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ABSTRACT 

Uncertainty is inherent to transport models and prevents from using a deterministic approach 

when modelling traffic. Quantifying uncertainty thus becomes an indispensable step to 

produce more informative and reliable output of transport models. Within traffic assignment 

models, volume delay functions express the travel time as a function of traffic flows and 

theoretical capacity of the modelled facility. The US Bureau of Public Roads (BPR) formula 

is one of the most extensively applied volume delay functions in practice. This study 

investigated uncertainty in the BPR parameters. Initially, BPR parameters were estimated by 

analyzing observed traffic data related to the Danish highway network. Then, BPR parameter 

distributions were generated by using re-sampling Bootstrap technique. Finally, the generated 

parameter vectors were used to implement sensitivity tests on the four-stage Danish national 

transport model. The results clearly highlight the importance for modelling purposes of 

taking into account BPR formula parameter uncertainty, expressed as a distribution of values 

rather than assumed point values. Indeed, the model output demonstrates a noticeable 

sensitivity to parameter uncertainty. This is particularly evident for stretches of the network 

with a high number of competing routes. Model sensitivity was also tested for BPR parameter 

uncertainty combined with link capacity uncertainty. The resulting increase in model 

sensitivity demonstrates even further the importance of the implementation of uncertainty 

analysis as part of a robust transport modelling process.    
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INTRODUCTION 

By modelling complex systems, transport models are subject to uncertainty that can affect all 

model components (i.e., context, model structure and methodology, inputs and parameters) to 

finally propagate to the model output. The main consequence of this inherent uncertainty is 

that transport models do not provide reliable point estimates of modelled traffic flows and 

derived measures. Instead, modelled traffic flows are better expressed as a central estimate 

and an overall range of uncertainty margins articulated in terms of (output) values and 

likelihood of occurrence (1). Uncertainty analysis relates to how uncertainty in each model 

component propagates to the model output and how to express the model output as a 

distribution, so reflecting the overall uncertainty present in the model. 

The assignment algorithms of large-scale transport models often use static volume 

delay functions to express travel time as a function of traffic flow and theoretical capacity of 

the modelled facility. However, travel time is not just a function of flow and it is in fact 

affected by a number of different factors, such as downstream bottlenecks and resulting 

spillback or less than ideal weather conditions, causing drivers to drive slower. Consequently, 

a problem arises whenever traffic data output of static models are used to feed cost benefit 

analysis. In these cases, in order to produce valuable information, a necessary step is to 

address uncertainty in the volume delay functions by quantifying the sensitivity of the model 

output to the variability of the volume delay functions components.      

Volume delay functions can be divided in three main groups (2): hyperbolic, 

polynomial and exponential. The US Bureau of Public Roads (BPR) formula, belonging to 

the polynomial group and proposed in its original version in 1964 (3), is one of the most 

extensively applied volume delay functions in practice. The BPR formula, given free flow 

travel time, observed flow and link capacity uses parameters to represent different 

relationships between travel time and (modelled) flow-to-capacity ratios. Usually, the values 

for the parameters are pre-defined, based on assumptions and practice. However, as for any 

other model components, the BPR formula parameters have inherent uncertainty that 

originates from both the ignorance of the modeler of the true value of the parameters 

(epistemic uncertainty) and the stochastic behavior of the (true) parameters itself (ontological 

uncertainty), which potentially vary by driver behavior, time of the day, weather conditions 

and link characteristics.   

An approach widely used in the transportation literature to quantify model uncertainty 

is to run model sensitivity tests by using distributions of input and parameters, and output of 

of stochastic sampling procedures. For this purpose, re-sampling techniques such as 

Bootstrap (4) have been used to generate model parameter distributions. Re-sampling 

approaches have a clear advantage compared to other sampling procedures. In fact, they do 

not require modelers’ knowledge or assumptions about the shape of the parameter 

distributions, which becomes instead the output of the re-sampling methodology itself. 

