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We consider tomographic imaging problems where the goal is to obtain both a reconstructed image
and a corresponding segmentation. A classical approach is to first reconstruct and then segment
the image; more recent approaches use a discrete tomography approach where reconstruction and
segmentation are combined to produce a reconstruction that is identical to the segmentation. We
consider instead a hybrid approach that simultaneously produces both a reconstructed image and a
segmentation. We incorporate priors about the desired classes of the segmentation through a Hidden
Markov Measure Field Model, and we impose a regularization term for the spatial variation of the
classes across neighboring pixels. We also present an efficient implementation of our algorithm based
on state-of-the-art numerical optimization algorithms. Simulation experiments with artificial and real
data demonstrate that our combined approach can produce better results than the classical two-step
approach.

Keywords: tomographic reconstruction, segmentation, regularization, numerical optimization,
Hidden Markov Measure Field Models

AMS Subject Classifications: 65F22, 65K10

1. Introduction

In computed tomography (CT) it is often the case that the reconstructed 2D or 3D
image is also used as an intermediate result in order to arrive at a segmentation of the
reconstructed object. The purpose of the segmentation is, e.g., to separate an object
from the background [1] or to identify specific objects or regions [2], and this has many
applications in medical imaging and in non-destructive testing in materials science. The
classical approach is first to produce a 2D or 3D reconstruction, followed by segmentation
of this image. Both steps are likely to introduce errors and artifacts, and the errors in
the reconstructed image usually propagate to the segmentation.

In order to avoid this one can try to combine the image reconstruction and segmen-
tation in a single reconstruction model (leading to a more complex problem). One idea
is to allow only a small number of (known or unknown) pixel values, leading to the
problem of discrete tomography – see [2], [3], [4] for examples. Another idea is to use
segmentation principles to identify objects with known pixel values in order to obtain
sharper edges around these objects [1]. In both cases, the segmented image is identical
to the reconstructed image.

In this work we take a different approach, which we refer to as Simultaneous Reconstruc-
tion and Segmentation (SRS), where we simultaneously produce both a reconstructed
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image and a segmentation. This idea was originally proposed by Ramlau and Ring [5]
who demonstrate that the combined approach is able to produce good reconstructions
with sharp boundaries of the objects. Their CT algorithm, which was later generalized
to SPECT in [6], simultaneously reconstructs and segments directly from the data. The
same approach was applied to CT problems with limited data in [7]. Van de Sompel
and Brady [8] proposed a related idea using a Hidden Markov Measure Field Model
(HMMFM) [9] that “learns” information about the different types of objects or phases
from the given data during the SRS process. Other papers that describe the use of a
hidden Markov field are [10] and [11].

Instead of “learning” or estimating information about the segmentation classes during
the reconstruction phase, we want to use this information as a prior. We therefore propose
a variant of the above method where we explicitly specify prior information about the
different classes (i.e., about different types of phases), to be used in the segmentation via
the HMMFM.

There is a variety of computational algorithms for tomographic reconstruction that use
regularization in order to deal with the difficulties of the underlying inverse problem [12].
Filtered back projection and its extension to 3D geometries are very popular algorithms
[13], [14] that work well when enough data/projections are available and the noise is not
too large. Algebraic iterative reconstruction methods [15] are also used frequently, and
they can give better reconstructions in case of limited data. Yet other algorithms are
based on variational formulations where one minimizes a combination of a data-fitting
term and a regularization term (such as [16], [17]) that penalizes unwanted features; these
methods can be more flexible and compensate for large noise and limited data. While TV
regularization has been very popular in recent years, it still has some limitations such as
smearing of texture-rich regions and staircasing [18].

Concerning segmentation techniques, there are many approaches to the problem of
extracting regions of the image, e.g., by modeling the boundary between regions either
using implicit contour models like the level-set methods [19], [20], [21] or including an
explicit boundary model as in snakes [22]. Another group of methods are based on pixel
labeling, e.g., modeled by a Markov Random Field where solutions can be obtained
efficiently using graph-cut methods [23], [24]. In order to segment texture-rich images
methods based on texture-features like the structure tensor [25] are popular, but also
sparse methods have shown to be effective for texture segmentation [26], [27]. Some
methods however require manual input [22], [27], [28] in order to work correctly. In CT
all of the methods may be used, but it is preferable to use methods that do not need
initialization by the user.

The classical approach with two separate steps (first reconstruct the image and then
segment it) has proven to be quite effective. However, although prior knowledge about
the expected types of objects or phases can be used during the segmentation, this knowl-
edge is rarely used in the reconstruction step. Discrete tomography provides one way to
incorporate such information about the desired pixel intensities.

In this paper we consider a general SRS framework and we show how various assump-
tions about the problem lead to a specific computational problem that can be handled by
means of state-of-the-art numerical optimization methods. We then use numerical simu-
lations to show that our algorithm can give very good segmentation result for problems
where the parameters of the reconstructed phases are known, because our specific use
of this prior information shrinks the range of possible solutions and hence increases the
quality of the reconstructed image.

