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Abstract The purpose of this paper is to illustrate the potential use of discriminant analy-
sis based on tree–structured graphical models for discrete variables. This is done by comparing
its empirical performance using estimated error rates for real and simulated data. The results
show that discriminant analysis based on tree–structured graphical models is a simple nonlinear
method competitive with, and sometimes superior to, other well–known linear methods like those
assuming mutual independence between variables and linear logistic regression.
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1 Introduction

The purpose of this paper is to illustrate the use and compare the empirical performance of
discrete discriminant analysis with a tree-structured graphical model on each class, specifically
with a tree–structured multinomial model.

Discriminant analysis in its parametric form assuming a full multinomial distribution on each
class has been considered and presented, for example, in Goldstein and Dillon (1978). Its use,
however, has been limited due to the large number of parameters involved for a not so large
number of variables, as noted by Krzanowski and Marriott (1995).

A reduced order multinomial distribution on each class, where high order interactions are set
to zero, has been proposed and used in order to diminish the number of parameters. For example,
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Asparoukhov and Krzanowski (2001) considered a second–order log–linear and a second–order
Bahadur model. In both cases, multinomial distributions with all pairwise interactions are in-
volved.

A multinomial graphical model on each class is another option for a more parsimonious model.
In a graphical model the structure of the distribution, or the set of non zero interactions, is deter-
mined by a graph. However, the graph is generally unknown and has to be estimated or identified
in addition to the estimation of the parameters of the distribution. The identification of the graph
is a problem of great computational complexity for large data sets or high dimensionality. For
some subclasses of graphical models, for example some pairwise Markov models, methods for
estimating or learning the structure of the graph are based on the lasso regularization, see Loh
and Wainwright (2013) and Hastie et al. (2015); these methods involve regularization parameters
to be set or determined.

Pairwise Markov models are a class of graphical models which consider only pairwise in-
teractions between discrete variables and whose associated graph does not have cycles of size
three. Tree–structured graphical multinomial models are instances of pairwise Markov models
with a tree-structured graph. For these models, the identification of the tree structure could
be straightforward, mainly due to the existence of efficient algorithms for finding the minimum
weight spanning tree and the existence of closed-form expressions for the maximum likelihood
estimators of the distribution.

The use of tree–structured multinomial models in classification problems for binary variables
was originally suggested by Chow and Liu (1966) where they optimized the estimated error rate
to find a tree structure. However, optimizing the estimated error rate over the set of all possible
trees of certain order is computational demanding for a large number of variables. Later on, Chow
and Liu (1968) identified the tree structure of each population by optimizing the Kullback-Leibler
divergence between a tree–structured and the empirical probability function. They proved that
this optimization problem was solvable by using minimum weight spanning tree algorithms, and
so the exact solution can be found very efficiently even for a large number of variables. Once
the tree structure of each distribution was found, they fitted a tree–structured graphical model
to each population and used the posterior probabilities of belonging to each of the classes as
criterion to classify observations.

Following Chow and Liu (1968), alternative methods for estimating the tree structure of the
populations have been studied in the literature where the optimization problems are solvable
by using minimum weight spanning tree algorithms. Friedman et al. (1997) considered a sim-
ilar optimization problem as in Chow and Liu (1968), but restricting the tree to be the same
for all classes. Tan et al. (2010) also used tree–structured graphical models for classification.
They considered an approximation of the J-divergence to estimate the structure of the tree for
each probability function, and used the likelihood ratio of the functions as classification crite-
rion. Perez and Eslava (2016) used a similar procedure for the continuous case, but restricting
the tree–structure of the probability functions to be the same for all classes. Additionally, the
empirical log–likelihood ratio, either with two arbitrary trees or with the same tree for the dis-
tributions, has been considered for the identification of the trees in Tan et al. (2010) and Perez
and Eslava (2016).

In section 2 we give relevant background on the multinomial discriminant analysis and on tree–
structured graphical models. In section 3 we present some methods for tree structure estimation.



Discrete Discriminant analysis based on tree-structured graphical models 3

In section 4 we present the results of applying the discriminant methods to a real and simulated
data sets. Finally in section 5 we offer some comments.

2 Discrete discriminant analysis

We consider the problem of discrimination between two well defined groups or classes of indi-
viduals, Π1 and Π2, on the basis of p discrete or categorical variables measured on a sample of
individuals from each class.

We first introduce some notation. Let Y ∈ {1, 2} be the class variable and X = (X1, . . . , Xp)
the random vector of the p variables. Each variable Xi takes values in the space Xi = {1, . . . , |Xi|},
where |Xi| denotes the number of categories or states that Xi takes. Low case letters denote
particular elements of Xi, so that {Xi = xi} corresponds to the event that the random vari-
able Xi takes the value xi ∈ Xi, i = 1, . . . , p. The vector X takes values in the discrete state
space X = X1 × . . . × Xp, and the number of states that X takes is |X | =

∏
i∈V |Xi|, where

V = {1, . . . , p}.

