. 1 2 3 4
Fuel
uel cost parameter 10 12 15 20
000 USD/Day
Optimal Daily Net Profi
pmat baly NELPIofit | 53 03 21.03 18.81 16.28
'000 USD/Day
Relative speed 1.05 0.96 0.86 0.74
Absolute speed in knots 14.7 13.4 12.0 10.4

The numerical calculations for tiés (which we do not show) confirm equation (9): thealues are

h;=0, h,=-20.4 h,=-76.1 andh,=-90.7 and are independent of the fuel cost parameter.

We also calculated the optimal routes in an irdimibrizon discounted profit cost model as in Sectio

5, equation (17). The results of the computatiamesshown in Table 4 and are consistent with those
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of the average profit models, since the discouptedit value functions are well approximated by the
expressionV,=a/r+h;, for reasonable values of the interest rateln Table 4 we show the location
values for various interest rates, using the saoyage values as before and fuel cost at 12 thousand
USD per day. The calculations confirm the resoftsSection 2. The optimal speed depends in
principle on the origin - destination pair, theeirgst rate and other parameters. However, for the
parameter values in the example this dependendasasignificant and the optimal speed is almost

identical to the one in the average profit models.

Table 4 - Discounted Profit Model Location Values
r 10% 5% 1%
\A 76,894.59 153,646.5 767,662.5
V, 76,874.26 153,626.2 767,642.2
V3 76,818.42 153,570.4 767,586.4
V, 76,803.72 153,555.7 767,571.8
V- Viie. b -20.33 -20.35 -20.36
Va-Viie iy -76.16 -76.13 -76.11
Vs Viie. h -90.87 -90.80 -90.75
rV (approximate) 21.1 21.0 21.0
Approx. Optimal speed — all voyages 96% 96% 96%

6.2 Stochastic models - Independent Rates

We ran the same four origin-destination examplevaiig a stochastic variation in the rates. Thegat
observed from origini to destinationj are the ones given in the tables of the previoesti&,
multiplied by a zero mean random variable whosdize#ons are independent among voyages —
although including a dependence among Rje from the same origin for different destinatigns
would have been more realistic. The actual forradug our examples is the random daily rate
Rij = R;"™ - (1 + p;;€). The termy; is a variability parameter whileis a random variable uniform

in [-1,1]. The total freighP; is R; multiplied by the nominal distanck. The corresponding dynamic
programming equations are (10), (11) for the avenawfit case and (17’) for the discounted profit
case. These equations were solved by the methatlised in Section 3.2, i.e. stochastic
approximation, policy iteration, quasi value itesat The solutions obtained were then verified by
simulation in two ways: in the first verificationetihod we substituted the proposed solution in the
right hand side of the corresponding equationjredtd the expected value by simulation and then
compared it to the left hand side. In the secaerifigation, we simulated the voyage policy implied
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by the solution and then verified that the profits#ained were indeed those corresponding to the
proposed solution.

For a uniform rate variability parametery; (same for all voyages) equal to 50%, the resuéisaa

follows
Table 5
Optimal Speed - Stochastic, Independent Freighefkatariability 50%
Case No. 1 2 3 4
Fuel cost parameter (th.USD/Day) 10 12 15 20
Optimal Daily Net Profit (th.USD/Day) 24.04 21.95 9.63 17.00
Relative speed 1.06 0.97 0.87 0.75
Absolute speed v in knots 14.9 13.6 12.2 10.5

Although the freight rate variability is high, thesults are close to that of the deterministic Gse
shown in Table 3. The average daily profits arghsly higher, and so is the speed. This higher
expected profit rate is due to the possibility kmase the best of the observed freight rates, laed t
option to wait, choices that were absent in thermeihistic case. For smaller variability in thées
the profit improvement is negligible. Note tha¢ ttelative port values are the same regardledseof t
fuel costs, a somewhat counterintuitive concluskat is due to the assumption of uniformity in fuel

costs. The location values are close to the d@étéstic case, as shown in Table 6.

