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1. Statement of contribution/potential impact



Statement of Contribution 

Under the combined pressure of low freight rates and increased fuel prices observed since 

2008, increased attention has been devoted in the maritime community to the determination of 

a cost effective speed of oceangoing vessels.  The recent (early 2015) drop in fuel prices 

coupled with a further drop in freight rates has enhanced the importance of the problem. 

Significant work has appeared in the literature on the joint selection of speed and voyages in a 

deterministic environment, mainly in the context of the operation of lines.  However there 

have been few results for the case of vessels operating in a tramp mode, by which we mean 

chartering on a voyage to voyage basis at random rates, these voyages being long, oceangoing 

ones.  In fact, most formulations in the literature assume implicitly repetitions of the same 

sequence of voyages at the same known rates, abstracting from the uncertainty in the charter 

market. 

 

In this paper we extend the existing models in several directions.  First, we generalize the 

problem of finding the “optimal cycle” on a graph of origins – destinations and known freight 

rates (as introduced by Dantzig and his coworkers almost fifty years ago) to the case where 

speed is an additional parameter of choice.  Second we consider the same problem when 

freight rates between origins – destinations are random variables of known distributions.  The 

choice of voyage and speed is a joint decision in these models.  In the case of charter rates 

that are independent from one voyage to the next, the optimal speed is constant in the sense 

that it depends on the average freight rate and the fuel cost but is independent of the particular 

voyage freight rate.  Different speeds are optimal for voyages with differing fuel costs.  When 

rates depend on an overall market process, speed does depend on the market state and 

indirectly on the voyage freight. 

 

The dynamic programming equations in our models differ from the ones that appear in 

Markovian decision processes, since in our setting the choice of voyage is made after the 

realization of the random charter rates and thus there is an inversion of the expectation and 

maximization operations.  We develop variations of existing solution methods to solve the 

modified dynamic programming equations – stochastic approximation, value iteration, policy 

iteration.   

 

Our results lead to “rules of thumb” which might be of use to practitioners in the maritime 

industry who are not expected to go into the technical detail of the literature.  The suggested 

voyage selection rule consists of comparing the available charters to an ideal voyage, and 

choosing to undertake the voyage that is best compared to the ideal one.  Once the voyage is 



selected, the optimal speed is determined by a rule close to the standard economic speed 

formulae.  For reasonable parameter values uniform changes in fuel prices do not affect the 

voyage choice, although non-uniform prices in bunker will affect the voyage selection 

through a change in the solution of the dynamic programming equations. The optimal voyage 

selection will tend to avoid ports where bunker price is high, unless the freight rate realization 

is sufficient to compensate for the high bunker cost.  The bunkering problem has recently 

been examined in the literature, and we indicate how it might be incorporated in our dynamic 

programming formulation. 



Response to Editor and Reviewers’ comments 

Comments to the editor  

We would like to thank you and the reviewers for the comments which, hopefully, enhanced 

our paper. 

The topics of the revision are as follows 

- We made a more accurate reference to the early works on the minimum cost to 

time ratio cycle,  which is due not only to Dantzig et al. (1967) but more accurately 

to E. Lawler, as stated in his Combinatorial Optimization textbook (p.9, para. 2) 

- We included the very important reference by Besbes and Savin that was pointed out 

by Reviewer No. 1. It is actually a nice continuation of Dantzig, Blattner, Rao and 

Lawler work in the field of Transportation Research.  We showed how to include in 

principle their routing - refueling problem within a routing - speed selection context  

(p. 30 para. 1) 

- We incorporated time charter selection within the dynamic programming 

framework by slightly extending the choice of charters (p. 30 para. 2) 

- We incorporated and solved the very interesting illustrative example suggested by 

Reviewer no. 1 (p. 12, last para.) 

- We incorporated the views of a high ranking executive on the managerial 

applicability of our models, as a response to state managerial insights (Section 7.2) 

- We enriched our references (included some recent work appearing in Trans. Res. B..) 

 

  

*1a. Detailed Response to Reviewers



Response to Reviewer #1:  

(a)"the ballast and laden voyages 

should be traversed at the same 

speed" in Line 54-54, Page 6. In 

my opinion, the "kj" in Eq. (2) 

should be different ballast and 

laden voyages, and hence the 

speeds should be different. 

We meant exactly the same, but our syntax 
was unfortunate. We rephrased this 
sentence see p. 6, last paragraph, last 6 lines. 

(b)"The expression for (letter) 

a" should be "… for alpha", Line 

9, Page 7. Also: Line 30 Page 8 

"target (letter) a" and Line 3 

Page 26 "rate (letter) a". 

Ok 

(c)Line 37, Page 7. "increase the 

speed by half the percentage". 

Check the accuracy of the word 

"half" (e.g., the square root of 

144% is 120%, not 122%). 

 

We meant ‘by approximately half the 
percentage’, and revised… p. 7 last para. of 
section 2.1. 

(d)This research is mainly based 

on Dantzig et al. (1967). Why was 

there no relevant research on 

this topic in the past half 

century? 

Except for Besbes and Savin there was 
indeed little use of this work in 
transportation. We cited a survey on its 
application to CAD p. 8, last lines of para. 1 

(e)Line 30, Page 9. The reference 

"Dantzig et al. (1969)" is 

missing. 

Mistaken reference, meant Dantzig et al. 
(1967) 

(f)Line 28-34, Page 9. A brief 

introduction of how to find a 

cycle and the computational 

complexity could be added. 

We referenced the relevant section in 
Lawler’s textbook and added the complexity 
estimate. We thought that outlining of say 
the Floyd Warshall algorithm would 
inordinately lengthen the paper, we could 
add an appendix if you insist.. p.9, first 2 
paragraphs. 

(g)For stochastic parts, you 

might contrast your research with 

"Besbes, O., Savin, S., 2009. 

Going bunkers: the joint route 

selection and refueling problem. 

Manufacturing & Service 

Operations Management". 

 

We are grateful for bringing to our attention 
this paper.  We made extensive mention of it 
and showed how their viewpoint could be 
incorporated in our problem – see the 
Conclusions section 7.1 

(h)The review paper "Psaraftis, 

H.N., Kontovas, C.A., 2013. Speed 

models for energy-efficient 

maritime transportation: a 

taxonomy and survey. 

Transportation Research Part C" 

could be cited as it provides 

extensive information on relevant 

topics. 

We had mistakenly omitted it, confusing the 
2013 and 2014 papers by the same authors.  
We corrected this omission in this revision. 

 (i)Line 1 Page 12. You should 

define "tau_w" before Eq. (10). 
We rephrased the exposition, so that the τw 
parameter appears early on. 

(j)Line 29, Page 22. "constrains" 

should be "constraints". 
OK 

(k)Line 27, Page 23. "in the 

Table 3" should be "in Table 3". 

 

OK 



(l) Line 31, Page 23. "as 

expected from equation (9)".  

How? (note that the expected 

profit alpha appears in equation 

(9), and alpha is related to fuel 

price). 

 

Since eq. (9) involves only distance and 
freight parameters its solution (ζ and the h’s) 
are independent of the fuel price and so is 
the optimal cycle.  However the optimal 
speed will depend on alpha which will 
depend on both ζ and the fuel price.  We 
tried to rephrase the section as well as the 
comments following equ. (9). See p. 10, para. 
following equ. (5’) 

(m)Line 7, Page 31. Delete ".". 

 
OK 

(n)Eq. (10), Page 11. I could not 

follow this equation. My 

questions are as follows. First, 

Is tau_w a constant or a decision 

variable for the shipping 

company? It seems that it is a 

constant according to "we assume 

a minimum wait time tau_w and we 

arbitrarily set tau_w=10 days" in 

Lines 39-41 on Page 22. Second, 

what does the phrase "a minimum 

wait time tau_w" mean? Do you 

mean if the revenue is low, then 

the ship should wait at a port 

for at least tau_w days? What if 

the revenue is very high in the 

next day? Third, how to determine 

when the ship should wait (still 

related to the definition of 

tau_w)? Fourth, how often is the 

revenue of a voyage updated? 

Every day? In sum, I am sure that 

Eq. (10) is one of the major 

contributions of the study. 

Therefore, I suggest using the 

following example to demonstrate 

this equation: There are two 

ports 1 and 2. The revenue of a 

voyage from port 1 to 2 is always 

0, the revenue of a voyage from 

port 2 to 1 has equal probability 

of $1 

and $2. Therefore, the ship will 

never wait at port 1, but may (I 

am not sure) wait at port 2 for 

the higher revenue of $2. The 

speed can be considered fixed 

such that it takes one day from 

port 1 to port 2 and one day from 

2 to 1, and the fuel cost can be 

assumed 0. I would like to see 

the optimal policy for this 

example, and how the optimal 

policy is derived. 

 

Adding the possibility to wait for a time 
quantum τw is indeed a form of optimal 
stopping. In this formulation we might have 
to wait for an integral number of τw intervals 
until a satisfactory charter is observed, i.e. 
some destination value is greater than the 
value of waiting at the same port for a τw 
quantum.  The restrictive assumption here is 
that freight rate observations a quantum 
distance apart are independent.  A more 
satisfactory optimal stopping formulation 
would entail introducing stochastic 
processes for all rates, requiring a huge 
number of states, so we settled for the 
compromise model stated in the paper.  See 
the rephrasing in p 10 last paragraph , p. 11 
first lines. 
 
We thank the reviewer for the example. We 
include it as well as its solution which is quite 
interesting and is a nice application of 
dynamic programming methods.  We could 
add a more complicated example with 2 
ports and speed variation, but it would take 
too much space. See p. 12 last paragraph 
 

 

 

 



Response to Reviewer #2 

  

- There are some sentences 

with typing errors (for 

example line 4-5 in second 

paragraph in Introduction). 

 

Ok! 

- The introduction is quite 

long.  

 

We tried to shorten it, actually splitting it in 
subsections 1.1 and 1.2 for better readability 

- One section for the 

structure of the paper.  

 

We added a subsection, splitting the 
introductory section. See section 1.2 

 

- Consistent use of indexes 

(for example dj or dij, vj or 

v in Section 2.1). 

 

 

We would like, if possible, to keep the letter 
d for distance and v for speed.  The indices 
are usually double, except in section 2. We 
warn the reader when we move from one 
index to two indices.  See p. 8 line 3. 

 

- I would like to see some 

managerial insight in the 

conclusion.  

We added a subsection (7.2) at the end with 
a report on conversations with an 
experienced maritime industry executive.  
His comments were indeed revealing 
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The Economic Speed of an Oceangoing Vessel in a Dynamic Setting 

Evangelos Magirou, Harilaos Psaraftis, Theodore Bouritas  

 Examines the simultaneous selection of charters and speed of tramp vessels in an 

infinite horizon setting, for deterministic of stochastic rates 

 For a known voyage ensemble the optimal speed on each voyage depends on its fuel 

cost and the average and not the individual freight rate  

 For a voyage graph it is shown how to determine the optimal cycle of voyages and 

their optimal speeds.  Again optimal speed on each voyage depends on its fuel cost 

and the optimal average profit rate 

 For stochastic rates, independent for each voyage we determine the optimal choice 

of voyages and speeds.  Again optimal speed depends on the average profit rate 

 For stochastic rates and a Markovian description of freight rates, the optimal speed 

depends on the state as well, favourable states corresponding to higher speeds 

 Solutions to the relevant dynamic programming equations are obtained through 

novel algorithms. 
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Abstract 

 

The optimal (economic) speed of oceangoing vessels has become of increased importance due to the 

combined effect of low freight rates and volatile bunker prices.  We examine the problem for vessels 

operating in the spot market in a tramp mode.  In the case of known freight rates between origin 

destination combinations, a dynamic programming formulation can be applied to determine both the 

optimal speed and the optimal voyage sequence. Analogous results are derived for random freight 

rates of known distributions.  In the case of independent rates the economic speed depends on fuel 

price and the expected freight rate, but is independent of the revenue of the particular voyage.  For 

freight rates that depend on a state of the market Markovian random variable, economic speed depends 

on the market state as well, with increased speed corresponding to good states of the market.  The 

dynamic programming equations in our models differ from those of Markovian decision processes so 

we develop modifications of standard solution methods, and apply them to small examples.  