For any subset A ⊆ V , XA denotes the subvector (Xi, i ∈ A) which takes values in the
space XA =

∏
i∈A Xi, and xA = (xi, i ∈ A) refers to a particular element of the space XA.

PX(x) = P (X1 = x1, . . . , Xp = xp) denotes the probability function of X, PXA
(xA) the marginal

probability function of the subvector XA and PXA|XB
(xA|xB) the conditional probability func-

tion of the subvector XA given the subvector XB , though we shall not use the subindices on
the probability distributions, e.g. PX(x) = P (x). Finally, let π1 and π2 be the a priori, or class,
probabilities that an observation x will belong to class Π1 and Π2, respectively, π1 = P (Y = 1)
and π2 = P (Y = 2).

In discriminant analysis, given an observation x, the optimal classification rule for discrete
distributions, Welch (1939), is as follows:

Classify x



into class Π1 if
P1(x)

P2(x)
>
π2

π1

into class Π2 if
P1(x)

P2(x)
<
π2

π1

randomly into Π1 or Π2 if
P1(x)

P2(x)
=
π2

π1
,

(1)

where P1 and P2 are the conditional probabilities given by P1(x) = P (X1 = x1, . . . , Xp = xp|Y =
1) and P2(x) = P (X1 = x1, . . . , Xp = xp|Y = 2).

2.1 Tree-structured graphical models

An undirected graphical model corresponds to a family of probability distributions over a ran-
dom vector X = (X1, . . . , Xp) with an associated undirected graph G = (V,E) which has vertex
set V = {1, . . . , p} and edge set E ⊆ {(i, j)| i < j, i, j ∈ V }. The random vector X is indexed by
the nodes of G, so that each variable Xi is represented by a node i, i = 1, . . . , p. The structure of
G encodes marginal and conditional independence properties of X. We assume positive proba-
bility functions which ensures that they factorize with respect to their graph G, see for example
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Lauritzen (1996).

Given a graph G = (V,E), a clique C ⊆ V is a subset whose induced graph is fully connected,
that is, the edge (s, t) ∈ E for all s, t ∈ C, s < t. A separator S ⊆ V is a subset such that its
removal splits the graph into two or more subgraphs. Let PG be a member of a graphical model
with associated graph G, and assume PG(x) > 0 ∀ x ∈ X , then PG can be factorized in terms of
the set of cliques C of its graph:

PG(x) =
1

Z

∏
C∈C

ψC(xC)

where ψC : XC → R+ is a positive function for each C ∈ C and Z =
∑

x∈X
∏
C∈C ψC(xC) is the

normalizing factor.

If, additionally, G is triangulated, the model is called decomposable and can be factorized in
terms of marginal probability functions:

Pdec(x) =

∏
C∈C P (xC)∏

S∈S P (xS)v(S)
,

where S and C are the sets of separators and maximal cliques, respectively, and v(S) is the
multiplicity of S in a perfect sequence.

A subclass of decomposable graphical models which are also Markov pairwise models consists
of those whose graph G is a tree τ = (V,Eτ ). They can be factorized in terms of marginal
functions of one and two dimensions as

Pτ (x) =

p∏
i=1

P (Xi = xi)
∏

(i,j)∈Eτ

P (Xi = xi, Xj = xj)

P (Xi = xi)P (Xj = xj)
.

For example, if τ = (V,Eτ ) is a path Pτ (x) =
∏p−1
i=1 P (xi, xi+1)/

∏p−1
i=2 P (xi) with Eτ =

{(1, 2), . . . , (p − 1, p)}; or a star with center at node 1, Pτ (x) =
∏p
i=2 P (x1, xi)/P (x1)p−2 with

Eτ = {(1, i)| i = 2, . . . , p}.