Our algorithm employs a user-specified HMMFM to assign to each pixel the probabil-
ities for belonging to the given classes. In this way we give a quantitative measure of the
similarity between each reconstructed pixel and each given class. This approach to the
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segmentation problem allows us to naturally use the connection between the HMMFM
and the posterior probability density distribution. Our computational algorithm uses ef-
ficient numerical optimization algorithms, thus avoiding the slowly converging sampling
methods.

Recall that X-ray CT is based on the principle that if we send X-rays through an
object and measure the damping of each ray then, with infinitely many rays, we can
perfectly reconstruct the object. The attenuation of an X-ray is proportional to the
object’s attenuation coefficient, as described by Lambert-Beer’s law [29, §2.3.1]. We divide
the domain onto pixels whose unknown nonnegative attenuation coefficients are organized
in the vector x ∈ RN . Similarly we organize the measured damping of the rays into the
vector b ∈ RM . Then we obtain a linear system of equations Ax = b with a large sparse
system matrix governed solely by the geometry of the measurements: element aij is the
length of the ith ray passing through pixel j, and the matrix is sparse because each ray
only hits a small number of pixels [30].

Our paper is organized as follows. In Section 2 we present our general formulation of
the reconstruction model, and in Section 3 we make our model more specific by means of
assumptions related to the CT problem. Section 4 presents our considerations related to
an efficient computational algorithm for the SRS problem. Our numerical experiments
are presented in Section 5, and we finish the paper with a short conclusion in Section 6.
Throughout the paper we use the following notation:

• i is the data index.
• j is the pixel index.
• k is the class index.
• b is a vector with the measured data b1, b2, . . . , bM .
• x is a vector with the pixels x1, x2, . . . , xN of the image (the columns of the image

are stacked into one long vector); the pixel values are the attenuation coefficients
of the object.
• A is the M × N system matrix for the CT problem which describes the linear

relationship b = Ax between the attenuation coefficients and the data.
• δ = {δjk} is the set of probabilities in the HMMFM for each class k of the object

and for each pixel j, satisfying
∑K

k=1 δjk = 1 for all j.
• p(x, δ | b) is the posterior probability density function for the image and the

HMMFM, given the data.

In each pixel, the probabilities for all the classes of the HMMFM must sum to one. We
note that the above notation trivially generalizes to 3D problems where xj denotes a
voxel instead of a pixel.

2. Problem Formulation

To solve inverse problems it is necessary to incorporate prior information about the
solution, in order to obtain a well-defined problem and a stable solution. In this work,
our prior takes the form of explicit information about the different types of phases in
the object, which provides a rigorous prior for the segmentation. Specifically, we assume
that the object’s attenuation coefficients (the pixels of the reconstruction) belong to K
classes, where K is much smaller than the number N of pixels. We assume that K is
known and we provide prior information about these classes in the form of probability
densities associated with the classes. The parameters of the different classes (the mean
attenuation coefficients µk and their variances σk for k = 1, . . . ,K) are assumed to be
known from previous studies; see §3.2. Moreover, following [9] we use an HMMFM to
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incorporate a spatial prior inspired by the framework introduced in [8].
Our reconstruction problem originates from a classical constrained Bayesian formula-

tion:

argmax
x,δ

p(x, δ | b) (1)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

In accordance with Bayes’ rule, the probability p(x, δ | b) in (1) can be formulated as:

p(x, δ | b) =
p(b |x, δ) p(x | δ) p(δ)

p(b)
, (2)

where

• p(b |x, δ) = p(b |x) is the probability of obtaining the data b given the image x;
the data does not depend on the segmentation of the image.

• p(x | δ) is the probability of x given the probabilities of each class in each pixel.
• p(δ) expresses our belief in the HMMFM; usually, the more complex or chaotic the
δ, the less we trust in it.

• p(b) is a normalization constant.

The function given in (2) is a product of several probabilities, and to make the optimiza-
tion process easier (as is common) we consider the logarithm of the objective function
instead of the function itself. Thus, ignoring the normalization constant p(b), we arrive
at the general formulation of the SRS problem:

(x∗, δ∗) = argmax
x,δ

log p(x, δ | b)

= argmax
x,δ

(
log p(b |x) + log p(x | δ) + log p(δ)

)
(3)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

This model can be used for simple classification situations (e.g., graylevel/intensity clas-
sification) as well as for more complex classification algorithms. In this paper we will use
and analyze this framework for a simple graylevel problem.