Bootstrap has been implemented in many studies on transport uncertainty by Brundell-Freij 

(5), Hugosson (6), De Jong et al. (7), Matas et al. (8) and Petrik et al. (9). Bootstrap defines 

the parameter distributions by recalibrating the model parameters for a number of model 

samples, which are generated from the original sample by re-sampling with replacement.  

At the best of our knowledge, no attempt has been made so far to estimate uncertainty 

in the BPR formula parameters from the analysis of observed data and to analyze its effect on 

traffic assignment results of large-scale models. For this purpose, observations of the Danish 

highway network were obtained from the Hastrid dataset that is owned by the Danish Road 

Directorate. Non-linear regression analyses were implemented to allow the calibration of the 

values of the BPR formula parameters simultaneously. Afterwards, parameters were 
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repeatedly calibrated on 10,000 Bootstrap samples to generate parameter distributions. 

Finally, selected percentiles of the distributions were used to run sensitivity tests on the 

Danish national transport model (LandsTrafikModellen, LTM). In addition, a scenario 

investigating LTM sensitivity to BPR parameter uncertainty combined with link capacity 

uncertainty was tested. The link capacity uncertainty was quantified by creating vectors of 

capacity values through the implementation of Monte Carlo simulation.  

The next section provides a description of the methodology applied to estimate the 

BPR parameter distributions, including a description of the datasets used for the research and 

the Bootstrap sampling technique. After a brief description of the LTM, the following section 

illustrates and discusses the results from the sensitivity tests run. The conclusions from this 

research are presented in the last section of this paper.  

METHODOLOGY 

Time-Flow Relationship: the BPR Formula 

In traffic assignment models a common way to describe the relationship between travel time 

and traffic flows is the BPR formula (3): 
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1






   
     
    

r r

r r

r

Flow Flow
TT FFT

Capacity
 (1) 

where TTr is the congested travel time on link r, FFTr is the free flow time on link r, Flowr is 

the traffic volume on link r, Capacityr is the capacity of link r, Flow’r refers to the traffic 

volume on the opposite direction of link r (relevant only in case of non-separated lanes), and 

α, β and γ are volume-delay parameters. Specifically, α represents the ratio between free flow 

speed and speed at capacity, β determines how steeply the curve bends once the capacity is 

reached, and γ captures the effect of speed reduction due to opposite traffic in roads with non-

separated lanes.  

The BPR formula can be modified to express the relationship between speed (instead 

of congested time) and flow-to-capacity ratio, as illustrated by Nielsen and Jørgensen (10) 

and Fagnant and Kockelman (11): 
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where Sr is the observed average speed on link r and FFSr is the velocity in free flow 

conditions on link r. The use of either the time-flow or the transformed speed-flow formulas 

is generally data-driven, namely is dependent on the availability of data concerning either 

travel times or travel speeds. For example, the current study considers observations from a 

dataset of travel speeds, and hence uses the transformed speed-flow formula for  the 

calibration of the BPR parameters. It is important to stress that the transformed formula 

implies an approximation. In fact, the speed is measured by local detectors, so it does not 

reflect precisely the link travel time, but rather is expression of the overall link conditions. On 

the top of our knowledge, no attempt has been done so far to quantify this discrepancy. 

In general, criticisms have been moved to the BPR formula. As pointed out by 

Downing et al. (12), depending on the choice of the parameter values the BPR formula may 

result insensitive to volume changes until demand exceeds capacity, when the predicted 
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speed drops abruptly. Nevertheless, other studies proved that with an appropriate choice of 

parameter values specific for road type, the BPR formula offers comparable or even better 

goodness of fit to observed data than other volume delay functions (13).  

Another drawback is that the BPR formula results correct to model travel time only 

when the traffic flow is below capacity. In fact, when traffic flow reaches capacity (in figure 

1 the point corresponding to flow at capacity FC and the related speed at capacity SC), the 

curve representing the BPR formula takes the shape of the dotted curve on the right of FC. 

