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Abstract

We consider the dynamics of a three-variable model for forest pest proposed by Rinaldi and Muratori
(Theor. Popul. Biol. 41:26–43, 1990.) The model divides the tree population into young and old trees,
as the pest mainly feeds on the old trees. This gives rise to a three timescale structure where the
pest grows on a fast scale, the young trees on an intermediate scale, and the old trees on a slow
scale. Canard explosions of limit cycles and existence of mixed mode oscillations have previously been
identified in the model, and it has been proposed that the mixed mode oscillations are organized by
a folded node singularity. We show that the model indeed has a folded node, but that this is not
the key to understanding the mixed mode oscillations. Rather, a singular Hopf bifurcation is present
which organizes a transition from a stable steady state to relaxation oscillations which is much more
complicated than the folded node scenario. We find numerically period doublings and saddle-node
bifurcations leading to isolas of periodic solutions in a bifurcation structure consistent with a singular
Hopf bifurcation.

Keywords: forest pest model · slow-fast systems · canards · mixed-mode oscillations · singular Hopf
bifurcation

1. Introduction

Outbreaks of the spruce budworm Choristoneura fumiferana have been recorded regularly in the
eastern United States since the early 19th century. The budworms mainly damage balsam fir and
spruce, and the outbreaks have severe economical consequences for the forest industry [19]. A population
dynamics model for the interaction between trees and budworms was first proposed by Ludwig et al.

[21] who found relaxation oscillations in the system: The populations evolve slowly in quasi-equilibrium
states, briefly interrupted by periods of fast dynamics corresponding to budworm outbreaks. Since the
budworm population develops on a much faster scale than the trees, the model has an inherent slow-fast
structure where this kind of dynamics is expected. Relaxation oscillations are also observed in other
forest pest models, e.g. [1, 4, 8, 12, 22, 24].

Here we study a three variable forest pest model proposed by Rinaldi and Muratori [24]. The
population of trees is age-structured into young trees and old trees to capture that the pest mainly feeds
on the old trees. In dimensionless variables the equations are

ẋ = a1y − a2x− a3
xz

a4 + x
, (1)

δẏ = a5x− (a6(x− a7)
2 + a8 + δa1)y, (2)

εż =

(

−a9 − a10z −
a11

a12 + z
+ a13

x

a4 + x

)

z, (3)

where x is the population of old trees, y is the population of young trees and z is the pest population.
The time scale for the old trees are taken as unity while δ and ε are the time scales of young trees and
pest, respectively. For further details on the biological contents of the model, see [24].
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Figure 1: Panel (a) displays the bifurcation diagram of the forest pest model (1)–(3) in parameter a5 for δ = 0.3. The
curve of equilibria is shown in black; the maximum in x along the branch of limit cycles is shown in blue; period-doubled
branches are shown in red as well as an isola of MMOs; black dots indicate Hopf (H), period-doubling (PD) as well
as saddle-node (SN) bifurcations encountered during the computation. Panel (b) shows the same branch of limit cycles
computed with three different decreasing values of ε: ε = 1e−03, ε = 5e−04 and ε = 1e−04, respectively. This illustrate
the explosive aspect of the branch when ε get closer to the singular limit. Panel (c) shows a period-doubled limit cycle
(blue) for a5 ≈ 1.990 and 11 MMO (red) for a5 ≈ 1.976, along the period-doubled branch displayed in panel (a), in
projection onto the (x, z)-space. The projection of the critical manifold is shown represented with its attracting (solid)
and repelling (dashed) branches.

Note that system (1)-(3) has special structure given by the presence of invariant plane {z = 0} and
the presence of an invariant line {x = y = 0}. From the modeling point of view the relevant part of
the space is the invariant halfspace {z > 0}, corresponding to the condition that the pest population is
always positive. In the aspect of the presence of invariant spaces system (1)-(3) is similar to systems
with symmetry, in which invariant spaces, and especially invariant hyperplanes often play an important
role in organizing the dynamics. The role of the invariant plane for (1)-(3) will be explained in more
detail in section 2.

Rinaldi and Muratori [24] consider the natural case ε ≪ δ ≪ 1. Based on singular perturbation
theory, a number of inequalities involving the parameters which guarantee the existence of a relaxation
oscillations are derived. Brøns and Kaasen [6] considered the model for a fixed small ε in the limit
δ → 0. Here Fenichel theory [11] allows a reduction to a two-dimensional system on an attracting
invariant manifold close to ẏ = 0. It is shown that the reduced system has a canard explosion. When a
parameter is varied through a Hopf bifurcation a limit cycle is created and experiences a rapid growth of
amplitude and period to a relaxation oscillation over a very short parameter interval. Biologically, the
combination of a Hopf bifurcation and a canard explosion corresponds to the transition from an infested
equilibrium to a periodic state with budworm outbreaks.

