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Abstract We consider the generalized symmetric eigen-
value problem where matrices depend smoothly on a pa-
rameter. It is well known that in general individual eigen-
values, when sorted in accordance with the usual ordering
on the real line, do not depend smoothly on the parameter.
Nevertheless, symmetric polynomials of a number of eigen-
values, regardless of their multiplicity, which are known to
be isolated from the rest depend smoothly on the parame-
ter. We present explicit readily computable expressions for
their first derivatives. Finally, we demonstrate the utility of
our approach on a problem of finding a shape of a vibrat-
ing membrane with a smallest perimeter and with prescribed
four lowest eigenvalues, only two of which have algebraic
multiplicity one.
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1 Introduction

Consider a function A : R → S2 mapping a parameter t
into a set of 2× 2 symmetric matrices. Even when entries
ai j(t), i, j = 1,2 depend smoothly on the parameter, the
eigenvalues λ1(t) ≤ λ2(t) may be non-smooth functions at
points where their multiplicity changes. Nevertheless, both
their sum λ1(t)+λ2(t) = trA(t) = a11(t)+a22(t) and their
product λ1(t)λ2(t) = detA(t) = a11(t)a22(t)−a12(t)a21(t)
clearly remain smooth functions. This knowledge may be
used to, for example, replace potentially non-smooth pair of
constraints λ1(t) = λ̂1, λ2(t) = λ̂2, with a pair of smooth
ones: trA(t) = λ̂1 + λ̂2, detA(t) = λ̂1 λ̂2, see [4].

For 2×2 matrices explicit expressions for [trA(t)]′ and
[detA(t)]′, where with prime throughout the paper we de-
note differentiation with respect to t, may be easily obtained
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in terms of ai j(t), i, j = 1,2, and their derivatives. How-
ever, we seek an alternative representation of these quan-
tities, which remain valid for higher-dimensional problems.
To this end, let u1 : R→ R2, u2 : R→ R2 be the normal-
ized eigenvectors corresponding to λ1(t), λ2(t). We assume
a computationally realistic situation, when the vectors u1(t)
and u2(t) are not necessarily continuous for t ∈ R such that
λ1(t) = λ2(t). (Indeed, in our simple two-dimensional ex-
ample an arbitrary pair of non-zero vectors u1(t) and u2(t)
constitutes a pair of eigenvectors for t ∈R such that λ1(t) =
λ2(t).) However, we do assume that these vectors are cho-
sen to be orthonormal for all t ∈ R. Whenever the function
λi(t), i= 1,2, is differentiable at a point t0 ∈R, its derivative
is known to satisfy the equation λ ′i (t0) = uT

i (t0)A′(t0)ui(t0),
i = 1,2, see for example [1]. As a result, we get

[trA(t0)]
′ =

2

∑
i=1

uT
i (t0)A

′(t0)ui(t0),

[detA(t0)]
′ =

2

∑
i=1

uT
i (t0)A

′(t0)ui(t0)∏
j 6=i

λ j(t0).

(1)

Interestingly enough, these formulas remain valid even
when the eigenvalues are not smooth any longer, as well
as in higher-dimensional cases. We start by illustrating this
phenomenon on a concrete 2×2 example and then proceed
to present a general theory.

Example 1 Consider the symmetric 2×2 symmetric matrix

A(t) =
(

cos(t) sin(t)
sin(t) cos(t)

)
.

Its eigenvalues are

λ1(t) = cos(t)−|sin(t)|,
λ2(t) = cos(t)+ |sin(t)|,
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which are smooth functions of t ∈R except at points tk = πk,
k = 0,±1,±2, . . . . The corresponding eigenvectors are

u1(t) = 2−1/2(−|sin(t)|/sin(t),1)T,

u2(t) = 2−1/2(|sin(t)|/sin(t),1)T,

for t 6= tk, and an arbitrary pair of orthonormal vectors for
t = tk, k = 0,±1,±2, . . . . A direct computation shows that

trA(t) = 2cos(t), detA(t) = cos(2t),

[trA(t)]′ =−2sin(t), [detA(t)]′ =−2sin(2t).

For t 6= tk, k = 0,±1,±2, . . . , we have

uT
1 (t)A

′(t)u1(t)+uT
2 (t)A

′(t)u2(t) =−2sin(t),

λ1(t)uT
2 (t)A

′(t)u2(t)+λ2(t)uT
1 (t)A

′(t)u1(t) =−2sin(2t).