Table 6
Location values
hy h, hs h,
Deterministic Freight Rates 0 -20.4 -76.1 -90.7.
Stochastic Freight Rates 0 -22.5 -57.9 -94.1

We also solved the discounted profit models comedng to a daily fuel cost of 12 thousand USD,
and various interest rates. The results are cemsigtith the deterministic and the average prafitec

as seen in Table 7. The policy parameters (tHg dedfits rate alphand the location valudy are
approximately the same. Of course the voyage thateprocess is quite different in the stochastic
case, since it is the observed freight rates tb&trohine the voyage to be undertaken. The overall
conclusion, probably important for applications, tizat the parameters obtained by a simple
deterministic model with average profit optimizatimight not change significantly when uncertainty
is introduced.
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In all models in this Section the computed optis@m¢ed was to a good approximation independent of
the actual observed freight, but depending of therall freight rate level and the fuel cost. The
dependence is an inverse square root one on faehod also a square root dependence on the overall
freight rate level.

Table 7
Discounted Profit Model Location Values
Stochastic, Independent Freight Rates

r 10% 5% 1%
\ 80,484.3 160,930.8 804,821.9
2 80,462.5 160,911.0 804,800.7
V3 80,426.3 160,873.8 804,764.2
Vy 80,390.3 160,837.1 804,728.3
V- Viie. b -21.7 -19.8 -21.1
Vs- Viie hy -58.0 -57.0 -57.7
V- Viie h -94.0 -93.7 -93.6
rV — same for

. 22.05 22.03 22.05
all locations
Optimal speed +

97% 97% 97%

all voyages

6.3 Stochastic models - Markov Process Freight Rates

The model developed in Section 4 was that of ai@ootis Time Markov chain freight market. We
showed in Section 4 a two state model, with a gandl a bad market state, for which the transition
probabilities were computed explicitly; we now el some computations for that model. The
nominal daily freight rates for the bad market estate those used in the deterministic example and
shown in Table 2. In a good market the rates aseiraed twice those of the bad state rates. The
stochastic variations are those of the uniform miackse.

The computations for the average time criterionsli@wn in Table 8. We varied the expected dwell
time at states “badT,=/4,", and “good”, T,=1,", keeping the fuel cost at12 thousand USD daily.
The calculatediverage profie depends on the relative lengths of stay in thegstates. Thé value
differences among ports are roughly the same fgiven state, while there is a jump in thealues
corresponding to a state change. The speed dsgfgnificantly with the state, approximately by a

factor ofv2, reflecting the uniform doubling of rates fronethad to the good market state.
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Table 8
Average time criterion

Case| Tp | Tq | A | Mo | Nao | Do | Pug | Mg | Pag | hug | W | Vg
% %

1 10 1 25.6 -21.0 -56.7| -93.1 13,497 13,456 13,383 ,31B| 97.2| 136.8

2 5 1 28.7 -21.7 -57.2] -93.1 12,227 12,183 12,09 0322, 97.2| 137.3

3 2 1 35.3 -21.9| -57.6| -93.9 9,841 9,838 9,736 9,66®7.0 | 1374

The calculations were done by the stochastic appetion method, implemented in a simple
spreadsheet. The method required manual inteoretdiconverge. Once convergence was achieved,
we verified the computations as stated earlierstfy simulating the right hand side of the dynamic
programming equation (14) for the given valuesaofnd h, and verifying that it is close to the
correspondindn value. Second, we generated realizations ofdtesr choose voyages by the policy
implied by theh, a parameters and computed the average net profé flung sequence” of voyages.
These simulations confirmed the values obtaineddreasonable accuracy.

Similar results were obtained for the Markovian kearstate discounted profit models of Section 5.
For the same vessel, freight, distance etc. pammete solved the relevant equation (18) by a
stochastic approximation method, and verified #®uilts obtained by the same methods. The results
are in Table 9 and are consistent with those oftlezage time model. Even at the high interest rat
of 10%, the approximate vali&=a/r+h is valid. The speed again is in principle depebda origin,
destination and distance but for the parametetBeo&xample it practically depends on the statg, onl

just as in the average time criterion models.

