

## Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1985

Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, H.; Hallstadius, L.; Hansen, H.; Holm, E.; Rioseco, J.

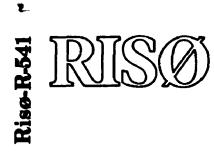
Publication date: 1987

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Aarkrog, A., Boelskifte, S., Buch, E., Christensen, G. C., Dahlgaard, H., Hallstadius, L., Hansen, H., Holm, E., & Rioseco, J. (1987). *Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included.* 1985. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R No. 541


#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



Risø-R-541

# Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1985

A. Aarkrog, S. Boelskifte, E. Buch, G. C. Christensen, H. Dahlgaard, L. Hallstadius, H. Hansen, E. Holm, and J. Rioseco

Risø National Laboratory, DK-4000 Roskilde, Denmark June 1987 Risø-R-541

```
ENVIRONMENTAL RADIOACTIVITY IN THE NORTH ATLANTIC REGION.
THE FAROE ISLANDS AND GREENLAND INCLUDED. 1985
```

```
A. Aarkrog, S. Boelskifte, E. Buch<sup>O</sup>, G. C. Christensen*,
H. Dahlgaard, L. Hallstadius**, H. Hansen, E. Holm***, and
J. Rioseco**
```

- o The Greenland Fisheries and Environmental Research Institute, Denmark
- \* Institute for Energy Technology, Kjeller, Norway
- \*\* University of Lund, Sweden
- \*\*\* International Laboratory of Marine Radioactivity, Monaco

<u>Abstract.</u> Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of  $^{90}$ Sr and  $^{137}$ Cs in human diet in the Faroes and Greenland in 1985. Results from samplings of surface sea water and seaweed in the English Channel, the Fram Strait and along the Norwegian and Greenland coasts are re-(continued)

ī.

June 1987 Risø National Laboratory, DK-4000 Roskilde, Denmark ported. Beside radiocesium and <sup>90</sup>Sr some of these samples have also been analysed for tritium, plutonium and americium. Finally technetium-99 data on seaweed and sea water samples collected in the North Atlantic region are presented.

I.

1

ISBN 87-550-1342-2 ISSN 0106-2840 ISSN 0900-8098

Grafisk Service Risø 1987

1

CCNTENTS

| 1.  | GENERAL INTRODUCTION                                          | 7  |
|-----|---------------------------------------------------------------|----|
| ••  |                                                               | •  |
| 2.  | ENVIRONMENTAL RADIOACTIVITY IN THE FAROE ISLANDS              |    |
|     | IN 1985                                                       | 8  |
|     | 2.1. Introduction                                             | 8  |
| •   | 2.2. Results and discussion                                   | 9  |
|     | 2.2.1. Strontium-90 in Faroese precipitation                  | 9  |
|     | 2.2.2. Strontium-90 and Cesium-137 in Faroese                 |    |
|     | grass                                                         | 12 |
|     | 2.2.3. Strontium-90 and Cesium-137 in Faroese                 |    |
|     | milk                                                          | 12 |
|     | 2.2.4. Strontium-90 and Cesium-137 in Faroese                 |    |
|     | terrestrial animals                                           | 19 |
|     | 2.2.5. Strontium-90 and Cesium-137 in Paroese                 |    |
|     | sea animals                                                   | 20 |
|     | 2.2.6. Strontium-90 and Tritium in Faroese                    |    |
|     | drinking water                                                | 22 |
|     | 2.2.7. Strontium-90 and Cesium-137 in                         |    |
|     | miscellaneous Faroese samples                                 | 23 |
|     | 2.2.7.1. Faroese soil (No samples)                            | 23 |
|     | 2.2.7.2. Faroese sea water                                    | 23 |
|     | 2.2.7.3. Faroese sea plants                                   | 23 |
|     | 2.2.7.4. Faroese vegetables                                   | 26 |
|     | 2.2.7.5. Faroese bread                                        | 27 |
|     | 2.2.7.6. Faroese eggs                                         | 28 |
|     | 2.2.8. Humans from the Faroes                                 | 28 |
|     | 2.2.8.1. Strontium-90 in human bone                           | 28 |
|     | 2.3. Estimate of the mean contents of $90$ Sr and $137$ Cs    |    |
|     | in the Faroese human diet in 1985                             | 28 |
|     | 2.4. Conclusion                                               | 33 |
|     |                                                               |    |
| APP | ENDIX 2A Predictions and observations of <sup>90</sup> Sr and |    |
|     | <sup>137</sup> Cs in Faroese samples in 1985                  | 35 |
| 3.  | ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1985              | 36 |
|     | 3.1. Introduction                                             | 36 |
|     |                                                               |    |

Page

|                                                            | Page |
|------------------------------------------------------------|------|
| 3.2. Results and discussion                                | 37   |
| 3.2.1. Strontium-90 in Greenland precipitation             | 37   |
| 3.2.2. Radionuclides in Greenland sea water                | 40   |
| 3.2.3. Strontium-90 and Cesium-137 in Greenland            |      |
| terrestrial animals                                        | 40   |
| 3.2.4. Strontium-90 and Cesium-137 i Greenland             |      |
| sea animals                                                | 42   |
| 3.2.5. Radionuclides in Greenland sea weed                 | 44   |
| 3.2.6. Strontium-90 and Tritium in Greenland               |      |
| drinking water                                             | 46   |
| 3.3. Estimate of the mean contents of $90$ Sr and $137$ Cs |      |
| in the human diet in Greenland in 1985                     | 48   |
| 3.4. Conclusion                                            | 53   |
|                                                            |      |
| 4. MARINE ENVIRONMENTAL RADIOACTIVITY IN THE NORTH         |      |
| ATLANTIC REGION                                            | 54   |
| 4.1. The F/S Polarstern cruise in July 1985 to the         |      |
| Fram Strait                                                | 54   |
| 4.2. An estimate of the transfer factors of $137$ Cs and   |      |
| 90Sr from Sellafield to the East Greenland                 |      |
| current based upon sea water samples collected             |      |
| off East Greenland in November 1984                        | 61   |
| 4.3. Radioecological studies along the English Channel     |      |
| in 1985                                                    | 64   |
| 4.4. Various samples from the northern North Atlantic      | 74   |
| 4.5. Studies of $90$ Sr and $137$ Cs in surface sea water  |      |
| collected off the West Greenland by the                    |      |
| Greenland Fisheries and Environmental Research             |      |
| Institute                                                  | 76   |
|                                                            |      |
| ACKNOWLEDGEMENTS                                           | 80   |
| REPERENCES                                                 | 81   |

1

ABBREVIATIONS AND UNITS

```
joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal)
J:
       gray: the unit of absorbed dose = 1 \text{ J kg}^{-1} (= 100 rad)
G\ :
       sievert: the unit of dose equivalent = 1 \text{ J kg}^{-1} (= 100 rem)
Sv:
       becquerel: the unit of radioactivity = 1 \text{ s}^{-1} (= 27 pCi)
Bq:
ALI:
       annual limit of intake (according to ICRP)
cal: calorie = 4.186 J
rad: 0.01 Gy
rem: 0.01 Sv
       curie: 3.7 \cdot 10^{10} Bg (= 2.22 \cdot 10^{12} dpm)
Ci:
       exa: 10^{18}
E:
       peta: 10<sup>15</sup>
P:
       tera: 10^{12}
T:
       giga: 10^9
G:
       mega: 10^6
M:
       kilo: 10^3
k:
       milli: 10<sup>-3</sup>
B:
       mikro: 10^{-6}
u :
       nano: 10<sup>-9</sup>
n:
       pico: 10<sup>-12</sup>
p:
       femto: 10^{-15}
f:
       atto: 10^{-18}
a:
pro capite: per individual
TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent
       to 10^9 kg TNT.
a<sup>-1</sup>: per annum
OR: observed ratio
CF: concentration factor
µR: micro-roentgen, 10<sup>-6</sup> roentgen
S.U.: pCi = 90Sr (g Ca)<sup>-1</sup>
O.R.: observed ratio
M.U.: pCi^{137}Cs(qK)^{-1}
```

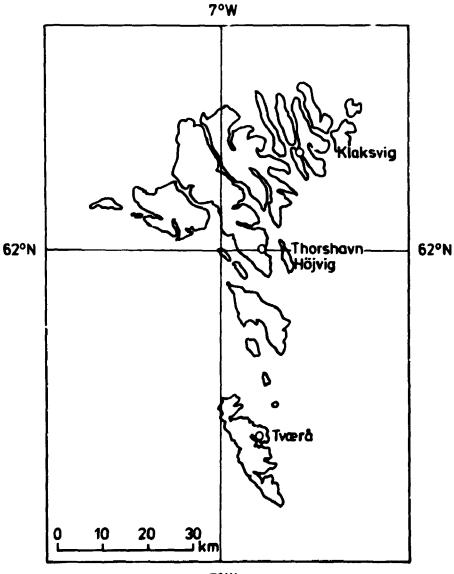
V: vertebrae **m**: male f: female nSr: natural (stable) Sr eqv. mg KC1: equivalents mg KC1: activity as from 1 mg KC1 (~ 0.88 dpm). 1 g K ~ 756 pCi ~ 28 Bq. standard deviation:  $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{(n-1)}}$ S.D.: standard error:  $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{D(D-1)}}$ S.E.: U.C.L.: upper control level L.C.L.: lower control level one standard deviation due to counting Δ: S.S.D.: sum of squares of deviation:  $\Sigma(\bar{x}-x_i)^2$ f: degrees of freedom s<sup>2</sup>: variance v<sup>2</sup>: ratio between the variance in question and the residual variance P: probability fractile of the distribution in question coefficient of variation, relative standard deviation n: anova: analysis of variance Counting errors: given as relative standard deviation: no indication: < 20% A: 20-338 **B**: >33%, such results are not considered significantly different from zero activity B.D.L.: below detection limit In the significance test the following symbols were used: × : probably significant (P > 95%) \*\* : significant (P > 99%) \*\*\* : highly significant (P > 99.9%)

#### 1. GENERAL INTRODUCTION

Since 1962 we have published separate annual reports for the Environmental Radioactivity in the Faroes<sup>1</sup>) and in Greenland<sup>2</sup>). The reports on and after 1983 are contained in the new series: "Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included"<sup>4</sup>) of which the present report is the third.

Chapter 2 in this report corresponds to the earlier report for the Faroes and Chapter 3 to the Greenland report.

In Chapter 4 we report on marine environmental radioactivity studies from other parts of the North Atlantic region and, furthermore, include sea water data from the Farce Islands and Greenland. Chapter 4 also includes results from samplings carried out in earlier years.


Due to the burden of work after the Chernobyl accident in 1986, this report appears with several months' delay. For the same reason, it has been impossible to complete all analyses from the Thule 1984 sampling, from which the first results were presented in the 1984 report. The missing Thule data will appear in the 1986 report.

As mentioned also in the Danish report<sup>3</sup>) our  $\beta$ -counters have been recalibrated for 90Sr, and we have found that our 90Sr data for the years 1980-1984 have been a factor of 1.225 times too high. This has been taken into account in the present report, when 90Sr data from these five years are used. 2. ENVIRONMENTAL RADIOACTIVITY IN THE FAROE ISLANDS IN 1985

## 2.1. Introduction

## 2.1.1.

The fallout programme for the Faroes, which was initiated in 1962<sup>1)</sup> in close co-operation with the National Health Service and the chief physician of the Faroes, was continued in 1985. Samples of human bone were obtained in 1985 from Dronning Alexandrine's Hospital in Thorshavn.



7°₩

Fig. 2.1. The Farce Islands.

## 2.1.2.

The present report will not repeat information concerning sample collection and analysis already given in Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 361, 387, 404, 422, 448, 470, 488, 510 and 528<sup>1,4</sup>.

## 2.1.3.

The estimated mean diet of the Faroese as used in this report is still based on the estimate given by the late Professor E. Hoff-Jørgensen, Ph.D., in 1962.

## 2.1.4.

The present investigation was carried out together with corresponding examinations of fallout levels in Denmark and Greenland, described in Risø Report No. 540<sup>3</sup>) and in Chapter 3 of this report, respectively.

#### 2.2. Results and discussion

## 2.2.1. Strontium-90 in Faroese precipitation

Table 2.1 shows the 90Sr content in precipitation collected at Højvig (near Thorshavn) and Klaksvig in 1985. The amount of fallout at Højvig was a factor of 2 greater than that found at Klaksvig, although the precipitation at Højvig was only 40% of that observed at Klaksvig.