The maximum likelihood estimator (MLE) of Pτ is obtained by replacing the corresponding
MLE of the marginal distributions. Assuming that P is a multinomial distribution and consid-
ering a sample of n independent multivariate observations, {xl}nl=1, the MLE of the marginal
probability functions are the relative frequencies based on observed marginal counts n(xi) and
n(xi, xj). That is:

P̂ (Xi = xi) =
n(xi)

n
and P̂ (Xi = xi, Xj = xj) =

n(xi, xj)

n
,

where n(xi) =
∑n
l=1 I(xli = xi) and n(xi, xj) =

∑n
l=1 I(xli = xi)I(xlj = xj), for xi ∈ Xi, and

where the indicator function I(xli = xi) = 1 if xli = xi and 0 otherwise, l ∈ {1, . . . , n}; i, j ∈ V .
Then,
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P̂τ (x) =

p∏
i=1

P̂ (Xi = xi)
∏

(i,j)∈Eτ

P̂ (Xi = xi, Xj = xj)

P̂ (Xi = xi)P̂ (Xj = xj)

=

p∏
i=1

n(xi)

n

∏
(i,j)∈Eτ

n(xi, xj)/n

(n(xi)/n)(n(xj)/n)

=
1

n

p∏
i=1

n(xi)
∏

(i,j)∈Eτ

n(xi, xj)

n(xi)n(xj)
.

(2)

2.2 Tree-structured discriminant analysis

Consider the classification rule given in (1) for a tree–structured multinomial probability function
on each class, P1τ1

and P2τ2
, respectively. Using the MLE given in (2) and estimating the a priori

probabilities by the proportion of observations on each group, π̂1 = n1/n and π̂2 = n2/n, with
n1 + n2 = n, the estimated rule becomes:

Classify x



into class Π1 if ln
P̂1τ1

(x)

P̂2τ2
(x)

> ln
π̂2

π̂1

into class Π2 if ln
P̂1τ1

(x)

P̂2τ2
(x)

< ln
π̂2

π̂1

randomly into Π1 or Π2 if ln
P̂1τ1

(x)

P̂2τ2
(x)

= ln
π̂2

π̂1
,

(3)

or equivalently expressed in terms of marginal counts using (2).

Notice that in order to use rule (3), τ1 and τ2 have to be identified. In section 3 we formulate
the estimation or identification of the tree structure associated with each of the two probability
functions.

2.3 The saturated and the independence model

The full multinomial distribution can be seen as a decomposable graphical model with the com-
plete graph κ = (V,Eκ) as associated graph. This model is also known as the saturated model.
In this case the MLE of Pκ for each state is simply the observed relative frequency in the state,
that is,

P̂κ(x) =
n(x)

n
=
n(x1, . . . , xp)

n
∀ x ∈ X . (4)

On the other hand, the multinomial distribution under the assumption of independence be-
tween any pair of variables, referred as the independence model, can be seen as a graphical model
with the edgeless graph κ̄ = (V,Eκ̄) as associated graph. The MLE of Pκ̄ is the product of the
observed relative frequencies for each variable

P̂κ̄(x) =
∏
i∈V

n(xi)

n
∀ x ∈ X . (5)
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3 Tree structure estimation

In this section we describe some methods for identifying the tree structures τ1 and τ2 required for
the estimated rule (3). Once the tree structures are estimated rule (3) can be applied to the data.

Chow and Liu (1966) proposed the use of the estimated error rate as a function f to be
optimized in order to find the tree structures, considering binary variables. They restricted the
tree structures to be the same in all classes. For two groups, τ1 = τ2 = τ, the estimated tree
structure τ∗ is such that

τ∗ = argmin
τ∈Tp

f(τ) (6)

with

f(τ) =


n1∑
l=1

I

(
ln
P̂1τ (xl)

P̂2τ (xl)
≤ ln

n2

n1

)
+

n1+n2∑
l=n1+1

I

(
ln
P̂2τ (xl)

P̂1τ (xl)
≥ ln

n2

n1

) ,

where Tp is the set of all trees with p nodes, and observations belonging to population one and
two have indices ranging from 1 to n1 and from n1 + 1 to n1 + n2, respectively.

Since |Tp| = pp−2, the evaluation of f for each τ ∈ Tp is computationally demanding when
the number of variables is large. For this reason, they gave a stepwise routine to find an approx-
imated solution of the problem in (6). Later, in Chow and Liu (1968), the tree structure for each
population was found separately by minimizing the Kullback–Leibler divergence between a tree-
structured and the empirical distribution. For two populations the estimated tree τ∗y associated
with each population is such that

τ∗y = argmin
τ∈Tp

fy(τ) (7)

with fy(τ) = I(P̂yκ , P̂yτ ) =
∑

x∈X P̂yκ(x) ln(P̂yκ(x)/P̂yτ (x)), y ∈ {1, 2}. Notice that the empir-
ical distribution corresponds to the estimated full multinomial distribution in each population
P̂yκ(x) as given in (4).

They proved that the exact solution of (7) can be found efficiently due to the equivalence
between this optimization problem and the one of finding a minimum weight spanning tree
(MWST). Additionally, they proved that this problem is equivalent to the one of finding the max-
imum likelihood tree for each population, that is, to finding τ∗y such that fy(τ∗y ) ≥ fy(τ) ∀ τ ∈ Tp,
with fy(τ) =

∑ny
l=1 ln P̂yτ

(
xl
)
, y ∈ {1, 2}.