Instead, the observed traffic behavior is tendentially close to the pattern described by the bold 

line. To overcome this issue, it was suggested expressing the flow-capacity ratio in terms of 

density-density at maximum flow ratio (13). With this approach in fact, the speed-flow 

observations assume an s-shape that is possible to model.  

[Insert figure 1 about here] 

Despite the criticism, in static assignment models the BPR formula is commonly used 

and accepted for practical reasons. Among others, with the BPR formula the speed-flow 

relationship curve is “continuous even beyond capacity and differentiable”, as argued by 

Nielsen and Jørgensen (10). 

Hastrid Dataset and Parameter Calibration  

This study intended to calibrate the BPR formula parameters, and hence used information 

regarding the Danish highway network that was contained in the dataset Hastrid, owned by 

the Danish Road Directorate. The Hastrid dataset contains observations for vehicle flow and 

average speed by time intervals of 15 minutes. The data used in the present analysis were 

collected in September 2009 from 3 count stations located in north east part of Zealand. Two 

count stations were located on the highway M11, called “Holbækmotorvejen”, connecting 

Holbæk, in the north-west part of Zealand, with the south-west suburbs of Copenhagen. The 

third count station was instead located on the highway M16, called “Hillerødmotorvejen”, 

connecting Hillerød, in the north part of Zealand, with the northern suburbs of Copenhagen. 

Table 1 summarizes the main characteristics of the three sections where the count stations 

were located while figure 2 shows their geographical location on the highway network. 

[Insert table 1 about here] 

[Insert figure 2 about here] 

In order to perform the parameter calibration, the 15 minute data were transformed 

into hourly data by summing the 15 minute vehicle flow observations and averaging the 

corresponding observed speeds. The flow-to-capacity ratio was calculated as density-density 

at a maximum flow ratio (13). The density of maximum flow was defined at 28 passenger 

cars per kilometer per lane, corresponding to the value suggested by the Highway Capacity 

Manual (14) of 45 passenger cars per mile per lane. Finally, the free flow speed was 

calculated for each section as corresponding to the average observed speed at density-density 

at a maximum flow ratio lower than 0.5.  

However, this approach may result in curves with a long tail on the right hand side 

(15). This would imply the acceptance of relatively high speeds in situations over capacity, 

thus leading to an overestimation of the network accessibility. Thus, the density-density at the 

maximum flow ratio approach was partially modified to better model severe congested 

conditions. Accordingly, for the calibration we used the value X, calculated as:  
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where D/Dmax is the density-density at the maximum flow ratio. As can be seen, for severe 

congested conditions, i.e. D/Dmax ≥1, the density-density at the maximum flow ratio values 

were reduced to avoid unreasonably high congested values. 

The upper part of figure 3 graphically shows the observed average speed plotted 

against X. Overall, the observed speed-flow relationship on the three links shows a trend 

consistent with what theoretically expected. As can be noticed, the majority of the 

observations cluster around the free flow speed of approximately 110km/h for low levels of 

congestion (corresponding to X<1). Only a few observations unexpectedly register free flow 

speed also in congested conditions (corresponding to X>1), probably due to count mistakes. 

Besides, there is a cluster of observations corresponding to speeds around 75km/h for low 

levels of congestion. These observations are probably related to trucks in the inner lane, 

which have speed limits of 80km/h (10).   

[Insert figure 3 about here] 

The parameter calibration, implemented using the statistical software SAS, resulted in 

α = 0.33 and β = 4.04. With respect to the Danish road network, Hansen (15) defined a range 

of values between 0.5 and 2 for α and between 1.4 and 11 for β. Thus, for validation 

purposes, vehicle speeds resulting from the BPR formula and the calibrated values of α and β 

were calculated and compared with observed average speeds through both regression analysis 

and visual inspection. Results from the regression analysis were satisfactory (R2 = 0.9764) as 

well as the ones from the visual inspection of the pattern of the speed estimated from the BPR 

formula, depicted in the bottom part of figure 3.  