Finally, when t = tk we can for example put

u1(tk) = (sin(φ),cos(φ))T,

u2(tk) = (cos(φ),−sin(φ))T,

φ ∈ [0,2π). Then

uT
1 (tk)A

′(tk)u1(tk)+uT
2 (tk)A

′(tk)u2(tk) = 0,

as well as

λ1(tk)uT
2 (tk)A

′(tk)u2(tk)+λ2(tk)uT
1 (tk)A

′(tk)u1(tk) = 0,

which is consistent with (1).

Remark 1 Theoretically, for symmetric matrices it is always
possible to choose eigenvalue branches, which depend on
the parameter in a differentiable manner [2]. In our Exam-
ple 1 we can of course choose

λ̃1(t) = cos(t)− sin(t),

λ̃2(t) = cos(t)+ sin(t),

which are smooth functions of t ∈R with the corresponding
smooth eigenvectors

ũ1(t) = 2−1/2(−1,1)T,

ũ2(t) = 2−1/2(1,1)T.

However, computing the “smooth” eigenvectors, such as
ũ1(t), ũ2(t), may be prohibitively expensive at points where
algebraic multiplicity of eigenvalues changes for realistic
large scale eigenvalue problems, which depend on many pa-
rameters (t in our case). At the same time, the formulas
λ̃ ′i (t) = uT

i (t)A′(t)ui(t), i = 1,2 do not hold any longer if
an arbitrary eigenvector ui(t) is used in place of the smooth
one, ũi(t), i = 1,2. Indeed, as in Example 1 above, we put at
t = tk, k = 0,±1,±2, . . .

u1(tk) = (sin(φ),cos(φ))T,

u2(tk) = (cos(φ),−sin(φ))T,

φ ∈ [0,2π). Then, unless φ = 3π/4 or φ = 7π/4,

(−1)k+1 = λ̃
′
1(tk) 6= uT

1 (tk)A
′(tk)u1(tk) = (−1)k sin(2φ),

(−1)k = λ̃
′
2(tk) 6= uT

2 (tk)A
′(tk)u2(tk) = (−1)k+1 sin(2φ).

Thus formulas (1) agree with but do not follow from the
well-known expressions for the derivatives of the individ-
ual eigenvalues of algebraic multiplicity one, particularly in
higher-dimensional cases.

In this note we establish generalizations (1) for higher-
dimensional cases, where in place of trA(t) and detA(t) we
have general symmetric polynomials of the eigenvalues. We
conclude the introduction by noting that sensitivity analysis
in the presence of multiple eigenvalues is a well known and
well studied issue. For alternative approaches to the prob-
lem we refer to the two review papers [3,5] and references
therein. The main advantage of the present approach is its
exactness yet computational simplicity; indeed, it only re-
quires computing the same information as one would need
for the case without eigenvalue multiplicity, that is: eigen-
values, corresponding eigenvectors, and derivatives of the
matrices with respect to the parameter. Of course this comes
at the cost of only providing sensitivity information about
the symmetric polynomials of the eigenvalues and not indi-
vidual eigenvalues, which may not be sufficient for certain
applications.

2 Sensitivity of symmetric polynomials of eigenvalues

To simplify the notation, we consider the case of real sym-
metric matrices Sm, but all results hold true for complex self-
adjoint matrices as well. For a pair of smooth matrix func-
tions K,M : R→ Sm such that M(t) is positive definite for
every t ∈R we consider a parametric generalized eigenvalue
problem:

K(t)v(t) = λ (t)M(t)v(t). (2)

We assume that (2) admits n eigenvalues isolated from the
rest. That is, the eigenvalues satisfy

· · · ≤ λ0(t)< λ1(t)≤ ·· · ≤ λn(t)< λn+1(t)≤ ·· · . (3)

We let Ei(t) denote the eigenspace corresponding to the
eigenvalue λi(t); that is, Ei(t) = {v ∈ Rm | K(t)v =