In the MWST problem there is no need to evaluate f(τ) for each τ ∈ Tp in order to find the
exact solution. The solution is found by computing a weight for each possible edge and using
efficient algorithms developed for solving the MWST problem, for example Kruskal’s (Kruskal
1956) or Prim’s algorithm (Prim 1957). In the MWST problem a spanning tree τ∗ of a graph G
is being found such that

τ∗ = argmin
τ∈TG

∑
(i,j)∈Eτ

λ(i, j) , (8)

where λ(i, j) is a specific weight given to the edge (i, j) ∈ EG and TG ⊆ Tp is the set of all the
spanning trees of G. For the problem in (7) and its equivalence with the one in (8), G = κ since



Discrete Discriminant analysis based on tree-structured graphical models 7

the searching is over all trees in Tp and the weights are found by noticing that for a given tree
τ = (V,Eτ )

I(P̂yκ , P̂yτ ) = −
∑

(i,j)∈Eτ

∑
xi∈Xi,xj∈Xj

P̂y(xi, xj) ln
P̂y(xi, xj)

P̂y(xi)P̂y(xj)
+D,

with D a constant that does not depend on τ . The weight for any edge is:

λy(i, j) =−
∑

xi∈Xi,xj∈Xj

P̂y(xi, xj) ln
P̂y(xi, xj)

P̂y(xi)P̂y(xj)

=−
∑

xi∈Xi,xj∈Xj

ny(xi, xj)

ny
ln

ny(xi, xj)

ny(xi)ny(xj)/ny
∀ (i, j) ∈ Eκ.

Other structure estimation methods based on alternative functions f(τ1, τ2), whose optimiza-
tion is equivalent to finding MWSTs, have also been considered in the literature. We restrict the
comparison to a set of six existing methods with this property. In these methods, the associated
optimization problem is defined by maximizing one the following three functions and assuming
either two arbitrary trees or of a single one: Maximum Likelihood (MLτ1τ2 and MLτ ); Approx-
imated J-divergence (AJDτ1τ2 and ADJτ ); and Empirical Log Likelihood Ratio (ELLRτ1τ2 and
ELLRτ ).

When τ1 = τ2 = τ only one MWST problem is involved. When τ1 and τ2 are arbitrary the
optimization problem

(τ∗1 , τ
∗
2 ) = argmax

τ1,τ2∈Tp
f(τ1, τ2) = argmax

τ1,τ2∈Tp
f1(τ1) + f2(τ2) (9)

can equivalently be expressed as two independent MWST problems:

τ∗1 = argmin
τ∈Tp

∑
(i,j)∈Eτ

λ1(i, j) and τ∗2 = argmin
τ∈Tp

∑
(i,j)∈Eτ

λ2(i, j), (10)

for specific weights λ1(i, j) and λ2(i, j) which depend on f1(τ1) and f2(τ2), respectively. The
functions and associated weights for each of the six methods are described in Table 1.

The MLτ1τ2 method corresponds to problem in (7), introduced in Chow and Liu (1968). MLτ
was proposed by Friedman et al. (1997) when considering a graph structure called TAN-Network
which has the property that the subgraph induced by removing the class variable is a tree.
AJDτ1τ2 and ELLRτ1τ2 were introduced in Tan et al. (2010); these methods are equivalent when
the group sample sizes are the same, since (12) and (13) become proportional. AJDτ and ELLRτ
were studied in Perez and Eslava (2016); AJDτ considers the J-divergence J(P̂1τ (x), P̂2τ (x)),
though an equivalent expression is given in Table 1. AJDτ and ELLRτ are equivalent when the
group sample sizes are the same.

The empirical comparison of the rule in (3) with trees estimated by these methods is presented
in the following section.
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Table 1 Functions to be maximized to estimate the structure of the trees, and corresponding weights associated
with the MWST problems.

Method Function / Weights

MLτ1τ2 f(τ1, τ2) =

n1∑
l=1

ln P̂1τ1

(
xl
)

+

n2∑
l=n1+1

ln P̂2τ2

(
xl
)

λy(i, j) = −
∑

xi∈Xi,xj∈Xj

ny(xi, xj) ln
ny(xi, xj)

ny(xi)ny(xj)
, y ∈ {1, 2}. (11)

MLτ f(τ) =

n1∑
l=1

ln P̂1τ

(
xl
)

+

n2∑
l=n1+1

ln P̂2τ

(
xl
)

λ(i, j) = λ1(i, j) + λ2(i, j); with λy(i, j) as in (11).