Table 9
Discounted Profit Criterion r=10%

Case| Ty Tg Vip Vop Vap Vap Vlg Vzg V3g V4g Vp Vg

% %

1 10 1 92,415 92395 92,359 92,321 104,70 104,706 104/6304,565| 97.1 | 137.0
5 1 | 102,646| 102,635 102,588 102,550 114,040 113,999 ,9303 113,854 97.2 136.
3 2 1 | 125,818 125,793 125,755 125,721 135,140 135/115 ,0335 139,950, 97.1 136.

7. Conclusions: Model Extensions, Managerial insights

7.1 Extensions

Using a continuous time Markov Chain to model tharter market index is a plausible approach but
which has not been statistically examined. Thereitensive literature on modeling the overall
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charter market using time series methods. Theralss extensive use of stochastic differential
equation models, assuming that charter market ésdéce a diffusion, nametix=Ff(x,t)dt+s(x,t)dw,
with % a market index and; a Wiener process. For example, Dixit and Pindii®94) use such a
model to evaluate a ship, taking explicit accounthe layup possibility, while Tvedt (1997), (2003)
assumes that rates follonGeometric Mean Reversion process and uses it inl@péan evaluation of
alternative ship designs. One might consider desgilmdividual freight rates by stochastic differential
equations, but such a model would become totallpdatéble even for a small number of ports.

In the context of this paper, we might assume thatrates?; are random variables whose density
includes a parameter which in turn is a diffusion process. In a dynarmprogramming formulation
for such a problem, the value functions in the alisted profit and the alpha)(h parameters in the
average profit cases will be functions of the amnus state variabbe and of the locatiofp Solving
them would require computing transition probal@ktby the forward Kolmogorov partial differential
equations to obtain the transition probabilitR&y|xz) of being aty having been at state at the
beginning of the voyagetime units earlier, see for instance the PDE fiomfce notes by R. Kohn
(2011) for a succinct exposition. The dynamic pangming equation for discounted profits is stated
in terms ofVi(x), the optimal discounted profit when being at lawat while the market is at stake

Vi) = B {max [Py = £, + e f PO ) i)y |}
jv ’ ’
For the case of average, infinite horizon profiximazation the dynamic programming equation is
i) = B {max P2 = @) = azy@) + [ PO1700) )y |}

To solve these equations a stochastic approximatiethod with a finite number of basis functions, as
in Tsitsiklis and Van Roy (1999) could be used.

The formulations in this paper do not address $sed of seasonality, which affects charter rates in
superposition with the overall charter market efec Modelling seasonality would require the
introduction of an additional variable to indicabe time of the year, as in Magirou et al. (199If).

the discounted case we would introduce of a fundi@(x), the optimal discounted profit when being
at locationi at instance while the market is at state The dynamic programming equation would
then be

Vi:(x) =E {max [ﬁix]‘-T —fi; () + e TTiiW) f P(y|x, Ty () ijr,(y)dy] }
J,v §
The termz’ in the above equation incorporates seasonalitstaitds for(z+d;) modTwhere T is the

period and takes values up 6. We might take discrete values:dfom 0 to T-1, but need a suitable

discretization of speed so that voyage lengthgansistent with the discretization.
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A further extension would involve introducing a nebdor fuel prices, so that future prices are a
function of the current ones. The state space dvbale to increase further since now a state dsnsis
of a freight market state coupled with a fuel madtate. The bunker procurement problem of Besbes
and Savin (2009) can also be included in our maddbllows (for simplicity consider independent
freight rates, no market state, known bunker pritifering at ports): Assume that a vessel of Ingd
capacityC is available for charter at pdrwith a quantityQ in its fuel hold, and decides to load an
extra fuel quantityg at priceps;. Then the payload of the vessel is at n@€p-qand the revenue is
P;(C-Q-9 which is stochastic. If a voyage is undertaken &t speeds the required fuel isljk\v.
Thus, if the fuel hold’s capacity is s&ly the refueling quantity satisfies dijkj\12§Q+q§H. The value
of porti, h;, should depend on the fuel quantity upon arrtyahenceh=h;(Q). Then the dynamic
programming equation is