 

Keywords 

Economic speed, Dynamic programming, Markov and Semi Markov Decision Processes, Policy 

Iteration, Value Iteration, Stochastic Approximation 
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1. Introduction 

1.1 The economic speed problem 

From 2008 and until the middle of 2014  a combination of low freight rates and high fuel prices led to 

a widespread practice of low speed (slow steaming) in oceangoing vessels.  The desire to reduce CO2 

emissions in view of environmental regulations also contributed to the use of lower speed; see 

Kontovas and Psaraftis (2011).  At the time of writing, we are witnessing a precipitous drop in bunker 

prices – see Figure 1 - coupled with a further drop in freight rates, and the overall effect on speed is 

ambiguous. 1These developments have led to significant research on how speed is to be incorporated 

in fleet and line management models; see for instance the survey of speed models in maritime 

transportation by Psaraftis and Kontovas (2013).  By contrast, as stated by Ronen (2011), Christiansen 

et al. (2007), in the years following the 1970’s oil crises and up to 2008 the literature on the topic of 

optimal speed for a tramp vessel was limited, and models did not change significantly from the 

approach presented in Ronen (1982).  To our knowledge, the extent to which economic speed models 

have been used by practitioners has not been documented – see the mention of this problem by the 

authors’ previous work in Magirou, Psaraftis and Christodoulakis (1992).   

 

 

Figure 1.  BunkerWorld Bunker Index, January 2015 

http://www.bunkerworld.com/prices?tag=1-149695-173914849-0-BW 

 

Most economic speed models optimize from the point of view of the ship-owner, on a voyage to 

voyage basis, assuming thus tramp operation. Attention has also been paid to the optimal speed from 

the point of view of the vessel’s charterer.  In general, the viewpoint of charterer and owner are 

different, although as shown in Devanney (2010) and outlined in Psaraftis and Kontovas (2013), their 

speed optimization problems turn out to be equivalent under the assumption that the charterer will 

                                                      
1 In the formulations in Psaraftis and Kontovas (2013), the optimal speed is a function of the ratio of fuel price 
divided by the market spot rate, so if both drop their ratio may increase, decrease or stay the same. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

4 

 

have to charter additional  tramp ship capacity if needed  or charter out excess capacity at prevailing 

rates.  In this paper we take the point of view of the vessel’s operator.  We consider the operation of a 

single vessel, ignoring interactions that may occur when managing a fleet. 

 

In situations where a vessel has to undertake a sequence of voyages at known loads, freight rates, time 

windows etc., the speed of each voyage might be one of the decision variables in a mathematical 

programming formulation.  Such models have been developed for several situations of practical 

importance, as in Norstad et al. (2011), Fagerholt et al. (2010), and Christiansen et al. (2013).  The 

objective in these works is the total benefit and not the profit per time unit; accordingly the allowed 

speed variation is limited, speed being an operational rather than a strategic parameter.  Speed 

selection is also important when scheduling a fleet of liners, their number being a decision parameter, 

as in Ronen (2011) and Noteboom and Vernimmen (2009).  In liner management applications, when 

striving to maintain an acceptable level of service at minimum cost speed selection can take into 

account voyage and port uncertainties; this has been modelled as a stochastic programming problem in 

Wang and Meng (2012). 

 

The effect of speed on voyage selection has been examined in Psaraftis and Kontovas (2014) using 

accurate expressions for fuel consumption as a function of speed and load.  They show that voyage 

choice and speed will depend on the variations of the ship’s hydrodynamic resistance, fuel cost and of 

course freight rates.  In this paper we also examine the integrated problem of selecting voyage and 

speed but in infinite horizon problems.  We first consider speed selection in the case where the 

operator knows all future freight rates.  In this way we sidestep the difficulty of classifying voyages as 

either income generating or positioning legs (in the latter case charging an opportunity cost to the 

voyage days) as in Ronen (1982).  Fuel price is considered known, and might vary from port to port.  

We assume there is refueling at every port and ignore the possibility of fuel stockpiling strategies as in 

Besbes and Savin (2009), Meng et al. (2015).  In the deterministic models optimal speed depends on 

the average revenue, the ship’s hydrodynamic resistance and the fuel cost variations from port to port 

but not on the freight of the particular voyage.  We then consider the situation where voyages are to be 

selected on a graph, and show how to determine the optimal voyage cycle, the speed of the various 

voyages on it, again assuming just sufficient refueling at every port. Changes in fuel cost might 

influence the selection of voyages, in order for example to avoid voyages to destinations where fuel is 

expensive and are followed by long legs in ballast.  However, when fuel prices are the same in all 

locations, we show that uniform fuel price changes do not affect the voyage selection. 

 

Fluctuations in freight rates are of paramount importance in the operation of a tramp vessel.  To our 

knowledge, speed models with stochastic rates have not appeared before except in our previous work, 
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Magirou et al. (2013).  In case freight rates of different voyages are independent random variables 

with time invariant distributions, we show that the optimal speed depends on the expected average 

daily profit but not on the freight rate of the particular voyage, a result which contrasts with the 

standard economic speed formulae where profitable voyages should be traversed at a higher speed.  If 

one introduces a state space description of the overall freight market, optimal speed is higher in a 

favorable market state and conversely in bad ones.  Speed variation should be interpreted from this 

viewpoint as an effort to take advantage of good times while they last and vice versa. 

1.2 Structure of the paper 

The structure of the paper is as follows. In Section 2 we examine speed selection when facing a 

known, repeating sequence of voyages.  This is extended to voyage selection on a graph of ports, again 

with speed selection an option.  In Section 3 we consider stochastic freight rates, rates being random 

variables which are independent from one voyage to the next and whose distributions are the same for 

each port of origin.  Chartering decisions are then shown to be independent of speed selection, and if 

fuel price is the same in all locations, the choice of voyages will not depend on the overall fuel price 

level.  In Section 4 we extend the model to include a state of the charter market which behaves as a 

finite state continuous time Markov Chain.  When voyage times are either small or large with respect 

to the average duration of a charter market state, the optimal speed and voyage selection results 

simplify and have an intuitively plausible interpretation.  Since the dynamic programming equations 

used differ from the standard ones for Markovian Decision Processes, we develop alternative solution 

methods first by stochastic approximation and then by a quasi-value iteration procedure.  In Section 5 

we examine models with a discounted net revenue criterion and compare them to the average 

undiscounted profit ones.  Computational results are presented in Section 6 while Conclusions, 

managerial relevance and the authors’ plans for further work are in Section 7.  Several proofs and 

other details appear in the Appendices. 

2. Deterministic Charter Rates and Fuel Prices 

2.1 Speed considerations for a sequence of voyages 

Consider a vessel that will undertake a sequence voyages indexed by i,j=1,2,..,N which for voyage j 

have revenues Pj, distances dj and port times tpj.  The fuel consumption for voyage j will depend on the 

voyage distance, speed vj and the nature of the voyage, be it laden or in ballast.  The daily fuel 

consumption is given by a function of the form kjv
3
j, the parameter kj incorporating the vessel’s 

loading and thus depending on the particular voyage.  Clearly, similar results can be obtained for 

different consumption function exponents.  The total voyage fuel cost fj will depend on the given fuel 

price pF;j which will depend on the voyage itself, as for instance when refueling is done in the port of 
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origin.  We do not consider fuel stockpiling, as in Besbes and Savin (2009) where extra fuel can be 

bought at locations where it is inexpensive.  With these assumptions, the fuel cost for voyage j is 

fj=pF;jkjv
3(dj/v)=pF;jkjdijv

2. We ignore fuel consumption at port, and thus the net average daily revenue 

of the vessel owner for the sequence of voyages j is given by the expression  

����, . . , ��� 	 ∑ ���������������,..,��� 	 ∑ �����������∑ ����������                        (1) 

We tacitly assumed that all other operating costs are constant on an average daily basis, and we 

denoted by T=T(v1,..,vN)  the total time for all voyages, including port times. 

 

Let us for simplicity assume that we can freely choose speeds for each voyage.  In practice charter 

party obligations, engine specifications, weather conditions etc. impose constraints on speed, but these 

can be handled with standard techniques while obscuring the larger picture, so we will assume that the 

optimizing speed is within the allowed range of all the above constraints.  We show how to deal with 

simple and upper or lower bounds on speed in Appendix C, but ignore any speed constraints in the 

main part of the paper.  

 

To obtain the optimal speed we calculate the partial derivatives of (1) with respect to the voyage 

speeds and get  ����� 	 ∑ � ! " #!��!�$�!%� &' ∙ )���' " 2+,�)�-���&  

Equating the derivatives to zero we obtain the following expression for vj: 

 �� 	 .∑ �������$���'/0121� 3� 45 	 . 6'/01213� 45
            (2) 

The term alpha α is defined as the average net profit for the collection of voyages 

7 	 ∑ �������$��� �                       (3) 

Thus alpha (α) is the optimal net revenue for the entire trip sequence.  It is independent of the 

particular voyage j, depending on the entire set of voyages.  The dependence of the speed on the 

voyage is strictly through the term pFjkj, the product of the fuel price by the specific daily 

consumption.  It follows that there should be variations in the speed as a function of the daily fuel cost 

of the voyages.  On the other hand the revenue of the particular voyage is of no importance for the 

determination of the voyage’s speed, this revenue affecting speed only through its contribution to the 

average net profit alpha - α.  In this sense, ballast and laden voyages have equal contributions to the 

average daily profit and thus differences in their optimal speeds are due to differences in hydraulic 

resistance and fuel price. The slow speed recommendation on expensive fuel can be interpreted as an 

effort to buy less fuel at locations where its price is high. 
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In order to compute the value of the average profit α in terms of the original parameters we substitute 

the values of v from (2) in (3) to get 

7 	  " ∑ 8�)� . 728�3' 45��%�
&� 9 ∑ )� . 728�3�� 45��%�

 

Here TP is the sum of all port times, P is the sum of all freights and we set γj=pF,jkj .  We will refer to γ 

as the daily fuel cost at unit speed, or as the specific daily fuel cost.  The above expression for alpha 

(α) in conjunction with the expression for vj in (2), α=2γjvj
3 reduces to the following equation for vj, 

the optimal speed on voyage j  

 28�&���4 9 38�' 45 ��' .∑ 82� 45 )2�2%� 3 "  	 0                              (4) 

Equation (4) implies that a different speed should be used in every voyage.  The optimal speed 

depends on the voyage daily fuel cost γj as well as on the voyage ensemble characteristics, i.e. the total 

revenue P, total port time TP and the weighted voyage distances, but not on the particular voyage 

revenue Pj.  In case the γj’s are the same for all voyages, the optimal speed is constant vj=v and 

satisfies the equation 

2γTPv
3+3γv2D-P=0         

This is the equation appearing in Ronen (1980) that applies to a single laden voyage with TP the port 

time, P the freight, D the distance.  It generalizes provided the fuel price – consumption characteristics 

are independent of the voyage.  Furthermore, if total port time is negligible the economic speed is 

given by the expression 

� 	 .� <54= 3� '5
                     (5) 

Interpreting (5) gives us the following rule of thumb: increase the speed by about half the percentage 

increase in rates, decrease it by about half the percentage increase in fuel.  Comparing the optimal 

speed in (5) with the original expression (2), one might observe an inconsistency in the exponents; but 

this discrepancy is deceptive since the α term in (2) is the net profit rate while the nominator in (5) is 

the gross profit rate, which is of course larger and hence the higher root in the latter expression is 

justified. 

2.2 Simultaneous speed and voyage selection 

The operator of a tramp vessel does not know beforehand the sequence of voyages his vessel will 

undertake, and it will actually depend on the freight rates that will prevail.  One can generalize the 

tramp scheduling problem posed by Dantzig et al. (1967) to include speed selection:  In that work, 

voyages are considered as transitions on the nodes of a graph which correspond to ports.  The revenue 

for a voyage between nodes - ports i, j is known and constant Pij, while the distance dij and a port time 
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tpi,j is also known.  We assume that on any voyage i,j  the speed vij can be selected without constraints.  