AJDτ1τ2 f(τ1, τ2) =
∑
x∈X

(
P̂1κ (x)− P̂2κ (x)

)
ln
P̂1τ1

(x)

P̂2τ2
(x)

λy(i, j) = −
∑

xi∈Xi,xj∈Xj

(
ny(xi, xj)

ny
−
n3−y(xi, xj)

n3−y

)
ln

ny(xi, xj)

ny(xi)ny(xj)
, y ∈ {1, 2}. (12)

AJDτ f(τ) =
∑
x∈X

(
P̂1κ (x)− P̂2κ (x)

)
ln
P̂1τ (x)

P̂2τ (x)

λ(i, j) = λ1(i, j) + λ2(i, j); with λy(i, j) as in (12).

ELLRτ1τ2 f(τ1, τ2) =

n1∑
l=1

ln
P̂1τ1

(xl)

P̂2τ2
(xl)

+

n1+n2∑
l=n1+1

ln
P̂2τ2

(xl)

P̂1τ1
(xl)

λy(i, j) = −
∑

xi∈Xi,xj∈Xj

(ny(xi, xj)− n3−y(xi, xj)) ln
ny(xi, xj)

ny(xi)ny(xj)
, y ∈ {1, 2}. (13)

ELLRτ1 f(τ) =

n1∑
l=1

ln
P̂1τ (xl)

P̂2τ (xl)
+

n1+n2∑
l=n1+1

ln
P̂2τ (xl)

P̂1τ (xl)

λ(i, j) = λ1(i, j) + λ2(i, j); with λy(i, j) as in (13).

4 Empirical performance

In this section we illustrate the performance of discriminant analysis with trees estimated by
different methods, in an intensive care unit problem and in a simulation study. In addition to the
rule given in (3) with trees selected by the six methods presented in Table 1, we consider four
alternative possibilities: rule (3) with an edgeless graph (independent model), with a decompos-
able graph (decomposable model), and with a complete graph (saturated model) on each class;
and linear logistic regression; referred respectively as Independent, MLdec1dec2 , Saturated, and
Logistic–Reg.
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The naive classifier, which corresponds to rule (3) with edgeless graphs, and linear logistic
regression are linear classifiers commonly used due to their simplicity and often good classifi-
cation performance in practical applications. In particular, the independent model is useful in
high-dimensional settings or in the presence of sparse data, in these settings discriminant analysis
with tree-structured graphical models is a simple nonlinear alternative to use.

The numerical results were obtained using R (R Core Team 2013), mainly packages gRapHD
(Abreu et al. 2010) and gRain (Højsgaard 2012). For estimating the tree structures, the weights
associated with the MWST problem for each method presented in Table 1 were implemented
as a user defined function which is called by function minForest in gRapHD. In this sense, the
implementation of any of the six methods for finding the structure of the trees is straightforward.
The saturated and decomposable models have been fitted using function extractPOT in gRain
with the option smooth set to .1 which corresponds to add .1 in each state x ∈ X . A decomposable
structure was estimated, separately for each population, using function stepw in gRapHD with
maximum likelihood as the function to be optimized and with the corresponding tree structure
found with the MLτ1τ2 method as initial solution.

4.1 Intensive care unit data

This example relates to a problem of discrimination between surviving and non surviving patients
admitted into the intensive care unit (ICU) in two hospitals in Mexico city. The data consists
of measurements made on 859 patients of which 480 died between the second day of admission
into the ICU and three months after hospital discharge while 379 survived. Ten variables are
considered in the analysis, seven of which are binary and three with three categories. Some of
these variables were obtained by categorizing variables originally continuous.

The variables recorded at the time of admission into or during stay in the ICU are the follow-
ing. Quality of life prior to admission (X1 :1 good, 0 bad); use of mechanical ventilation (X2 : 1
yes, 0 no); score of the predicted death rate based on APACHE II (X3 : 1 score >.19, 0 score ≤
.18); age (X4 : 2 [76, 93]; 1 [41, 75]; 0 [16, 40]); number of surgeries while in ICU (X5 : 2 two or
more, 1 one, 0 none); sepsis (X6 : 2 acquired within hospital, 1 acquired prior entering hospital,
0 none); Glasgow score (X7 : 1 seven or less, 0 eight or more); Cardiac failure (X8 : 1 yes, 0 no);
Brussels score (X9 : 1 six or more, 0 five or less); years of school attendance (X10 : 1 five or less,
0 six or more), and the indicator variable for nonsurvival (Y : 1 yes, 0 no).