λi(t)M(t)v}. We furthermore let E(t) = E1(t)+ · · ·+En(t)
be the joint eigenspace of the eigenvalues λ1(t), . . . ,λn(t).
A crucial fact going back to Rellich 1953 is that this space
depends smoothly on the parameter t, see [2]. In particu-
lar, there exists a basis v1(t), . . . ,vn(t) for E(t) that depends
smoothly on t. We will prove that there is another basis for
E(t) satisfying certain additional requirements.
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Lemma 1 Let K,M : R → Sm be a smooth family of
symmetric matrices as described above with n general-
ized eigenvalues satisfying (3). Assume furthermore that
u1, . . . ,un ∈ Rm is an M(0)-orthonormal set of eigen-
vectors for (2) at t = 0 corresponding to eigenval-
ues λ1(0), . . . ,λn(0). Then we can find another basis
w1(t), . . . ,wn(t) ∈ Rm for E(t) such that, for all k, ` =

1, . . . ,n, t ∈ R:

1. wk(t) is a smooth function of t;
2. wk(t) and w`(t) are M(t)-orthogonal, that is,

wT
k (t)M(t)w`(t) = δk`, where δk` is Kronecker’s

delta;
3. wk(0) = uk.

Proof Applying Gram–Schmidt orthogonalization process
to the basis vk(t), k = 1, . . . ,n we obtain a M(t)-
orthonormal basis for E(t) smoothly depending on the
parameter; we denote this basis again with vk(t), k =

1, . . . ,n. Let us write (u1, . . . ,un) in terms of the latter
basis as (v1(0), . . . ,vn(0))U, where U ∈ O(n) is a n ×
n orthogonal matrix. We now define our new basis as
(w1(t), . . . ,wn(t)) := (v1(t), . . . ,vn(t))U and obtain a basis
for E(t) which satisfies conditions 1, 2, and 3. ut

Theorem 1 Let K,M : R → Sm be a smooth family of
symmetric matrices as described above with n generalized
eigenvalues satisfying (3). Then the symmetric polynomials

sk(t) = ∑
1≤i1<···<ik≤n

λi1(t) · · ·λik(t), (4)

k = 1, . . . ,n are smooth functions and their derivatives at
t = 0 are given by

s′k(0) = ∑
1≤i1<···ik≤n

k

∑
`=1

λi1(0) · · ·λi`−1(0)×

×uT
i` [K

′(0)−λi`(0)M
′(0)]ui` ·λi`+1(0) · · ·λik(0), (5)

where u1, . . . ,un ∈Rm is an M(0)-orthonormal set of eigen-
vectors for (2) at t = 0 corresponding to eigenvalues
λ1(0), . . . ,λn(0).

Proof Choose the basis w1(t), . . . ,wn(t) for E(t) secured by
Lemma 1. We now define the matrix families K̂,M̂ : R→ Sn

with elements

k̂k`(t) = wT
k (t)K(t)w`(t),

m̂k`(t) = wT
k (t)M(t)w`(t),

k, ` = 1, . . . ,n. That is, K̂(t), M̂(t) are restrictions of K(t),
M(t) to E(t) expressed in the basis wk(t), k = 1, . . . ,n. As
this is an M(t)-orthonormal basis we have that M̂(t) ≡ I
or equivalently that m̂k`(t) = δk`, k, ` = 1, . . . ,n. It is easy
to verify that the eigenvalue problem K̂(t)v = λ (t)M̂(t)v =

λ (t)v shares its n eigenvalues with the problem (2), namely
λ1(t), . . . ,λn(t).

Let us now consider the characteristic polynomial
pt(λ ) = det[K̂(t)− λ I]. The matrix K̂(t)− λ I has compo-
nents k̂k`(t)−λδk` and the characteristic polynomial can be
written as

pt(λ ) = ∑
permutations σ

sgnσ

n

∏
k=1

[k̂k,σ(k)(t)−λδk,σ(k)].

Differentiating the product above with respect to t and eval-
uating the derivative at t = 0 we get:

d
dt

n

∏
k=1

[k̂k,σ(k)(t)−λδk,σ(k)]

∣∣∣∣
t=0

=

n

∑
k=1

{
k̂′k,σ(k)(0) ·∏

6̀=k
[k̂`,σ(`)(0)−λδ`,σ(`)]

}
. (6)

Since K̂(0) = diag[λ1(0), . . . ,λn(0)] owing to condition 3 of
Lemma 1, we immediately infer that the right hand side sum
in (6) is zero unless σ is identity. As a result, we get the
equality

d
dt

pt(λ )
∣∣
t=0 =

n

∑
k=1

k̂′kk(0) ·∏
6̀=k
[λ`(0)−λ ]. (7)

Owing to the symmetry of M(t) we have

0 = m̂′kk(0) = w′k(0)
T M(0)wk(0)+wk(0)T M′(0)wk(0)

+wk(0)T M(0)w′k(0) = uT
k M′(0)uk +2w′k(0)

T M(0)uk.