The canard analysis is only valid for δ sufficiently small. As δ is increased the two-dimensional
invariant manifold breaks down allowing for three-dimensional Mixed Mode Oscillations (MMOs), that
is, limit cycles with long periods that change between small and large oscillations as shown in Figure
1(c).
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MMOs are known to occur in systems with folded singularites [7]. We will show that a folded node
is present in the system (1)–(3), but for the parameters considered in [6] it is not the organizing feature
of the MMOs. Rather, a singular Hopf bifurcation [16, 17] is the singularity determining the dynamics.
We analyze numerically the bifurcation structure of the MMOs and show that it is consistent with a
singular Hopf bifurcation and more complex than what would be expected from a folded node scenario.

In what follows, we keep the same set of parameter values as in [6], that is, all the ak equal to 1
except a2 = 0.2, a3 = 7, a11 = 2 and a13 = 5, and we fix ε = 0.001. The remaining two parameters, a5
and δ, will be varied and considered as bifurcation parameters.

The rest of the paper is organized as follows. In section 2 we discuss some unusual features of system
(1)-(3). In section 3, we present a numerical bifurcation analysis of the model, highlighting the structure
of branches of periodic solutions in parameter space and, in particular, the region of MMOs in the (a5, δ)-
plane. In section 4, we focus on the dynamics in the fold region and show that the parameter regime
considered, and the MMOs observed, correspond to the singular Hopf bifurcation scenario. Finally we
conclude in section 5 and propose some avenues for future work.

2. Special features of system (1)-(3)

In this section we highlight some features of system (1)-(3) that distinguish from other systems
possessing MMOs.

Equations (1)–(3) define a slow-fast dynamical system with two slow variables, x and y, and one fast
variable z. The critical manifold S of this system is defined as the fast nullsurface; it is given by the
equation

S :=

{(

−a9 − a10z −
a11

a12 + z
+ a13

x

a4 + x

)

z = 0

}

. (4)

It follows that S is the union of a folded surface C and the plane Π := {z = 0} with C defined by

C :=

{

x = ϕ(z) =
a4(a9 + a10z +

a11

a12+z
)

a13 − a9 − a10z − a11

a12+z

}

. (5)

see Figure 3. The surface C is S shaped with two fold curves: F± :=
{

(x, y, z) ∈ C; z = ±
√

a11

a10

− a12

}

.

As mentioned in the introduction the plane Π as well as the sets z > 0 and z < 0 are invariant for
the flow. The MMOs observed by [6] are contained in the plane z > 0. The MMO trajectories make
small oscillations near F+, subsequently jump to the stable part of Π, follow it , crossing the instability
line defined by the intersection of Π and C and subsequently follow the unstable part of Π. The passage
along Π corresponds to a very simple delay phenomenon; since Π is always invariant the amount of
time spent by the trajectory near the unstable part of Π is determined by the balance of attraction and
expansion along Π. The role of Π is similar to the role of the invariant line in the article of Pokrovskii
et. al. [23].

Note that the dynamics would be different if the invariance of Π was broken for ε > 0 as a delay phe-
nomenon would occur only near discrete parameter values (due to the passage near a canard trajectory),
see [18]. An analogous effect can be expected in systems with symmetry thus pointing to a significant
change of the dynamics that can be brought about by the presence of symmetry in slow-fast systems.

An additional feature of the global return for system (1)–(3) is that the dynamics is mainly in the
x direction, so that the system returns to F+ with approximately the same values of y. An interesting
situation happens near F+, where the trajectories are attracted to the vicinity of the saddle point ps
and the rotations occur in the vicinity of ps (see Figure 3).

3. Numerical bifurcation analysis of the model

The numerical bifurcation analysis of system (1)–(3) in parameter a5 was performed with Auto [10];
the results are presented in Figure 1. Panel (a) shows families of stationary and periodic attractors
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Figure 2: Locus of PD bifurcations (red curve) in the (a5, δ)-plane computed using a numerical continuation routine,
superimposed onto the diagram shown in [6] figure 4 and computed in the same plane. The curve of PD clearly agrees
with the boundary of the region where MMO dynamics has been observed by direct simulation of the mode.