Having solved the problem for x and δ, it is easy to obtain the segmentation knowing
the HMMFM. For each pixel xj we compute the corresponding labels sj as:

sj ≡ argmax
k

δjk, j = 1, . . . , N (4)

which is simply the most probable class in each pixel. Hereby we both obtain a recon-
structed image and a segmentation based on specific model assumptions.
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3. Assumptions for the CT Reconstruction Problem

To make the general SRS framework (3) more specific we make assumptions about the
probability density functions that we use. Here we consider them as known, and indeed
in many cases we will know the attenuation coefficients and their uncertainties for the
phases under study (e.g., muscle, fat, bone, and air in medical imaging). How to obtain
these parameters is not part of this work.

3.1. Data Fitting Term

Our first assumption regards the noise model. According to [31], the measured data is
usually a sum of several terms:

• Data received from the X-ray illumination of the object, with Poisson noise.
• Poisson noise of the measuring equipment and from external sources.
• Gaussian noise caused by the electronics and the conversion from an analog signal

to digital data.

Following [31] we assume that the signal-to-noise level is high enough that we can ap-
proximate the total noise by additive unbiased Gaussian noise N (0, σ2

noise) where σnoise is
the standard deviation of the noise. We also assume that the noise is uncorrelated with
the data and independent such that p(b |x) = p(ε), where the vector ε represents the
Gaussian noise, i.e., εi ∼ N (0, σ2

noise). Consequently the first term in our reconstruction
model, which we refer to as the data fidelity term, is given by:

p(b |x) =

M∏
i=1

p(bi |x) =
1√

2MπMσMnoise

exp

(
−

M∑
i=1

(Ax− b)2
i

2σ2
noise

)

=
1√

2MπMσMnoise

exp

(
−‖Ax− b‖22

2σ2
noise

)
,

where (Ax − b)i denotes the ith element of the residual vector. The first term in (3)
thus becomes:

log p(b |x) = −‖Ax− b‖22
2σ2

noise

− 1

2
log(2MπMσ2M

noise), (5)

and we note that 1
2 log(2nπnσ2n

noise) is a constant that is unaffected by the optimization.
The data fidelity term in this problem formulation is identical to a classical least squares
fitting term.

3.2. Class Fitting Term

To specify the second term of (3) related to the classes of the image, we assume that
the object is composed of a set of K different phases, and that each phase has the same
attenuation coefficient everywhere. Specifically, we assume a Gaussian mixture where
we specify the distribution of the attenuation coefficients within a class as a normal
distribution with mean value µk equal to the expected attenuation coefficient and a
(small) standard deviation σk. Here, all µk and σk for k = 1, . . . ,K are assumed to be
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known, and we have

p(xj | class = k) =
1√

2πσk
exp

(
−(xj − µk)2

2σ2
k

)
.

Now let δj = {δj1, . . . , δjK} denote the set of the K class probabilities associated with
pixel j. Then we can write the probability p(x | δ) as

p(x | δ) =

N∏
j=1

p(xj | δj) =

N∏
j=1

K∑
k=1

p(xj | class = k) p(class = k | δj).

Since we assume that p(class = k | δj) = δjk is the probability of the pixel j belonging to
class k, the above expression takes the form:

p(x | δ) =

N∏
j=1

K∑
k=1

δjk
1√

2πσk
exp

(
−(xj − µk)2

2σ2
k

)
.

Thus, the second term of (3) can be written as

log p(x | δ) =

N∑
j=1

log

[
K∑
k=1

δjk√
2πσk

exp

(
−(xj − µk)2

2σ2
k

)]
. (6)

We refer to this as the class-fitting term.

3.3. Regularization Term

The third term of (3) is our confidence in the segmentation and it is thus a regularization
term where we specify our prior knowledge about the behavior of the segmentation.
Contrary to classical regularization methods, our prior is concerned with the classes
(and not the pixel values). We use the following generic formulation

log p(δ) = −
K∑
k=1

R(δk), (7)

where δk = {δ1k, . . . , δNk} is the set of probabilities for class k and R is a function
that expresses our prior, such as our knowledge of the expected spatial correlations of
the classes among the pixels. In this paper, we use two different functions inspired by
common choices in image reconstruction, cf. [12].

For ease of presentation, consider the case where x represents a 2D image (the extension
to 3D is obvious) and let j′ and j′′ denote indices to the two elements of x, in its 2D
representation, that are neighbors horizontally and vertically. Let J denote the set of
indices j for which both j′ and j′′ refer to pixels inside the image.

• The total variation (TV), i.e., the 1-norm of the gradient magnitude for the kth
class associated with all pixels of x:

RTV(δk) =
∑
j∈J

(
(δjk − δj′k)2 + (δjk − δj′′k)2

)1/2
. (8)

6
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• A Tikhonov-type regularizer equal to the squared 2-norm of the gradient magnitude
for the kth class associated with all pixels of x:

RTik(δk) =
∑
j∈J

(
(δjk − δj′k)2 + (δjk − δj′′k)2

)
. (9)

The use of the TV function RTV (8) allows discontinuities in the probabilities for the
classes associated with neighboring pixels – and one expects this to be well suited for the
segmentation process. The use of the Tikhonov function RTik (9) enforces some spatial
smoothness of the probabilities among classes associated with neighboring pixels.

