Isolation and molecular characterization of Clostridium perfringens from healthy Merino lambs in Patagonia region, Argentina

Mignaqui, A. C.; Marcellino, R. B.; Ronco, Troels; Pappalardo, J. S.; Nonnemann, Bettina; Pedersen, Karl; Robles, C. A.

Published in:
Anaerobe

Link to article, DOI:
10.1016/j.anaerobe.2016.10.015

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Isolation and molecular characterization of *Clostridium perfringens* from healthy Merino lambs in Patagonia Region, Argentina

Mignaqui, AC^a; Marcellino, RB^b; Ronco T^c; Pappalardo, JS^b; Nonnemann, B^c; Pedersen, K^c; Robles, CA^b

^aNational Institute for Agricultural Technology, Bariloche Research Station, CONICET, Bote Modesta Victoria 4450, San Carlos de Bariloche (R8403DVZ), Río Negro, Argentina.

^bNational Institute for Agricultural Technology, Bariloche Research Station, Bote Modesta Victoria 4450, San Carlos de Bariloche (R8403DVZ), Río Negro, Argentina.

^cTechnical University of Denmark, National Veterinary Institute, Bülowsvej 27 (1870), Frederiksborg, Denmark

*Corresponding author at: E-mail address: mignaqui.anaclara@inta.gob.ar, tel.: (+54 294) 4422731; fax: (+54 294) 4424991.

Keywords: *Clostridium perfringens*; lambs; enterotoxaemia; PCR; PFGE.
Abstract:

The presence and molecular characterization of *Clostridium perfringens* in healthy Merino lambs over a six-month period was investigated in this study. Overall, a high prevalence of *C. perfringens* was detected, even in day-old lambs. Even though the majority of the isolates were characterized as being of type A, types C and D were also isolated. Furthermore, a high genetic diversity was observed by PFGE among the type A isolates.

Clostridium perfringens is an anaerobic, Gram-positive bacterium that can be found in the gastrointestinal tract of healthy humans and animals [1,2]. Under certain circumstances, *C. perfringens* is able to cause severe diseases by the production of a variety of toxins [3]. Depending on the ability to produce four of these toxins (alpha, beta, epsilon, iota), *C. perfringens* strains are classified into five types (A, B, C, D, E) [4]. All *C. perfringens* types harbor the alpha toxin-encoding gene (*cpa*) and in the case of type A strains only the *cpa* gene is carried. *C. perfringens* types B and C also harbor the beta toxin gene (*cpb*) and additionally types B and D strains carry the epsilon toxin gene (*etx*), whereas type E strains carry the iota toxin gene (*iA*). Besides these classifying toxins, all types of *C. perfringens* can produce other toxins involved in the pathogenic behavior of the bacterium; such as the enterotoxin (*cpe*), the beta2 toxin (*cpb2*) and the NetB toxin (*netB*) [5–7].

In sheep, all *C. perfringens* types can produce gastrointestinal diseases [8,9]. Among the different *C. perfringens* types, type A is the most common type isolated from the intestine of healthy domestic animals and in the environment. However, it is also able to cause
gastrointestinal disease in lambs known as yellow lamb dysentery [10–12]. \textit{C. perfringens}
type B is responsible of dysentery and type C of necrotic enteritis [8]. Both diseases occur
mainly in newborn lambs during the first days of life and beta toxin is responsible for the
characteristic lesions. Enterotoxaemia is caused by type D strains that produce the epsilon
toxin and is one of the most common clostridial diseases in sheep [8].

Diseases caused by \textit{C. perfringens} are triggered by different predisposing factors, such as
stress situations or sudden changes in diet, that allow proliferation of the bacterium and
production of toxins [8,13].

Prevalence studies in healthy lambs and lambs with clostridial gastrointestinal diseases
have reported the presence of \textit{C. perfringens} types A, B, C and D [10,11,14]. However,
data from longitudinal studies is not available. In order to better understand the behavior of
this complex pathogen in lambs, we analyzed the presence and molecular characterization
of \textit{C. perfringens} isolates collected from healthy lambs during a six-month period.

The study was conducted at INTA’s Experimental Farm (S41°1'55" W70°35'24") located at
Patagonia, Argentina; from October 2014, when the lambing season started, to May 2015.
Fifteen healthy female Merino lambs belonging to the same flock, born within six days
from 31 October to 5 November 2014, were used in this study (Table 1). Samples were
collected during six months starting from the day the lambs were born. The age of the
animals at each sampling time is found in Table 1.