The  $^{90}$ Sr fallout in 1985 was approximately half of that in 1984. In Denmark the 1985 levels were 0.8 times the 1984 levels<sup>2)</sup>.

| Table 2.2.1.1. | Strontium-90 | in | precipitation | in | the | Farces | in | 1985 |
|----------------|--------------|----|---------------|----|-----|--------|----|------|
| (sampling area | $= 0.02 m^2$ |    |               |    |     |        |    |      |

|           | Hè                 | ōjvig                          | Klaksvig           |                    |  |
|-----------|--------------------|--------------------------------|--------------------|--------------------|--|
|           | Bq m <sup>-3</sup> | Bq m <sup>-2</sup>             | 8q = <sup>-3</sup> | Bq m <sup>-2</sup> |  |
| Jan-April | 1.73 A             | 0.27 A                         | 0.41 B             | 0.22 B             |  |
| May-June  | 0.31 B             | 0.02 B                         | 1.21 B             | 0.23 B             |  |
| July-Aug  | 1.27 B             | 0.22 B                         | 0,40 B             | 0,14 E             |  |
| Sept-Dec  | 1.27 A             | 0.47 N                         | B.D.L.             | B.D.L.             |  |
| 1985      | 1.36               | t 0.98<br>ε <sub>m</sub> 0.767 | 0.30               | £ 0.59<br>2m 1.961 |  |

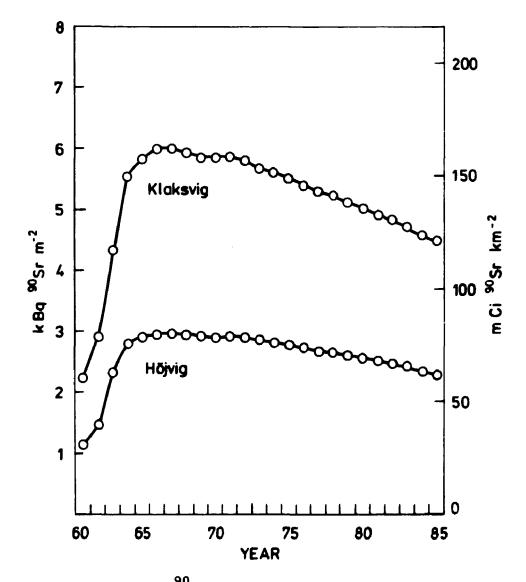



Fig. 2.2.1. Accumulated 90Sr at Klaksvig and Højvig calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish fallout data (cf. Risø Report No. 527<sup>3)</sup>, Appendix D) and from the ratio between the 90Sr fallout at the Farcese stations and the fallout in Denmark in the period 1962-1985 (cf. Table 2.2.1.2).

|      | Höj    | vig                 | Klaksvig        |                     |  |
|------|--------|---------------------|-----------------|---------------------|--|
|      | ďi     | A <sub>i</sub> (29) | đi              | A <sub>1</sub> (29) |  |
| 1950 | 1.08   | 1.06                | 2.15            | 2,10                |  |
| 1951 | 5,21   | 6.12                | 10.34           | 12.1                |  |
| 1952 | 10.21  | 15.94               | 20.27           | 31.6                |  |
| 1953 | 25.78  | 40.74               | 51,18           | 80.8                |  |
| 954  | 98.02  | 135.48              | 194,58          | 268,94              |  |
| 955  | 128.96 | 258.20              | 256.00          | 512,54              |  |
| 956  | 159.90 | 408.22              | 317.41          | 810,34              |  |
| 957  | 159.90 | 554.70              | 317.41          | 1101.13             |  |
| 1958 | 221.82 | 758.18              | 440.34          | 1505.0              |  |
| 1959 | 314_64 | 1047.48             | 624.58          | 2079.3              |  |
| 960  | 58.78  | 1080.14             | 116.69          | 2144.10             |  |
| 1961 | 76,36  | 1129,19             | 151.59          | 2241.52             |  |
| 962  | 383,01 | 1476.48             | 7 <b>60,</b> 31 | 2930.93             |  |
| 963  | 913.00 | 2333.05             | 1503.00         | 4329.21             |  |
| 964  | 544.00 | 2809.10             | 1363.00         | 5557.7              |  |
| 965  | 181_00 | 2919.48             | 436.00          | 5852.2              |  |
| 966  | 112.00 | 2959.88             | 289.00          | 5996.13             |  |
| 967  | 94.70  | 2982.44             | 182.00          | 6032.2              |  |
| 968  | 44.00  | 2954.96             | 55.50           | 5943.97             |  |
| 969  | 41,70  | 2925.30             | 65.10           | 5867,15             |  |
| 970  | 53,60  | 2908.54             | 141.00          | 5866.25             |  |
| 1971 | 101.00 | 2938.46             | 156.00          | 5880.02             |  |
| 1972 | 34.40  | 2902.65             | 55.10           | 5794.94             |  |
| 1973 | 24.20  | 2857.73             | 26.50           | 5683.9              |  |
| 1974 | 33,80  | 2823.23             | 58.80           | 5607.12             |  |
| 1975 | 34.40  | 2790.14             | 47.80           | 5521.36             |  |
| 1976 | 8.86   | 2732.91             | 21.60           | 5412.05             |  |
| 1977 | 27.40  | 2695.12             | 34.40           | 5317.81             |  |
| 1978 | 37,30  | 2667.89             | 47.60           | 5238,69             |  |
| 979  | 13.00  | 2618.45             | 22.20           | 5136,64             |  |
| 1980 | 9.55   | 2565.93             | 10.29           | 5025.36             |  |
| 1981 | 18,37  | 2523,26             | 21,80           | 4927.96             |  |
| 982  | 6.33   | 2469.84             | 3.91            | 4815.38             |  |
| 983  | 2.75   | 2414.20             | 2.24            | 4703,84             |  |
| 1984 | 5.53   | 2362.58             | 0.87            | 4593.60             |  |
| 985  | 0.98   | 2307.74             | 0.59            | 4485,68             |  |

Table 2.2.1.2. Fallout rates and accumulated fallout (Bg  $^{90}$ Sr m<sup>-2</sup>) in the Parces 1950-1985

1950-1961: are estimated values based upon HASL data (HASL Appendix 291, 1975) considering that the wean ratio between  $^{90}$ Sr fellout in Denmark and New York was 0.7 in the period 1962-1974 and that the mean ratios between  $^{90}$ Sr fellout in Höjvig and Denmark and between Klaksvig and Denmark are 1.39 and 2.76, respectively<sup>5</sup>.

## 2.2.2. Strontium-90 and Cesium-137 in Faroese grass

Grass samples were collected near Thorshavn in 1985. Table 2.2.2 shows the results. The 1985  $^{137}$ Cs mean level in grass was 0.75 times the 1984 level. As compared with Danish grass in 1985<sup>3)</sup> we found the  $^{90}$ Sr level (Bq (kg Ca)<sup>-1</sup>) in the Faroese grass to be higher by a factor of approximately 11.7 in the summer months, which is in agreement with the observations in previous years.

| Month  | Bg <sup>90</sup> Sr kg <sup>-1</sup> dry | $Bq 90 Sr (kg Ca)^{-1}$ | Bg <sup>137</sup> Cs kg <sup>-1</sup> dry | Bg <sup>137</sup> Cs (kg K) <sup>-1</sup> |
|--------|------------------------------------------|-------------------------|-------------------------------------------|-------------------------------------------|
| June   | 7.4*                                     | 1650                    | 22                                        | 810                                       |
| August | 35*                                      | 7700                    | 91                                        | 4000                                      |

Table 2.2.2. Strontium-90 and Cesium-137 in grass from Thorshavn 1985

## 2.2.3. Strontium-90 and Cesium-137 in Faroese milk

As previously<sup>1)</sup>, weekly samples of fresh milk were obtained from Thorshavn, Klaksvig, and Tværå. Strontium-90 and <sup>137</sup>Cs were determined in bulked monthly samples.

Tables 2.2.3.1 and 2.2.3.2 show the results and Tables 2.2.3.3, 2.2.3.4 and 2.2.3.5 the analysis of variance of the Bq  $^{90}$ Sr (kg Ca)<sup>-1</sup>, Bq  $^{137}$ Cs (kg K)<sup>-1</sup>, and Bq  $^{137}$ Cs m<sup>-3</sup> figures, respectively. As also observed earlier, the variation between locations was significant for  $^{137}$ Cs and probably also for  $^{90}$ Sr. The highest levels were found in the milk from Tværå and Klaksvig, and the lowest in Thorshavn milk.

Figure 2.2.3.1 shows the quarterly Bg 90 Sr (kg Ca)<sup>-1</sup> values and Fig. 2.2.3.2 the quarterly Bg 137 Cs m<sup>-3</sup> levels since 1962. The annual mean values for 1985 were 90 Bg 90 Sr (kg Ca)<sup>-1</sup> (2.4 S.U.) and 2400 Bg 137 Cs m<sup>-3</sup> (65 pCi 137 Cs 1<sup>-1</sup>), i.e. the 90 Sr levels in 1985 were 69% of the 1984 concentration, while the 137 Cs levels were approximately 59% of the 1984 mean levels. In Danish milk the 90 Sr concentration in 1985 was nearly 91% of the 1984 level, and the 137 Cs 1985 level was also nearly 90%. The annual mean values of the ratio: Bq  $^{137}$ Cs (kg K) $^{-1}$ /Bq  $^{90}$ Sr (kg Ca) $^{-1}$  in Faroese milk are shown in Fig. 2.2.3.3. The annual mean ratio in 1985 for the three locations was 15.6.

Figure 2.2.3.4 shows a comparison between the  $^{90}$ Sr and  $^{137}$ Cs levels in Faroese- and Danish-produced milk. It is evident that indirect contamination plays an important role for the  $^{137}$ Cs levels in the Faroes, because the ratio between  $^{137}$ Cs in Faroese and Danish milk increases when the fallout rate decreases. The ratios between the  $^{90}$ Sr levels in Faroese and Danisk milk have shown a slight tendency to decrease through the years.

<u>Table 2.2.3.1</u>. Stronuium-90 in milk from the Faroes in 1985 (Bq  $^{90}$ Sr (kg Ca)<sup>-1</sup>)

|       | Thorshavn | Klaksvig | Tværå | Mean |
|-------|-----------|----------|-------|------|
| Jan   | 78        | 160      | 91    | 110  |
| Feb   | 81        | 89±0     | 101   | 90   |
| March | 70        | 108      | 95    | 91   |
| April | 70        | 98       | 126   | 98   |
| May   | 75        | 95       | 89    | 86   |
| June  | 74        | 56       | 105±3 | 78   |
| July  | 65 ±2     | 101      | 153   | 106  |
| Aug   | 68        | 80       | 106   | 85   |
| Sept  | 75        | 76       | 154   | 102  |
| Oct   | (70)      | 73       | 98    | 80   |
| Nov   | 06        | 82       | 85    | 78   |
| Dec   | 67        | 66       | 92    | 75   |
| Mean  | 72        | 90       | 108   | 90   |

The error term is 1 S.E. of determinations. Figure in bracket was estimated from neighbouring values.

|       | Thorshavn                                  |                                              | Klaksvig                                |                                              | Tverå                |                                              | Mean                                    |                                              |  |
|-------|--------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------|--|
| Month | Bq <sup>137</sup> ℃s<br>m <sup>-3</sup> ℃s | Bq <sup>137</sup> Cs<br>(kg K) <sup>-1</sup> | Bq <sup>137</sup> Cs<br>m <sup>-3</sup> | Bq <sup>137</sup> Cs<br>(kg K) <sup>-1</sup> | Bg 137 <sub>Cs</sub> | Bg <sup>137</sup> Cs<br>(kg K) <sup>-1</sup> | Bq 137 <sub>Cs</sub><br>m <sup>-3</sup> | Bq <sup>137</sup> Cs<br>(kg K) <sup>-1</sup> |  |
| Jan   | 1210                                       | 840                                          | 5600                                    | 3300                                         | 3000                 | 1770                                         | 3300                                    | 1970                                         |  |
| Feb   | 1440                                       | 960                                          | 2800                                    | 1590                                         | 2800                 | 1730                                         | 2300                                    | 1430                                         |  |
| March | 1130                                       | 760                                          | 4200                                    | 2200                                         | 3100                 | 1940                                         | 2800                                    | 1630                                         |  |
| April | 1150                                       | 720                                          | 3100                                    | 1680                                         | 2900                 | 1900                                         | 2400                                    | 1430                                         |  |
| May   | 1150                                       | 780                                          | 2200                                    | 1200                                         | 2800                 | 1710                                         | 2100                                    | 1230                                         |  |
| June  | 1270                                       | 800                                          | 2000                                    | 1080                                         | 2800                 | 1860                                         | 2000                                    | 1250                                         |  |
| July  | 1550                                       | 900                                          | 1750                                    | 1130                                         | 4700                 | 2900                                         | 2700                                    | 1640                                         |  |
| Aug   | 1790                                       | 1270                                         | 1750                                    | 970                                          | 5000                 | 3200                                         | 2800                                    | 1810                                         |  |
| Sept  | 1650                                       | 1140                                         | 1980                                    | 1110                                         | 4900                 | 3000                                         | 2800                                    | 1750                                         |  |
| Oct   | 1280                                       | 780                                          | 1730                                    | 1110                                         | 3300                 | 1810                                         | 2100                                    | 1230                                         |  |
| Nov   | 580                                        | 360                                          | 1770                                    | 990                                          | 2800                 | 1690                                         | 1720                                    | 1010                                         |  |
| Dec   | 870                                        | 580                                          | 1580                                    | 900                                          | 2300                 | 1450                                         | 1580                                    | 980                                          |  |
| Mean  | 1260                                       | 820                                          | 2500                                    | 1440                                         | 3400                 | 2100                                         | 2400                                    | 1450                                         |  |

Table 2.2.3.2. Cesium-137 in milk from the Faroes in 1985

| Variation         | SSD   | f  | s <sup>2</sup> | v <sup>2</sup> | P       |
|-------------------|-------|----|----------------|----------------|---------|
| Between months    | 0.397 | 11 | 0.036          | 0.838          | -       |
| Between locations | 1.083 | 2  | 0.541          | 12.574         | > 99.9% |
| Month × loc.      | 0.904 | 21 | 0.043          | 29.085         | > 95%   |
| Remainder         | 0.003 | 2  | 0.001          |                |         |

**Table 2.2.3.3.** Analysis of variance of  $\ln Bq \, {}^{90}Sr \, (kg \, Ca)^{-1}$  in **Faroese milk** in 1985 (from Table 2.2.3.1)

<u>Table 2.2.3.4</u>. Analysis of variance of ln Bg  $^{137}$ Cs (kg K)<sup>-1</sup> in Paroese milk in 1985 (from Table 2.2.3.2)

| Variation         | SSD   | f  | s <sup>2</sup> | v <sup>2</sup> | P        |
|-------------------|-------|----|----------------|----------------|----------|
| Between months    | 1,519 | 11 | 0.138          | 1.523          |          |
| Between locations | 5.584 | 2  | 2.792          | 30.806         | > 99.95% |
| Remainder         | 1.994 | 22 | 0.091          |                |          |

<u>Table 2.2.3.5</u>. Analysis of variance of ln Bg  $^{137}$ Cs m<sup>-3</sup> in Paroese milk in 1985 (from Table 2.2.3.2)

| Variation         | SSD   | f  | s <sup>2</sup> | v <sup>2</sup> | P        |
|-------------------|-------|----|----------------|----------------|----------|
| Between months    | 1.376 | 11 | 0.125          | 1.314          |          |
| Between locations | 6.631 | 2  | 3.315          | 34.820         | > 99.95% |
| Remainder         | 2.095 | 22 | 0.095          |                |          |

ī.