Note that from this section on we use dij, vij to denote the distance between ports i,j  as well as the 

speed of the corresponding voyage; in the previous subsection dj,vj were the distance and the speed of 

voyage j, and the voyages were specified exogenously. The fuel cost per unit time is a known function 

depending on the voyage i, j – we assume the form pF
i,jki,jv

3
i,j and the total fuel cost for the voyage is 

γijv
2
ijdij, as before. The voyage length is Ti,j=tp

i,j+γιjdijvij
-1.  In Dantzig’s formulation, the objective is to 

select voyages so as to maximize revenue per unit time for an infinite horizon, and we extend the 

problem by selecting both voyages and the corresponding speeds to achieve the same goal.  Besbes 

and Savin (2009) consider the same problem with the possibility of the vessel loading added fuel at 

ports where prices are low.  The authors derive methods to solve the joint refueling – voyage selection 

problem using dynamic programming, although at exogenously given speed.  Their formulation can be 

combined with ours as we will show in the concluding section. The optimal refueling problem has 

recently been formulated using mathematical programming, see Meng et al. (2015). Note that the 

applicability of the minimum cost to time ratio problem of Dantzig et al. op. cit. is not limited to the 

transportation domain, but has applications to several Computer Aided Design problems. See the 

survey by Dasdan et al. (1999). In fact, Dantzig and his coworkers consider a transportation problem 

much more complicated than identifying the minimum cost to time ratio cycle; this cycle problem is 

just a part of an efficient column generation solution technique for their full problem. 

 

We model the above situation in the form of a semi Markovian decision problem where states 

correspond to ports.  The decision to undertake a certain voyage determines the next state and the 

dwell time with certainty.  A straightforward dynamic programming argument as in Ross (1970) Ch. 7 

Theorem 7.6 shows that the optimal policy is characterized by a per unit time profit parameter alpha -  

α and port values hj, j=1, 2,.., N and h1=0 which satisfy the equations 

>! 	 max�B!max� C !,� " 8!,�)!,��' " 7 DE!,�/ 9 F,1� G 9 >�H 				J 	 1,2, . . , L		and	>� 	 0							 (6) 

The interpretation of (6) is as follows.  The voyage selection policy consists of determining a profit 

target α and a port “profit factor” hj; charter selection is based on comparing for each possible 

destination j its differential profit net of fuel with respect to an ideal voyage, i.e.   !,� " 8!,�)!,��' "7 DE!,�/ 9 F,1� G and then adding the destination port factor hj.  This is optimized for speed and the 

destination is then selected that maximizes the profits 

 

If destination j is selected from origin i the optimal speed is determined by setting the partial 

derivative of the expression in brackets in (6) to zero, obtaining an expression similar to the case of a 

known voyage sequence (2), namely  
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 �!,� 	 . 6'=,13� 45
                 (2′) 

This shows that the optimal speed depends on the specific daily fuel cost γij but not explicitly on the 

voyage freight rate, although the overall rates influence the nominator alpha (α) and the destination j is 

determined by the fact that it corresponds to the relatively highest rate.  If the fuel-speed 

characteristics are approximately the same for all voyages, speed should be the almost constant 

regardless of the freight rate of the particular voyage.  However, if the vessel’s hydrodynamic 

characteristics differ – as for instance for a ship in ballast in contrast with a laden one, for a voyage in 

rough seas in contrast with one in predictably calm seas, there should be variations in speed.  In 

practice these variations can be considerable – up to 30% for VLCC’s as stated in Psaraftis and 

Kontovas (2013) and (2014).  Variations in fuel consumption parameters should lead to differences in 

voyage selection.  We show however that in important special cases the choice of voyages is 

independent of the fuel cost parameters. 

 

Determining the values of α, h can be done through several algorithms and we will show some in the 

following Sections.  It is interesting though to consider the following bisection algorithm in the spirit 

of the work of Lawler (1976) Chapter 3.13 and secondarily of Dantzig et al. (1967).  It is based on the 

following observation 

Lawler – Dantzig observation extended: Consider an arbitrary α and select on the voyage 

graph speeds as given by (2’).  On every edge consider weights   

O!��7� 	  !,� " 8!,�)!,��!,�' �7� " 7 PE!,�/ 9 )!,��!,��7�Q 

If there is a cycle of nonnegative total w value then there is a sequence of voyages that has a 

net average profit greater than α. Conversely, if all cycles have negative total weight, the value 

of α provides an upper bound on the net average profit. 

The proof is immediate by summing the w’s over the cycle.  

 

The existence or nonexistence of a cycle of negative total value in an n vertex graph can be determined 

in polynomial complexity O(n3) by several algorithms (Bellman-Ford, Floyd-Warshall) – see for 

instance Lawler’s textbook, Chapter 3.11.  Based on this observation Lawler (1976) Chapter 3.13, 

constructs a bisection type algorithm whose computational complexity is O(n3logn), n being the 

number of vertices.  Since this algorithm does not obviously generalize to stochastic rates we show in 

the next section algorithms that do not use the bisection principle. 

 

Equation (2’) determines the speed as a function of the value of the profit rate α obtained from the 

dynamic programming equation (6), which is stated in terms of the problem’s parameters.  It is thus 
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not clear what is the direct dependence of speed on freight rates and fuel parameters, as in the case of a 

sequence of trips.  We would like to obtain the analog of equation (4) where the optimal speed was 

determined on the basis of the problem parameters directly.  We proceed with an analysis similar to 

the one that led to (4): For ease of exposition we first assume that port times are negligible.  

Substituting the optimal speed (2′) in (6) with zero port times we have after some algebra 

>! 	 max�B! R !,� " 4' �28!,�$� 45 7' 45 )!,� 9 >�S 					J 	 1,2, . . , L		and	>� 	 0						    (7) 

Setting T 	 7' 45 , )!�U 	 4' �28!,�$� 45 )!,� the previous equation (7) becomes >! 	 max�V !,� " T)!�U 9 >�W										J 	 1,2, . . , L		and	>� 	 0			                    (8) 

These equations correspond to a minimum cost to time ratio cycle problem i.e. voyage selection 

without speed considerations.  Solving it for β we obtain the analog of the optimal speed formula (2′), 

namely  

�!,� 	 T� '5 . �'=,13� 45
                    (2′′) 

In case the daily fuel cost fuel parameters γij are the same for all voyages and equal to γ equation (7) 

becomes  >! 	 max�V !,� " X)!� 9 >�W				J 	 1,2, . . , L		and	>� 	 0			       (9) 

Here	X 	 4' �28�� 45 7' 45 .  The dynamic programming equation (9) is identical to that in the original 

minimum cycle problem, so its solution in ζ, h is the same as before, and does not depend on speed or 

fuel considerations.  Furthermore, the selection of charters is the same as in the problem with the same 

distances dij (although expressed in time units) and freight rates Pij.  The optimal speed can then be 

expressed in terms of ζ by substituting in (2′) the expression of α in terms of ζ 

i.e.	7 	 D'Y4 G4 '5 �28���/' , to obtain 

� 	 D Y4=G� '5
                   (5′) 

Optimal speed is indeed a function of the fuel cost parameter γ and the average profit rate ζ, and the 

latter does not depend on fuel cost.  It is the analog of equation (5) in the problem with a known 

voyage sequence. We thus have a separation of voyage choice from optimal speed selection, and the 

rule proposed for the known voyage sequence, i.e. increase speed by about half the percentage of a 

freight rate increase etc. is still valid.   

 

We can obtain similar results when port times are explicitly taken into account.  Substituting the 

optimal speed (2′) in (6) we get the equation 

>! 	 max� R !,� " 32 �28!,�$� 45 7' 45 )!,� " E!,�/ [ 9 >�S 				J 	 1,2, . . , L		and	>� 	 0									 
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Setting T 	 7' 45 , )!�U 	 4' �28!,�$� 45 )!,� the previous equation becomes 

>! 	 max� C !,� " T)!�U " E!,�/ T4 '5 9 >�H 				J 	 1,2, . . , L		and	>� 	 0			                  (9′) 

This last equation can be solved by the same methods (a bisection method will work since the right 

hand side is decreasing in β) to determine β and h, α and the optimal speed by (2′) and (2′′).  In this 

case there does not seem to be any straightforward relationship between optimal speed and the various 

voyage parameters or fuel cost.  In Section 6 we present computations illustrating the above results. 

3. Stochastic Freight Rates – Independence 

3.1 Model formulation 

The models presented in Sections 2.1, 2.2 have the obvious drawback that they assume known freight 

rates. We will show in this and the following Sections that we can preserve the same voyage - speed 

selection principle even for random freight rates. We will do so by extending the dynamic 

programming approach to the stochastic case.  Consider first a simple model with stochastic freight 

rates.  The rates to all destination ports j from origin i become known to the vessel’s operator upon 

arriving at port i (unavailability of charters to some specific destination would correspond to a null 

freight rate).  We also assume that the operator can freely select his voyage speed and knows the fuel 

costs.  As stated earlier, we will not address in the main part of the paper constraints on speed, but we 

will show in Appendix C how to incorporate upper and lower bounds on speed. 

  

The problem for the vessel’s operator is to select the optimal destination-speed combination, j and vij, 

after having observed the prevailing rates Pij.  Upon arriving at the destination j the process is repeated 

i.e. the operator observes new rates Pjk to all destinations k.  We assume in this Section that the rates P 

are independent between any voyage and the future ones.  A more satisfactory modelling approach 

would be to consider at each port a set of available charters.  Each charter would be characterized by 

its destination, its freight rate if it is laden, the vessel’s payload etc.  We could include more 

complicated charters, i.e. travel from i to load at port i’  and unload at j, or even time charters.  The 

vessel’s hydrodynamic resistance coefficient k and other voyage parameters will then depend on the 

charter choice and not simply the destination. We do not include such considerations here but present 

these alternative formulations in the Concluding section.  We assume that the resistance coefficient 

will depend on the voyage, thus implicitly categorizing voyages ij  as laden, ballast, or partial load 

ones. The owner’s objective is to maximize the expected value of the net revenue per unit time for an 

infinite horizon, and assume that freight rates are independent from one voyage to the next.  In other 

Sections we will consider discounted objectives and also allow implicit rate dependence between 
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voyages.  Finally, in case the rates observed at some port are unsatisfactory, we allow the vessel to 

wait for a better freight rate for a fixed, exogenous wait time interval τw; after that interval a different 

realization of rates can be observed, independent of the initial one, and if even these are unsatisfactory 

to wait once more for the interval τw, etc.  A more satisfactory – but intractable - approach would be to 

model the freight rates as stochastic processes and consider the corresponding continuous time optimal 

stopping problems.   

 

We again employ the theory of Semi Markov Decision Processes for infinite horizon, time average 

profit, as stated in Ross (1970). States correspond to ports.  The dynamic programming equations are 

written in terms of an optimal average profitability α and port values hj, relative to say port 1 for which 

h1=0.  The optimal α,hj satisfy equations similar to the Markovian Decision Process ones, namely 

>! 	 \][^.�max�B! max�� _!,� " #!,���� " 7`!���� 9 >��� ; "7`b 9 >!3 				J 	 1,2, . . , c		and	>� 	 0	              (10) 

In (10),  _!,� is the freight random variable, fij(v) the fuel cost at speed v and τij(v) the total voyage time 

at speed at sea v.  The random variables are independent from on voyage to the next, but there can be 

dependence between them for the destinations j.  We allow a stay at the same port awaiting a better 

charter for a fixed time interval τw, incorporating thus in the formulation a rudimentary optimal 

stopping problem. 