hi(Q)=Ematq [P;(C-Q-0)-prid-ady/V*+h;(Q+q-k;d; V)]
This is a stochastic problem even in the case ofvknfuel prices since the stochastic freight iseatid
to the fuel price when deciding about fuel procueatgood freight rates inducing the procurement of
just enough fuel for the current voyage. The mazation in this problem is done subject to the
constraints org, and there is no obvious separation of say voyagm fspeed selection. Still, the
optimal speed satisfieg’=a/(2h k;) and is a function of the derivativé; of the port valuey with
respect toQ, which is the implicit value of fuel when arrivingt the destination port. The fuel
procurement policy seems difficult to characterizét could be an all or nothing policy if the
functions are essentially linear or of tfeS)type if they are piecewise linear. Such procurgme
problems with stochastic prices and constraintsstatage have been dealt in Kalymon (1973),
Magirou (1985) (1992), and Golabi (1983) where arsvare derived for specific situations.

As stated in Section 3, a richer formulation wolédto have the vessel choose from a set of availabl
charters indexed by say For each charter we have a préfif a destinatiorj(c) and a payload
leading to fuel consumption coefficiekt If c is a time charter the fuel cost is undertakentegy t
charterer and hendgis zero. The analog of equation (10) is then

hi =F maxw(ﬁc - piFdij(C)kCUZ - a‘rij(c)(v) + h](c)) i= 1,2,..,71 and hl =0

7.2 Managerial Insights

We have had several conversations with maritimestrgt senior managers; most of them consider
our approach interesting, although they feel tlasiivities are too much dependent on details to

benefit from analyses that omit even minute aspdctdeed tramp vessel management is complicated,
most of the relevant tradeoffs being difficult taagtify, while decisions are numerous and taken

under time pressure by a very small number of dpesa A very important aspect in charter selection

is taking proper care of seasonality; having thesekunload at a time and place when nice charters
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are available nearby, i.e. good vessel positioniaga key to profitability. As such speed is an
important but secondary goal, being subordinatehtotering agreements which stipulate loading and

unloading times and other chartering modalities. shown in the previous subsection, seasonality can
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be included in our models, at the expense of isa@aimensionality.

Other features of our model could be of value tofgssionals, such as the possibility of analyzing
relocation voyages (going in ballast from a portunfoading to a different one); relocation voyages
are a common practice, e.g. often a vessel unloaife Black Sea where back hauls are scarce, then
sails unchartered to West Mediterranean expectingtter charter. Time chartering decisions are als
important and it is convenient to have an analyty to assess them. Time charters have an element
of risk avoidance; they protect the ship owner fnorarket fluctuations but at the same time do not
give him the opportunity to profit from expert pi@ning. Incorporating the risk features (risk

averseness or risk proneness) of the owners waulchportant in a satisfactory decision support.tool
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9. Appendices

Appendix A
We present indicative proofs of the results staieSlection 3.2

Lemmal. Assume that there aseh satisfying fori=1,2,..,Nthe inequality
hi =>E (maX{Pi,j - Zdlj + h]})
)]

Then the average value of any infinite horizon @ois bounded by.
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Sketch of Proof: Consider a path,is,..,i-.,in1 resulting from any policp. Sum along the path the
expression
Ripey = Rig + Py = Sy

Thus we obtain

hi, —hy, + Z:zl(Pik,ikH —{diip,.) = Dn thD—_Nhll + Py —¢
HereDy is the total time for all the voyages aRgdthe time average revenue. Each summand of the
original expression is less than its maximum wékbpect to the destination and hence its expectation
is nonpositive. By the strong law of large numb@rsd well behaved random variabBsthe above

sum divided byDy is also nonpositive, and henegs{ with probability 1.