Т

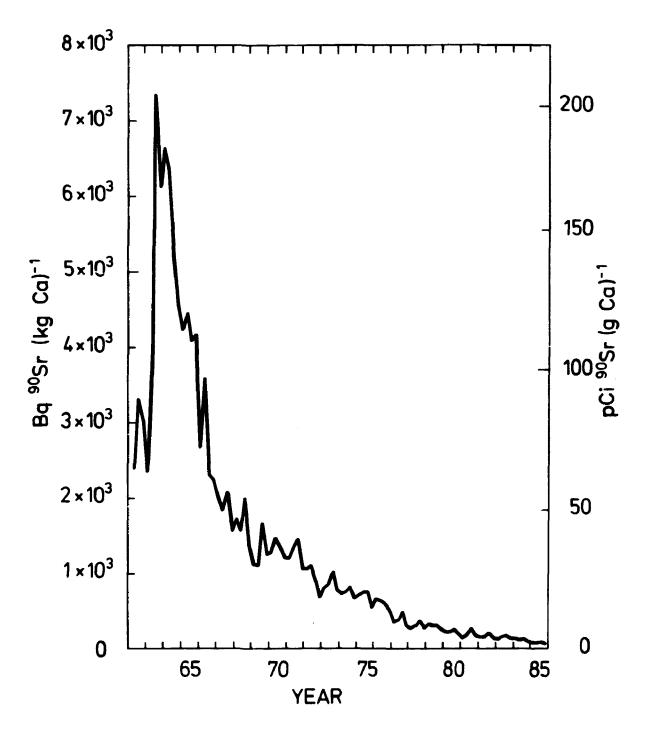



Fig. 2.2.3.1. Strontium-90 in Faroese milk, 1962-1985.

Т

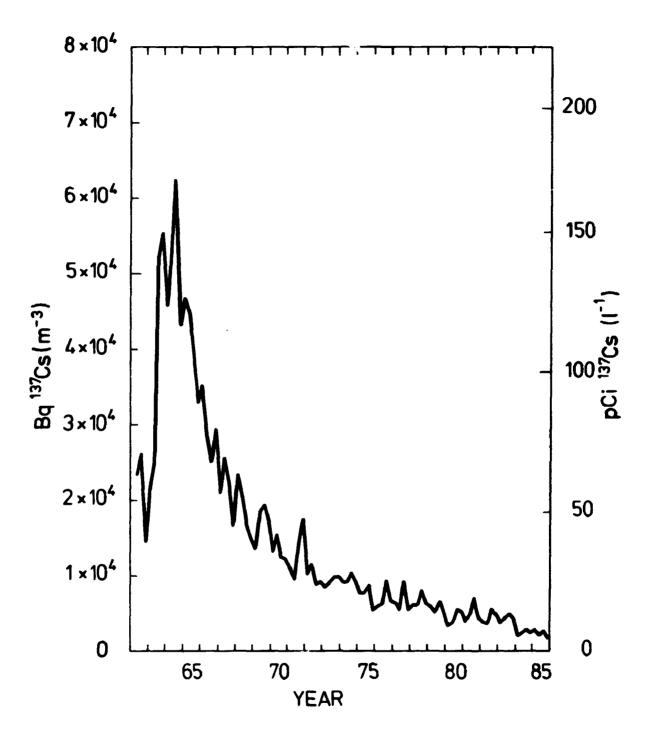



Fig. 2.2.3.2. Cesium-137 in Faroese milk, 1962-1985.

1 1

T

1

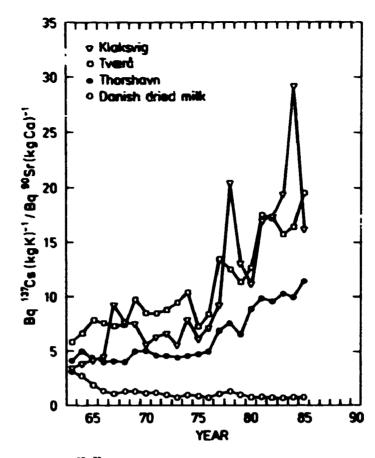



Fig. 2.2.3.3. H.U. ratios in Farcese and Danish milk, 1963-1985.

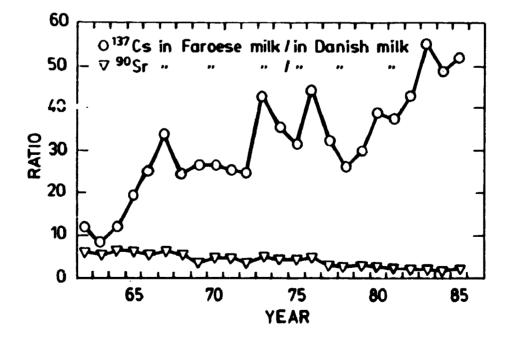
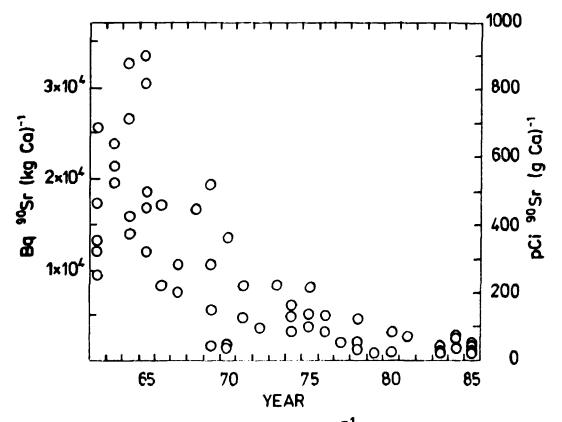



Fig. 2.2.3.4. A comparison between Faroese and Danish milk levels, 1962-1985.


2.2.4. Strontium-90 and Cesium-137 in Faroese terrestrial animals

The mean concentration in lamb meat was 22.5 Bq  $^{137}$ Cs kg<sup>-1</sup> in 1985. The  $^{90}$ Sr mean level in bone was 1300 Bq  $^{90}$ Sr (kg Ca)<sup>-1</sup> and in meat we found 0.093 Bq  $^{90}$ Sr kg<sup>-1</sup>. As it appears from Figs. 2.2.4.1 and 2.2.4.2 the 1985 concentrations followed the decreasing trend seen in the previous years.

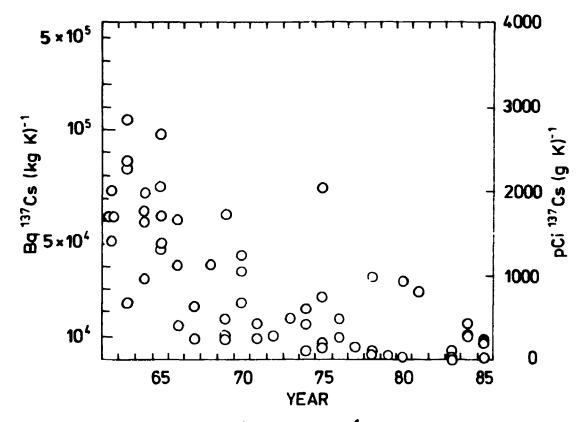
A sample of puffins contained 0.21 Bg  $^{137}$ Cs kg<sup>-1</sup> meat. Stron-tium-90 was below the detection limit.

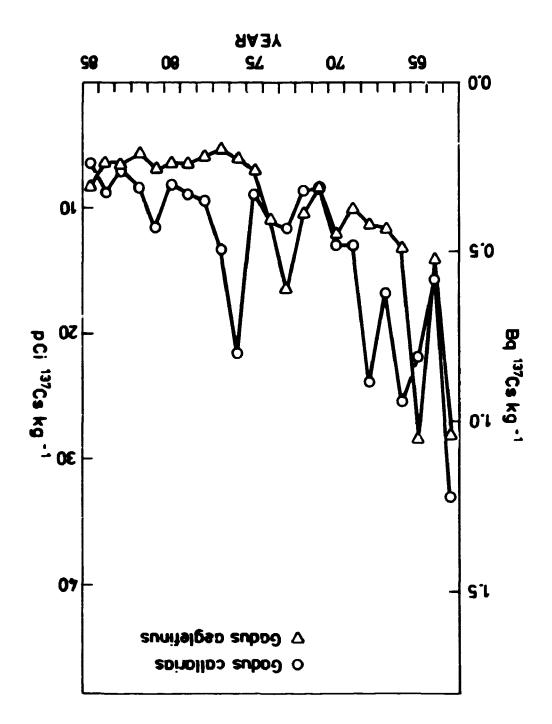
Table 2.2.4. Strontium-90 and Cesium-137 in lamb collected in the Parces in November 1985

| Location  | Sample type | 8g <sup>90</sup> Sr kg <sup>-1</sup> | $Bg 90 Sr (kg Ca)^{-1}$ | Bg <sup>137</sup> Cs kg <sup>-1</sup> | Bg <sup>137</sup> Cs (kg K) <sup>-1</sup> |
|-----------|-------------|--------------------------------------|-------------------------|---------------------------------------|-------------------------------------------|
| Thorshavn | Meat        | 0.220                                | 940 (1000)              | 7.0                                   | 1640                                      |
| Tvarå     | Meat        | 0.059                                | 970 (1570)              | 23.0                                  | 8100                                      |
| - * -     | Meat        | 0.058                                | 800 (1870)              | 29.1                                  | 8300                                      |
| Klaksvig  | Meat        | 0.033                                | 610 ( 740)              | 31.0                                  | 8000                                      |



<u>Fig. 2.2.4.1.</u> Strontium-90 (Bq (kg Ca)<sup>-1</sup>)) in Lamb bone collected in the Parces, 1962-1985.





Fig. 2.2.4.2. Cesium-137 (Bq  $(kg K)^{-1}$ ) in lamb meat collected in the Faroes, 1962-1985.

2.2.5. Strontium-90 and Cesium-137 in Faroese sea animals Table 2.2.5.1 shows the  $^{137}$ Cs levels in fish collected in 1985 in the Faroes. The mean levels in Gadus aeglefinus and Gadus callarias were 0.29 Bq  $^{137}$ Cs kg<sup>-1</sup> and 0.008 Bg  $^{90}$ Sr kg<sup>-1</sup>.

Whale meat from August 1985 contained C.046 (B) Bg  ${}^{90}$ Sr kg<sup>-1</sup> and 0.24 (A) Bg  ${}^{137}$ Cs kg<sup>-1</sup> (101 (A) Bg  ${}^{137}$ Cs (kg K)<sup>-1</sup>).

| Sampling<br>month | Species          | Sample type   | Bg <sup>90</sup> Sr kg <sup>-1</sup> | Bq <sup>90</sup> Sr (kg Ca) <sup>-1</sup> | Bg <sup>137</sup> Cs kg <sup>-1</sup> | 8g <sup>137</sup> Cs (kg K) |
|-------------------|------------------|---------------|--------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------|
| March             | Gadus callarias  | Cod flesh     | 0.005 B                              | 68 B                                      | 0.30                                  | 72                          |
| June              | - • -            | - <b>-</b> -  |                                      |                                           | 0,28                                  | 67                          |
| Sept              | - • -            | - • -         | 0.005 8                              | 59 B                                      | 0.29                                  | 73                          |
| Dec               | - • -            | - <b>* -</b>  |                                      |                                           | 0.25                                  | 63                          |
| June              | Gadus aeglefinus | Haddock fleah |                                      |                                           | 0,40                                  | 87                          |
| Sept              | - • -            | - • -         | 0.013 8                              | 210 B                                     | 0.21                                  | 48                          |
| Dec               | - • -            | · • ·         |                                      |                                           | 0,32                                  | 79                          |

Table 2.2.5.1. Strontium-90 and Cesium-137 in fish flesh from the Parces in 1985



Pig. 2.2.5.1. Cesium-137 levels in meat of cod (Gedus callarias) and Heddock (Gedus aegletinus) collected in the Paroes, 1962-1985.

1 1

11 1

## 2.2.6. Strontium-90 and Tritium in Paroese drinking water

Drinking-water samples were collected as previously but the samples were combined before the analysis as shown in Table 2.2.6.1. As in previous years, drinking water from Thorshavn contained more 90Sr than that from Klaksvig and Tværå (cf. the explanation in Rise Report No. 181<sup>1)</sup>. The mean level in 1985 was 2.5 Bg 90Sr m<sup>-3</sup> (0.068 pCi 1<sup>-1</sup>), i.e. lower than in 1985.