 

Equation (10) is analogous to those in semi Markovian decision problems, as in Ross (1970) Section 

7.4, with deterministic state transition times.  It can be justified as follows: hi is the expected value of 

location i before the rates are observed, hence the expectation operator precedes the maximization 

ones.  After observing the rates we either select to sail to destination j at the optimal speed or decide to 

wait for a period τw.  In the first case we subtract from the net voyage profit the implicit cost ατij and 

add hj, the value of the destination j.  In the second case wait we incur the implicit cost ατw and add hi, 

the benefit of remaining at i.  The correctness of equation (10) can be proven using the same methods 

as in Ross op. cit., namely by proving that if (10) has a solution in α, h there is an optimal policy and 

conversely. 

 

A simple example could clarify the above model, as well as the dynamic programming formulation 

incorporated in (10).  Consider a world with two ports 1,2 and a vessel which moves at given speed,  

the voyages between 1 and 2 being of unit time length.  There are no charters from 1 to 2, i.e. P12=0.  

On the other hand P21 can be either 1 or 2 with probability 50%.  There is a wait τw between 

observations of the freight rate at 2. Naturally for zero wait time the vessel will wait until a rate of 2 

occurs, giving a 1-2 cycle with an average profit of 1.  On the other hand if τw is large, the ship upon 

arriving at port 2 will accept the first freight observed.  Thus the average profit will be ¾ (1 time unit 
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obtaining no revenue and the other time unit obtaining an average revenue of 3/2).  To determine the 

critical value of τw we use equation (10) which gives for port 1 h1=0=0-α+h2 and hence h2=α=3/2.  

For the no wait policy to be optimal at port 2, the condition is –ατw+h2<1-α or τw>2/3.  In case τw<2/3, 

equation (10) for h2 gives α = [(-ατw+α)+(2-α)]/2 and hence α=(1+ τw/2)-1.  Thus the optimal mean 

profit is a decreasing function of the wait time.  One can extend the model it to include speed, which 

will then depend on the profit rate.  A decreased wait time will increase profits and thus indirectly 

speed! 

 

As far as speed selection is concerned, equation (10) has the same structure as the deterministic 

problem treated previously.  For fuel cost functions and voyage times as in the previous Section, once 

a voyage j is selected it should be carried out at speed �!,� 	 . 6'=,13� 45
 showing thus that optimal speed 

does not depend on the observed freight rate but on the destination selected.  Of course the realization 

of the freight rate random variables will affect the voyage selection and thus indirectly the relevant 

speed, but speed will not necessarily be an increasing function of the freight rate.  If the fuel cost – 

speed parameters are uniform, the speed is independent of individual charter rates and voyage 

selection.   

 

Substituting the expression for the optimal speed in (10) we get the analog of the voyage selection 

equation (8) in the deterministic case:  Setting again T 	 7' 45 ,	)!�U 	 4' �28!,�$� 45 )!,� equation (10) 

specializes to  

>! 	 \ .][^ �max� V _!,� " T)!�U 9 >�W; 	"T4 '⁄ `b 9 >!�3 				J 	 1,2, . . , L		and	>� 	 0			                   (8′) 

For negligible port times and uniform fuel-speed parameters γij=γ the dynamic programming equation 

reduces to the following one, similar to (9) in the deterministic rate case 

>! 	 \ .][^ �max� V _!,� " X)!� 9 >�W; 	"eX4 '⁄ `b 9 >!�3 				J 	 1,2, . . , L		and	>� 	 0			         (11) 

Equation (11) follows directly from (8’) by setting  X 	 4' �28�� 45 7' 45  , keeping the distances dij 

unaffected; q stands for the expression (2/3)3/2(2γ)-1/2 which results from setting 7 	 eX4 '⁄ .  The daily 

profit rate α follows once (11) has been solved for ζ.   

 

Equation (11) is the stochastic analog of the minimum cost to time ratio cycle problem and has been 

studied by the authors; see Magirou and Bouritas (2010).  One must select voyages on a graph where 

rates are random and speed is exogenous; the freight rates become known upon arriving at the 

destination of the previous voyage and are independent from one voyage to the next.  The profit rates 

for the voyages are net of fuel costs, and hence ζ, the optimal profit rate, does not explicitly depend on 
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fuel cost which is included in the rates Pij.  The optimal speed is as in (5′) � 	 D Y4=G� '5
.  Therefore a 

uniform multiplicative change in rates or in fuel parameters affects the optimal speed in a square root 

law fashion, and does not influence the choice of voyage. 

 

The equation for the case where fuel consumption depends on the voyage and port times are not 

negligible is similar to that in the deterministic case – equation (9’) (for convenience we do not 

include the wait option) namely >! 	 \ Cmax�B! f _!,� " T)!�U " E!,�/ T4 '5 9 >�gH 				J 	 1,2, . . , c		and	>� 	 0			     (12) 

As before T 	 7' 45 , )!�U 	 4' �28!,�$� 45 )!,� and �!,� 	 T� '5 . �'=,13� 45
.  If port times are negligible and 

freights change uniformly by a multiplicative parameter, namely  ′i !,� 	 j _!,� for a constant λ, it is 

clear that equation (12) has a solution in which the β, h parameters have been multiplied by λ, and 

hence speed increases by the square root of λ.  Similarly if all fuel prices increase by λ, optimal speed 

decreases by the square root of λ.  We thus get an extension of the previously stated speed selection 

rule. 

3.2 Solution methods 

The equations in the previous Section differ from the standard dynamic programming ones because of 

the reversal of the order of the expectation and maximization operators; therefore modified solution 

methods must be used.  We examine the following two methods:  The first is an application of the 

stochastic approximation of Robbins and Munro (1951) applied to the multidimensional case, as 

analyzed by Blum (1954).  The second was developed in the authors’ previous work and is to some 

extent related to Lawler’s bisection argument as well as value iteration, and we refer to it as Quasi 

Value Iteration.  

a. Stochastic approximation  

For ease of exposition, we describe the method as applied to equation (8’) without the wait option, its 

application to the other equations being similar. 

We form the random sequence of hi’s indexed by n: >!k�� 	 >!k 9 lkm][ �̂V _!,� "Tk)!�U 9 >�kW " >!kn   i =2,..N 

 Tk�� 	 Tk 9 lkm][ �̂V _�,� " Tk)��U 9 >�kW " Tkn 	 
The  _!,� are realizations of the freight rate random variables.  The second relation which is used to 

update β relies on the normalization h1=0.  The parameters ηn must satisfy the conditions of the 

stochastic approximation algorithms, namely ηn∝ n-1.  We have not examined theoretically the 

properties of these procedures in the spirit of Blum (1954), and have used in our computations ad hoc 
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methods to achieve convergence by empirically adjusting the η parameters.  To rectify this, upon 

apparent convergence to some values for β, h we performed a verification step by substituting the 

candidate values to the right hand side of the dynamic programming equation and obtaining the 

sample mean.  We then checked that the sample means thus generated were sufficiently close to the 

values of β, h being tested. 

 

This verification method can in principle be analyzed as follows:  Take for instance equation (10) 

without the wait option, namely 

>! 	 \ Rmax�B!,�m _!,� " #!,���� " 7`!���� 9 >�n	S 		J 	 1,2, . . , o		and	>� 	 0	       
Assume that some particular values for α, h have been determined by stochastic approximation or any 

other method.  We can estimate the right hand side by taking a large sample of the random variable max�,� m _!,� " #!,���� " 7`!���� 9 >�n.  Assuming that the standard deviation of the sample mean has 

been computed, one can assign (under a normality assumption) a probability β that the equalities are 

satisfied up to ε namely >! p 	max														�,� m _!,� " #!,���� " 7`!���� 9 >�n p >! 9 q 
Then one can claim using Lemma 2 of Appendix A that the policy implied by the parameters α, h is ε 

close to the optimal with probability β. 

b. Quasi value iteration 

Various forms of this algorithm were applied in the previous work of the authors Magirou et al. 

(1997), Magirou and Bouritas (2010), Magirou (2012), Magirou et al. (2013) in infinite horizon 

Markovian decision problems with the average value criterion. The algorithm can be used in the 

obvious way when a speed choice is involved as well.  For ease of exposition we exhibit the method as 

applied to equation (11) without the option of waiting, namely >! 	 \mmax�V !,� " X)!� 9 >�Wn								J 	 1,2, . . , L		and	>� 	 0                            (11’) 

We informally describe the procedure in the following steps 

 

Step 0. Start with arbitrary location values hin, and say n=1 

Step 1.  Find a "good" average rate b by solving the stochastic programming problem 

max  b 

 Such that 

 >!k p \�max�V !,� " r)!� 9 >�kW$				J 	 1,2, . . , L		and	>�k 	 0		     

 Call the maximum b found αn.   
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A practical method to solve the above problem is by bisection as in the Lawler 

algorithm already cited, based on the observation that the right hand side is monotonic 

in b: start with a large value of b so that the constraints are not satisfied, keep halving 

b until the constraints are satisfied, and proceed until the desired accuracy is obtained.  

The satisfaction of the constraints with a desired probability is verified by computing 

the sample mean of max�V !,� " r)!� 9 >�W.  It is shown in Appendix A that if we 

follow a policy based on αn and hin we obtain a return greater than αn 

Step 2: Update the h's by setting >!,k�� 	 \�max�V !,� " [k)!� 9 >�kW$				J 	 2, . . , L		and	>�k 	 0		    
It follows by the definition of αn that hin+1 ≥  hin.   

Step 3.  If   \�max�V !,� " [k)!� 9 >�kW$ " >!k 	p qs  for all i stop.   

 ( εο is the desired accuracy )  

 Otherwise return to Step 1 with n=n+1 using the updated hin+1’s 

 

The justification of the Algorithm is as follows: By Lemma 2 of Appendix A we know that if the gap 

in the inequalities in Step 1 is less than ε, the policy implied by an, hin  is ε close to the optimal value.  

If we are not satisfied with the current approximation ε, repeating Step 1, will improve the policy: 

Indeed, if we perform Step 1 we will get an improved value αn+1, in the sense that αn+1 ≥ αn .  This is 

due to the inequality >!,k�� 	 \�max�V !,� " [k)!� 9 >�kW$ 	p \�max�V !,� " [k)!� 9 >�k��W$  
which follows from the inequality hin+1 ≥ hin  of the updating Step 2.  Thus αn is feasible for the 

problem in Step 1; hence its solution, αn+1, provides an equal or higher value than αn.  In the case of 

equality of an and an+1, it can be shown that using for h the average of hin  and hin+1 will give a strict 

increase in a, see Appendix A.  In Appendix A we also provide several other results needed to 

establish the correctness of the algorithm and the validity of the verification procedure in the stochastic 

approximation method.  

4. Stochastic Freight Rates – Markovian Freight Market States 

An extensive theory exists about the maritime freight market.  In particular several continuous state 

Markovian - stochastic differential equation models have been used, see Dixit and Pindyck (1994), and 

the appealing geometric mean recurrent process models in Tvedt (1997), (2003).  However, the freight 

market’s explosive rise up to 2008 followed by its equally dramatic fall might provide grounds for a 

consideration of simpler models.  In this vein, we assume that the charter market (or for a particular 

sector, say bulk carriers of a certain type) can be in one of a small number of states indexed by k or l.  
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The freight rates observed between various ports are assumed to be independent random variables 

whose distributions depend on the prevailing market state k, i.e. we observe rates  _!,�2  which have a 

density gi,j;k  but are otherwise independent.  We model the  freight market as a continuous time 

Markov chain model.  The freight market will thus remain in state k for a random time interval 

governed by an negative exponential distribution of parameter λk and will then move to a different 

state l with probability pkl, with pkk=0.  Thus the expected dwell time in state k is 1/λk.  The transition 

probabilities P{Z(t)=l|Z(0)=k}=P kl(t), Z(t) being the state of the process at time t,  follow the Chapman 

Kolmogorov equations, again see Ross (1970) F�tuF� 	 j2�∑ +2v vw�E� "  2w�E�vB2 �                  (13)   

For constant p, λ’s these are linear and can be explicitly solved. 