3.4. The Reconstruction Model

At this time we assemble the three terms specified above into the complete reconstruction
model. In doing so, we introduce two regularization parameters λnoise and λclass that let us
balance the weight given to the noise term and the regularization term, respectively, and
as is common we absorb the factor 1/(2σ2

noise) into λnoise. The complete reconstruction
model thus takes the following form (swapping “min” for “max” and changing signs of
the terms):

(x∗, δ∗) = argmin
x,δ

(
λnoise‖Ax− b‖22 + λclass

K∑
k=1

R(δk)

−
N∑
j=1

log

[
K∑
k=1

δjk√
2πσk

exp

(
−(xj − µk)2

2σ2
k

)])
(10)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

To summarize, our reconstruction problem (10) takes as input our data b and the class
parameters µk, σk, k = 1, . . . ,K, together with the regularization function R(·) and
the regularization parameters λnoise, λclass, and produces the solution pair x∗ and δ∗.
We note that the reconstruction problem is non-convex in x and our computational
algorithm (described in the next section) must take this into account.

3.5. Simplifications

To deal with the non-convexity of the problem, we introduce two different simple con-
vex approximations to the class-fitting term p(x | δ), and both of them are used in the
algorithm described in the next section. Note that the objective function in (10) is a
multi-modal function for each pixel, consisting of a sum of Gaussian functions, that
causes the non-convexity of the problem. The underlying idea is then to approximate
this function with a uni-modal approximation – a single Gaussian function – such that
we can use standard methods from convex optimization.

The first type of simplification was introduced in [8], and for each pixel xj it “lumps”

the parameters δjk, µk and σk into the parameters µ̂j , σ̂j and δ̂j = 1, where

µ̂j =

K∑
k=1

δjkµk, σ̂2
j =

K∑
k=1

δjk(σ
2
k + µ2

k)− µ̂2
j , j = 1, . . . , N. (11)

7
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Figure 1. Illustration of the simplified uni-modal class-fitting functions p̂(x | δ) (12) and p̃(x | δ) (13) together

with the multi-modal function p(x | δ) (6). We use the parameters K = 4, δj = {0.11, 0.53, 0.32, 0.04}, µ1 = 0.15,
µ2 = 0.4, µ3 = 0.55, µ4 = 0.75, and σ1 = σ2 = σ3 = σ = 4 = 0.02.

The simplified function then takes the form (omitting an additive constant):

log p̂(x | δ) = −
N∑
j=1

(xj − µ̂j)2

2σ̂2
j

. (12)

The second type of simplification takes a different approach. When we are close to the
solution we expect that for most of the pixels xj the corresponding δjk will approach a
situation where one of them, say, δjkj , is close to 1 while the remaining ones are small –
corresponding to a high probability that this pixel belongs to class kj . In this situation
it is natural to set

δ̂jk =

{
1, if k = kj ,

0, otherwise,
j = 1, . . . , N

and then (11) simplifies to µ̂j = µkj , σ̂j = σkj , and we obtain the simplified function

log p̃(x | δ) = −
N∑
j=1

(xj − µkj )2

2σ2
kj

. (13)

Figure 1 illustrates these approximations.

4. Algorithm

We compute a solution to the reconstruction problem (10) using an iterative, alternating
optimization algorithm as is common practice for non-convex problems. Our algorithm is
based on the following idea. First we use the simplification in (12) to roughly approximate
the solution. When we are close to the solution, we instead use the simplification (13) in
order to improve the reconstruction result. Hence the algorithm has two overall stages,
and in both stages the iterations alternate between two steps in which we update either
the image or the classes. In the first stage we compute an approximate solution pair (x̂∗,

δ̂∗) using the simplified expression (12). This approximation is then used as initial guess
for the second stage based on the alternative simplified function in (13). The algorithm
is summarized in Fig. 2 at the end of this section.
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4.1. Stage 1

In the first stage we apply our iterative scheme to problem (10) with the simplifications
(11) and (12). Our algorithm alternates between two steps in which we update either x̂n

or δ̂n, where the superscript n denotes the iteration. In the image-update step we update
the pixel values:

x̂n+1 = argmin
x

λnoise‖Ax− b‖22 +

N∑
j=1

(xj − µ̂nj )2

2(σ̂nj )2

 , (14)

and we note that µ̂nj and σ̂nj depend on the iteration – they are functions of the current
HMMFM and computed using (11)). The function in (14) is convex in x and we compute
its minimum by means of the Conjugate Gradient Least Squares (CGLS) algorithm [32]
which is well suited for large-scale problems. As the initial guess for CGLS we use the
image from the previous iterate.