Lemma 2. Assume that there abe hande satisfying for alli the inequalities
hi <EFE (max{Pi,j - (dl] + h]}) < hi + ¢
J
Then the average value of the policy excegdbile the optimal rate is less th&ns/min{d;}.
Sketch of proof: The proof follows the same line of argument ambr& 1. We form the same sum

along the path implied by th# h policy. Considering the locations visited infelit often (the other
locations do not count in the limit) and using agdie law of large numbers the conclusion follows.

Combining Lemmas 1 and 2 we get:
Proposition: Let the following equation A.1 (equation 9 in {h&per) have a solutidj h

h; = max;{P,; — {d;; + h;j} i=12,..,N andh; =0 (A.1)
For any policy, the limit of the average profitafy policy for an infinite horizon is bounded pwvith
probability 1. Conversely, the policy implied b4.1) attainsx.

We state a property of the solutions of the equatiat leads to a good initial guess for tie
Consider the deterministic version of the problend aise the expected value Bf;, P as a
deterministic rate. The dynamic programming equmefior the average revenue problemhjs=
max;{(P;; — {d;; + h;} whose solution provides thus an “average” prdfit This value of{ is
feasible in the stochastic programming problem tepSl of the Quasi Value lteration Algorithm of
Section 3.2 since

Em]ax{ﬁij —{d;; +hj} = m]axE{Pij —{d;j + hj} = m]ax{ﬁij —{dij+hj} = h
Therefore we can start the proposed algorithm thiéhcertainty equivalent values, and be certain tha
there will be an improvement in the average ratavially, using the result mentioned in the prawo

paragraph, it follows that the optimais greater thag.
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Finally, consider the improvement Step 3 in the W&lue Iteration algorithm. Consider a set of
hi, corresponding to somg. The improvement step will provide a sethgf; andh;,..= h, for all i.
Let - be the’s with h.; = hi, andl. those withh., > hy,. If we perform Step 1 withy,.; and there

is no improvement ira, this must be due to an equality for soiria I.. We claim that if we use
instead ofhy,.; theh values [+ hi,+1)/2 there will be strict improvement for botls in |- andi’s in

I+. For thei, h'sin |- this is valid because there is a strict increase(max;{P; ; — and;; + hjn})
and theh's in |- do not change. For the h's in |, we have strict inequality foh;, in h;, <
E(max;{P,; — a,d;; + h;,}) and equality in the corresponding relation fgf.;, so taking the

average of thé's gives a strict inequality.

Appendix B

Consider markets described by a continuous timektdarChain where state dwell times are
exponential random variables with paramefgithat are small, corresponding to large expecteelldw
times. Specifically we examine paramet&esi-u with u constant and progressively smaller. We
also consider th& “decoupled equations” (ignoring the option to waitport for a better charter)

each corresponding to a st&tim isolation, namely
hue = E fmax(Ply = £, (0) — @ity @) + ] |
for i=12,..,,N,k=12,..,M andhy; =0 (B.1)
The random variableli;‘,-jk have the same distributions as in the originabjgmm when the market state

isk. These equations are of the type considereddtid®e3.1, and represent situations where the rates
and hence the optimal speeds differ. For evextgkt a different optimal speed is valid, depending

3
ona and given by the formula (2f; = (;‘y—") . Based on the solution of (B.1) — which is easier
Lj

to solve than the origin@IN variable ones — we will construct approximate sohs of the original

dynamic programming equations (L4

Consider a solution of (B.19y, Ejk. Then consider (14’) cast in terms of thie relative to port 1,

namely Ahy=hj-hy. Thenhy-hy= dhy-4hy + hyhy; and (14’) becomes (ignoring the possibility of

|

fori=12,..,N,k=12,..,M andhy; =0 (B.2)

waiting at the same port)

—+ h;
v J.k

hix =E {max max |:ﬁilfj — djyiv* — [“—/1 " U Z pral(4hy — Ahy) + (hyy — Ry

J v
£k

We consider the solutiorsy, of the linear equations

ak = a—Ug Z Pra(h'1 — h'1x)
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These have a unique solutiondnh’s since they are nonzero and provided the transition maigixs

nonsingular.