Quantification of Uncertainty in the BPR Formula Parameters  

In order to produce BPR parameter distributions, the re-sampling technique Bootstrap (4) was 

used. The Bootstrap method investigates the accuracy of an estimator θ based on the 

assumption of considering the original sample, originating θ, as the population. Bootstrap 

consists in a three step procedure. Firstly, from the original sample of n observations a 

number of samples are generated through (re)sampling with replacement. All Bootstrap 

samples contain n observations as the original sample. The replacement approach guarantees 

that each observation in the original sample has a constant probability 1/n to be drawn; as a 

consequence the Bootstrap samples have a high probability of differing from each other. 

Secondly, the estimator θ is calculated for each Bootstrap samples. Thirdly, the new θ values 

obtained are analyzed to infer the accuracy of the estimator by using some uncertainty 

measures such as variance or standard deviation.  

One restriction to the use of Bootstrap is that it can be only implemented for variables 

which are the output of calibration processes and only when the sample is available. Thus, it 

cannot be applied to variables observed, assumed or imported. Besides, it is important to 

notice that the Bootstrap method has two downsides. Firstly, there is no rule defining the 

correct number of Bootstrap samples to generate, although the number should be large and, in 

theory, tendentially infinite. Secondly, the results are constrained by the quality of the 

original sample, given that the Bootstrap samples do not increase the amount of information 

there contained.  

Using as original sample the one used for the parameter calibration, 9999 Bootstrap 

samples were created and the calibration process was repeatedly implemented for each of 
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them. The resulting parameter statistics are summarized in Table 2. Also the coefficients of 

variation (CV) are reported and henceforward used as a measure of uncertainty. Table 2 also 

shows selected percentiles of the distribution. The sensitivity tests on the LTM were run 

based on these values rather than for all 10,000 parameter values (9,999 from the Bootstrap 

samples plus one of the original calibration) because of the extremely long run times of the 

LTM model. Finally, figure 4 graphically shows the resulting distributions for α and β. 

[Insert table 2 about here] 

[Insert figure 4 about here] 

Link Capacity Uncertainty 

Despite this study focuses on BPR parameter uncertainty, also the other variables of the BPR 

formula, namely FFTr (or FFSr), Flowr and Capacityr, potentially have inherent uncertainty. 

A comprehensive analysis of model uncertainty should include also the assessment of model 

sensitivity to the uncertainty of these variables. However, with respect to LTM, FFTr is based 

on legal speed limits and Flowr depends upon trip generation processes, thus only uncertainty 

inherent to link capacity has been investigated.     

As previously highlighted, Bootstrap can only be applied to calibrated variables. 

Thus, Monte Carlo simulation has been implemented in order to quantify link capacity 

uncertainty. Triangular distributions were used in order to avoid illogical sampling results, 

such as negative or too high capacity values. The limits of the triangular distributions were 

defined as +/-25% of the capacity link value provided in the LTM network description. The 

resulting vector values were used in combination with BPR parameter values resulting from 

the Bootstrap procedure to run sensitivity tests on the LTM model. In this way it was possible 

to analyze the combined effect of the two uncertainty sources (i.e., BPR parameters and link 

capacity) on the model. As for the Bootstrap vectors, only selected percentiles from the 

Monte Carlo simulations were used to run the sensitivity tests.  

CASE STUDY 

The LTM 

The LTM is meant to establish a unified reference model for transport policy analysis and 

project evaluation in Denmark (16). The model relies on two main data sources: the Danish 

travel survey, namely Transportvane Undersøgelsen (TU), and the Danish national register. 