Samples were obtained from lambs using a sterile swab that was inserted 3 to 4 cm into the
rectum and gently rotated and rubbed against the inner wall of the rectum. Fecal swabs
were then transported to the laboratory in sterile screw-capped tubes containing 5 ml of
glycerol 50% v/v in saline solution at room temperature and were processed the same day.
Fecal swabs were inoculated into Tarozzi broth medium and incubated in anaerobic jars
(Oxoid, United Kindom) in an atmosphere with H₂ 80% and CO₂ 20% at 37ºC for 24 h [1].
Subsequently, blood agar (BA) plates (Britania, Argentina) were spread plated with 0.1 ml
of the cultivated Tarozzi broth medium and incubated anaerobically. After incubation,
colonies compatible with C. perfringens (medium-sized, bright, round, with a characteristic
double-zone haemolysis) were subcultured in thioglycolate medium (Britania, Argentina).
Gram staining and biochemical tests (production of catalase, lecithinase, reverse CAMP
and aerotolerance) were carried out to identify the isolates [15].
Some C. perfringens isolates were further analyzed by Matrix-assisted laser
desorption/ionization time of flight mass spectrometry (MALDI TOF). All the isolates
analyzed by MALDI TOF were demonstrated to be C. perfringens with a high score value
confirming the correct identification by classical bacteriological means (data not shown).
DNA was extracted from Tarozzi broth medium after 24 h of cultivation with fecal swabs
and from pure thioglycolate cultures with 150 µl of 5% Chelex resin (Bio-Rad, USA)
following manufacturer´s instructions.
Multiplex PCR targeting the cpa, cpb, etx, iA, cpe and cpb2 genes was performed using
primers previously described [16,17]. Reactions contained a final concentration of 0.4 µM
of cpa primers, 0.36 µM of cpb primers, 0.5 µM of etx, iA and cpb2 primers, 0.6 µM cpe
primers, 10 mM of dNTPs, 2 mM MgCl₂, 2 × PCR buffer Taq Pegasus (PB-L, Argentina),
1.25 units of DNA Taq Pegasus, 1 µl of template and water to 25 µl. The thermal cycling
was carried out with 25 cycles of denaturation at 95°C for 1 min, annealing at 53°C for 1 min, and extension at 72°C for 1 min, finally an additional extension period of 10 min at 72°C was done. PCR products were subject to electrophoresis in 2.2% agarose gel for 40 min at 100 V and stained with Gel Red (Biotium, USA). PCR product visualization and documentation were performed under 254 nm UV light.

Nineteen *C. perfringens* isolates were analyzed by Pulsed-Field Gel Electrophoresis (PFGE) as previously described [18]. Briefly, colonies from BA were picked and suspended in Brain Heart Infusion broth (Becton Dickinson, USA). Then, the cultures were centrifuged and washed with ice-cold PIV buffer before being embedded in agarose (Bio-Rad, USA). Agarose blocks were lysed and then digested with 20 U *Sma*I (Invitrogen, USA) for 3 h at 30°C. The restricted fragments were separated in a 1% agarose gel in 0.5 × TBE buffer by using a CHEF-DR III system (Bio-Rad). Following the electrophoresis, the gel was stained in aqueous ethidium bromide 2 µg/ml followed by a destained step in water and photographed under 254 nm UV light. The reference strain used for the analysis was *Salmonella* serotype Braenderup H9812 and was digested with *Xba*I (Invitrogen, USA) for 3 h at 37°C [19].

PFGE gel photos were imported to BioNumerics version 7.1 (Applied Maths, Belgium) as JPG files and bands were assigned to each lane. The similarity among the isolates was calculated using the Dice similarity coefficient with branch matching of 2% tolerance, and the cluster analysis was based on the unweighted pair-group method with arithmetic averages (UPGMA).

The results of the present study demonstrate a high prevalence of *C. perfringens* in healthy Merino lambs from Patagonia, Argentina. *C. perfringens* was isolated at all sampling times,
A higher prevalence of *C. perfringens* was detected in younger animals, reaching a 100% prevalence in lambs less than a month old. However, the prevalence started decreasing as they grew older (> 1 month old) (Table 1). Indeed, when the lambs were two month old, the prevalence of *C. perfringens* was 67% and later started decreasing and was observed to be between 7-36% for the rest of the period (Table 1).