Figure 2.2.6.1 shows the annual mean levels of 90Sr in drinking water from the three locations since 1962.

| Month    | Thorshavn | Klaksvig | Tvarå |  |
|----------|-----------|----------|-------|--|
| Jan-June | 4.4       | 0.74     | 3.2   |  |
| July-Dec | 3.8       | 1.19     | 1.87  |  |
| 1985     | 4.1       | 0.97     | 2.5   |  |

<u>Table 2.2.6.1</u>. Strontium-90 in drinking water from the Parces in 1985 (Unit: Bg  $m^{-3}$ )

<u>Table 2.2.6.2</u>. Tritium in drinking water from the Parces in 1985 (Unit:  $kBq m^{-3}$ )

| Honth | Thorshavn | Klaksvig | Tvarå   |
|-------|-----------|----------|---------|
| March | B.D.L.    | B.D.L.   | B.D.L.  |
| June  | 1.3±0.1   | B.D.L.   | B.D.L.  |
| July  |           |          | 1,5±0,2 |
| Sept  |           | B.D.L.   | B.D.L.  |
| Dec   | B.D.L.    | B.D.L.   | B.D.L.  |

The error term is 1 S.E. of the mean of double determinations.

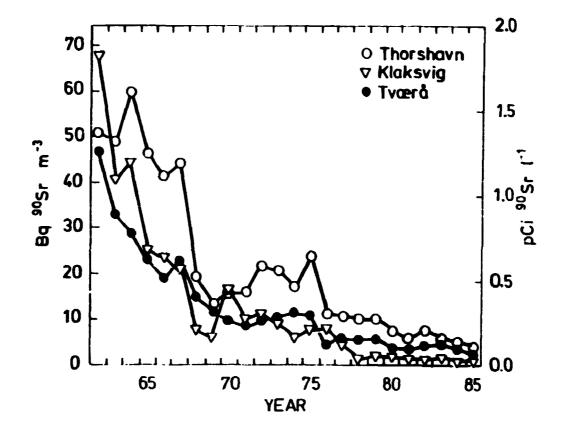



Fig. 2.2.6.1. Strontium-90 in drinking water from the Parces, 1962-1985.

# 2.2.7. Strontium-90 and Cesium-137 in miscellaneous Faroese samples

2.2.7.1. Paroese soil No samples in 1985.

1

I.

2.2.7.2. Parcese sea water Cf. Fig. 2.2.7.1 and Table 2.2.7.1.

The mean concentrations in Faroese surface sea water in 1985 decreased compared to those observed in 1984. Cesium-137 went from 3.74 Bg  $m^{-3}$  to 2.68 and 90 Sr from 2.08 to 1.87 Bg  $m^{-3}$ .

2.2.7.3. Paroese sea plants Table 2.2.7.3. shows the 90Sr and 137Cs contents in Laminaria and Alaria esculenta in 1985.

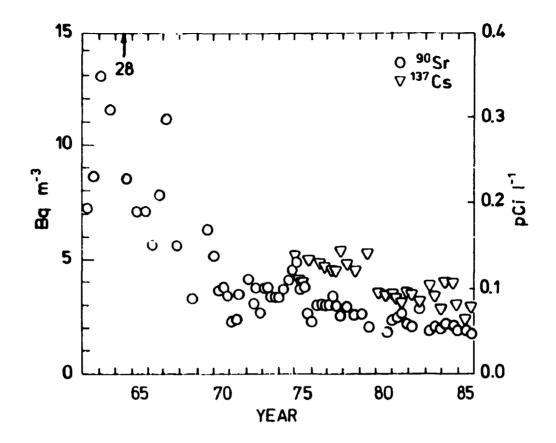
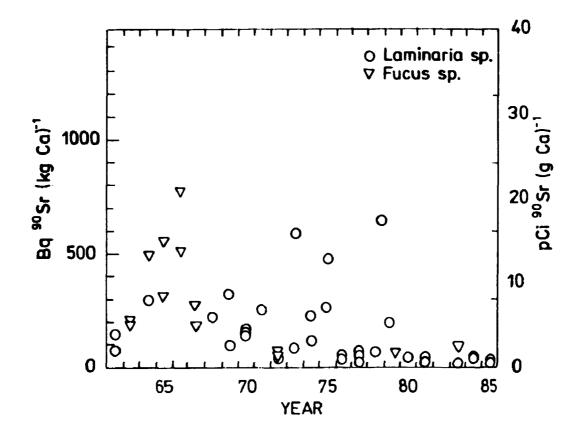




Fig. 2.2.7.2. Strontium-90 and Cesium-137 in Faroese sea water 1962-1985.

| Sampling<br>Month | 90 <sub>5r</sub> | <sup>137</sup> Cs | S <b>a</b> linity<br>o/oo |
|-------------------|------------------|-------------------|---------------------------|
| June              | 1.94             | 2,38              | 35.4                      |
| August            | 1.79             | 2.97              | 35.3                      |

<u>Table 2.2.7.2</u>. Strontium-90 and Cesium-137 in Paroese sea water collected at Thorshavn in 1985 (Bg  $m^{-3}$ )



<u>Fig. 2.2.7.3</u>. Strontium-90 (Bq (kg Ca)<sup>-1</sup>) in sea plants collected at Thorshavn, 1962-1985.

| Species          | Date  | Bq <sup>90</sup> Sr kg <sup>-1</sup><br>dry | Bq <sup>90</sup> Sr<br>(kg Ca) <sup>-1</sup> | Bg <sup>137</sup> Cs kg <sup>-1</sup><br>dry | Bg <sup>137</sup> Cs<br>(kg K) <sup>-1</sup> |
|------------------|-------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Laminaria        | April | 0.49                                        | 34                                           | 0.78 A                                       | 10.9 A                                       |
| _ * _            | Sept  | 0.25 A                                      | 20 A                                         | 0.64                                         | 13.8                                         |
| Alaria esculenta | April | 0.40                                        | 32                                           | 0.23 B                                       | 4.6 B                                        |
| - • -            | April | -                                           | -                                            | 0.24 B                                       | 4.2 B                                        |
| _ # _            | Sept  | 0,52                                        | 39                                           | 0,34 A                                       | 7.6 A                                        |
| _ * _            | Sept  | 0,48                                        | 31                                           | 0.29 B                                       | 7.2 B                                        |

Table 2.2.7.3. Radionuclides in Faroese seaweed collected in 1985

## 2.2.7.4. Faroese vegetables

Three samples of potatoes were analysed in 1985. The mean content was 0.164 Bg  $^{90}$ Sr kg<sup>-1</sup> (4500 Bg  $^{90}$ Sr (kg Ca)<sup>-1</sup>) and 2.8 Bg  $^{137}$ Cs kg<sup>-1</sup> (800 Bg  $^{137}$ Cs (kg K)<sup>-1</sup>).

T<sup>-</sup>h<u>le 2.2.7.4</u>. Radionuclides in Faroese potatoes collected in December 1985

| Location  | Bg <sup>90</sup> Sr kg <sup>-1</sup> | $Bg^{90}Sr$ (kg Ca) <sup>-1</sup> | Bg <sup>137</sup> Cs kg <sup>-1</sup> | Bg <sup>137</sup> Cs (kg K) <sup>-1</sup> |
|-----------|--------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|
| Thorshavn | 0.065                                | 2500                              | 2.1                                   | 590                                       |
| Klaksvig  | 0.33                                 | 8700                              | 2.3                                   | 640                                       |
| Tværå     | 0.096                                | 2200                              | 4.1                                   | 1170                                      |

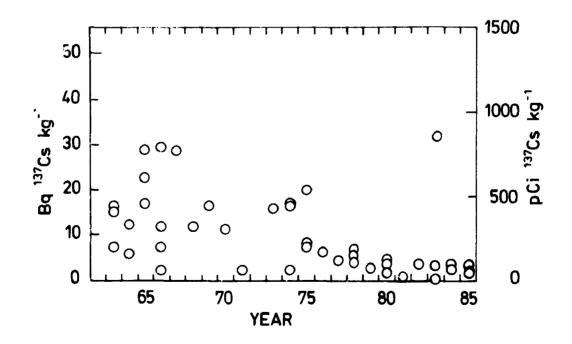



Fig. 2.2.7.4.1. Cesium-137 in Faroese potatoes, 1962-1985.

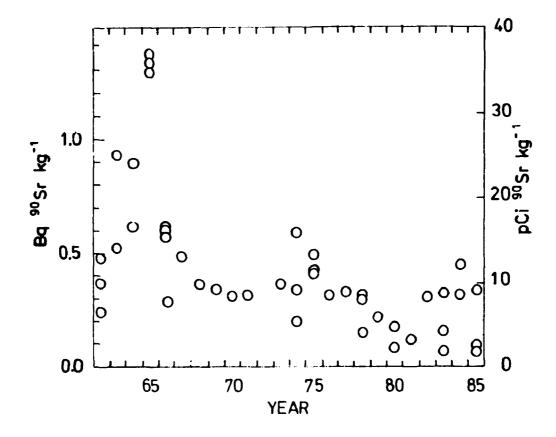



Fig. 2.2.7.4.2. Strontium-90 in Faroese potatoes, 1962-1985.

#### 2.2.7.5. Faroese bread

Rye bread and white bread were collected at Thorshavn in June. The levels in white bread were 0.068 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.025 Bg  $^{137}$ Cs kg<sup>-1</sup>. The rye bread collected in 1985 contained 0.21 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.09 Bg  $^{137}$ Cs kg<sup>-1</sup>. The bread levels were lower than those in 1984.

The  $^{137}$ Cs and  $^{90}$ Sr (kg<sup>-1</sup>) levels in Faroese rye bread in 1985 were somewhat lower than the corresponding Danish<sup>3</sup>.

| Sort        | Bg <sup>90</sup> Sr kg <sup>-1</sup> | $Bg \frac{90}{5}r (kg Ca)^{-1}$ | Bg <sup>137</sup> Cs kg <sup>-1</sup> | Bg $^{137}$ Cs (kg K) $^{-1}$ |
|-------------|--------------------------------------|---------------------------------|---------------------------------------|-------------------------------|
| White bread | 0,068                                | 35                              | 0,025 B                               | 20 в                          |
| Rye bread   | 0.21                                 | 86                              | 0.091 A                               | 42 A                          |

Table 2.2.7.5. Strontium-90 and Cesium-137 in Paroese bread in June 1985

2.2.7.6. Faroese eggs

Eggs were collected from Thorshavn in June 1985. The levels of hens eggs were 0.023 Bg  $^{\circ 0}$ Sr kg<sup>-1</sup> (39 Bg (kg Ca)<sup>-1</sup> and 0.061 Bg  $^{137}$ Cs kg<sup>-1</sup> (45 Bg  $^{137}$ Cs (kg K)<sup>-1</sup>).

#### 2.2.8. Humans from the Faroes

#### 2.2.8.1. Strontium-90 in human bone

In 1985 one human bone samples were obtained from Dronning Alexandrine's Hospital in Thorshavn. Table 2.2.8.1 shows the result.

Table 2.2.8.1. Strontium-90 in human bone collected in the Faroes in 1985

| Age      | Bone type |            | Sex | $Bq \frac{90}{Sr} (kg Ca)^{-1}$ |
|----------|-----------|------------|-----|---------------------------------|
| 82 years | Pemur     | Amoutation | M   | 26                              |

2.3. Estimate of the mean contents of 90Sr and 137Cs in the Faroese human diet in 1985

#### 2.3.1. Annual quantities

The annual quantities are still based on the estimate made by the late Professor E. Hoff-Jørgensen, Ph.D., in  $1962^{1}$ ) assuming a daily pro capite intake of approximately 3000 calories (12.6 MJ).

#### 2.3.2. Milk and cream

75% of the milk consumed in the Faroes is assumed to be of local origin, and 25% comes from Denmark. Hence the  $^{90}$ Sr content in milk consumed in the Faroes in 1985 was  $1.2 \times (0.75 \cdot 0.090)$ 

+ 0.25×0.060) = 0.J99 Bq  $^{90}$ Sr kg<sup>-1</sup>, and the  $^{137}$ Cs content was 0.75×2.4 + 0.25×0.076 = 1.82 Bq  $^{137}$ Cs kg<sup>-1</sup> (cf. 2.2.3 and Ref. 3). 1 kg milk contains 1.2 g Ca.

2.3.3. Cheese

Nearly all cheese consumed in the Faroes is of Danish origin, and the Danish figures from ref. 3 were used: 0.51 Bg 90Sr kg<sup>-1</sup> and 0.055 Bg 137Cs kg<sup>-1</sup>.

### 2.3.4. Grain products

As most grain products are imported from Denmark, the Danish figures for  $1985^{3}$  were used in the calculation of the Faroese levels. The mean daily consumption of grain products in the Faroes is, as in Denmark, 80 g rye flour, 120 g wheat flour, and 20 g grits. Hence the mean concentration of 90Sr in grain products consumed in the Faroes in 1985 is 0.173 Bg 90Sr kg<sup>-1</sup> and 0.078 Bg 137Cs kg<sup>-1</sup>.

## 2.3.5. Potatoes

All potatoes consumed in the Faroes are assumed to be of local origin. The values from 2.2.7.4 were used, i.e. 0.164 Bg  $^{90}$ Sr kg<sup>-1</sup> and 2.8 Bg  $^{137}$ Cs kg<sup>-1</sup>.

## 2.3.6. Other vegetables and fruit

As the amount of vegetables and fruit grown in the Faroes is limited, the Danish figures from  $1985^{3}$  were used. Thus the mean contents in vegetables other than potatoes were 0.24 Bg 90 Sr kg<sup>-1</sup> and 0.052 Bg 137 Cs kg<sup>-1</sup>, and the mean contents in fruit were 0.062 Bg 90 Sr kg<sup>-1</sup> and 0.016 Bg 137 Cs kg<sup>-1</sup>.