 

Let us return to the problem of economic speed.  In an infinite horizon and using the average profit 

criterion, the dynamic programming equation is again in terms of the average profit per unit time 

alpha.  This time though, the port parameters h should include the market state.  We consider port – 

market state parameters hi,k and say h1,1=0 but not necessarily h1,k=0 for k different from 1.  The 

dynamic programming equation is  

>!,2 	 \ R][^ .max�B!,� f _!,�2 " #!,���� " 7`!���� 9 ∑  2w D`!����Gw >�,wg ; "7`b 9 ∑  2w�`b�w >!,w3	S	  
 

     #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0	          (14) 

The interpretation of (14) is straightforward.  At port i, state k one observes the rates  _!,�2  and selects 

destination j and speed vij.  Upon arriving at destination j after time τij(v) the process has moved to 

state l with probability  2w D`!����G  and thus at location i the transition to j  has an expected locational 

benefit equal to ∑  2w D`!����Gw >�,w.  The vessel can opt to wait at i for τw time units, after which there 

is a new observation of the rates, at possibly a new market state.  A proof for (14) follows the standard 

dynamic programming arguments and is similar to Theorem 7.6 in Ross (1970). 

 

To determine the optimal speed once destination j has been selected we differentiate the expression 

inside brackets in (14).  For ease of exposition, if we neglect port times the optimality condition 

becomes "#′!,���� " 7`′!���� 9 ∑ F�tu�{�F{ `′!����w >�,w=0 

Primes denote differentiation by v in the case of f, τ.  The derivatives of the transition probabilities are 

determined by the Chapman Kolmogorov equations, and hence in principle the speed equations can be 

solved.  These equations do not provide an explicit expression for the optimal speed, since the speed 
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appears as an argument in the derivative of Pkl, and hence of the Pkl themselves.   Even when we have 

solved the Chapman Kolmogorov equations, as we will do in a simple example, the P’s will be of an 

exponential form, leading to an implicit expression for the speed in contrast to the usual explicit 

economic speed formulae. 

 

We consider two important and common market situations, and refer to them as the Steady Market 

Case and as the Volatile Market Case.  The Steady Market Case is when the market state is 

unlikely to change during any particular voyage.  This will happen provided τij≪1/λk for any 

reasonable speed and all market states k.  The Volatile Market Case is when the opposite holds, 

τij≫1/λk.  

 

Consider the Volatile Market case first. The transition probabilities are then essentially independent 

of the voyage speed and equal the steady state transition probabilities Pkl(∞)=Pkl; thus their time 

derivatives vanish. The optimal speed is independent of the state and is, as before, equal to �!,� 	
. 6'=,13� 45

.  Ignoring the possibility of waiting at the same port, the dynamic programming equation 

simplifies to 

 >!,2 	 \ Rmax� m _!,�2 " 3)!�8!��!�' 9∑  2w>�wwB2 n	S	 
fxy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0	                (15) 

The speed is constant in case the daily fuel cost is the same for all voyages. This lack of dependence of 

speed on the market state is reasonable if the market is so volatile that it is expected to change 

radically by the end of the voyage. 

 

Consider now the Stable Market Case.  From the theory of continuous time Markov chains it is 

known that, see Ross (1970) ) 2w)` �0� 	 j2+2w 					#xy	- ~ � ) 22)` �0� 	 "j2					#xy	[��	- 

For voyage times which are small relative to the state dwell times we can take the above expressions 

as approximations for the derivatives at the voyage time τ and hence the speed optimality conditions, 

assuming fij(v)=γijdijv
2, τij=dij/v become  "28!�� 9 ��� m7"j2�∑ +2w>�w " >�2wB2 n=0 

The optimal speed is thus of the form encountered before, namely �!,�;2 	 .61;t'=,13� 45
, where 
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7�,2 	 7 " j2�∑ +2w>�w " >�2wB2 $. 
The voyage speed depends on the market state, the origin and the destination. Even in the case of 

uniform daily specific fuel cost there will be a dependence of speed on the state and also on the 

destination, unlike the previous cases where the speed was constant for all voyages.  We expect this 

dependence to be slight for the usual parameters in maritime applications, since it is caused by the 

variation in the likelihood of a change of market state in voyages of different lengths which is indeed 

negligible in practice. 

 

The expression for the optimal speed and in particular its nominator can be interpreted as follows.  In a 

good state k, the sum ∑ +2w�>�w " >�2$wB2  is negative and thus aj,k is greater than the average net profit 

rate a, the difference being more marked for large λk, i.e. small dwell times; consequently the 

economic speed is higher than average.  We might interpret this increased speed in a good state as an 

effort to take advantage of the good times while they last.  Conversely, when the state is bad, one tends 

to slow down so that the transition to a better market becomes more likely. 

 

To derive the approximate dynamic programming equation for stable markets, we express the 

transition probabilities as Pkl(τ)=λkpkτ  for k≠l and  Pkk(τ)=1-λkτ, since Pkl(τ)≈Pkl(0)+P’kl(0)τ and 

Pkl(0)=δkl.  Then equation (14) specializes to 

>!,2 	 \ �][^ �max�B!.� � _!,�2 " )!�8!��' " �7"j2�+2w�>�w " >�2$wB2 �)!�� 9 >�,2� , "�7"j2�+2w�>!w " >!2�wB2 �`b 9 >!,2�	�	 
                #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0			 (14′) 

Using the expression for the optimal speed vjk and simplifying we get from (14′) >!,2 	 \V][^�][ �̂B!m _!,�2 " 3)!�8!���2' 9 >�,2n, "7!,2`b 9 >!,2$	W	 #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0			 (16) 

Alternatively, this can be written in terms of the ajk as 

>!,2 	 \ R][^ .][ �̂B! � _!,�2 " 4')!��28!����[�2�� 9 >�,2� , "7!,2`b 9 >!,23	S	 #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0			 (16’) 

The solution of these expressions characterizes the optimal speeds.  They can be solved by a 

modification of the methods stated earlier, stochastic approximation and quasi value iteration.  We will 

show numerical results in Section 6. 

 

In the case where the state dwell times are large, it is shown in Appendix B that the solution can be 

approximated by the solution to M problems with independent freight rates, one for each state.  These 

dynamic programming equations are 
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>!,2 	 \ Rmax�,� m _!,�2 " #!,���� " 72`!���� 9 >�,2n	S	 
               #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,2 	 0	                    

They are decoupled in the sense that the ak, hik values do not depend on am, him for k≠m, and we need to 

solve M problems in N variables each rather than one in MN variables. Consequently, the speed 

depends on the state; for uniform fuel cost it is the same for the voyages in the same market state. 

 

We will need for the numerical examples in Section 6 the analytic solution of a two market state 

model, consisting of a good and a bad state, indexed by g and b respectively.  The parameters are the 

state dwell times λg
-1, λb

-1, the transition probabilities pgb, pbg being unity.  The solution of the 

Kolmogorov equation gives   ���E� 	 ������� D1 " ��������$�G     ���E� 	 ������� D1 " ��������$�G 
The optimal speed is determined by the condition 

"#′!,���� " 7`′!���� 9 ∑ F�tu�{�F{ `′!����w >�,w=0 

This specializes to the equations – with λ=λg+λb 

28!�D�̅!,�� G4 	 7 " j��>�� " >��$���F1 ��,1�5     for the good state and  

28!���̅!,�� $4 	 7 " j��>�� " >��$���F1 ��,1�5    for the bad state   

This is an implicit expression for the optimal speed.  In contrast to the approximate expressions, speed 

depends on the distance parameter as well.  The numerical determination of the optimal speed is not 

difficult since the expressions are already of a form v=f(v) and a simple iterative scheme of the form 

vn+1=f(vn) is effective.  To solve the problem completely for the a, h values, the expressions of the 

optimal speed must be substituted in the dynamic programming equations.  As we show in Section 6, 

the stochastic approximation scheme succeeds in obtaining numerical answers, and these answers are 

in agreement with the approximation results derived earlier. 

 5. Discounted Profit Models 

In this section we state the previous models in a discounted profit framework.  The resulting equations 

are in the same spirit as before, and give the same qualitative results for small discount rates, although 

the equations are more complicated and the optimal speed expressions are not as easy to interpret.  A 

discounted deterministic problem of a graph traversal with speed selection like the one presented in 

Section 2 can be solved using dynamic programming as in Section 2.2.  Using the same terminology, 
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the dynamic programming equation can be written in terms of the optimal infinite horizon discounted 

net profit starting at port i, Vi, r being the discount rate: �! 	 max�B! max� V !,� " 8!,�)!,��' 9 ���F1 �⁄ ��W																			J 	 1,2, . . , c                (17) 

The optimal speed satisfies the implicit relation   �4 	 �����1 �⁄ �1'=,1 .  

 

For small rates of interest we expect the above equation to reduce to the ones we derived for the 

average profit criterion.  Indeed, one can verify by direct computation that if α, h are the solutions of 

the average profit problem as stated in (6), the expression ��! 	 >! 9 6� approximately satisfies (17), the 

approximation improving as r decreases.   

 

For independent stochastic rates as in Section 3 and a discounted profit criterion, the dynamic 

programming equation corresponding to (10) is 

   	�! 	 	\][^ �max�B! 	max� V _!,� " 8!,�)!,��' 9 ���F1 �⁄ ��W;	������!� 			J 	 1,2, . . , L         (17’) 

Again for small discount rates r the solution of (17’) can be approximated by the form ��! 	 >! 9 6� 

with h, a the solution of (10).  The solution of (17’) can be obtained by stochastic approximation, 

policy or value iteration.  Calculations are presented in Section 6 which confirm the above statements. 

 

The optimal speed satisfies the implicit expression shown earlier from which the current freight rate is 

absent, although it influences the speed indirectly through the choice of destination.  This leads to the 

following paradox: Assume that a high freight rate is observed for a destination j of small value Vj, and 

thus this destination is selected, the voyage being however implemented at a low speed, in contrast to 

the principle that profitable voyages should be traversed at high speeds.  Conversely, a small freight 

rate might lead to the selection of a high valued destination and thus the voyage is carried at high 

speed. 

 

For the discounted profit version of the market state models in Section 4, one can write by inspection 

an optimality condition analogous to (14).  Ignoring for simplicity the possibility of waiting, the 

equation becomes  

�!,2 	 \ �max�,� � _!,�2 " #!,���� 9 ���F1 �⁄ � 2w�)!� �⁄ $w ��,w�	�	 
 #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z              (18) 
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The optimal speed corresponding to (18) from origin i, destination j and state k is given by the 

expression  

�4 	 ���F1 �⁄28!,� ��y 2w �)!� �5 � "  2wU �)!� �5 ����ww  

In the calculations shown in Section 5, a two state example was explicitly solved for the transition 

probabilities and thus the optimal speed could be computed exactly.  For small r it can be shown by 

standard methods that (18) reduces to the average profit model equation (14) with approximate 

solutions	��!2 	 >!2 9 6� .  An approximation to the optimal speed for small voyage times can be 

obtained using the Kolmogorov equations by solving the equation �4=
�'=1 m7 " ���F1 �⁄ j2�∑ +2w��w " ��2wB2 $n 

The parameter α is the daily profit introduced in the average profit model while the pkl are the 

transition probabilities of the continuous time Markov chain.  

 

To solve the discounted problem equation (18) one can use a stochastic approximation algorithm: 

�!2k�� 	 �!2k 9 lk �max�,� � _!,�2 " #!,���� 9 ���F1 �⁄ � 2w�)!� �⁄ $w �!wk� " �!2k� 			#xy		J 	 1, . . , c		 
In the discounted case there is no special treatment of any particular state as was necessary in the 

undiscounted case where we arbitrarily set h1=0. Upon convergence of the stochastic approximation 

algorithm to say Ujk, a verification step can be performed by computing the sample mean of the 

random variable max�,� m _!,�2 " #!,���� 9 ���F1 �⁄ ∑  2w�)!� �⁄ $w ��,wn, 
The result should then be compared to the candidate solution Uj,k.  

 

In a sense, the stochastic approximation algorithm is analogous to value iteration; the analog of a 

policy iteration algorithm could be carried out as follows.  First start with arbitrary values Vn
ik, n=0.  