Similarly, utilizing the fact that uk is a generalized eigenvec-
tor corresponding to λk(0) we get

k̂′kk(0) = uT
k K′(0)uk +2w′k(0)

T K(0)uk

= uT
k K′(0)uk +2λk(0)w′k(0)

T M(0)uk

= uT
k K′(0)uk−λk(0)uT

k M′(0)uk. (8)

Substituting (8) into (7) results in:

d
dt

pt(λ )
∣∣
t=0 =

n

∑
k=1

{
uT

k [K
′(0)−λk(0)M′(0)]uk ·∏

6̀=k
[λ`(0)−λ ]

}
. (9)

Let us denote by ak(t), k = 0, . . . ,n, the coefficient of the
characteristic polynomial in front of λ n−k. They are related
to the symmetric polynomials (4) as sk(t) = (−1)n−kak(t),
k = 1, . . . ,n. As a result, sk(t), k = 1, . . . ,n are smooth func-
tions of t. Finally, from (9) we obtain (5). ut

Remark 2 Of course, there is nothing special about t = 0
and, with obvious modifications, formulas (5) allow us to
evaluate s′k(t), k = 1, . . . ,n for an arbitrary t ∈ R.
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3 Application to shape optimization

In this section we briefly describe a problem where we
have successfully used the presented approach to multi-
ple eigenvalues; the interested reader is referred to [4] for
more details. The problem concerns finding a shape of a
drum, or a vibrating membrane, where the first four frequen-
cies of the spectrum are given. These frequencies should
be in the proportion 2 : 3 : 3 : 4, and as a result the eigen-
values of the Laplace operator have to be in the propor-
tion 4 : 9 : 9 : 16. Therefore, for the final shape we want
λ2 = λ3 = 9

4 λ1, and λ4 = 4λ1. These requirements on the
eigenvalues are far from determining the shape of the drum,
so we employ them as constraints and minimize the perime-
ter of the drum for regularization purposes. Numerically, we
discretize the problem using the isogeometric analysis ap-
proach; the boundary is parametrized using B-splines with
40 control (design) variables.

Fig. 1 Left: membrane shape found by imposing the exact 120◦ sym-
metry implying only smooth eigenvalues. Right: the result obtained
without imposing symmetry; non-smooth eigenvalues are handled by
the method described in this note.

When we impose the exact 120◦ symmetry on the family
of admissible shapes, see Fig. 1, then the constraint λ2 = λ3
is automatically satisfied at all times and as a result all four
eigenvalues become smooth functions of the parameters,
defining the symmetric shape. However, without explicitly
imposing the exact symmetry the desired double eigenvalue
λ2 = λ3 causes problems for the optimization. Each time
λ2 and λ3 “cross” during the optimization process, the em-
ployed non-linear programming algorithm finds itself at a
non-differentiable point in the space of parameters, defining
the shape. As a result, the non-linear algorithm gets “thrown
off” and in fact we never obtained convergence in this set-
ting, see Fig. 2. However, when we replace the non-smooth
constraints λ2 = µ and λ3 = µ with the equivalent smooth
constraints λ2 + λ3 = 2µ and λ2 λ3 = µ2 with derivatives
evaluated on the basis of (5), the optimization algorithm suc-
ceeds, see the right hand side of Fig. 1 and Fig. 3.

20 40 60 80
4

9

16

Optimization iteration
 

 

1 2 3 4

Fig. 2 Behaviour of (normalized) eigenvalues as functions of the op-
timization iteration: ignoring the non-smoothness of the eigenvalues
results in large “jumps” at non-smooth points when λ2 and λ3 cross. In
the end, optimization fails to converge to a desired precision.
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Fig. 3 Behaviour of (normalized) eigenvalues as functions of the op-
timization iteration: replacing the non-smooth double-eigenvalue con-
straints with their smooth equivalents based on evaluating symmetric
polynomials allows us to successfully compute the desired shape.
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