In the class-update step we update the classes:

δ̂n+1 = argmin
δ

λclass

K∑
k=1

R(δk)−
N∑
j=1

log

[
K∑
k=1

δkj√
2πσk

exp

(
−

(x̂nj − µk)2

2σ2
k

)] (15)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

Different algorithms can be used to solve this problem; we use the iterative Frank-Wolfe
algorithm [33], also known as the conditional gradient method, which enforces the con-
ditions (for j = 1, . . . , N and k = 1, . . . ,K)

K∑
k=1

δ̂n+1
jk = 1 and δ̂n+1

jk > 0.

We choose the initial guess δ̂ for this algorithm as δ̂0
jk = 1/K, for all j and k, which by

numerical experiments was found to be the most robust initialization.

4.2. Stage 2

When the changes in the image x̂n and the classes δ̂n become small during Stage 1, this
signals that we are making little progress with the approach based on the simplifications
(11) and (12). We stop these iterations when

‖x̂n+1 − x̂n‖2/‖x̂n‖2 ≤ 10−6. (16)

At this stage, most of the pixels j in the image have been assigned to a single class,
meaning that the corresponding δjk are close to 0 or 1 and σ̂j � ‖x̂n‖2.

It is now natural to switch to Stage 2 in which we use the second type of simplification
in (13) where, for each pixel, we only use the class with the highest probability. The
main goal of this stage is to consider those remaining pixels for which δjk have not yet
approached 0 or 1, which typically are those at the edges inside the image. Equation (13)
ensures that these pixels are also assigned to a single class, forcing σ̂j to be small. We

9



November 17, 2015 Inverse Problems in Science and Engineering RomanovEtAl

emphasize that, according to our experiments, Stage 2 will give good results only when
most pixels have been assigned to a single class in Stage 1.

First we perform the image-updating step, which now takes the form:

xn+1 = argmin
x

λnoise‖Ax− b‖22 +

N∑
j=1

(xj − µkj )2

2σ2
kj

 , (17)

where kj is the index to the largest δjk for the jth pixel. We still use CGLS to solve
(17). The class-updating step is identical to that of Stage 1, and again we solve it with
Frank-Wolfe algorithm. Usually it is enough to perform 1–3 iterations of the Stage 2.
Our observation is that the fine-tuning of the classification results in an improved recon-
struction.

Initialization: δ̂0
jk = 1/K, ∀j, k.

Stage 1
For n = 1, 2, . . . , n1

Compute µ̂j and σ̂j using (11).
Compute x̂n using (14) by means of CGLS with initial guess xj = µ̂n−1

j .

Compute δ̂n using (15) by means of FWA with initial guess δ̂n−1.

Stage 2

Set xn1 = x̂n1 and δn1 = δ̂n1 .
For n = n1 + 1, n1 + 2, . . . , n1 + n2

Compute kj such that δjkj = maxk δjk, ∀j.
Compute xn using (17) by means of CGLS with initial guess xj = µn−1

kj
.

Compute δn using (15) by means of FWA with initial guess δn−1.

Finish: Set x∗ = xn1+n2 and δ∗ = δn1+n2 .

Figure 2. Summary of our SRS algorithm; “CGLS” is a robust implementation of the Conjugate Gradient algo-

rithm for Least Squares problems, and “FWA” denotes the Frank-Wolfe algorithm. Note that an initial image is

not needed for the SRS algorithm.

5. Numerical Results

In this section we present a series of numerical experiments where we compare our two-
stage algorithm SRS with the classical approach where the reconstruction and segmenta-
tion are performed in two consecutive independent steps; the segmentation step knowing
the parameters µk and σk for each class. We consider two versions of our algorithm,
SRS-TV and SRS-Tik, corresponding to the two different regularization terms (8) and
(9), respectively. We use quite small test images such that the artifacts of the different
algorithms are clearly visible.

For the reconstruction step of the classical approach we use two different algorithms:
the Filtered Back Projection (FBP) method as implemented in MATLAB’s iradon func-
tion, and Total Variation (TV) regularization as implemented in the software package1

1The code for TVReg is available from http://www2.compute.dtu.dk/∼pcha/TVReg/.
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Table 1. Regularization parameters used in the SRS algorithm for the different

test problems in this section and the real-data example in the next section.

Shepp-Logan Binary 4-class Gray-scale Real data

SRS-Tik λnoise 4.2 · 10−3 4.5 · 10−4 6.5 · 10−4 4.0 · 10−4 0.2
λclass 1.0 0.5 0.5 0.4 0.3

SRS-TV λnoise 2.0 · 10−2 9.5 · 10−4 3.0 · 10−2 8.5 · 10−4 –
λclass 0.4 0.3 0.32 0.5 –

TVReg [34] which solves the problem

min
x

1/2‖Ax− b‖22 + αTV(x), 0 ≤ xi ≤ 1, i = 1, . . . , N, (18)

where TV(x) uses standard finite differences to compute the gradient magnitude. The
segmentation in the classical approach is done by means of a Markov random field algo-
rithm via graph cuts [35] using the graph-tool software [36], assuming that the number
K of classes is known.