We construct an approximate solution of (B.2) Wsirtg Ahy=h;, and settindy,= h4,/A, resulting in
the candidate solutiohk:Ahik+h1k:Ejk+h 4. To verify that it is indeed an approximate siantof
(B.2), consider the expression

a—A- u Z pkl[(Ahjl - Ahjk) + (hy — h1k)]

l#k
As the value ofl takes progressively smaller values, its produth whe first expression within the

sum (which is a constant) will tend to zero, bstdtoduct with the second term will eqa&by virtue

of the definition of théh,¢'s. Thus we have constructed @aapproximate solution of (B.2) which, by
an argument analogous to that of Lemma 2 in AppeAdiives a policy which is as+ approximation

of the optimal. This construction shows that farge state dwell times the optimal speeds are
determined by the decoupled equations (B.1). Theselusions are borne out in our numerical

examples.
Appendix C

Consider first a known sequence of voyages j=1,.,N as in Section 2.1, with the speed constraints
VmjSVjsvuj, the v, vy being upper and lower speed bounds. We want to maximize the daily net
profit in equation (1), repeated here for convenience

2Pl EalPi=fi())]
G(Ull ey UN) - T(Ulr--rUN) - EN )
A

(C.1)

d;
4L
tP]+Vj

We can easily verify by Kuhn Tucker analysis that the optimal speed is given by the expression

Uy for v/ > vy;
1
(@) ={v = (= /2 * C.2
vila) =4v; = o for vy,; < v <wy; (C2)
J
Vpnj for v;' < vy,

As in Section 2.1, the parameteis the optimal profit rate. To determiaewve use its definition in

(1), to obtain the equatian= G (v;(a), .., vy(a)) which can be solved by say a bisection procedure.

Considering now the more general problem of annagticycle on a graph as in Section 2.2 with

bounds on speed, ;svisvy,;;. One can consider again edge weights
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WUW):HJ‘”#HW@M)‘“G?+ mj)
' o T v ()

In this expressiow;(a) is the analog of (C.2) withj in place ofj. It can be verified that;(a) is
decreasing i@, and thus the negative cycle — bisection algoritir8ection 2.2 is applicable.

For a dynamic programming point of view, we modifyuation (6) of Section 2.2 by introducing the
analog of the optimal speed expression (C.2) iyitt place ofj

dij

')+m}i=szNmmm=o (C.3)

vij(a)

hi = manii {Pi,j - ]/i'jdi’jvizj(a) 4 (tf] +

Again this equation can be solved &by using the procedures in Section 3.2.

A similar approach is valid for the stochastic ratedels. In the model with independent rates,
equation (10), introducing speed boumggsv;svy,; will lead to the dynamic programming equation,
with v;(a) as before:

hi = E ([%x(ﬁi_j — £, (@) — ary (v (@) + h,-)]) i=12,..,n andh, =0 (C.4)
The right hand sides afj, (C.3) and (C.4) is nonlinear but decreasing,iand thus the steps of the
Quasi Value Iteration Algorithm can be implemengedctly as in the case with a linear parameter.
Indeed ifv;(a) is within the allowed bounds, the negative terepehds ora?®, and whenv;(a) is
outside the bounds the dependence of the negatinestis linear om. Hence the negative term is

decreasing witla.

We repeated the computations of the example ini@e6ét2 - random but independent freight rates.
The results without speed bounds were shown ineTablFor a Fuel Cost Parameter equal to 20 Th.
USD/Day the optimal speed was 0.75 of the nomiiali-uel at 30 Th. USD/Day the optimal speed is
0.62 while the daily net profit is 13.91 Th. USDibaHowever, if the minimum speed is say 0.70 the
methodology in this Appendix gives a lower dailyfitrat 13.51 with speed at 0.70 of the nominal.
On the other extreme, a super low fuel cost of 5 WBD/Day gives a daily profit of 34.1 Th.
USD/Day and speed at 1.50 of nominal. If speedwmited to say 1.30, the daily profit will be gnl
33.1 Th. USD/Day.
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