TU is a national survey on-going from 1992 that contains travel information from around 

1000 individuals per month, while the national register provides socioeconomic information 

for the entire Danish population. The model zone system is based on four different 

aggregation levels going from the more disaggregated up to the more aggregated: level 3 

(regional level, 3670 zones), level 2 (national level, 907 zones), level 1 (strategic level, 176 

zones) and level 0 (municipality level, 98 zones). 

Figure 5 graphically describes the model framework, which is based on four stages for 

the passenger demand model and three stages for the freight demand model. At the initial 

stage, the model assumptions exogenous to the model are defined, specifically population, 

employment, and the road and transit networks. In the second stage, the model consists of 

two parallel segments, the passenger demand model and the freight demand model. Both 

these models feed the assignment model that defines the route choice equilibrium. The 

equilibrium solution provides in turn feedback to the demand models. 

[Insert figure 5 about here] 
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As can be noticed, the passenger demand model is divided into two sequential 

models: the strategic model, which defines strategic choices, and the passenger model, which 

delineates transport related choices. The models are linked in a random utility framework. At 

the upper level, the strategic model defines the prerequisites for the passenger model. The 

passenger model then provides information to the assignment model which in turn sends 

feedback, in terms of accessibility measures, to both the strategic and the passenger models.  

This study focuses on the passenger road assignment model. The model is tour-based 

and the model structure can be divided into two main sub-models modeling the primary tour 

activity of the day and the intermediate stop activities (conditional on the primary activity). A 

limitation is imposed so that a tour can consist of a maximum of four trips (i.e., home-stop; 

stop-main destination; main destination-stop; stop-home) and only two tours are allowed per 

individual per day. 

More in detail, the passenger road assignment model is a link-based model solved by 

the Method of Successive Averages (MSA) to reach Stochastic User Equilibrium (SUE). The 

chosen route to travel by mode k between origin zone i and destination zone j is the one that 

minimizes the cost of travelling calculated at the link level as: 

ijkr l ijkr tf ijkr tc ijkr c c ijkrC L FFT TC c          

where Cijkr is the cost of travelling by mode k from zone i to zone j using link r, Lijkr is the 

length of the link r by mode k from zone i to zone j, FFTijkr is the free flow travel time, TCijkr 

is the extra travel time due to congestion, cc represent monetary cost of travelling (varying 

according to mode and purpose), εijkr is the vector of residuals, and the ω’s are the parameters 

associated to the respective variable. The relationship between travel time and traffic flows is 

based on the BPR formula. 

Results and Discussion 

The results from the sensitivity test runs on the LTM traffic assignment are summarized in 

tables 3 and 4. The upper part of the tables (Scenario 1) shows results for model sensitivity to 

BPR parameter uncertainty. The bottom part (Scenario 2) illustrates instead results for model 

sensitivity to BPR parameter uncertainty and link capacity uncertainty combined. 

Table 3 shows the links average CV referring to vehicle-kilometer (Veh-Km) and 

average speed (AvgSpeed) for both the entire network and the highway links only. As can be 

seen, the mean CV values for both Veh-Km and AvgSpeed are low, reflecting low model 

sensitivity to the BPR parameters uncertainty. However, it is worth to remind that uncertainty 

was quantified only for parameters  and β referring to highways links, which amount 

approximately to the 5% of the network. Besides, the parameter uncertainty resulting from 

the Bootstrap approach was high neither for  (CV 0.09) nor for β (CV 0.054). As expected, 

the combined effect of BPR parameters uncertainty and links capacity uncertainty (scenario 

2) increases the model uncertainty for both the overall network and the highways links.  

The mean Veh-Km CV for highway links is lower than that for all links, despite the 

uncertainty was represented only in highway links. This comes as no surprise. In fact, for 

highway links the traffic demand can be assumed less elastic to changes in travel time 

(defined by the BPR formula) as compared to journeys using urban or local network. This 

assumption is primarily due to the lower number of competitive routes which characterizes 

journeys on highway facilities. Nevertheless, due to the differences in capacity, a small 

percentage variation in demand of traffic for highway links may easily result in a high 

variation for the links of the competitive routes that absorb the diverted traffic. This explains 

why the CV values for highway links result lower than for the overall network. With respect 
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to AvgSpeed, the model appears to be insensitive. The reason can be probably traced in lower 

congestion levels which characterize the overall network. 