#### 2.3.7. Meat and eggs

Meat and egg consumption in the Faroes is estimated to consist of 50% locally produced mutton (or lamb), 25% local whale meat, and 25% sea birds and eggs. For lamb we use the mean of the samples obtained in 1985, i.e. 0.093 Bq  ${}^{90}$ Sr kg<sup>-1</sup> and 22.5 Bg  ${}^{137}$ Cs kg<sup>-1</sup>. Whale meat contained 0.046 Bg  ${}^{90}$ Sr kg<sup>-1</sup> and 0.24 Bg  ${}^{137}$ Cs kg<sup>-1</sup>, sea birds contained 0.21 Bg  ${}^{137}$ Cs kg<sup>-1</sup>, and eggs (cf. 2.2.4 and 2.2.7.6): 0.023 Bg  ${}^{90}$ Sr kg<sup>-1</sup> and 0.061 Bg  ${}^{137}$ Cs kg<sup>-1</sup>. Hence we estimate the mean content of  ${}^{90}$ Sr in meat and eggs consumed in 1985 to be 0.50.0 093+0.25.0.046 + 0.25.( ${}^{0.003*+0.021}_{-0.021}$ ) = 0.061 Bg  ${}^{90}$ Sr kg<sup>-1</sup>

$$0.50 \cdot 0.093 + 0.25 \cdot 0.046 + 0.25 \cdot (\frac{0.003 + 0.021}{2}) = 0.061 \text{ Bg}$$
 Sr kg

(\*last year's figure for sea birds)

and the 137Cs content to be

 $0.50 \cdot 22.5 + 0.25 \cdot 0.24 + 0.25 \cdot (\frac{0.21 + 0.061}{2}) = 11.34 \text{ Bg}^{137} \text{Cs kg}^{-1}$ .

## 2.3.8. Fish

All fish consumed in the Faroes is of local origin, and the mean contents in fish, obtained from subsection 2.2.5, were  $0.008 \text{ Bg}^{-90} \text{Sr kg}^{-1}$  and 0.29 Bg  $^{137} \text{Cs kg}^{-1}$ .

2.3.9. Coffee and tea The Danish figures for  $1985^{3}$  were used, i.e. 1.00 Bg 90Sr kg<sup>-1</sup> and 1.53 Bg 137Cs kg<sup>-1</sup>.

2.3.10. Drinking water

The mean value found in Table 2.2.6.1 was used, i.e. 0.0025 Bq  ${}^{90}$ Sr kg<sup>-1</sup>. The  ${}^{137}$ Cs content was estimated to be approximately one fourth (the ratio found in New York tap water in 1964<sup>4</sup>)) of the  ${}^{90}$ Sr content i.e. 0.0006 Bq  ${}^{137}$ Cs kg<sup>-1</sup>.

Tables 2.3.1 and 2.3.2 show the diet estimates of 90Sr and 137Cs, respectively.

| Type of food                | Annual<br>guantity<br>in kg | Bg <sup>90</sup> Sr<br>per kg | Total<br>Bq <sup>90</sup> Sr | Percentage of<br>total Bg 90Sr<br>in food |
|-----------------------------|-----------------------------|-------------------------------|------------------------------|-------------------------------------------|
| Milk and cream              | 146                         | 0.099                         | 14.45                        | 22.4                                      |
| Cheese                      | 7.3                         | 0.51                          | 3.72                         | 5.8                                       |
| Grain products              | 80                          | 0.173                         | 13.84                        | 21.5                                      |
| Potatoes                    | 91                          | 0.164                         | 14.92                        | 23.1                                      |
| <b>Ve</b> get <b>a</b> bles | 20                          | 0.24                          | 4.80                         | 7.5                                       |
| Pruit                       | 18                          | 0.062                         | 1.12                         | 1.7                                       |
| Meat and eggs               | 37                          | 0.061                         | 2.26                         | 3.5                                       |
| Pish                        | 91                          | 0.008                         | 0.73                         | 1.1                                       |
| Coffee and tea              | 7.3                         | 1.00                          | 7.30                         | 11.3                                      |
| Drinking water              | 548                         | 0.0025                        | 1.37                         | 2.1                                       |
| Total                       |                             |                               | 64.51                        |                                           |

<u>Table 2.3.1</u>. Estimate of the mean content of 90Sr in the human diet in the Farce Islands in 1985

The mean annual calcium intake is estimated to be 0.6 kg (approx. 200-250 g of creta praeparata). Hence the ratio: Bq  $^{90}$ Sr (kg Ca)<sup>-1</sup> in total Paroese diet was 108 (2.9 pCi  $^{90}$ Sr (g Ca)<sup>-1</sup>).

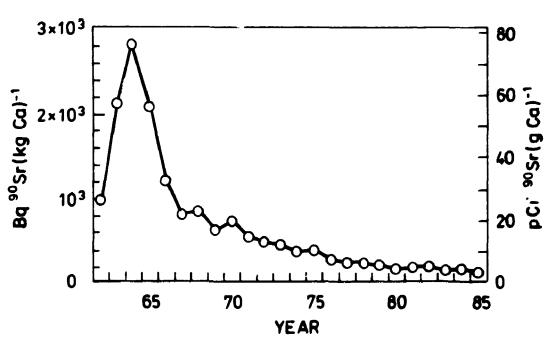



Fig. 2.3.1. Strontium-90 in Faroese diet, 1962-1985.

| Type of food      | Annual<br>quantity<br>in kg | Bg <sup>137</sup> Cs<br>perkg | Total<br>Bg <sup>T37</sup> Cs | Percentage of<br>total Bg 137Cs<br>in food |
|-------------------|-----------------------------|-------------------------------|-------------------------------|--------------------------------------------|
| Milk and cream    | 146                         | 1.82                          | 265.7                         | 27.0                                       |
| Cheese            | 7.3                         | 0.055                         | 0.4                           | 0                                          |
| Grain products    | 80                          | 0.078                         | 6.2                           | 0.6                                        |
| Potatoes          | <del>9</del> 1              | 2.8                           | 254.8                         | 25.9                                       |
| <b>Vegetables</b> | 20                          | 0.052                         | 1.0                           | 0.1                                        |
| Pruit             | 18                          | 0.016                         | 0.3                           | 0                                          |
| Meac and eggs     | 37                          | 11.34                         | 419.6                         | 42.6                                       |
| Fish              | <del>9</del> 1              | 0.29                          | 26.4                          | 2.7                                        |
| Coffee and tea    | 7.3                         | 1.53                          | 11.2                          | 1.1                                        |
| Drinking water    | 548                         | 0.0006                        | 0.3                           | 0                                          |
| Total             |                             |                               | 985.9                         |                                            |

<u>Table 2.3.2</u>. Estimate of the mean content of  $^{137}$ Cs in the human diet in the Parce Islands in 1985

The mean annual intake of potassium is estimated to be approx. 1.2 kg. Hence the ratio: Bg  $^{137}$ Cs (kg K) $^{-1}$  becomes 820 (22 pCi  $^{137}$ Cs (g K) $^{-1}$ ).

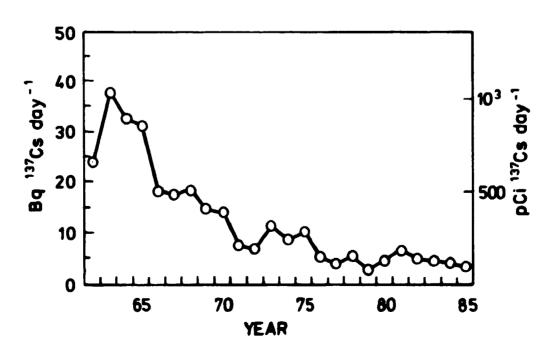



Fig. 2.3.2. Cesium-137 in Faroese dist, 1962-1985.

2.3.11. Discussion

Figures 2.3.1 and 2.3.2 show the Faroese diet levels since 1962.

The 1985 90Sr level in the total Faroese diet was 71% of the 1984 concentration, and the 137Cs level was 63% of that observed in 1984.

The main contributors to the  ${}^{90}$ Sr content in the Faroese diet were milk products, cereals and potators, which together accounted for approximately 73% of the total  ${}^{90}$ Sr content in the diet in 1985. As regards  ${}^{137}$ Cs, potatoes, milk products and meat (lamb) were the most important contributors. In 1985, 96% of the total  ${}^{137}$ Cs content in the diet originated from these products.

The Faroese mean diet contained 1.17 times as much  $^{90}$ Sr and approximately 12 times as much  $^{137}$ Cs as the Danish diet in 1985<sup>3</sup>).

As earlier<sup>1)</sup> mentioned, the year-to-year variations in the  $^{137}$ Cs estimates for Faroese diet are markedly influenced by the mutton and potato samples obtained for analysis.

#### 2.4. Conclusion

2.4.1.

The  ${}^{90}$ Sr fallout rate in the Faroes in 1985 was approximately 0.8 Bq  ${}^{90}$ Sr m<sup>-2</sup> (0.02 mCi km<sup>-2</sup>). The accumulated fallout by the end of 1985 was estimated at approximately 3400 Bg  ${}^{90}$ Sr m<sup>-2</sup> (92 mCi km<sup>-2</sup>) (the mean at Thorshavn and Klaksvig).

2.4.2.

The mean level of  ${}^{90}$ Sr in Faroese milk was 90 Bg (kg Ca)<sup>-1</sup> (2.4 pCi (g Ca)<sup>-1</sup>). The  ${}^{137}$ Cs concentration was 2400 Bg  ${}^{137}$ Cs m<sup>-3</sup> (65 pCi 1<sup>-1</sup>).

11 1

Lamb contained 22.5 Bg  $^{137}$ Cs kg<sup>-1</sup> (610 pCi kg<sup>-1</sup>) in 1985. Fish showed a mean level of 0.29 Bg  $^{137}$ Cs kg<sup>-1</sup> (7.8 pCi kg<sup>-1</sup>).

The mean content of 90Sr in drinking water was 2.5 Bq m<sup>-3</sup> (0.07 pCi 1<sup>-1</sup>).

The mean daily pro capite intakes resulting from the Faroese diet in 1985 were estimated at 0.18 Bg  $^{90}$ Sr (4.8 pCi d<sup>-1</sup>) and 2.7 Bg  $^{137}$ Cs (73 pCi d<sup>-1</sup>).

#### 2.4.3.

The mean content of  ${}^{137}$ Cs in the Faroese adult was estimated at approximately 2300 Bg  ${}^{137}$ Cs (kg K) $^{-1}$  (63 pCi (g K) $^{-1}$ ). This estimate is based on the diet estimate.

11 I

## Predictions and observations of <sup>90</sup>Sr and <sup>.37</sup>Cs in Parcese samples in 1985

The models used for the predictions shown in Table 2A were based on data collected  $1962-1976^{5}$ . If the predictions for previous years  $1977-1982^{1}$  were considered too, we conclude that the model for 90Sr in milk overestimates the level and so do the model for 137Cs in milk from Tværå. The following models underestimate the concentrations: 90Sr in cod fish and 137Cs in milk from Klaksvig.

| Sample                    | Ünit                                          | Observed<br>11 S.E. | Kumber<br>of<br>samples | Predicted | Obs./pre.<br>11 S.E. | Nodel in ref. 5 |
|---------------------------|-----------------------------------------------|---------------------|-------------------------|-----------|----------------------|-----------------|
| Drinking water, Thorshavn | Bq 90sr m-3                                   | 4.1 ±0.3            | 2                       | 14.4      | 0.28:0.02            | C.1.4.1 No. 9   |
| - " -     , flaksvig      | - • -                                         | 0.97 ±0.23          | 2                       | 1.6       | 0.61 20.14           | - " - No. 10    |
| - " - 🦷 , Tverå           | - • -                                         | 2.5 ±0.7            | 2                       | 3.1       | 0.81±0.23            | - " - No. 11    |
| Ses vater                 | - • -                                         | 1.87 ±0.89          | 2                       | 2.0       | 0.94 10.04           | C.1.5.1 No. 3   |
| Grass                     | $liq \frac{90}{5r} (kg Ca)^{-1}$              | 4700 ±300           | 2                       | 4900      | 8,96 10,61           | C.2.4.1 No. 4   |
| - • -                     | $Bg^{-137}Cs$ (ke K) <sup>-1</sup>            | 2400 ±1600          | 2                       | 310       | 7.74:5.16            | C.2.4.2 No. 3   |
| Potatoes                  | <b>b</b> g <sup>90</sup> Sr kg <sup>-1</sup>  | 0.16 10.08          | 3                       | 0.21      | ə.7610.30            | C.2.5.1 No. 11  |
| - * -                     | <b>b</b> g <sup>137</sup> Cs kg <sup>-1</sup> | 2.8 ±0.6            | 3                       | 6.3       | 0,4410.09            | C.2.5.3 No. 8   |
| Wilk                      | $Bg^{-30}Sr$ (kg Ca) <sup>-1</sup>            | 90 :3.4             | 12                      | 290       | 0.31:0.01            | C.3.3.1 No. 1   |
| Nilk Thorshavn            | Bg <sup>137</sup> Cs m <sup>-3</sup>          | 1260 196            | 12                      | 1250      | 1.0120.08            | C.3.3.2 #o. 7   |
| Milk Flaksvig             | - • -                                         | 2500 ±360           | 12                      | 1580      | 1.58:0.22            | - " - No, 9     |
| Halk Tweed                | - • -                                         | 3400 ±270           | 12                      | 6900      | 0.4910.04            | No. 11          |
| Cod fish                  | $Bg = 90 Sr (kg Ca)^{-1}$                     | 112 ±49             | 3                       | 21        | 5.33:2.33            | C.3.5.1 No. 3   |
| - • -                     | Bg <sup>137</sup> Cs kg <sup>-1</sup>         | 0.29 10.02          | 7                       | 0.19      | 1.53:0.11            | C.3.5.2 No. 2   |
| Lamb meat                 | Bg <sup>90</sup> Sr (kg Ca) <sup>-1</sup>     | 830 182             | 4                       | 1160      | 0.72±0.07            | C.3.4.1 No. 5   |
| ~ • <b>-</b>              | $Bq^{-137}Cs (kg K)^{-1}$                     | 6500 ±1620          | •                       | 3000      | 2.1710.54            | C.3.4.2 No. 5   |
| Lamb bone                 | $Bg^{90}Sr (kg Ca)^{-1}$                      | 1300 1260           | 4                       | 2000      | 0.65:0.13            | C.3.4.3 No. 1   |
| Whale                     | 8g <sup>90</sup> 8r kg <sup>-1</sup>          | 0.046               | 1                       | 0.013     | 3.54                 | C.3.6.1 No. 3   |
| . • .                     | 8g <sup>137</sup> Cs kg <sup>-1</sup>         | 0.24                | I                       | 0.39      | 0.62                 | C.3.6.2 No. 2   |

Table 2A. Comparison between observed and predicted <sup>90</sup>Sr and <sup>137</sup>Cs concentrations in Farorse samples collected in 1985

3. ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1985

#### 3.1. Introduction

#### 3.1.1.

In 1985 the sampling programme was similar to that used in previous years but for a few minor modifications.