In this example, with seven binary and three ternary variables, the state space on each class
is X = {0, 1}7 × {0, 1, 2}3 and |X | = 3456. Therefore, to ensure that all states have at least
one observation, there should be at least 3456 observations from each population. Considering
the saturated model, a very large number of observations relative to the number of variables is
required for a precise estimation of all the state probabilities. Another difficulty is when a state
x ∈ X has zero observations in both populations, then the allocation is forced to be random.
These aspects reflect the problem of sparseness, particularly for the application of the full multi-
nomial model, and the need of more parsimonious models. For some examples and discussion
on the problem of sparseness see Goldstein and Dillon (1978). For instance, the number of non
empty states for this data set is very low, only 200 (5.8%) for the survival and 261 (7.6%) for
the nonsurvival group, and only 93 (2.7%) states have non zero observations in both.
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Error rates were estimated by the repeated holdout method. The data set was randomly split
into two sets in proportions 4/5 and 1/5 in each population, one for training and one for testing.
The discriminant methods were applied and the proportion of misclassified observations for each
group were calculated. The procedure was repeated 100 times, and the mean and standard
deviations of the observed proportions give the estimated error rate and an estimate of its
standard error. Numerical results are displayed in Figure 1, and in Table 2 in the appendix.
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Fig. 1 Error rates estimated by repeated holdout method with 100 random training samples of size 4n/5

The results show that for all methods but the saturated, global error rates are the same within
uncertainty. All methods perform better for the large group (480) than for the small (379); the
saturated model has the worst and a bad performance, respectively.

4.2 Simulated data

For a set of correlated variables an independent model might not perform well. In particular
for binary variables, Hand (1981) illustrates the case for two binary variables and two groups.
We have designed a simulation experiment considering a set of ten correlated binary variables.
Each variable has the same marginal distribution within each population, and similar between
the two, P (Xi = 1|Π1) = .5 and P (Xi = 1|Π2) = .4, i ∈ {1, . . . , 10}. This is an instance where
the independent model is expected not to perform well.

Two multinomial models with different dependence structure among variables were consid-
ered to generate the data. In the first one, binary variables were obtained by dichotomizing
observations from Gaussian graphical distributions with a random dependence graph. In the sec-
ond one, the binary variables follow a graphical model associated with a path-structured graph.

4.2.1 Random structure

Samples {xl}nyl=1, y ∈ {1, 2}, were obtained by dichotomizing random samples from a Gaussian
graphical model whose associated graph is random.
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One set {zl}n1

l=1 from populationΠ1 = N10(0, ΣRand1) and one {zl}n2

l=1 fromΠ2 = N10(0, ΣRand2)
were generated. Each univariate observation zlj , l = 1, . . . , n1, form Π1 was dichotomized as

xlj = I(zlj < Φ(.5)); and each zlj , l = 1, . . . , n2 from Π2 as xlj = I(zlj < Φ(.4)); j ∈ {1, . . . , 10}; Φ
denotes the inverse of a standard normal distribution.

The concentration matrices, Σ−1
Rand1

and Σ−1
Rand2

, were taken to have on average 30% of the
p(p − 1)/2 = 45 off–diagonal elements with a non zero value and the rest with a zero value,
resulting in 14 and 15 non zero elements on each matrix, respectively.

For each group, a symmetric 10 × 10 matrix A = {aij} was generated using random num-
bers uij from a uniform distribution U(−1, 1), with aij = uijI(|uij | > .7), i 6= j, and aii =
1.01 ×

∑
j 6=i |aij |, i, j = 1, ..., 10. The covariance matrix Σ = {σij} is then determined by

σij = aij/
√
aiiajj , where aij is the entry ij of the matrix A−1.

4.2.2 Path structure

Random samples were generated from path–structured multinomial distributions in each pop-
ulation: Pyτ (x) =

∏9
i=1 Py(xi, xi+1)/

∏9
i=2 Py(xi), y = 1, 2; where P1(xi, xi+1) = .1I(xi =

xi+1) + .4I(xi 6= xi+1), P2(xi, xi+1) = .1I(xi 6= xi+1) + .3I(xi = xi+1 = 0) + .5I(xi = xi+1 = 1),
i = 1, ..., 9, and xi ∈ Xi = {0, 1}.

4.2.3 Results

Data sets were generated considering two cases: equal and different group sample sizes. In each
case independent samples were generated, one set for training and one for testing the models:
i) training: n1 = n2 = 100; test: n1 = n2 = 1000, and ii) training: n1 = 2n2 = 200; test:
n1 = 1333, n2 = 667. The procedure was repeated 400 times in order to estimate error rates and
corresponding standard deviations. Figures 2 and 3, and Tables 3 and 4 in the appendix, display
the numerical results for each case.