[Insert table 3 about here] 

Table 4 shows the total network travel time, divided into free travel time and 

congested. As can be seen, the corresponding CV for both free and congested times are very 

low. This is consistent and reflects the low variability resulting from the analysis of the 

AvgSpeed. However, links capacity uncertainty has a high impact on congested time 

uncertainty, which increases from 0.01 to 0.2. 

[Insert table 4 about here] 

Despite overall the model showed low sensitivity to BPR parameter variation, the 

demand of traffic for some links revealed instead high elasticity, resulting in a maximum 

mean Veh-Km CV of 0.931 and 1.360 for Scenario 1 and Scenario 2, respectively. Thus, in 

order to analyze differences within the network, the data set was divided in three groups 

including links with Veh-Km CV lower than 0.1 (Group 1), between 0.1 and 0.5 (Group 2) 

and higher than 0.5 (Group 3). Statistics referring to the three groups are shown in table 5. 

[Insert table 5 about here] 

As can be noticed, the majority of the links shows a modest or null sensitivity, 

consistently with the results for the overall model. Only a few links, included in the third 

group, show instead very high sensitivity, but because of their low number at least part of 

them are considered outliers. More interesting for modelling purposes are instead the links 

included in the second group. Most of them (around 200 in both scenarios) should be no 

cause for concern, given that they represent international Danish traffic and the relatively 

high variability is probably due to the low number of observations in absolute values. 

However, the remaining ones, for a total of 107 (scenario 1) and 241 (scenario 2) links, 

mainly refer to short, mid-distance road types (“hovedvej” and “trafikvej”) potentially 

hosting commuting traffic. As a consequence, the assessment of projects planned to be 

implemented in the areas of the network where they are located can be highly affected by 

their inherent uncertainty. In fact, in case of changes in the network due, for example, to 

structural changes or transport policy, the high sensitivity they demonstrated may cause the 

traffic to divert from the originally modelled routes. In areas characterized by a dense 

network, and hence many competitive routes, these changes can easily cause a shock wave 

throughout the surrounding network.     

CONCLUSIONS 

This paper describes the results of a study carried out to test the LTM sensitivity to BPR 

parameters (α and β) uncertainty. BPR parameter uncertainty was quantified using Bootstrap 

re-sampling approach. The speed and flow data used to calibrate the BPR parameters and, 

successively, to implement the Bootstrap analysis, refer to three highway links part of the 

Danish road network. Also model sensitivity to link capacity uncertainty, combined with 

BPR parameter uncertainty, was tested. The model output analyzed were (i) vehicle-

kilometer and average speed at the link level and (ii) travel resistance at network level.  

The results confirm the importance of uncertainty analysis as a decision tool for 

transportation projects. In fact, although the LTM as a whole proved to be quite inelastic to 

the variability in the BPR formula parameters, some links showed high elasticity. Any 

assessment of projects potentially affecting traffic flow on those links should then take into 

consideration this elasticity and integrate uncertainty analysis in the decision process. 
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More in detail, the results clearly highlight the importance for modelling purposes of 

taking into account BPR formula parameter uncertainty, expressed as a distribution of values, 

rather than assumed point values. The increasing amount of traffic data available nowadays, 

due to the diffusion and improvements of technology, allow in fact to estimate specific traffic 

delay formula parameters for different facilities and projects. This is an opportunity that 

should not be missed in order to produce more reliable modelled traffic results. Besides, 

when combined with uncertainty analysis, it may produce the necessary information required 

to increase the quality of the decision process and to develop robust or adaptive plans.  