5.1. Test Using Artificial Data

The test problem used throughout these experiments is a standard 2D CT problem with
58 projections at angles (i/58) · 180◦, i = 1, 2, . . . , 58, and with 181 parallel rays for each
angle, and the image is 128×128 pixels. The corresponding sparse matrix A is thus of size
M ×N = 10, 499× 16, 384 corresponding to an underdetermined system. Each nonzero
element aij is the length of ray i through pixel j, and A was generated by means of the
function paralleltomo from the MATLAB package2 AIR Tools [15]. Given the exact
test image xexact we generate data with additive Gaussian noise as b = Axexact + e,
where each element of the noise vector e is from the same normal distribution with zero
mean and standard deviation chosen such that ‖e‖2/‖Axexact‖2 = 0.01.

To study the performance of the algorithms, we use four different test images xexact

(they are shown in Figures 5–6):

(1) The Shepp-Logan phantom from MATLAB.
(2) A binary (2-class) phantom consisting of an image with random fine structures that

are mostly horizontal.
(3) A 4-class phantom with random regions separated by thin structures.
(4) A gray-scale image with sharp contours and regions with smoothly varying inten-

sities.

We include the Shepp-Logan phantom because it is so widely used (although it is an easy
problem for TV regularization). The last other phantoms are generated by the function
phantomgallery in AIR Tools.

In the FBP reconstructions we used the Hann filter and linear interpolation. In the
TV reconstruction algorithm and in our method we manually chose the regularization
parameters that minimize the image reconstruction error. In the SRS algorithm we choose
the regularization parameters to give a good balance between reconstruction errors and
segmentation errors; the parameters we use are listed in Table 1. The development of an
automatic procedure for choosing these parameters is outside the scope of this paper.
The number of iterations n1 in Stage 1 is based on the stopping rule (16); in Stage 2 we
always used n2 = 5 iterations.

2Version 1.2 of the AIR Tools package is available from http://www2.compute.dtu.dk/∼pcha/AIRtools/.
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Table 2. Summary of errors. In each entry, the top and bot-

tom numbers are the relative image reconstruction error εrec
and the relative segmentation error εseg, respectively.

Test problem FBP→Seg TV→Seg SRS-Tik SRS-TV

1: Shepp-Logan
0.34 0.038 0.021 0.023
0.056 0.0038 0.0026 0.0031

2: Binary
0.46 0.33 0.18 0.26
0.096 0.035 0.015 0.029

3: 4-class
0.39 0.16 0.047 0.055
0.38 0.077 0.0057 0.0064

4: Gray-scale
0.24 0.082 0.060 0.087
0.095 0.0040 0.0047 0.0051

5.1.1. Study of Convergence

Given the reconstructed image x∗, the relative image reconstruction error is defined as

εrec = ‖xexact − x∗‖2/‖xexact‖2. (19)

Given the vector s∗ of labels computed by means of (4), the relative segmentation error
is defined as the fraction of mislabeled pixels,

εseg =
1

N

N∑
j=1

I(sexact
j 6= s∗j ), (20)

where sexact is the vector of true labels, N is the number of pixels in the image, and I is
a logical indicator function.

The error histories for algorithm SRS-Tik are shown in Fig. 3, and images and segmen-
tations for selected iterations are shown in Fig. 4 (the error histories, reconstructions,
and segmentations for SRS-TV are very similar and not shown here). The error de-
creases monotonically; the first few iterations give the biggest reduction and then the
error reaches a plateau. During Stage 1 both the reconstruction and the segmentation
improve – the image intensities improve, noise is removed, and the edges become increas-
ingly sharper. A few steps of Stage 2 improves the quality of the reconstruction, while
the segmentation is hardly changed.

5.1.2. Study of Reconstruction and Segmentation Errors

The reconstruction and segmentation errors εrec and εseg for all algorithms and phantoms
are summarized in Table 2, and the computed images and segmentations are shown in
Figures 5 and 6. “FBP→Seg” and “TV→Seg” denote reconstruction by means of FBP
and TV, respectively, followed by segmentation, while “SRS-Tik” and “SRS-TV” denote
our algorithm with the regularization terms (9) and (8), respectively.

We see from both the table and the figures that the worst results are produced by FBP
→ segmentation; both the reconstructed image and the segmented image contain a lot
of noise and artifacts.