Then find by stochastic approximation the value of the policy that is based on selecting voyages and 

speed by the expression: 

��∗, �∗� 	 [y� �max�,� � _!,�2 " #!,���� 9 ���F1 �⁄ � 2w�)!� �⁄ $w �J�c�� 
The stochastic approximation algorithm used to find the value of the above policy is of the form  

 !2k�� 	  !2k 9 lk �� _!,�∗2 " #!,�∗��∗� 9 ���F1 �∗⁄ � 2w�)!�∗ �∗⁄ $w  !wk� " !2k� 			#xy		J 	 1, . . , c		 
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Upon convergence of Wn
ik to say W∞

ik we set Vn+1
ik=W∞

ik and repeat.  It can be shown with standard 

policy iteration arguments that we obtain thus an increasing sequence of value functions.  A similar 

policy iteration algorithm can be used in the undiscounted case. 

6. Computational results 

The computations presented in this Section are meant as a proof of concept rather than as efficient 

calculations suitable for large scale models.  Vessel parameters are inspired by the HandyMax type of 

bulk carriers; see the description of a HandyMax Bulk Carrier that appears in the site of the shipyard 

Brodosplit Inc. http://www.brodosplit.hr/Portals/17/Bulk.pdf.  Nominal speed for this type of vessels 

is about 15 knots, with a daily consumption of 30 tons.  At mid-2014 prices of 600 USD for marine 

fuel this is about 18 thousand USD daily.  These fuel prices were way above historical averages, so we 

took the γ parameter to be 12, 15 or 18 and 20 thousand USD per day.  However, most of our 

examples are at the currently reasonable value of 12.  Speed will increase substantially in the future 

following a drop in fuel price provided rates improve, and this will incidentally act as an increase in 

the supply of shipping as pointed out by maritime economists – see Stopford (2008).  We count 

voyage time in days at nominal speed, most voyages being of the order of 10 days.  In 10 days a vessel 

will cover about 3500 miles, the distance from Australia to Japan.  Speed is presented as a fraction u 

of 14 knots, i.e. a speed of u=0.85 means 11.2 knots.  Operation constrains on speed, upper or lower, 

will not be taken into account.   

 

We consider a four origin destination world.  The distances between them expressed in days at sea at 

nominal speed are given in Table 1, and are used in all examples.  These distances are not symmetric.  

Non symmetric distances might be caused by ocean currents, prevailing weather or other voyage 

conditions.  We ignore port time.  As stated in Sections 3 and 4 when rates are stochastic, we allow a 

vessel to wait at any port for an interval τw to get a new freight rate observation which again might be 

accepted or turned down to wait for another τw interval, and so on. We arbitrarily set τw to 10 days. 

Table 1 

Distances in days at nominal speed 

Destination  

Origin 

1 2 3 4 

1 10 10 10 6 

2 8 10 6 10 

3 10 7 10 9 

4 7 8 8 10 
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6.1 A deterministic example 

The following example uses the parameters in a previous presentation by one of the authors, Magirou 

(2012). Rates are deterministic, constant and are shown in Table 2.  We want to determine an optimal 

cycle of voyages, where choice of speed is possible.   

 

Table 2  

Rates in thousand USD/Day 

Destination 

Origin 

1 2 3 4 

1 - 35 26 17 

2 15 - 15 40 

3 20 25 - 30 

4 20 0 20 - 

 

We solved the example by the iterative methods outlined in Section 2.2 and 3.2 for various fuel costs, 

fuel price being the same at all ports.   The optimal speed as a function of fuel price is shown in Table 

3.  The optimal voyage cycle is 1-2-4-1 (in case a vessel is at port 3 it should go to port 2 and follow 

the cycle thereafter) and is independent of fuel price, as expected from the comments following 

equation (9).  The results verify the inverse square root dependence of speed on fuel cost.  Similar 

results have been obtained for changes in freight rates.  

Table 3 

Optimal Speed -Nominal speed for u=1 is 14 knots 

Case No. 1 2 3 4 

Fuel cost parameter 

’000 USD/Day 
10 12 15 20 

Optimal Daily Net Profit 

’000 USD/Day 
23.03 21.03 18.81 16.28 

Relative speed u 1.05 0.96 0.86 0.74 

Absolute speed in knots v 14.7 13.4 12.0 10.4 

 

The numerical calculations for the h’s (which we do not show) confirm equation (9): the h values are 

h1=0, h2=-20.4 h3=-76.1 and h4=-90.7 and are independent of the fuel cost parameter.  

 

We also calculated the optimal routes in an infinite horizon discounted profit cost model as in Section 

5, equation (17).  The results of the computations are shown in Table 4 and are consistent with those 
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of the average profit models, since the discounted profit value functions are well approximated by the 

expression Vi=a/r+h i, for reasonable values of the interest rate r.  In Table 4 we show the location 

values for various interest rates, using the same voyage values as before and fuel cost at 12 thousand 

USD per day.  The calculations confirm the results of Section 2. The optimal speed depends in 

principle on the origin - destination pair, the interest rate and other parameters.  However, for the 

parameter values in the example this dependence is insignificant and the optimal speed is almost 

identical to the one in the average profit models. 

 

Table 4 - Discounted Profit Model Location Values 

r 10% 5% 1% 

V1 76,894.59 153,646.5 767,662.5 

V2 76,874.26 153,626.2 767,642.2 

V3 76,818.42 153,570.4 767,586.4 

V4 76,803.72 153,555.7 767,571.8 

V2- V1 i.e. h2 -20.33 -20.35 -20.36 

V3- V1 i.e. h3 -76.16 -76.13 -76.11 

V4- V1 i.e. h4 -90.87 -90.80 -90.75 

rV (approximate) 21.1 21.0 21.0 

Approx. Optimal speed – all voyages 96% 96% 96% 

 

6.2 Stochastic models – Independent Rates 

We ran the same four origin-destination example allowing a stochastic variation in the rates.  The rates 

observed from origin i to destination j are the ones given in the tables of the previous Section, 

multiplied by a zero mean random variable whose realizations are independent among voyages – 

although including a dependence among the Rij ’s from the same origin for different destinations j 

would have been more realistic.  The actual form used in our examples is the random daily rate ¡!� 	 ¡!�ksv ∙ �1 9 ¢!�£	¤�.		 The term µij is a variability parameter while £̃	is a random variable uniform 

in [-1,1].  The total freight Pij is Rij multiplied by the nominal distance dij.  The corresponding dynamic 

programming equations are (10), (11) for the average profit case and (17’) for the discounted profit 

case.  These equations were solved by the methods outlined in Section 3.2, i.e. stochastic 

approximation, policy iteration, quasi value iteration.  The solutions obtained were then verified by 

simulation in two ways: in the first verification method we substituted the proposed solution in the 

right hand side of the corresponding equation, estimated the expected value by simulation and then 

compared it to the left hand side.  In the second verification, we simulated the voyage policy implied 
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by the solution and then verified that the profits obtained were indeed those corresponding to the 

proposed solution. 

 

For a uniform rate variability parameter µ=µij (same for all voyages) equal to 50%, the results are as 

follows  

Table 5 

Optimal Speed - Stochastic, Independent Freight Rates, Variability 50% 

Case No. 1 2 3 4 

Fuel cost parameter (th.USD/Day) 10 12 15 20 

Optimal Daily Net Profit (th.USD/Day) 24.04 21.95 19.63 17.00 

Relative speed u 1.06 0.97 0.87 0.75 

Absolute speed v in knots 14.9 13.6 12.2 10.5 

 

Although the freight rate variability is high, the results are close to that of the deterministic case as 

shown in Table 3. The average daily profits are slightly higher, and so is the speed.  This higher 

expected profit rate is due to the possibility to choose the best of the observed freight rates, and the 

option to wait, choices that were absent in the deterministic case.  For smaller variability in the rates 

the profit improvement is negligible.  Note that the relative port values are the same regardless of the 

fuel costs, a somewhat counterintuitive conclusion that is due to the assumption of uniformity in fuel 

costs.  The location values are close to the deterministic case, as shown in Table 6. 

 

Table 6 

Location values 

 h1 h2 h3 h4 

Deterministic Freight Rates 0 -20.4 -76.1 -90.7. 

Stochastic  Freight Rates 0 -22.5 -57.9 -94.1 

 

We also solved the discounted profit models corresponding to a daily fuel cost of 12 thousand USD, 

and various interest rates. The results are consistent with the deterministic and the average profit case 

as seen in Table 7.  The policy parameters (the daily profits rate alpha and the location values h) are 

approximately the same.  Of course the voyage selection process is quite different in the stochastic 

case, since it is the observed freight rates that determine the voyage to be undertaken.  The overall 

conclusion, probably important for applications, is that the parameters obtained by a simple 

deterministic model with average profit optimization might not change significantly when uncertainty 

is introduced. 
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In all models in this Section the computed optimal speed was to a good approximation independent of 

the actual observed freight, but depending of the overall freight rate level and the fuel cost.  The 

dependence is an inverse square root one on fuel cost and also a square root dependence on the overall 

freight rate level. 

Table 7 

Discounted Profit Model Location Values 

Stochastic, Independent Freight Rates 

r 10% 5% 1% 

V1 80,484.3 160,930.8 804,821.9 

V2 80,462.5 160,911.0 804,800.7 

V3 80,426.3 160,873.8 804,764.2 

V4 80,390.3 160,837.1 804,728.3 

V2- V1 i.e. h2 -21.7 -19.8 -21.1 

V3- V1 i.e. h3 -58.0 -57.0 -57.7 

V4- V1 i.e. h4 -94.0 -93.7 -93.6 

rV – same for 

all locations 
22.05 22.03 22.05 

Optimal speed – 

all voyages 
97% 97% 97% 

 

6.3 Stochastic models – Markov Process Freight Rates 

The model developed in Section 4 was that of a Continuous Time Markov chain freight market.  We 

showed in Section 4 a two state model, with a good and a bad market state, for which the transition 

probabilities were computed explicitly; we now present some computations for that model.  The 

nominal daily freight rates for the bad market state are those used in the deterministic example and 

shown in Table 2.  In a good market the rates are assumed twice those of the bad state rates.  The 

stochastic variations are those of the uniform market case.  

 

The computations for the average time criterion are shown in Table 8.  We varied the expected dwell 

time at states “bad”, Tb=λb
-1, and “good”, Tg=λg

-1, keeping the fuel cost at γ=12 thousand USD daily.  

The calculated average profit a depends on the relative lengths of stay in the two states.  The h value 

differences among ports are roughly the same for a given state, while there is a jump in the h values 

corresponding to a state change.  The speed differs significantly with the state, approximately by a 

factor of √2, reflecting the uniform doubling of rates from the bad to the good market state. 
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The calculations were done by the stochastic approximation method, implemented in a simple 

spreadsheet.  The method required manual intervention to converge.  Once convergence was achieved, 

we verified the computations as stated earlier: First by simulating the right hand side of the dynamic 

programming equation (14) for the given values of α and h, and verifying that it is close to the 

corresponding h value.  Second, we generated realizations of the rates, choose voyages by the policy 

implied by the h, α parameters and computed the average net profit for a “long sequence” of voyages.  

These simulations confirmed the values obtained to a reasonable accuracy. 

 

Similar results were obtained for the Markovian market state discounted profit models of Section 5.  

For the same vessel, freight, distance etc. parameters we solved the relevant equation (18) by a 

stochastic approximation method, and verified the results obtained by the same methods.  The results 

are in Table 9 and are consistent with those of the average time model.  Even at the high interest rate 

of 10%, the approximate value V=a/r+h is valid.  The speed again is in principle dependent on origin, 

destination and distance but for the parameters of the example it practically depends on the state only, 

just as in the average time criterion models. 