#### 3.1.2.

As hitherto, samples were collected through the local district physicians and the head of the telestations. However, we have also obtained samples collected by the Greenland Pisheries and Environmental Research Institute. A number of the Greenland food samples were obtained from K.G.H. (The Royal Greenland Trade Company).

## 3.1.3.

The estimated mean diet in Grenland was the same as that in 1962, i.e., it agreed with the estimate given by the late Professor E. Hoff-Jørgensen, Ph.D.

#### 3.1.4.

The environmental studies in Greenland were carried out together with corresponding investigations in Denmark (cf. Risø Report No.  $540^{3}$ ) and in the Parces (cf. Chapter 2 in this report).

## <u>3.1.5.</u>

The present report does not repeat information concerning sample collection and analysis already given in ref. 2.

1

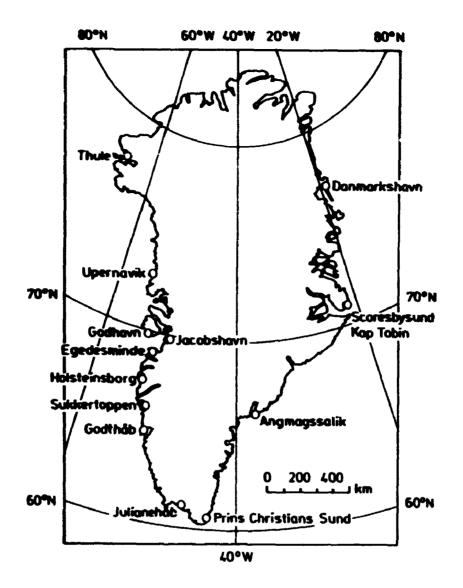



Fig. 3.1. Greenland

## 3.2. Results and discussion

3.2.1. Strontium-90 in Greenland precipitation Table 3.2.1.1 shows the results of the measurements.

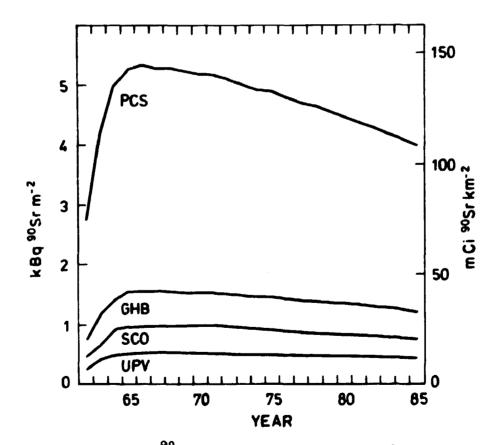

The 90Sr fallout in 1985 at the Greenland stations were generally lower as compared with 1984. In Denmark<sup>3)</sup> and the Faroes (cf. 2.2.1) the fallout in 1985 was approximately 80% and 50% respectively of that in 1984.

Figure 3.2.1 shows the accumulated 90Sr at the various stations in Greenland, since measurements began in 1962.

| Location<br>B precipitation | "nit               | Jan-March | April-June | July-Sept | Oct-Dec               | 1985  |
|-----------------------------|--------------------|-----------|------------|-----------|-----------------------|-------|
| Upernavik                   | Bq m <sup>-3</sup> | 8.1 A     |            |           | · · · · · · · · · · · |       |
| Σ                           | Bq m <sup>-2</sup> | 0.31 A    |            |           |                       |       |
| Godthåb                     | Bq m <sup>-3</sup> | (1.6)     | (3.7)      | 2.5       | 1.9 B                 | (2.3) |
| t (0.73)                    | 8q m <sup>-2</sup> | (0.41)    | (0.64)     | 0.36      | 0.30 B                | (1,7) |
| Prins Chr. Sund             | Bq m <sup>-3</sup> | 1.82      | 0.91 A     | 0.98      | (0.4)                 | (1.0) |
| I (1.61)                    | Bq m <sup>-2</sup> | 0.71      | 0.41 A     | 0_31      | (0.18)                | (1.6) |
| Scoresbysund                | Bq m <sup>-3</sup> | 0.7 B     | 19.6 A     | 14.6 B    | 1.9 в                 | 4.3   |
| E 0.316                     | Bq m <sup>-2</sup> | 0.08 B    | 0.68 A     | 0.35 B    | 0.25 B                | 1.36  |
| Danmarkshavn                | Bq m <sup>-3</sup> | 7         | .5 B       | 26        | 2.4 B                 | 11.6  |
| I 0.087                     | Bg m <sup>−2</sup> | 0         | .32 8      | 0.64      | 0.05 B                | 1.01  |

<u>Table 3.2.1.1.</u> Strontium-90 in precipitation in Greenland in 1985. (Sampling area:  $0.02 \text{ m}^2$ )

Figures in brackets were calculated from VAR3<sup>12</sup>)



<u>Fig. 3.2.1</u>. Accumulated <sup>90</sup>Sr at Prins Chr. Sund, Godthåb, Scoresbysund (Kap Tobin) and Upernavik calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish data (cf. Risø Report No.  $509^{3}$ ), Appendix D) and from the ratio between the <sup>90</sup>Sr fallout at the Greenland stations and the fallout in Denmark in the period 1962-1985.

|      | Scores<br>(Kap T | bysund<br>(obin) | Pr.Chr  | Sund    | Gođt   | håb     | Üperr  | avik   |
|------|------------------|------------------|---------|---------|--------|---------|--------|--------|
|      | di               | Ai(29)           | đi      | Ai(29)  | đi     | Ai(29)  | đi     | Ai(29) |
| 1950 | 0.37             | 0.36             | 2.04    | 1.99    | 0.57   | 0.56    | 0.20   | 0.20   |
| 1951 | 1.76             | 2.06             | 9.79    | 11.50   | 2.77   | 3.25    | 0.97   | 1.14   |
| 1952 | 3.44             | 5.38             | 19.19   | 29.97   | 5.42   | 8.46    | 1.90   | 2.9    |
| 1953 | 8.70             | 13.74            | 48.47   | 76.59   | 13.69  | 21.63   | 4.81   | 7.60   |
| 1954 | 33.06            | 45.69            | 184.28  | 254.71  | 52.05  | 71.94   | 18,29  | 25,28  |
| 1955 | 43.49            | 87.08            | 242.45  | 485,41  | 68.48  | 137.10  | 24.06  | 48.13  |
| 1956 | 53.93            | 137.67           | 300.61  | 767.46  | 84.91  | 216.76  | 29.83  | 76.16  |
| 1957 | 53.93            | 187.08           | 300.61  | 1042.85 | 84.91  | 294.54  | 29.83  | 103.49 |
| 1958 | 74.81            | 255.70           | 417.04  | 1425.40 | 117.79 | 402.59  | 41.39  | 141.49 |
| 1959 | 106.11           | 353.27           | 591.53  | 1969.29 | 167.07 | 556.21  | 58.70  | 195.43 |
| 1960 | 19.82            | 364.28           | 110.51  | 2030.68 | 31.21  | 573.55  | 10.97  | 201.52 |
| 1961 | 25.75            | 380.83           | 143.57  | 2122.90 | 40.55  | 599.60  | 14.25  | 210.67 |
| 1962 | 129.17           | 497.95           | 720.07  | 2775.83 | 203.38 | 784.01  | 71.46  | 275.46 |
| 1963 | 290.45           | 769.78           | 1545.12 | 4218.89 | 475.45 | 1229.72 | 160.58 | 425.75 |
| 1964 | 180.93           | 928.26           | 929.07  | 5026.38 | 258.63 | 1453,19 | 100.27 | 513.59 |
| 1965 | 68.82            | 973.53           | 383.32  | 5281.93 | 166.50 | 1581.44 | 38.11  | 538.67 |
| 1966 | 37.37            | 987.02           | 207.94  | 5360.21 | 43.29  | 1586.36 | 20.72  | 546,18 |
| 1967 | 18.13            | 981.41           | 73.63   | 5305.51 | 32.56  | 1580.68 | 12.21  | 545.20 |
| 1968 | 24.42            | 982.08           | 136.16  | 5313.15 | 37.00  | 1579.48 | 13,32  | 545,33 |
| 1969 | 18.13            | 976.59           | 72.89   | 5258.83 | 22.20  | 1563.85 | 6.73   | 539.03 |
| 1970 | 33.30            | 986.03           | 59.20   | 5192.43 | 34,41  | 1560.51 | 12.58  | 538,58 |
| 1971 | 15.17            | 977.56           | 122.84  | 5189.73 | 32.56  | 1555.44 | 8.14   | 533.81 |
| 1972 | 12.58            | 966.75           | 55.50   | 5121.35 | 15.17  | 1533.52 | 4.07   | 525,17 |
| 1973 | 3.40             | 947.24           | 17,91   | 5017,88 | 6.92   | 1504.06 | 2.78   | 515,48 |
| 1974 | 12.21            | 936.79           | 45.88   | 4944.16 | 18.83  | 1486.92 | 13.14  | 516,13 |
| 1975 | 4.48             | 919.04           | 86.21   | 4911.57 | 19.57  | 1470.91 | 8.44   | 512,18 |
| 1976 | 3.00             | 900.26           | 11.17   | 4806.47 | 4.85   | 1440.91 | 2.44   | 502.46 |
| 1977 | 5.18             | 884.06           | 34.78   | 4726.91 | 14.06  | 1420,60 | 7.03   | 497,46 |
| 1978 | 10.36            | 873.29           | 54.39   | 4668.38 | 14.43  | 1401.14 | 7.77   | 493.30 |
| 1979 | 2.81             | 855.41           | 10.36   | 4568.24 | 9.99   | 1377.80 | 3.70   | 485.26 |
| 1980 | 2.57             | 837.72           | 5.74    | 4465.95 | 3.87   | 1349.04 | 3.02   | 476.75 |
| 1981 | 4.50             | 822.33           | 27,79   | 4387.60 | 10.57  | 1327.50 | 4.53   | 469,91 |
| 1982 | 1.97             | 804,83           | 5.19    | 4289.05 | 2.15   | 1298.24 | 1.27   | 460.05 |
| 1983 | 1.18             | 786.97           | (10.1)  | 4197.63 | 2.98   | 1270.49 | 1.53   | 450.68 |
| 1984 | 0.87             | 769.23           | ( 1.65) | 4100.10 | 1.62   | 1242.06 | 1.79   | 441,78 |
| 1985 | 1,36             | 752.39           | (1.6)   | 4004.82 | (1.7)  | 1214,38 | (~0.3) | 431,64 |

I.

I.

**Table 3.2.1.2.** Fallout rates and accumulated fallout (Bg  $m^{-2}$ ) in Greenland 1950-1985

Table 3.2.2 shows the samplings carried out from land by local people in 1985. Further sea water data from Greenland are shown in Chapter 4 of this report.

Table 3.2.2. Radionuclides in surface sea water collected in Greenland in July-August 1985

| Location     | Bg <sup>137</sup> Cs m <sup>-3</sup> | $Bq^{90}Sr m^{-3}$ | Salinity in o/oo |
|--------------|--------------------------------------|--------------------|------------------|
| Danmarkshavn | 2.94                                 | 3.52               | 18.9             |
| Upernavik    | 3.14                                 | 2.30               | 32.0             |

# 3.2.3. Strontium-90 and Cesium-137 in Greenland terrestrial animals

Reindeer samples were obtained from Greenland in 1985. The mean level in reindeer meat was 216 Bg  $^{137}$ Cs kg<sup>-1</sup>. The sample of reindeer from K.G.H. contained 0.10 Bg  $^{90}$ Sr kg<sup>-1</sup> meat and in the bone we found 1380 Bg  $^{90}$ Sr (kg Ca)<sup>-1</sup>.

Table 3.2.3.1. Cesium-137 in reindeer meat collected in Greenland in 1985

| Location  | Month        | Bg <sup>137</sup> Cs kg <sup>-1</sup> | Bq <sup>137</sup> Cs (kg K) <sup>-1</sup> |
|-----------|--------------|---------------------------------------|-------------------------------------------|
| Godthåb I | <br>Summer   | 320                                   | 75000                                     |
| - " - II  | _ <b>"</b> _ | 300                                   | 75000                                     |
| K.G.H. I  |              | 27                                    | 7200                                      |
| Mean      | <br>         | 216                                   | 52000                                     |

|                                       | Sample I    | Sample II   |
|---------------------------------------|-------------|-------------|
| Bg <sup>137</sup> Cs kg <sup>-1</sup> | 64          | 54          |
| $Bg^{137}Cs (kg K)^{-1}$              | 18000       | 15400       |
| Bg <sup>90</sup> Sr kg <sup>-1</sup>  | 0.174       | 0.106       |
| $Bg^{90}Sr (kg Ca)^{-1}$              | 4800 (3500) | 2400 (2800) |

Table 3.2.3.2. Cesium-137 and Strontium-90 in meat samples and bone (results in brackets) of lamb from Greenland obtained through K.G.H.