The results for TV→ segmentation are closer to the ground truth, but the reconstruc-
tions and the segmentations have the characteristic TV artifacts: the reconstructions
capture small details but they also exhibit the standard TV staircasing effect, they in-
clude a number of small unwanted “clusters” of pixels, and the pixel intensities tend to be
incorrect. Indeed, the images of the pixel-wise absolute errors |xexact − x∗| clearly show
the incorrect image intensities with errors in the range 0.1–0.4. The underlying problem

12
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Image reconstruction errors εrec Segmentation errors εseg
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Figure 3. Error histories: the evolution of the image and segmentation errors εrec and εseg during the iterations

of the SRS-Tik algorithm (the error histories for SRS-TV are very similar).
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Figure 4. Images xn (top) and segmentations sn (bottom) for selected iterations during the SRS-Tik algorithm.

For colorbars, see Figs. 5 and 6.
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Figure 5. Results for the Shepp-Logan test problem (four top rows) and the binary test problem (bottom four
rows). The left and right colorbars are for the reconstructions and segmentations, respectively.
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Figure 6. Results for 4-class test problem (top four rows) and the gray-scale test problem (bottom four rows).
The left and right colorbars are for the reconstructions and segmentations, respectively.
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Table 3. Sensitivity experiments with the 4-class phantom and the SRS-Tik algorithm.

The true estimates are µ1 = 0, µ2 = 0.33, µ3 = 0.66, µ4 = 1 and the results in the

previous section were obtained with σk = 10−4, k = 1, 2, 3, 4. For these values the errors
are εrec = 0.047 and εseg = 0.0057, cf. Table 2. See the text for an explanation of the

experiments.

Experiment µ 0.5 0.55 0.6 0.7 0.75 0.8

1 εrec 0.14 0.106 0.074 0.056 0.095 0.139
εseg 0.05 0.027 0.013 0.007 0.023 0.06

2 εrec 0.27 0.247 0.165 0.082 0.122 0.151
εseg 0.146 0.130 0.065 0.018 0.040 0.076

3 εrec 0.132 0.103 0.083 0.067 0.105 0.142
εseg 0.042 0.025 0.016 0.011 0.033 0.065

is that we underestimate jumps in the image intensities [18].
We note that the TV reconstructions are slightly under-regularized, i.e., they include

some amount of noise. Our empirical experience is that a bit of under-regularization in
TV give less segmentation errors, because a slightly under-regularized TV reconstruction
is more likely to include small features of the ground truth image.

For test problems 1, 2 and 3 the results from our SRS algorithm are more accurate than
those from the classical approach, both for the reconstructions and the segmentations.
This is especially true for test problems 2 and 3 which contain a lot of fine-structure, and
for all test problems our reconstructions look significantly sharper than those from FBP
and TV. Moreover we avoid the staircasing effect associated with TV reconstructions.

From a computational point of view, the TV regularization term RTV (8) in algorithm
SRS-TV is more difficult to handle than the Tikhonov term RTik (9) used in SRS-Tik.
As a consequence, for SRS-TV the range of appropriate regularization parameters is
quite small and the computing time is large, while for SRS-Tik the range for appropriate
parameters is larger and the computing time is significantly smaller. From a practical
point of view this makes the SRS-Tik algorithm more favorable.

Another advantage of SRS-Tik over SRS-TV is that during the iterations the former
allows more flexibility in the location of sharp transitions in the probabilities in the
HMMFM. This is because TV insists on putting discontinuities in these probabilities,
while Tik allows more smooth transitions, and hence the location of the edges is done
in a more flexible way. This is particularly evident from test problem 3, see the images
during the iterations shown in Fig. 4. That means that in the pixels that are close to
the detected edge the σj is rather big and that allows to tune the edge better during the
iterations.

In conclusion we propose to use the Tikhonov regularization term and the correspond-
ing SRS-Tik algorithm, because it requires less computing time, the choice of the regu-
larization parameter is less critical, and its reconstructions and segmentations are com-
petitive with those of algorithm SRS-TV.

5.2. Robustness Test

In our algorithm we assume that the user specifies the parameters µk and σk. It is
interesting to see how sensitive the computed reconstruction and segmentation are to
the estimates µk of the attenuation coefficients and the associated σk. To study this
we changed one of the estimates to a wrong value and analyzed how the resulting re-
construction and segmentation change, compared to results obtained with the correct
estimate.

The results are shown in Table 3 for the SRS-Tik algorithm with the same choice of
λnoise and λclass as before applied to the 4-class phantom. In all the experiments we kept
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Figure 7. The measured data (the sinogram) for the real-data problem.

µ1, µ2 and µ4 at the correct values and varied µ3 around its correct value 0.66. We
show the reconstruction and segmentation errors (19) and (20) for the following three
experiments:

(1) Here we kept σ1 = σ2 = σ3 = σ4 = 10−4.
(2) Here σ1 = σ2 = σ4 = 10−4 while σ3 = 2 · 10−4.
(3) Here σ1 = σ2 = σ3 = σ4 = 2 · 10−4.