For equal group sample sizes. For discriminant analysis using trees or decomposable graphs,
the results are the same within uncertainty, their performance is better than the rest. Logistic
regression and the independent model have an equally bad performance for both the path and
the random dependence structures. The saturated model has in general a bad performance par-
ticularly for the populations with a random structure.

For different group sample sizes. The performance of the global error rate is as the corre-
sponding in the case for equal group sample sizes. The error rates for the small group are much
larger than for those of the large group for the populations with a random structure. The satu-
rated method has the worst performance for the populations with a random structure and a bad
one for the path—structured populations; the independent and logistic regression models have a
bad performance in both populations.
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Fig. 2 Random structure. Average of 400 error rates estimated from independent training and test samples. Left:
training n1 = n2 = 100 and test n1 = n2 = 1000; AJDτ1τ2 ≡ ELLRτ1τ2 ; AJDτ ≡ ELLRτ . Right: training
n1 = 2n2 = 200 and test n1 = 1333 and n2 = 667
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Fig. 3 Path structure. Average of 400 error rates estimated from independent training and test samples. Left:
training n1 = n2 = 100 and test n1 = n2 = 1000; AJDτ1τ2 ≡ ELLRτ1τ2 ; AJDτ ≡ ELLRτ . Right: training
n1 = 2n2 = 200 and test n1 = 1333 and n2 = 667

Before giving some comments we give some remarks.

Remark 1 The performance of the classification rule given in (3), for any of the data sets, has
not favoured any of the methods given in Table 1 for selecting the structure of the trees. Any
of the six methods could be used. However, it should be noted that MLτ1τ2 and MLτ methods

aim at approximating each probability function P1 and P2 with P̂1τ1
and P̂2τ2

, either with two
arbitrary trees or with a single one, respectively. These estimated functions can be helpful to
explain the relationship among the variables in each class. Whereas the other methods aim at
finding P̂1τ1

and P̂2τ2
that maximize the divergence between the two.

Remark 2 The study has been done for two classes, its extension to more than two is straight-
forward. For K > 2 classes, the methods for estimating the structure of the trees have to be
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implemented considering either K arbitrary trees or a single one. The function to be optimized
for each method in Table 1 can be easily modified to include K populations, and its optimization
would still be equivalent to K or to one MWST problem. Once the trees are identified, the classi-
fication rule given in (3) is equivalent to simply classify x to the class with the highest estimated

posterior probability π̂kP̂kτk (x)/
∑K
i=1 π̂iP̂iτi (x), k ∈ {1, . . . ,K}.

Remark 3 In the context of classification, discriminant analysis with a tree-structured graphical
model for mixed variables, continuos and discrete, in each population is a natural extension to the
work presented here. For a single population some research has already been done. For instance,
Lee and Hastie (2015) study the estimation of the graph–structure for pairwise graphical models,
and Cheng et al. (2016) study more complicated mixed graphical models, both using the lasso.
Whereas Edwards et al. (2010) and Højsgaard et al. (2012) have considered the class of tree–
structured graphical models, using maximum likelihood to estimate the structure of the tree with
algorithms for finding the exact tree.

5 Discussion

We have illustrated the use and performance of discrete discriminant analysis with tree–structured
graphical distributions on each of two classes. The results show that this method offers a good
tool for practitioners for classifying multivariate discrete observations. The method takes into
account a subset of pairwise interactions between variables making it a parsimonious model use-
ful to deal with some of the effects of sparseness in discrete data sets.

Discriminant analysis using a full multinomial model on each class, although being very sim-
ple to compute, in practice demands large sample sizes to perform well and to avoid classify
observations randomly into one of the classes. The simple method which assumes an indepen-
dent model on each class is also very simple to compute and its use, like the one assuming full
multinomial models, does not require the estimation of a graph structure. Although the assump-
tion of mutual independence is often not tenable in practice, this method performed well for the
intensive care unit data; however when the main difference between the two groups is due to the
interaction of the variables, as in the simulated data, this method is not effective.

Discrimination based on tree–structured multinomial models falls between methods using a
full and an independent multinomial distribution with respect to the kind of correlation struc-
ture. It considers only p − 1 of all p(p − 1)/2 pairwise interactions between p variables in each
population. Its performance for the intensive care unit data, regardless of the method used to
estimate the structure of the trees, was as good as the best method which assumes mutual inde-
pendence. For the simulated data, its performance was superior. There are, of course, structured
populations where interactions among variables cannot be captured, not even approximated, by
a tree–structured distribution. However, the use of these models with some pairwise interactions
might help to improve the classification performance of discriminant analysis without increasing
the computational complexity when compared with linear classifiers.