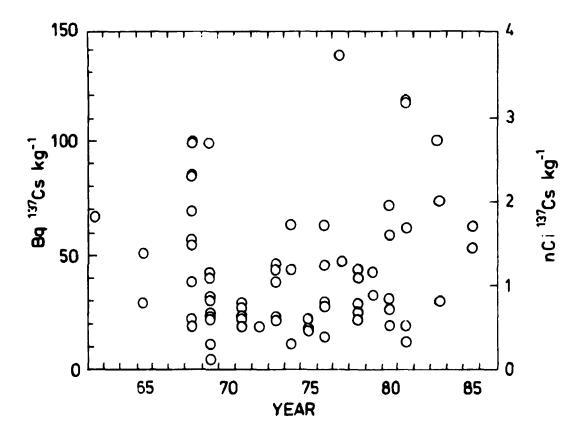



Fig. 3.2.3. Cesium-137 in Greenlandic mutton, 1962-1985.

3.2.4. Strontium-90 and Cesium-137 in Greenland sea animals The results are shown in Tables 3.2.4.1 and 3.2.4.2. The mean concentrations in fish were: 0.0046 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.39 Bg  $^{137}$ Cs kg<sup>-1</sup>.

| Species     | Location | Bg <sup>137</sup> Cs kg <sup>-1</sup> | Bg <sup>137</sup> Cs (kg K) <sup>-1</sup> |
|-------------|----------|---------------------------------------|-------------------------------------------|
| Seal        | Godthåb  | 0.23                                  | 120                                       |
| •           | K.G.H.   | 0.27                                  | 101                                       |
| Whale I     | Godthåb  | 0.72                                  | 240                                       |
| • 11        | _ # _    | 0.87                                  | 250                                       |
| Scallop     | K.G.H.   | 0.13 B                                | 32 B                                      |
| Shrimps     | K.G.H.   | 0.07 B                                | 71 B                                      |
| Salmon      | K.G.H.   | 0.30                                  | 81                                        |
| Cod         | Godthåb  | 0.59                                  | 144                                       |
| Catfish     | K.G.H.   | 0.51                                  | 132                                       |
| Angmagssats | Godthåb  | 0.17                                  | 44                                        |

Table 3.2.4.1. Cesium-137 in sea animals collected in Greenland in 1985

Table 3.2.4.2. Strontium-90 in sea animals collected in Greenland in 1985

| Species     | Location | Bg <sup>90</sup> Sr kg <sup>-1</sup> | Bg <sup>90</sup> Sr (kg Ca) <sup>-1</sup> |
|-------------|----------|--------------------------------------|-------------------------------------------|
| Seal        | Godthåb  | 0.001 B                              | 23 B (0.7 B)                              |
| -           | K.G.H.   | 0.001 B                              | 23 B (1.9 B)                              |
| Whale       | Godthåb  | 0.0023B                              | 66 B                                      |
| Scallop     | K,G,H,   | 0.001 B                              | 11 B                                      |
| Shrimps     | K.G.H.   | 0.018                                | 26                                        |
| Salmon      | K.G.H.   | 0.0064                               | 46 (44)                                   |
| Cođ         | Godthåt  | 0.0029                               | 43                                        |
| Catfish     | K.G.H.   | 0.0020                               | 24                                        |
| Angmagssats | Godthāb  | 0,0090                               | <b></b> 5                                 |

Bone levels are shown in brackets.

Whale meat contained 0.0023 Bg  ${}^{90}$ Sr kg<sup>-1</sup>, and 0.80 Bg  ${}^{137}$ Cs kg<sup>-1</sup>, and seal meat 0.001 Bg  ${}^{90}$ Sr kg<sup>-1</sup> and 0.25 Bg  ${}^{137}$ Cs kg<sup>-1</sup>. Figure 3.2.4 shows that the  ${}^{137}$ Cs levels in seals and whales from Greenland decay with an effective half-life of 8-9 years. This is in agreement with the effective half-life of  ${}^{90}$ Sr and  ${}^{137}$ Cs observed in the surface waters of the North Atlantic ocean ${}^{21}$ ).

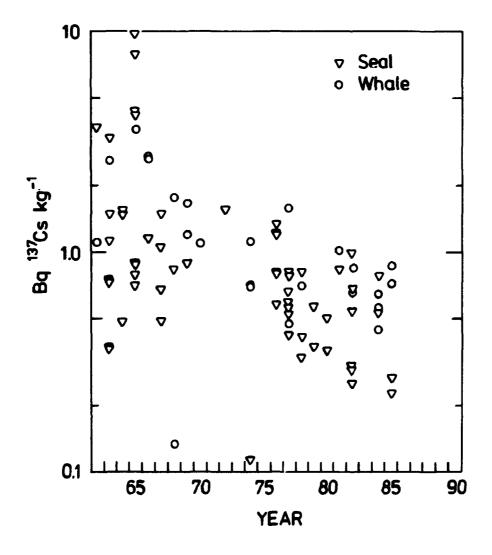



Fig. 3.2.4. Cesium-137 in seal- and whale meat from Greenland 1962-1985.

## 3.2.5. Radionuclides in Greenland seaweed

No terrestrial samples of vegetation from Greenland were obtained in 1985. The Greenland Fisheries and Environmental Research Institute provided us with a number of seaweed samples collected from Scoresbysund on the east coast to Kamorilik on the west coast of Greenland. The mean contents in Fucus were 0.43 Bq  $^{90}$ Sr kg<sup>-1</sup>, 4.1 Bq  $^{99}$ Tc kg<sup>-1</sup>, and 1.1 Bg  $^{137}$ Cs kg<sup>-1</sup>. The concentrations at Mamorilik were lower than those at the other stations for all radionuclides measured.

| Location<br>(N,W)                                         | Species<br>(date)                                          | 90 <sub>Sr</sub>                 | 99 <sub>TC</sub>         | 137 <sub>Cs</sub> | g K kg <sup>-1</sup> | g Ca kg <sup>-1</sup>     |
|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------|-------------------|----------------------|---------------------------|
| Vega Sund<br>(72 <sup>0</sup> 39',22 <sup>0</sup> 29')    | Fu.di.<br>(Sept 14)                                        | 0.41 B                           | 5.7                      | 1.56 A            | 28.5                 | 10.9                      |
| Angmagssalik<br>(65 <sup>0</sup> 36',37 <sup>0</sup> 41') | Fu.ve.<br>(Sept 22)                                        | 0.44                             | 6.2                      | 1.26              | 22.7                 | 12.2                      |
| Kap Farvel<br>(59 <b>°</b> 45 <b>',44°</b> 00')           | Pu.ve.<br>(Sept 29)                                        | 0.40                             | 6.0                      | 1.43              | 23.4                 | 11.0                      |
| "Julianehåb"<br>(60 <sup>0</sup> 21',45 <sup>0</sup> 16') | Pu.<br>(July 15)                                           | 1.08                             | 4.0                      | 1.20              | 27.0                 | 14.4                      |
| Tartog<br>(61 <sup>0</sup> 21',48 <sup>0</sup> 59')       | Fu.<br>(July 5)                                            | 0.57                             | 6.1±0.3                  | 1.05              | 32.6                 | 13.4                      |
| Piskenæsset<br>(63 <sup>0</sup> 03',50 <sup>0</sup> 36')  | Pu.<br>As.no.<br>(July 23)                                 | 0.46<br>0.92                     | <b>4.</b> 0<br>6.8       | 0.78<br>0.42      | 23.1<br>22.4         | 13.5<br>11.5              |
| Kaugarssup<br>(65 <sup>0</sup> 10',52 <sup>0</sup> 18')   | As.no.<br>(Aug 7)                                          | 0,31                             | 5.4                      | 0.51              | 22.3                 | 12 1                      |
| Mamorilik<br>(71 <sup>0</sup> 03',51 <sup>0</sup> 00')    | Pu.ve. I<br>- " - II<br>- " - III<br>- " - IV<br>(Sept 16) | 0.24<br>0.26 A<br>0.27<br>0.15 A | 2.2<br>2.6<br>2.4<br>1.9 | 0.45 A            | 26.3                 | 9.7<br>9.0<br>9.5<br>12.7 |

<u>Table 3.2.5.1</u>. Strontium-90,  $^{99}$ Tc and  $^{137}$ Cs in seaweed samples collected along the Greenland coast in July-Sept 1985. (Unit: Bq kg<sup>-1</sup> dry weight)

Fu.di.: Fucus disticus; Fu.ve.: Fucus vesiculosus; Fu.: Fu.ve. or Fu.di.

As.no.: Ascophyllum nodosum.

1

Data on seaweed samples are furthermore shown in Chapter 4 of this report.

If we compare the  $^{99}$ Tc values with those measured in earlier years<sup>4)</sup>, the levels on the east coast (the first three samples in Table 3.2.5.1) seem to have decreased a little since 1982. On the west coast, however, the southern stations are higher than those observed in 1982-1983. At Mamorilik the levels are similar to those measured at Thule ( $76^{\circ}34$ 'N,  $68^{\circ}48$ 'W) in 1984. We may thus conclude that the  $^{99}$ Tc off W-Greenland by 1984-1985 reached the coastal waters to its full extent.

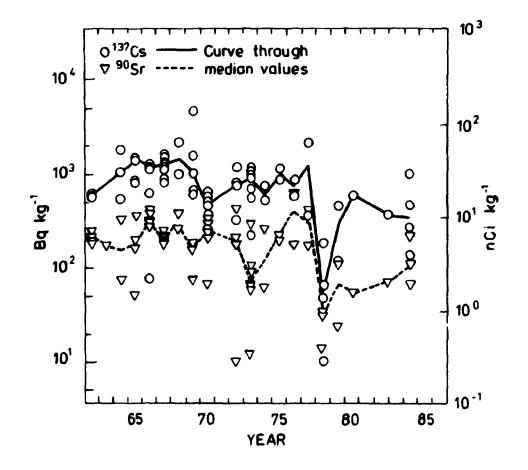



Fig. 3.2.5. Cesium-137 and Strontium-90 in lichen (fresh weight) collected along the Greenlandic coast, 1962-1984.

3.2.6. Strontium-90 and Tritium in Greenland drinking water

Quarterly samples of drinking water were collected from a number of locations in Greenland. Table 3.2.6.1 shows the results from 1985, and Fig. 3.2.6 the geometric annual means of all samples for the period 1962-1985.

As in previous years, we found it most expedient to choose the geometric mean of all figures, i.e. 16 Bg  ${}^{90}$ Sr m<sup>-3</sup> (0.43 pCi 1<sup>-1</sup>) as representative of the mean level of  ${}^{90}$ Sr in Greenland drinking water in 1985, this level was a little higher than that observed in 1984 (Fig. 3.2.6). The levels in drinking water are still surprisingly high as compared to present rain concentrations (cf. Table 3.2.1.1). We have suggested that evaporation from the drinking water reservoirs was responsible for the higher  ${}^{90}$ Sr levels. Tritium measurements show (Table 3.2.6.2) that the Greenland drinking water shows similar tritium levels as rain from Denmark<sup>3</sup>, hence evaporation seems to be a possible explanation. The high  ${}^{90}$ Sr levels may, however, also be due to extraction of old deposited  ${}^{90}$ Sr activity from the soil by the water collected for drinking. This would also be compatible with "normal" tritium concentrations.

| Location       | J <b>an-March</b> | April-June | July-Sept | Oct-Dec |
|----------------|-------------------|------------|-----------|---------|
| Danmarkshavn   | 29                | 23         | 6         | 18      |
| Scoresbysund   | 12                | 9          | 7         | 10      |
| Prins Chr.Sund | 82                | 65         | 45        |         |
| Godthåb        |                   |            | 9         |         |
| Upernavik      | 11                | 14         | 7         |         |

<u>Table 3.2.6.1</u>. Strontium-90 in drinking water collected in Greenland in 1985. (Unit:  $Bg m^{-3}$ )

| Location       | Jan-March | July-Sept |
|----------------|-----------|-----------|
| Danmarkshavn   | B.D.L.    |           |
| Scorebysund    | B.D.L.    |           |
| Prins Chr.Sund | B.D.L.    |           |
| Godthåb        | 1.6±0.1   | 1.7±0.1   |
| Upernavik      | B.D.L.    |           |

<u>Table 3.2.6.2</u>. Tritium in drinking water collected in Greenland in 1985. (Unit:  $kBq m^{-3}$ )

The error term is 1 S.E. of the mean of double determinations.

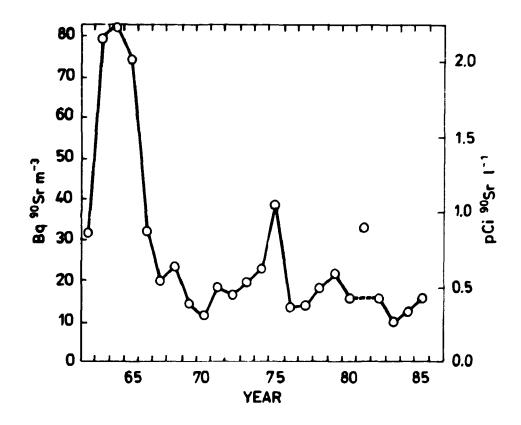



Fig. 3.2.6. Strontium-90 in Greenlandic drinking water (Geometric mean), 1962-1985.

### 3.3.1. The annual quantities

The estimate of the daily pro capite intake of the different foods in Greenland is still based on the figures given in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D., in Risø Report No.  $65^{2}$ .