When µ3 assumes an incorrect value then clearly the errors increase, but we note that
the results are still better than the results obtained with the TV→Seg algorithm for
which the errors are εrec = 0.16 and εseg = 0.077 (from Table 2). Hence, our algorithm
can handle an incorrect estimate as long as it does not take a value close to one of the
other estimates (in which case the segmentation becomes wrong).

One might expect that we can compensate for a wrong estimate µ3 with a bigger σ3.
Unfortunately, this is not true for our algorithm as documented in the table. In fact,
changing only one σk tends to increase the errors, and in particular the segmentation
error, because many pixels are mislabel when the parameters σk are unbalanced. As also
shown in the table, increasing all σk to the same value is preferable, and we note that
we obtain almost the same errors when all σ2 are twice as large.

The conclusion of this experiment is that we should use balanced values for σk and
that we cannot use σk to compensate for an incorrect µk.

5.3. Test Using Real Data

We complete our performance studies with some experiments using real data. The data
was collected using a micro-CT scanner with fan-beam geometry that scans the object
slice-by-slice. For our reconstruction we use 167 projections, with 512 rays in each pro-
jection. The reconstructed image contains 362 × 362 pixels, and hence the amount of
pixels is approximately 1.5 times larger than the amount of data. The data, in the form
of the sinogram, is shown in Fig. 7.

The scanned object is a candy that contains air, a nut at the center, pieces of nuts,
chocolate, and waffle, enclosed in a thin aluminum foil. Nuts and waffle have almost the
same attenuation coefficients, so we treat them as the same class. The foil, which has a
high attenuation coefficient, is very thin and since the resolution is too low to accurately
represent the foil, the reconstructed coefficients are inaccurate; for this reason we do not
account for the foil in our classes. As priors for the classes we used the following mean
values and standard deviations.

• Air: µ1 = 0, σ1 = 0.001.
• Nuts and waffle: µ2 = 0.0033, σ2 = 0.001.
• Chocolate: µ3 = 0.0044, σ3 = 0.001.
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Figure 8. Results for the real-data problem; all reconstructs/segmentations have the same color scale.

Knowing that FBP is not well suited for underdetermined problems, we compare two
algorithms: TV → segmentation (using again the alpha-expansion segmentation algo-
rithm) and our SRS-Tik algorithm. The matrix A for this problem was generated with
the function fanbeamtomo from AIR Tools [15].

The reconstructions are shown in Fig. 8. We computed TV reconstructions for two
different values of the regularization parameter α in (18); for the small value we are able
to recover small details in the segmentation, but there are many misclassified pixels; for
the larger parameter we have more homogeneous areas in the segmentation but we miss
many small details (for example, it is difficult to see the edges between different phases).
In conclusion, the TV → segmentation algorithm does not perform so well.

In the SRS-Tik reconstruction the edges are always clearly visible and overall image
looks significantly sharper than TV reconstruction. Although our reconstruction looks
slightly more noisy (because we do not use a smoothing prior in the reconstruction),
we emphasize that the majority of the noise-looking pixels are actually correlated with
the texture of the reconstructed object. Our segmentation of the object identifies more
correct pixels than the TV → segmentation algorithm.

Although we do not know the foil’s precise attenuation coefficient, in the SRS-Tik
reconstruction the position of the foil is reconstructed correctly and better than in case
TV→Seg algorithm – in both algorithms it is assigned to the second class.

6. Conclusion

We presented a new two-stage algorithm for simultaneous image reconstruction and seg-
mentation, with application to absorption CT, that avoids the drawbacks of classical
approaches where reconstruction and segmentation are done in two individual steps.
Moreover, in contrast to approaches based on discrete tomography, we produce both
a reconstructed image and a segmentation. The novelties of our approach are: 1) ap-
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plication of a Tikhonov or Total Variation regularization term for these classes, 2) a
two-stage formulation that uses simplified reconstruction models in each stage, and 3) a
state-of-the-art numerical optimization algorithm for solving the underlying problem.

Numerical experiments with artificial and real data demonstrate that we are able to
produce improved images and classifications, compared to the classical approach. We
are able to produce sharp edges in the reconstructions, the segmentations are accurate,
and the experiments demonstrate that a regularizer applied to the segmentation also
has a strong effect on the reconstructed image. We recommend to use the variant of
our algorithm that uses the Tikhonov regularization term, since the TV variant is much
slower, requires more tuning of the regularization parameters, and does not give better
results.

The main competitor to our method is the classical approach that uses TV regular-
ization followed by segmentation; it has only one regularization parameter. However, a
clear advantage of our method is that we obtain almost correct image intensities because
we apply the regularization to the classes (instead of the image) and in case of complex
images our algorithm reconstructs the structure significantly better. A disadvantage is
that our algorithm, in its present formulation, has two regularization parameters; further
research will address how to choose these parameters.
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