Limitations and avenues for further research should be acknowledge to this study. 

Firstly, a possible limitation relates to the limited amount of count stations providing the 

traffic data the analysis is based upon. Further research could use a higher number of count 

stations, with a wider geographical distribution, in order to calibrate parameter values more 

representative for the overall network. Nonetheless, the results clearly underline the 

importance of taking into account parameter uncertainty and their essence would likely not 

change but rather improve from additional data. Secondly, further analysis including urban 

and rural facilities parameters uncertainty would provide a more comprehensive picture on 

the topic, including the possibility of developing a class reference approach for uncertainty 

analyses of such kind. Lastly, due to the characteristics of the LTM and the scope of the 

study, the analysis presented in this paper did not quantify the effects on the model output 

deriving from uncertainty in the BPR formula variables free flow speed and link flows. 

Further research could investigate this issues, depending on the model tested and the 

objectives of the analysis. 
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FIGURE 5 Assumed relationship between speed and traffic flow. 

  



Stefano Manzo, Otto Anker Nielsen and Carlo Giacomo Prato                                                            14 

 

 

FIGURE 6 Sections location on the Danish (Zealand) highway network  
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FIGURE 7  Speed plotted against the density-density ratio. 
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FIGURE 8  Alpha and Beta distributions. 
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FIGURE 5  The Lands Trafik Modellen (LTM) framework. 
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TABLE 6 Characteristics of the Hastrid Dataset  

Highway Section Section Length Capacity Lanes Observations 

Holbæk (M11) Taastrup - Fløng 1.460 km 4200 3 1,141 

Holbæk (M11) Ringstedvej - Roskilde 0.953 km 3400 2 1,582 

Hillerød (M16) Farum - Skovbrynet 3.701 km 4200 2 1,229 

NOTE: 1mi=1.61km. 
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TABLE 7  Bootstrap Parameters Statistics and Distribution Percentiles 

Parameter statistics 

Parameter Estimate StDev Min Max CV       

Alpha 0.335 0.030 0.216 0.462 0.090       

Beta 4.070 0.254 3.238 5.373 0.062       

Distribution percentiles 

Parameter P1 P10 P20 P30 P40 P50 P60 P70 P80 P90 P99 

Alpha 0,27 0,30 0,31 0,32 0,33 0,33 0,34 0,35 0,36 0,37 0,41 

Beta 3,55 3,76 3,86 3,93 3,99 4,04 4,12 4,18 4,27 4,40 4,77 
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TABLE 8 Veh-Km and AvgSpeed CV Statistics   

 
 All links Highway links 

 
 Veh-Km AvgSpeed Veh-Km AvgSpeed 

Scenario 1 

Min 0 0 0 0 

Max 0.931 0.055 0.052 0.055 

Mean 0.011 0.000 0.003 0.001 

StDev 0.026 0.001 0.003 0.003 

Scenario 2 

Min 0 0 0 0 

Max 1.360 0.070 0.111 0.070 

Mean 0.015 0.001 0.012 0.007 

StDev 0.029 0.003 0.010 0.009 
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TABLE 9 Network Travel Time (Hours) 

 
 Mean St Dev CV 

Scenario 1 
Free time 17,727,618 18,012 0.001 

Cong time 935,988 9,738 0.010 

Scenario 2 
Free time 17,461,650 30,483 0.001 

Cong time 961,328 192,646 0.200 
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TABLE 10 Veh-Km CV by Groups 

 
 Group 1 Group 2 Group 3 

 
Observations 33,385 307 25 

Scenario 1 

Min 0 0.100 0.501 

Max 0.099 0.494 0.931 

Mean 0.009 0.189 0.573 

StDev 0.010 0.089 0.110 

 Observations 33265 442 10 

Scenario 2 

Min 0 0.100 0.507 

Max 0.099 0.481 1.360 

Mean 0.013 0.178 0.859 

StDev 0.013 0.088 0.392 

 

 