of the system as a function of a5 in the interval [1.96, 2.03], where interesting dynamics exists. These
computations reveal that the unique non trivial (z 6= 0) equilibrium destabilizes via a Hopf bifurcation
(H) at a5 ≈ 2.025278; this value depends on ε and is rather close to the value a5 = 1.987 chosen in
Figure 3. A pair of period-doubling bifurcations (PD) are detected along the branch of limit cycles born
at the Hopf bifurcation and they organize the stability of this branch. When switching to the branch
of period-doubled cycles, we find another two PD bifurcations. These PD bifurcations are likely to be
organized in cascades and generate chaotic dynamics in a certain band of parameter values. Along each
computed branch of periodic solution – period one, two and four are shown in Figure 1, many more
are expected to exist in this parameter region – an explosion takes place by which small cycles (small
period-2 cycles, small period-4 cycles, etc.) grow into large amplitude relaxation cycles (11 MMO, 13

MMO, etc.). Furthermore, certain MMO solutions (like the one shown in figure 3) happen to lie along
closed curves in parameter space, also referred to as isolas ; we show one such isola in figure 1 along which
MMOs have a 12 pattern of oscillation. Note that the relaxation cycles and the relaxation loop of MMOs
are possible due to the second branch of the critical manifold C of the system, that is, the plane {z = 0},
which is attracting in the x-interval where the folded sheet of C is unstable; please refer to section 4 for
more details about C. This double canard effect — canard explosion giving a canard segment around
a fold point of the critical manifold, and delayed-exchange of stability giving a second canard segment
near a non-fold non-hyperbolic point of the critical manifold — has already been reported, and termed
canard doublet, in a population dynamics context with the famous Lotka-Volterra equations; see [23].
This phenomenon is illustrated in Figure 1 (c) where a period-doubled cycle (blue) and a 11 MMO (red),
computed along the period two branch displayed in panel (a) for very near values of a5, are shown on
top of the critical manifold (black). The explosive character of the periodic branches of solutions is only
clearly observable for small enough ε; Figure 1 (b) presents the branch of period one solutions computed
for three decreasing values of ε: 1e−03 (blue), 5e−04 (cyan) and 1e−04 (magenta). Considering the
narrow a5-interval on the horizontal axis, this panel gives a good numerical evidence that the branch
develops a nearly vertical segment as ε gets closer to the singular limit.

When following the right-most PD bifurcation of Figure 1 in two parameters, namely a5 and δ, we
find a (red) curve in this two-parameter plane that agrees well with the boundary of the region of MMO
dynamics computed by direct simulation in [6] (figure 4). A comparison between both computation is
presented in figure 2. This suggests that the period-doubling bifurcations play an important role in the
generation of mixed-mode dynamics in this model, as we will confirm in section 4. We also show a (blue)
curve of saddle node bifurcation of cycles on isolas, namely, we continued in two parameter both SN
bifurcations detected on the isola shown in Figure 1 (a). The results indicates that this family of isolas
of MMOs stays, in the (a5, δ) inside the curve of PD bifurcations; this gives an additional numerical
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Figure 3: MMO of system (1)–(3) together with the critical manifold C ∪Π, formed by two components, each component
having attracting and repelling submanifolds. The black dots are the folded node pfn and the saddle-focus equilibrium
ps of the system; the red curve is the non-fold component of the y-nullcline of the DRS; the second black curve is the
z-nullcline of the DRS. Panel (a) is an enlarged view of panel (b) that allows to see the second attracting sheet of C.

evidence that the MMO dynamics is confined, in this two-parameter plane, to the narrow band already
shown in [6]. Therefore, from this bifurcation analysis we can conclude that the existence of mixed-mode
dynamics in this model is related to period-doubling bifurcations followed, for ε small enough, by canard
explosions.

4. Slow-fast analysis of the model – local dynamics near FS+.

We will focus only on the fold curve F+ = F since the MMOs oscillate around it; see figure 3. We let

α =
√

a11

a10

− a12; we will use α later on to show that, for the chosen set of parameters, system (1)–(3)

falls into the singular Hopf bifurcation scenario as far as the origin of MMOs is concerned.
We consider a parameter regime already studied in [6], namely, we fix: a5 = 1.987 and δ = 0.3 as

in figure 3 (e)-(f) of [6]. The periodic attractor of the system for these parameter values is an MMO of
pattern 12, i.e., with one large-amplitude oscillation (LAO) and two small-amplitude oscillations (SAOs).

The analysis of the desingularized reduced system (DRS)

δẏ = ϕ′(z)(a5ϕ(z)− (a6(ϕ(z)− a7)
2 + a8 + δa1)y, (6)

ż = a1y − a2ϕ(z)− a3
ϕ(z)z

ϕ(z) + a4
. (7)

shows that system (1)–(3) possesses a folded node, that is, a node equilibrium of the desingularized
reduced system (6)–(7) that lies on the fold curve F . Hence, at a folded node one has ϕ′(z) = 0, or

equivalently zfn = α =
√

a11

a10

− a12. Finally, we find the following expressions for the coordinates of the

folded node (we verify numerically that it is indeed a node)

xfn = ϕ(α) =
a4(a9 + 2

√
a10a11 − a10a12)

a13 − (a9 + 2
√
a10a11 − a10a12)