7. Conclusions: Model Extensions, Managerial insights 

7.1 Extensions 

Using a continuous time Markov Chain to model the charter market index is a plausible approach but 

which has not been statistically examined.  There is extensive literature on modeling the overall 

Table 8 
Average time criterion 

Case Tb Tg Α h2b h3b h4b h1g h2g h3g h4g vb 

% 

vg 

% 

1 10 1 25.6 -21.0 -56.7 -93.1 13,497 13,456 13,383 13,310 97.2 136.8 

2 5 1 28.7 -21.7 -57.2 -93.1 12,227 12,183 12,109 12,037 97.2 137.3 

3 2 1 35.3 -21.9 -57.6 -93.9 9,841 9,833 9,736 9,669 97.0 137.4 

Table 9 
Discounted Profit Criterion r=10% 

Case Tb Tg V1b V2b V3b V4b V1g V2g V3g V4g vb 

% 

vg 

% 

1 10 1 92,415 92395 92,359 92,321 104,750 104,706 104,639 104,565 97.1 137.0 

2 5 1 102,646 102,635 102,588 102,550 114,040 113,999 113,930 113,854 97.2 136.8 

3 2 1 125,818 125,793 125,755 125,721 135,140 135,115 135,031 139,950 97.2 136.8 
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charter market using time series methods.  There is also extensive use of stochastic differential 

equation models, assuming that charter market indices are a diffusion, namely dxt=f(x,t)dt+s(x,t)dwt, 

with xt a market index and wt a Wiener process.  For example, Dixit and Pindyck (1994) use such a 

model to evaluate a ship, taking explicit account of the layup possibility, while Tvedt (1997), (2003) 

assumes that rates follow a Geometric Mean Reversion process and uses it in a real option evaluation of 

alternative ship designs.  One might consider describing individual freight rates by stochastic differential 

equations, but such a model would become totally intractable even for a small number of ports.  

 

In the context of this paper, we might assume that the rates Pij are random variables whose density 

includes a parameter xt which in turn is a diffusion process.  In a dynamic programming formulation 

for such a problem, the value functions in the discounted profit and the alpha (α),h parameters in the 

average profit cases will be functions of the continuous state variable xt and of the location j.  Solving 

them would require computing transition probabilities by the forward Kolmogorov partial differential 

equations to obtain the transition probabilities P(y|x,τ) of being at y having been at state x at the 

beginning of the voyage τ time units earlier, see for instance the PDE for Finance notes by R. Kohn 

(2011) for a succinct exposition.  The dynamic programming equation for discounted profits is stated 

in terms of Vi(x), the optimal discounted profit when being at location i while the market is at state x: 

�!�^� 	 \ Rmax�,� � _!,�¦ " #!,���� 9 ���{1���§ �¨©^, `!����$���¨�)¨�	S	 
For the case of average, infinite horizon profit maximization the dynamic programming equation is 

>!�^� 	 \ Rmax�,� � _!,�¦ " #!,���� " [`!���� 9 § �¨©^, `!����$ >��¨�)¨�	S	 
To solve these equations a stochastic approximation method with a finite number of basis functions, as 

in Tsitsiklis and Van Roy (1999) could be used. 

 

The formulations in this paper do not address the issue of seasonality, which affects charter rates in 

superposition with the overall charter market effects.  Modelling seasonality would require the 

introduction of an additional variable to indicate the time of the year, as in Magirou et al. (1997).  In 

the discounted case we would introduce of a function Vi,τ(x), the optimal discounted profit when being 

at location i at instance τ while the market is at state x.  The dynamic programming equation would 

then be 

�!,{�^� 	 \ Rmax�,� � _!,�¦,{ " #!,���� 9 ���{1���§ �¨©^, `!����$ ��,{U�¨�)¨�	S	 
The term τ′ in the above equation incorporates seasonality; it stands for (τ+d ij) modT where T is the 

period and τ takes values up to T.  We might take discrete values of τ from 0 to T-1, but need a suitable 

discretization of speed so that voyage lengths are consistent with the discretization. 
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A further extension would involve introducing a model for fuel prices, so that future prices are a 

function of the current ones.  The state space would have to increase further since now a state consists 

of a freight market state coupled with a fuel market state.  The bunker procurement problem of Besbes 

and Savin (2009) can also be included in our model as follows (for simplicity consider independent 

freight rates, no market state, known bunker prices differing at ports):  Assume that a vessel of loading 

capacity C is available for charter at port i with a quantity Q in its fuel hold, and decides to load an 

extra fuel quantity q at price pF;i.  Then the payload of the vessel is at most C-Q-q and the revenue is 

Pij(C-Q-q) which is stochastic.  If a voyage is undertaken to j at speed v the required fuel is dijkjv
2.  

Thus, if the fuel hold’s capacity is say H, the refueling quantity q satisfies  dijkjv
2
≤Q+q≤H.  The value 

of port i, hi, should depend on the fuel quantity upon arrival Q, hence hi=h i(Q).  Then the dynamic 

programming equation is   

hi(Q)=Emaxj,q,v[P ij(C-Q-q)-pF;iq-αdij/v
2+hj(Q+q-kijdijv

2)] . 

This is a stochastic problem even in the case of known fuel prices since the stochastic freight is added 

to the fuel price when deciding about fuel procurement, good freight rates inducing the procurement of 

just enough fuel for the current voyage. The maximization in this problem is done subject to the 

constraints on q, and there is no obvious separation of say voyage from speed selection.  Still, the 

optimal speed satisfies vij
3=α/(2hj

’kij) and is a function of the derivative h’ j of the port value hj with 

respect to Q, which is the implicit value of fuel when arriving at the destination port. The fuel 

procurement policy seems difficult to characterize – it could be an all or nothing policy if the h 

functions are essentially linear or of the (s,S) type if they are piecewise linear.  Such procurement 

problems with stochastic prices and constraints on storage have been dealt in Kalymon (1973), 

Magirou (1985) (1992), and Golabi (1983) where answers are derived for specific situations. 

 

As stated in Section 3, a richer formulation would be to have the vessel choose from a set of available 

charters indexed by say c.  For each charter we have a profit Pc, a destination j(c) and a payload 

leading to fuel consumption coefficient kc.  If c is a time charter the fuel cost is undertaken by the 

charterer and hence kc is zero.  The analog of equation (10) is then 

 >! 	 \maxª,�� _ª " +!,)!��ª�-ª�' " 7`!��ª���� 9 >��ª��				J 	 1,2, . . , c		and	>� 	 0	   
7.2 Managerial Insights 

We have had several conversations with maritime industry senior managers; most of them consider 

our approach interesting, although they feel their activities are too much dependent on details to 

benefit from analyses that omit even minute aspects.  Indeed tramp vessel management is complicated, 

most of the relevant tradeoffs being difficult to quantify, while decisions are numerous and taken 

under time pressure by a very small number of operators.  A very important aspect in charter selection 

is taking proper care of seasonality; having the vessel unload at a time and place when nice charters 
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are available nearby, i.e. good vessel positioning, is a key to profitability.  As such speed is an 

important but secondary goal, being subordinate to chartering agreements which stipulate loading and 

unloading times and other chartering modalities.  As shown in the previous subsection, seasonality can 

be included in our models, at the expense of increased dimensionality. 

  

Other features of our model could be of value to professionals, such as the possibility of analyzing 

relocation voyages (going in ballast from a port of unloading to a different one); relocation voyages 

are a common practice, e.g. often a vessel unloads in the Black Sea where back hauls are scarce, then 

sails unchartered to West Mediterranean expecting a better charter.  Time chartering decisions are also 

important and it is convenient to have an analytic way to assess them.  Time charters have an element 

of risk avoidance; they protect the ship owner from market fluctuations but at the same time do not 

give him the opportunity to profit from expert positioning. Incorporating the risk features (risk 

averseness or risk proneness) of the owners would be important in a satisfactory decision support tool. 

Acknowledgments 

 

To be added in the final version of the paper 

 

 

 

The work of H. Psaraftis was supported in part by an internal grant at DTU. 

8. References 

Blum J., 1954. Multidimensional Stochastic Approximation Methods. Annals of Mathematical 

Statistics, 25(4), 737-744 

 

Besbes O. Savin S., 2009. Going Bunkers: The Joint Route Selection and Refueling Problem.  

Manufacturing and Service Operations Management, Vol.11, No.4. 

 

Christiansen M., Fagerholt K., Nygreen B., Ronen D., 2007. Maritime Transportation. In: Barnhart C. 

and Laporte G. (eds). Handbooks in Operations Research and Management Science: Transportation. 

North – Holland, Amsterdam, 189-284. 694-711 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

32 

 

Christiansen M., Fagerholt K., Nygreen B., Ronen D., 2013. Ship Routing And Scheduling In The 

New Millennium. European Journal of Operational Research 228, 467–483. 

 

Dantzig G., Blattner W., Rao M.R., 1967.  Finding a Cycle in a Graph with Minimum Cost to Times 

Ratio with Application to a Ship Routing Problem. In Theory of Graphs, P. Rosenstieehl, Editor, 

Dunod, Paris, 77-84. 

 

Dasdan A., Irani S., Gupta R., 1999.  Efficient Algorithms for Optimum Cycle Mean and Optimum 

Cost to Time Ratio Problems.  Proceedings, 36th Design Automation Conference (DAC), 37-42 

 

Devanney, J.W., 2010. The Impact Of Bunker Price On VLCC Spot Rates. Proc. of the 3rd 

International Symposium on Ship Operations, Management and Economics, SNAME Greek Section. 

Athens, Greece. 

 

Dixit A., Pindyck R. 1994. Investment under uncertainty.  Princeton University Press. Princeton NJ. 

 

Fagerholt K., Laporte G., Norstad I. , 2010.  Reducing Fuel Emissions By Optimizing Speed On 

Shipping Routes. Journal of the Operational Research Society 61, 523 – 529. 

 

Golabi, K. 1985. Optimal inventory policies when ordering prices are random. Opns. Res. 33, pp.575–

588 

 

Kalymon B., 1971. Stochastic prices in a single item inventory purchasing model. Operations 

Research 19, pp. 1434-1458 

Kontovas C., Psaraftis H., 2011. The Link Between Economy And Environment In The 

Post-Crisis Era: Lessons Learned From Slow Steaming. Int. Journal of Decision Sciences, Risk and 

Management Vol. 3, Nos. 3/4 

 

Kohn R., 2011. PDE for Finance Notes, Section 1, Notes for the NYU Course G63.2706 available at 

http://www.math.nyu.edu/faculty/kohn/pde.finance/2011/Section1.pdf (accessed June 2014). 

 

Lawler E., 1976, Combinatorial Optimization: Networks and Matroids. Holt Rinehart and Winston.  

Reprinted as a Dover edition in 2001. 

 

Magirou E.,1982.  Stockpiling under price uncertainty and storage capacity constraints. European 

Journal of Operational Research 11, pp. 233-246 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

33 

 

Magirou E., 1987. Comments on “On Optimal Inventory Policies When Ordering Prices are Random” 

by Kamal Golabi.  Operations Research 35, Issue 6, pp. 930-931 

 

Magirou E., Psaraftis H., Christodoulakis N., 1992. Quantitative Methods in Shipping.  Report No. 

E115, Athens University of Economics and Business, available at  

http://www.aueb.gr/Users/magirou/SHIP92.pdf. 

 

Magirou E., Psaraftis H., Babilis L., Denissis A., 1997. Positioning and Diversification in Shipping. 

Research Center. Report No. E194. Athens University of Economics and Business, available at 

http://www.aueb.gr/Users/magirou/KOEREPF2.pdf  

 

Magirou E., Psaraftis H., Bouritas T.  2013. The Economic Speed Problem for a Tramp Vessel in a 

Dynamic Stochastic Setting. Presented at the EURO 2013, Rome Italy 

 

Magirou E., Bouritas T., 2010. Stochastic Optimal Positioning of Tramp Vessels. Proceedings, IAME 

Conference, Cargo Edicoes Lda, Lisbon. 

 

Magirou E., 2012. Stochastic Optimal Positioning of Tramp Vessels: A Markovian Approach. Fourth 

International Symposium On Ship Operations, Management & Economics. Athens, Greece, Soc. of 

Naval and Marine Engineers, Greek Section. 

 

Meng Q., Wang S., Lee C., 2015. A tailored branch-and-price approach for a joint tramp ship routing 

and bunkering problem, Transportation Research Part B 72 1–19. 