Based on the multiplex PCR, *C. perfringens* Type A was commonly isolated from the fecal samples (Table 1) [11]. However, *C. perfringens* type C and type D (*cpe*+, *cpb2*+) were also detected (Table 1). Both types were isolated at an age when lambs are especially susceptible to those *C. perfringens* types [8,14]. Indeed, *C. perfringens* type C was isolated from newborns and *C. perfringens* type D (*cpe*+, *cpb2*+) was isolated from lambs after weaning, when the animals were 4 month old and were moved to a new paddock. This sudden change in diet is one of the predisposing factors for enterotoxaemia caused by *C. perfringens* type D [13]. Both *C. perfringens* type C and type D were only isolated at one time point each and only from one animal and could not be isolated again in the following sampling time.

The genetic diversity of 19 *C. perfringens* isolates was analyzed by PFGE. PFGE analysis with restriction enzyme *Sma*I resulted in 10 different PFGE patterns (Fig. 1). All the isolates analyzed produced a fragment of approx.1,100 bp, as previously reported [20] (Fig. 1). Five *C. perfringens* isolates collected from eleven different animals at the same time had the same PFGE pattern (Fig. 1). In contrast, different PFGE patterns were detected in
isolates from the same animal at different time points (Fig. 1). Indistinguishable PFGE patterns were only detected in two isolates from the same animal when weekly and not monthly samples were analyzed. The isolation of several different genetic clones of *C. perfringens* over time in the same animal could be due to the characterization of only one colony at each time point. However, when different isolates from the same animal within the same time point were analyzed, the same PFGE pattern was detected in all of them, suggesting a succession of strains in the same animal. On the basis of these results it is suggested that time may be an important factor for the isolation of clustered or even identical bacterial strains. Also, the presence of different clones isolated from the same animal at different times suggests that *C. perfringens* could pass passively through the gut because of the ingestion of spores from the environment, as previously suggested for *Clostridium difficile*, instead of being a permanent inhabitant of gut flora [21]. This issue remains to be further analyzed to provide new insights into the mechanism of pathogenicity and physiology of *C. perfringens*. However, care has to be taken when interpreting these results because of the small number of *C. perfringens* isolates.

Acknowledgement

We thank Macarena Bruno Galarraga, José María Garramuño, Rubén Martinez, Luciano Hernández and Martín Britos for their valuable help with animal work at the experimental farm. We are grateful to Mrs. Katja Ann Kristensen for technical assistance with PFGE analyses. In addition, we are thankful to Dr. Mariano Fernandez Miyakawa and his group for the generous supply of *C. perfringens* references strains used for the multiplex PCR. This work was supported by INTA funds under the Specific Project PNSA 1115055.
National Animal Health Program- Specific project: "Metabolic, toxic, infectious and parasitic diseases affecting the productivity of sheep, goats and camelids".

References

761–762.

Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined
doi:10.1017/S0950268899003295.

[18] B. Nauerby, K. Pedersen, M. Madsen, Analysis by pulsed-field gel electrophoresis of
the genetic diversity among Clostridium perfringens isolates from chickens, Vet.

Graves, D. Wrigley, T. Barrett, E. Ribot, Establishment of a universal size standard
strain for use with the pulsenet standardized pulsed-field gel electrophoresis
protocols: Converting the national databases to the new size standard, J. Clin.

Swaminathan, Molecular subtyping of Clostridium perfringens by pulsed-field gel
electrophoresis to facilitate food-borne-disease outbreak investigations, J. Clin.

Figure 1. Dendrogram of PFGE types of *C. perfringens* isolates from healthy Merino lambs in Patagonia, Argentina. L is lamb, followed by the animal number. The different lambs samples collected at different time points (t2, t3, t4, t8, and t9) are shown in the left column, while the assigned PFGE patterns are shown in the right column. Ref. strain is the *Salmonella* serotype Braenderup H9812 reference strain.
Table 1. Detection of *C. perfringens* by culture from fecal swabs from healthy lambs over time.

<table>
<thead>
<tr>
<th>Sample Nº</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4016</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4018</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4020</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4022</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4026</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4030</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4032</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4036</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4038</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4040</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4042</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4044</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4046</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4048</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4050</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% of lambs with C. perfringens</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 100 93 93 67 27 36 7 36</td>
</tr>
</tbody>
</table>

°average age is shown

+ *C. perfringens* type A

+ *C. perfringens* type A and C

+ **C. perfringens** type D (cpe, cpb2)

- negative isolation

Sample not available