(8)

yfn =
xfn

a1
(a2 + a3

z

xfn + a4
) (9)

zfn = α. (10)

Through visualization (see figure 3), we realize that the folded node is not located at the center of the
SAOs of the MMO we consider; this gives the intuition that the dynamics cannot be fully understood
by invoking folded node theory.
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We argue that this is due to the fact that the system is close to a singular Hopf bifurcation. For all
a5, we can prove, by standard approach [25], that system (1)–(3) has a unique folded singularity given
by (8)–(10). We can transform the coordinates so that (1)–(3) becomes:

ẋ = µ+Ax+Bz + h.o.t, (11)

δẏ = x− y + h.o.t, (12)

εż = (−x+ φ(z))(z + α), (13)

where µ, A and B are functions of the parameters a1, . . . , a13 and δ. To achieve this transformation
we first replace x by x/(a4 + x), then translate the variables to the folded node point and rescale. For
each µ > 0 the origin is a folded node point and µ = 0 corresponds to a singular Hopf bifurcation. The
value of a5 corresponding to µ = 0 is a5 ≈ 2.030596282. We found this value by expanding the vector
field about the folded node and calculating the value of a5 for which the resulting Taylor expansion has
its constant term vanishing, which indeed corresponds to µ = 0 in (11)–(13). Note that the value of
the Hopf bifurcation computed with Auto is a5 ≈ 2.0252772146 for ε = 1e−03, a5 ≈ 2.0279173803 for
ε = 5e−04, and a5 ≈ 2.0300574958 for ε = 1e−04.

It is known [16] that for singular Hopf bifurcation there is a center manifold with Hopf type dynamics
near the folded singularity. For µ > 0 but very small this center manifold corresponds to a saddle-focus
point with a strongly stable real eigenvalue and a weakly unstable center direction. The trajectories
passing near the folded singularity are attracted to the unstable manifold (center manifold) of the saddle
point and follow the dynamics on it. Therefore the SAOs are close to the saddle focus equilibrium rather
than stay near the folded singularity.

The transition between the center manifold and the structure of slow manifolds further away from
the fold line is the origin of chaotic dynamics. By this mechanism simple periodic orbits undergo a
period doubling cascade en route to chaos. Subsequently, complicated periodic orbits undergo canard
explosions on one of their loops, growing to MMOs. This is the mechanism of the generation of MMO
orbits (which is till not completely understood, see [16] and [17]. In Figure 1 we show a transition from
a period doubled orbit to a 11 MMO by way of a canard explosion.

The maximal number of small oscillations in a MMO generated from a folded node can be computed
from

smax = [Ψ(µ)] , (14)

where [·] denotes the integer part and Ψ(µ) is a smooth function satisfying Ψ(µ) = O(1/µ), see [27, 26].
Applying this to the case a5 = 1.987, δ = 0.3 yields smax = 27, substantially above the actual value
s = 2. This also indicates that the folded node scenario is of limited relevance here.

5. Conclusion

In this paper, we completed the analysis of MMOs done in [6] for the forest pest model (1)–(3).
Namely, we showed that this model provides a good example where the generating mechanism is the
singular Hopf bifurcation and not the presence of a folded singularity. This is a good application of the
recent theory developed, in particular, in [16]. Indeed, there is clearly a folded node in the model but
its role is not decisive in shaping and organising the MMOs, hence the mismatch between the number
of SAOs found by applying folded node theory [7] compared to the observed number.

By looking closely at the bifurcation structure of the model, in particular, the location of the folded
singularity, the location of the saddle-focus equilibrium of the full system and the magnitude of the real
part of its eigenvalues, one can relate the situation observed in the forest pest model for the chosen
parameter set to the “Singular Hopf bifurcation scenario” as opposed to the “folded node / folded
saddle-node” scenario. This is in light of the recent work done in [7, 16, 17, 20]. In particular, the role of
period-doubling bifurcations in the mixed-mode dynamics in a singular Hopf normal form was pointed
in [17], in link with canard explosion phenomena. We show, by means of numerical continuation, that
the presence of MMOs in system (1)–(3), owes (for small enough ε) to the explosion of small amplitude
period-2n (n ∈ N) cycles that are born along a cascade of period-doubling bifurcations. This cascade
involves a small-amplitude chaotic attractor. There are also period-(2n + 1) orbits lying on isolas and
that change their LAO profile through period-doubling bifurcations as well.
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Finally, future work include looking at the family of isolas in parameter space, how MMOs living
on them are organized, how such families are created and destroyed; this involve numerical as well as
theoretical questions that we are planning to address in a follow-up paper.
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