The method using a decomposable multinomial model on each class performed equally well
within uncertainty, with estimated error rates marginally higher, than the method that best
performed. These models consider higher order interactions, but the estimation of the structure
of the decomposable graph cannot be solved in an exact way as for tree–structured models.
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Logistic discrimination performed equally well as the other methods and better than the one
using a saturated model for the intensive care unit data. For the simulated data, its performance
was worst than discrimination based on tree–structured models, this was expected since logistic
discrimination was taken as a linear logistic regression with no interaction terms.

The main conclusion is that discriminant analysis with a tree–structured multinomial distri-
bution, also referred as tree–structured graphical model, in each class is a good competitor to
simple methods which are robust against the effects of sparseness, like the one assuming mutual
independent variables, with the advantage of taking into account some of the dependence struc-
ture of the variables through pairwise interactions.
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A Appendix

Table 2 Intensive care unit data. Error rates estimated by repeated holdout method with 100 random training
samples of size 4n/5

Nonsurvival Survival Global
Method n1 = 480 n2 = 379 n = 859 (se)
Saturated 36.9 43.6 39.9 (3.4)
Independent 20.7 38.3 28.5 (3.3)
Logistic-Reg 20.2 39.5 28.7 (3.1)

MLdec1dec2 23.1 44.4 32.5 (3.9)

MLτ1τ2 18.5 42.5 29.1 (3.0)
MLτ 19.1 41.9 29.1 (3.0)
AJDτ1τ2 22.9 38.0 29.6 (3.1)
AJDτ 21.3 38.1 28.8 (3.2)
ELLRτ1τ2 23.3 37.8 29.7 (2.9)
ELLRτ 21.4 38.1 28.8 (3.1)

Table 3 Random structure. Average of 400 error rates estimated from independent training and test samples.
Left panel: training n1 = n2 = 100 and test n1 = n2 = 1000; AJDτ1τ2 ≡ ELLRτ1τ2 ; AJDτ ≡ ELLRτ . Right
panel: training n1 = 2n2 = 200 and test n1 = 1333 and n2 = 667

n1 = n2 = 100 n1 = 200, n2 = 100
Method Π1 Π2 Π1 ∪Π2(se) Π1 Π2 Π1 ∪Π2 (se)
Saturated 42.80 41.37 42.08 (1.4) 35.70 45.45 38.95 (1.4)
Independent 39.96 38.63 39.29 (2.0) 10.36 76.44 32.40 (1.6)
Logistic-Reg 37.41 37.60 37.50 (1.7) 12.16 68.09 30.81 (1.4)

MLdec1dec2 26.31 26.16 26.23 (1.7) 14.07 41.30 23.15 (1.4)

MLτ1τ2 25.79 25.58 25.69 (1.6) 13.60 41.76 22.99 (1.3)
MLτ 28.07 26.22 27.15 (1.9) 13.94 45.47 24.46 (1.4)
AJDτ1τ2 26.70 25.04 25.87 (1.4) 15.35 39.26 23.32 (1.6)
AJDτ 27.51 26.47 26.99 (1.6) 15.38 41.97 24.25 (1.7)
ELLRτ1τ2 14.79 40.33 23.31 (1.5)
ELLRτ 15.37 41.97 24.24 (1.7)

Table 4 Path structure. Average of 400 error rates estimated from independent training and test samples. Left
panel: training n1 = n2 = 100 and test n1 = n2 = 1000; AJDτ1τ2 ≡ ELLRτ1τ2 ; AJDτ ≡ ELLRτ . Right panel:
training n1 = 2n2 = 200 and test n1 = 1333 and n2 = 667

n1 = n2 = 100 n1 = 200, n2 = 100
Method Π1 Π2 Π1 ∪Π2 (se) Π1 Π2 Π1 ∪Π2 (se)
Saturated 24.76 25.00 24.88 (1.2) 18.34 25.15 20.61 (1.2)
Independent 37.26 41.45 39.36 (3.7) 3.59 62.21 23.14 (2.2)
Logistic-Reg 39.55 42.07 40.81 (3.7) 3.47 64.49 23.82 (1.9)

MLdec1dec2 2.77 2.77 2.77 (0.5) 1.76 4.10 2.54 (0.5)

MLτ1τ2 2.37 2.42 2.39 (0.3) 1.63 3.54 2.27 (0.4)
MLτ 2.34 2.39 2.36 (0.3) 1.62 3.45 2.23 (0.3)
AJDτ1τ2 2.34 2.39 2.36 (0.3) 1.62 3.45 2.23 (0.3)
AJDτ 2.34 2.39 2.36 (0.3) 1.62 3.45 2.23 (0.3)
ELLRτ1τ2 1.62 3.45 2.23 (0.3)
ELLRτ 1.62 3.45 2.23 (0.3)