 

Norstad I., Fagerholt K., Laporte G., 2011. Tramp Ship Routing and Scheduling With Speed 

Optimization. Transportation Research Part C 19, 853–865. 

 

Noteboom T., Vernimmen B., 2009. The Effect Of High Fuel Costs On Liner Service Configuration In 

Container Shipping. Journal of Transport Geography, 17, 325-337. 

 

Psaraftis H., Kontovas C., 2013. Speed models for energy – efficient maritime transportation: A 

taxonomy and survey.  Transportation Research Part C. 26 pp. 331-351 

 

Psaraftis H., Kontovas C., 2014. Ship Speed Optimization: Concepts, Models And Combined Speed-

Routing Scenarios. Transportation Research Part C 44, 52–69. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

34 

 

Robbins H., Monro S., 1951. A Stochastic Approximation Method. Annals of Math. Statist., 22 (3) 

400-407. 

 

Ronen D., 1982. The Effect of Oil Price on the Optimal Speed of Ships. J. Operational Research 

Society, 33, 1035-1040. 

 

Ronen D., 2011. The Effect Of Oil Price On Containership Speed And Fleet Size. J. Operational 

Research Society, 62, 211-216. 

 

Ross S., 1970. Applied Probability Models with Optimization Applications. Holden Day, San 

Francisco. 

 

Stopford M., 2008. Maritime Economics, 3rd Edition, Taylor & Francis, London. 

 

Tsitsiklis J., Van Roy, 1999. Average cost temporal-difference learning. Automatica, 35. 

 

Tvedt J., 1997. Valuation of VLCC’s under income uncertainty. Maritime Policy and Management, 

24(2). 

 

Tvedt J., 2003. Shipping market models and the specification of freight rate processes.  Maritime 

Economics and Logistics, 5, 327–346. 

 

Wang S., Meng Q. 2012. Liner ship route schedule design with sea contingency time and port time 

uncertainty. Transportation Research Part B 46, pp.   615–633 

9.  Appendices 

Appendix A 

We present indicative proofs of the results stated in Section 3.2 

 

Lemma 1.  Assume that there are α, h satisfying for i=1,2,..,N the inequality                                   

>! « \ .max� V !,� " X)!� 9 >�W3 
Then the average value of any infinite horizon policy is bounded by ζ. 
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Sketch of Proof:  Consider a path i1,i2,..,ik,.,iN-1 resulting from any policy p.  Sum along the path the 

expression  >!¬� " >!¬ 9  !¬,!¬� " X)!¬!¬� 
Thus we obtain      

>!� " >!� 9� � !t,!t� " X)!t,!t�$�
2%� 	 ®� ¯>!� " >!�®� 9  � " X° 

Here DN is the total time for all the voyages and PN the time average revenue.  Each summand of the 

original expression is less than its maximum with respect to the destination and hence its expectation 

is nonpositive.  By the strong law of large numbers (and well behaved random variables P) the above 

sum divided by DN is also nonpositive, and hence PN≤ζ with probability 1.  

 

Lemma 2.  Assume that there are b, h and ε satisfying for all i the inequalities  

>! p \ .max� V !,� " X)!� 9 >�W3 p >! 9 q 
Then the average value of the policy exceeds ζ while the optimal rate is less than ζ+ε/min{dij}. 

Sketch of proof: The proof follows the same line of argument as Lemma 1. We form the same sum 

along the path implied by the ζ, h policy.  Considering the locations visited infinitely often (the other 

locations do not count in the limit) and using again the law of large numbers the conclusion follows.  

 

Combining Lemmas 1 and 2 we get: 

Proposition: Let the following equation A.1 (equation 9 in the paper) have a solution ζ, hi  >! 	 max�V !,� " X)!� 9 >�W				J 	 1,2, . . , L		and	>� 	 0			                    (A.1) 

For any policy, the limit of the average profit of any policy for an infinite horizon is bounded by ζ with 

probability 1.  Conversely, the policy implied by (A.1) attains α. 

 

We state a property of the solutions of the equation that leads to a good initial guess for the h's.  

Consider the deterministic version of the problem and use the expected value of  _!�,  �!� as a 

deterministic rate.  The dynamic programming equation for the average revenue problem is >�! 		max±²� �!� " X)̅!� 9 >��³ whose solution provides thus an “average” profit X ̅ .  This value of X ̅ is 

feasible in the stochastic programming problem in Step 1 of the Quasi Value Iteration Algorithm of 

Section 3.2 since 	\max� ² _!� " X)̅!� 9 >��³ «		max� \² _!� " X)̅!� 9 >��³ « max� ² �!� " X)̅!� 9 >��³ 	 >�! 
Therefore we can start the proposed algorithm with the certainty equivalent values, and be certain that 

there will be an improvement in the average rate.  Trivially, using the result mentioned in the previous 

paragraph, it follows that the optimal ζ is greater than X .̅ 
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Finally, consider the improvement Step 3 in the Quasi Value Iteration algorithm.  Consider a set of   

hin   corresponding to some αn.  The improvement step will provide a set of hin+1 and hin+1≥ hin for all i.  

Let I= be the i ’s with  hin+1 = hin and I+ those with hin+1 > hin.  If we perform Step 1 with hin+1 and there 

is no improvement in a, this must be due to an equality for some i in I+. We claim that if we use 

instead of hin+1 the h values (hin+ hin+1)/2 there will be strict improvement for both i’s in I= and i ’s in 

I+ .  For the i, hi’s in I=  this is valid because there is a strict increase in \�max�V !,� " [k)!� 9 >�kW$ 
and the h’s in I= do not change. For the i, hi’s in I+ we have strict inequality for hi,n in >!,k p\�max�V !,� " [k)!� 9 >�kW$ and equality in the corresponding relation for hi,n+1, so taking the 

average of the h’s gives a strict inequality. 

Appendix B 

Consider markets described by a continuous time Markov Chain where state dwell times are 

exponential random variables with parameters λk that are small, corresponding to large expected dwell 

times.  Specifically we examine parameters λk=λ·µk with µk constant and λ progressively smaller. We 

also consider the M “decoupled equations” (ignoring the option to wait at port for a better charter) 

each corresponding to a state k in isolation, namely 

>!,2 	 \ Rmax�,� m _!,�2 " #!,���� " 72`!���� 9 >�,2n	S	 #xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,2 	 0	                            (B.1) 

The random variables Pij
k have the same distributions as in the original problem when the market state 

is k.  These equations are of the type considered in Section 3.1, and represent situations where the rates 

and hence the optimal speeds differ.   For every state k, a different optimal speed is valid, depending 

on αk and given by the formula (2),  �!,�2 	 . 6t'=,13� 45
.  Based on the solution of (B.1) – which is easier 

to solve than the original MN variable ones – we will construct approximate solutions of the original 

dynamic programming equations (14′).  

 

Consider a solution of (B.1) [2, >��2.  Then consider (14’) cast in terms of the h’s relative to port 1, 

namely ∆hjk=hjk-h1k. Then hjk-hjl= ∆hjk-∆hjl + h1k-h1λ and (14’) becomes (ignoring the possibility of 

waiting at the same port) 

>!,2 	 \ �max� max� � _!,�2 " )!�8!��' " �7"j ∙ ¢2�+2wm�´>�w " ´>�2$ 9 �>�w " >�2�nwB2 � )!�� 9 >�,2�	�	 
#xy		J 	 1,2, . . , L	, - 	 1,2, . . , z		and	>�,� 	 0	                          (B.2) 

We consider the solutions h′1k  of the linear equations  

72 	 7"¢2�+2w�>′�w " >′�2�wB2  
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These have a unique solution in α, h’s since the µk are nonzero and provided the transition matrix pkl is 

nonsingular.  

 

We construct an approximate solution of (B.2) by taking ∆hjk=>��2, and setting h1k= h′1k/λ, resulting in 

the candidate solution hik=∆hik+h1k=>��2+h′1k/λ.  To verify that it is indeed an approximate solution of 

(B.2), consider the expression 

7"j ∙ ¢2�+2wm�´>�w " ´>�2$ 9 �>�w " >�2�nwB2  

As the value of λ takes progressively smaller values, its product with the first expression within the 

sum (which is a constant) will tend to zero, but its product with the second term will equal ak by virtue 

of the definition of the h1k’s.  Thus we have constructed an ε-approximate solution of (B.2) which, by 

an argument analogous to that of Lemma 2 in Appendix A gives a policy which is an ε- approximation 

of the optimal.  This construction shows that for large state dwell times the optimal speeds are 

determined by the decoupled equations (B.1).  These conclusions are borne out in our numerical 

examples. 

Appendix C 

Consider first a known sequence of voyages j=1,..,N as in Section 2.1, with the speed constraints 

vmj≤vj≤vMj, the vmj, vMj being upper and lower speed bounds.  We want to maximize the daily net 

profit in equation (1), repeated here for convenience 

����, . . , ��� 	 ∑ m�1��1��1$n�1������,..,��� 	 ∑ m�1��1��1$n�1��∑ ¯��1��1�1°�1��                           (C.1) 

We can easily verify by Kuhn Tucker analysis that the optimal speed is given by the expression 

���[� 	 µ¶·
¶̧��∗ 	

�¹� 																																										for	��∗ ½ �¹�
. 6'=13� 45 																			for	�v� ¾ ��∗ ¾ �¹��v� 																																										for	��∗ ¾ �v�

¿                         (C.2) 

 

As in Section 2.1, the parameter a is the optimal profit rate.  To determine a we use its definition in 

(1), to obtain the equation [ 	 �����[�, . . , ���[�� which can be solved by say a bisection procedure. 

 

Considering now the more general problem of an optimal cycle on a graph as in Section 2.2 with 

bounds on speed vm,ij≤vij≤vM,ij.  One can consider again edge weights 
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O!��7� 	  !,� " 8!,�)!,��!,�' �7� " 7 PE!,�/ 9 )!,��!,��7�Q 

In this expression vij(a) is the analog of (C.2) with i,j  in place of j.  It can be verified that wij(a) is 

decreasing in a, and thus the negative cycle – bisection algorithm of Section 2.2 is applicable.  

For a dynamic programming point of view, we modify equation (6) of Section 2.2 by introducing the 

analog of the optimal speed expression (C.2) with ij  in place of j 

>! 	 max�B! R !,� " 8!,�)!,��!�' �[� " 7 .E!,�/ 9 F,1�1�À�3 9 >�S 				J 	 1,2, . . , L		and	>� 	 0							 (C.3) 

Again this equation can be solved for a, h by using the procedures in Section 3.2. 

 

A similar approach is valid for the stochastic rate models.  In the model with independent rates, 

equation (10), introducing speed bounds vm,ij≤vij≤vM,ij will lead to the dynamic programming equation, 

with vij(a) as before: 

>! 	 \ .�max�B! � _!,� " #!,���J��[�� " 7`!���J��[�$ 9 >���3 				J 	 1,2, . . , c		and	>� 	 0	                   (C.4) 

The right hand sides of wij, (C.3) and (C.4) is nonlinear but decreasing in a, and thus the steps of the 

Quasi Value Iteration Algorithm can be implemented exactly as in the case with a linear parameter.  

Indeed if vij(a) is within the allowed bounds, the negative term depends on a2/3, and when vij(a) is 

outside the bounds the dependence of the negative terms is linear on a.  Hence the negative term is 

decreasing with a. 

 

We repeated the computations of the example in Section 6.2 - random but independent freight rates.  

The results without speed bounds were shown in Table 5.  For a Fuel Cost Parameter equal to 20 Th. 

USD/Day the optimal speed was 0.75 of the nominal; for Fuel at 30 Th. USD/Day the optimal speed is 

0.62 while the daily net profit is 13.91 Th. USD/Day.  However, if the minimum speed is say 0.70 the 

methodology in this Appendix gives a lower daily profit at 13.51 with speed at 0.70 of the nominal.  

On the other extreme, a super low fuel cost of 5 Th. USD/Day gives a daily profit of 34.1 Th. 

USD/Day and speed at 1.50 of nominal.  If speed were limited to say 1.30, the daily profit will be only 

33.1 Th. USD/Day. 