## 3.3.2. Milk products

All milk consumed in Greenland was imported as milk powder from Denmark. The mean radioactivity content in milk prepared from Danish dried milk produced in 1985 was 0.072 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.076 Bg  $^{137}$ Cs kg<sup>-1 3</sup>).

Cheese was also imported from Denmark and contained 0.51 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.055 Bg  $^{137}$ Cs kg<sup>-1</sup>.

#### 3.3.3. Grain products

All grain was imported from Denmark. It is assumed that only grain from the harvest of 1984 was consumed in Greenland during 1985. The daily pro capite consumption was: rye flour (100% extraction): 80 g, wheat flour (75% extraction): 110 g, rye flour (70% extraction): 20 g, biscuits (rye, 100% extraction): 27 g, and grits: 25 g. The content of  $^{90}$ Sr in these five products was 0.30, 0.08, 0.06, 0.23, and 0.17 Bg kg<sup>-1</sup>, respectively. Hence the mean content of  $^{90}$ Sr in grain products was 0.17 Bg kg<sup>-1</sup>. The content of  $^{137}$ Cs in the five products was 0.16, 0.038, 0.08, 0.12 and 0.085 Bg kg<sup>-1</sup>. Hence the mean content of  $^{137}$ Cs in grain products was 0.16, 0.038, 0.08, 0.12 and 0.09 Bg kg<sup>-1</sup>.

The activity levels in rye flour (100% extraction), wheat flour (75% extraction), and grits were all taken from Tables 5.9.1 and 5.9.2 in Risø Report No.  $509^{3}$ ). The  $^{90}$ Sr level in rye flour (70% extraction) was calculated analogously with the level in wheat flour (75% extraction), i.e. as one-fifth of the whole-

grain activity. The  $^{137}$ Cs content in rye flour (70% extraction) was calculated as one half of the whole-grain level in rye in analogy with the ratio between  $^{137}$ Cs in whole wheat grain and in wheat flour (75% extraction)<sup>3)</sup>. The  $^{90}$ Sr and  $^{137}$ Cs contents in biscuits were calculated by dividing the levels of the rye flour (100% extraction) by 1.35, since 1 kg flour yields 1.35 kg bread<sup>3)</sup>.

## 3.3.4. Potatoes, other vegetables, and fruit

The Danish mean levels for 1985 were used<sup>3)</sup> since the local production is insignificant compared with imports from Denmark.

The Danish mean levels were: in potatoes 0.056 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.078 Bg  $^{137}$ Cs kg<sup>-1</sup>, in other vegetables 0.24 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.052 Bg  $^{137}$ Cs kg<sup>-1</sup>, and in fruit 0.062 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.016 Bg  $^{137}$ Cs kg<sup>-1</sup>.

#### 3.3.5. Meat

Nearly all meat consumed in Greenland is assumed to be of local origin. Approximately 10% comes from sheep, 5% from reindeer, 60% from seals, 5% from whales, and 20% from sea birds and eggs.

The activities in lamb were estimated from the 1983 data<sup>2</sup>. Reindeer, seal and whale were estimated from 3.2.3. The levels of sea birds and eggs were taken from the 1978 analyses<sup>2</sup>. Hence the mean levels in Greenland meat from 1985 were 0.08 Bg 90 Sr kg<sup>-1</sup> and 12.3 Bg 137 Cs kg<sup>-1</sup>.

 $({}^{90}$ Sr: 0.1×0.14 + 0.05×0.10 + 0.6×0.001 + 0.05×0.0023 + 0.2×0.007 = 0.02 Bg kg<sup>-1</sup>)

 $(^{137}Cs: 0.1 \times 59 + 0.05 \times 216 + 0.6 \times 0.25 + 0.05 \times 0.80 + 0.2 \times 0.35)$ = 17.0 Bg kg<sup>-1</sup>)

#### 3.3.6. Fish

All fish consumed was of local origin, and the mean levels from 1985 (cod and salmon meat) were used, i.e. 0.0046 Bg  $^{90}$ Sr kg<sup>-1</sup> and 0.39 Bg  $^{137}$ Cs kg<sup>-1</sup>.

#### 3.3.7. Coffee and tea

The Danish figures for 1985<sup>3</sup>) were used for coffee and tea, i.e. 1.00 Bg  ${}^{90}$ Sr kg<sup>-1</sup> and 1.53 Bg  ${}^{137}$ Cs kg<sup>-1</sup>.

#### 3.3.8. Drinking water

The geometric mean calculated in 3.2.6 was used as the mean level of 90Sr in drinking water, i.e. 16 Bg 90Sr m<sup>-3</sup>. The 137Cs content was as previously<sup>2</sup> estimated at 1/4 of the 90Sr content, i.e. approximately 4 Bg 137Cs m<sup>-3</sup>.

Tables 3.3.1 and 3.3.2 show the diet estimates of 90Sr and 137Cs, respectively.

#### 3.3.9. Discussion

The most important 90Sr source in the Greenland diet is still grain products, which contribute 36% of the total 90Sr content in the diet. Approximately 77% of the 90Sr in the food consumed in Greenland in 1985 originated from imporced (Danish) food.

Meat is still the most important  $^{137}$ Cs source in the Greenland diet, contributing 91% of the total content in 1985. Approximately 97% of the  $^{137}$ Cs in the Greenland diet in 1985 came from local products.

The <sup>90</sup>Sr contents in the total diet in 1985 was approximately 89% of the 1984 level.

The  $^{137}$ Cs level was 137% of that found in 1984. As earlier discussed<sup>2)</sup> the great variations from year to year are primarily due to the variations in the  $^{137}$ Cs levels in the meat samples obtained.

The  ${}^{90}$ Sr content of the Greenland diet in 1985 was 81% of the estimated Danish mean content<sup>3)</sup>, and 69% of the Paroese level<sup>1)</sup>. The  ${}^{137}$ Cs level in the total diet in Greenland was 10.2 times that of the Danish diet and 87% of the Paroese diet level.

| Type of food   | Annual<br>quantity<br>in kg | Bg <sup>90</sup> Sr<br>per kg | Total<br>Bg <sup>90</sup> Sr | Percentage of<br>total Bg <sup>90</sup> Sr<br>in food |
|----------------|-----------------------------|-------------------------------|------------------------------|-------------------------------------------------------|
| Milk and cream | 78                          | 0.072                         | 5.62                         | 12.6                                                  |
| Cheese         | 2.5                         | 0.51                          | 1.28                         | 2.9                                                   |
| Grain products | 95.6                        | 0.17                          | 16,25                        | 36.3                                                  |
| Potatoes       | 32.8                        | 0.056                         | 1.84                         | 4.1                                                   |
| Vegetables     | 5.5                         | 0.24                          | 1.32                         | 3.0                                                   |
| <b>P</b> ruit  | 13.5                        | 0.062                         | 0.84                         | 1.9                                                   |
| Meat and eggs  | 45.6                        | 0.02                          | 0.91                         | 2.0                                                   |
| Pish           | 127.6                       | 0.0046                        | 0,59                         | 1,3                                                   |
| Coffee and tea | 7.3                         | 1.00                          | 7.30                         | 16.3                                                  |
| Drinking water | 548                         | 0.016                         | 8.77                         | 19.6                                                  |
| Total          |                             |                               | 44,72                        |                                                       |

<u>Table 3.3.1.</u> Estimate of the mean content of 90Sr in the human diet in Greenland in 1985

The mean annual calcium intake is estimated to be  $0.5^{4}$  kg (approx. 0.2-0.25 kg creta praeparata). Hence the 90Sr/Ca ratio in Greenland total diet in 1985 was 80 Bg 90Sr (kg Ca)<sup>-1</sup> or 2.2 pCi 90Sr (g Ca)<sup>-1</sup> and the daily intake was 0.12 Bg 90Sr or 3.3 pCi 90Sr.

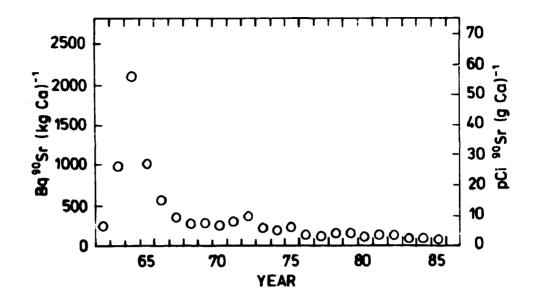



Fig. 3.3.1. Strontium-90 in Greenlandic diet, 1962-1985.

| Type of food   | Annual<br>guantity<br>in kg | Bq <sup>137</sup> Cs<br>per kg | Total<br>Bg <sup>137</sup> Cs | Percentage of<br>total Bg <sup>137</sup> Cs<br>in food |
|----------------|-----------------------------|--------------------------------|-------------------------------|--------------------------------------------------------|
| Milk and cream | 78                          | 0.076                          | 5.93                          | 0.7                                                    |
| Cheese         | 2.5                         | 0.055                          | 0.14                          | 0.0                                                    |
| Grain products | 95.6                        | 0.09                           | 8.60                          | 1.0                                                    |
| Potatoes       | 32.8                        | 0.078                          | 2.56                          | 0.3                                                    |
| Vegetables     | 5.5                         | 0.052                          | 0.29                          | 0.0                                                    |
| Pruit          | 13.5                        | 0.016                          | 0.22                          | 0.0                                                    |
| Meat and eggs  | 45.6                        | 17.0                           | 775.20                        | 90.6                                                   |
| Fish           | 127.6                       | 0.39                           | 49.76                         | 5.8                                                    |
| Coffee and tea | 7.3                         | 1.53                           | 11.17                         | 1.3                                                    |
| Drinking water | 548                         | 0.004                          | 2.19                          | 0,3                                                    |
| Total          | <u> </u>                    |                                | 856,06                        | <u></u>                                                |

Table 3.3.2. Estimate of the mean content of  $^{137}$ Cs in the human diet in Greenland in 1985

The mean annual potassium intake is estimated to be approx. 1.2 kg. Hence the  ${}^{137}$ Cs/K ratio becomes 713 Bg  ${}^{137}$ Cs (kg K) $^{-1}$  or 19.3 pCi  ${}^{137}$ Cs (g K) $^{-1}$ . The daily intake in 1985 from food was 2.35 Bg  ${}^{137}$ Cs or 63 pCi  ${}^{137}$ Cs.

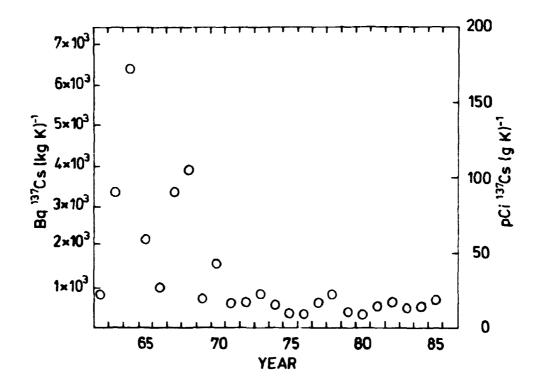



Fig. 3.3.2. Cesium-137 in Greenlandic diet, 1962-1985.

## 3.4. Conclusion

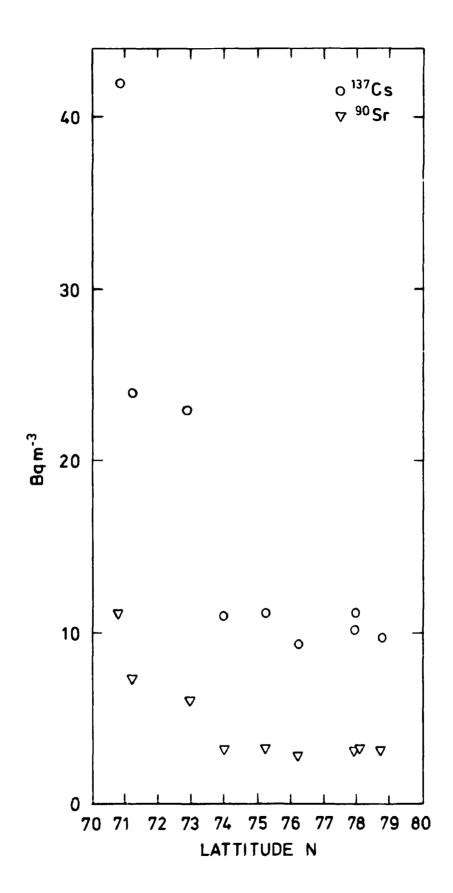
### 3.4.1.

The  $^{90}$ Sr fallout rates in 1985 were the following: Prins Chr. Sund: approximately 1.6 Bq  $^{90}$ Sr m<sup>-2</sup>; Godthåb:1.7; Scoresby Sund: 1.4; and Danmarkshavn: 1.0. The accumulated fallout levels by the end of 1985 were estimated at approximately 1210 Bg  $^{90}$ Sr m<sup>-2</sup> at Godthåb, 4000 at Prins Chr. Sund, and 430 at Upernavik.

## 3.4.2.

The food consumed in Greenland in 1985 contained on the average 80 Bg  $^{90}$ Sr (kg Ca)<sup>-1</sup>, and the daily mean intake of  $^{137}$ Cs was estimated at 2.35 Bq. The most important  $^{90}$ Sr contributor to the diet were grain products accounting for 36% of the total  $^{90}$ Sr content of the diet. Cesium-137 originated mainly from meat (reindeer and lamb) and fish, contributing 97% of the total  $^{137}$ Cs content of the diet.

3.4.3.


No  ${}^{90}$ Sr analyses of human bone samples have hitherto been carried out on the population of Greenland. Considering the estimated  ${}^{90}$ Sr levels in the diet, it seems probable ${}^{4)}$ , however, that the 1985  ${}^{90}$ Sr levels of humans in Greenland were on the average rather similar to those found in Denmark, i.e. the mean levels in human bone in Greenland were approximately 25 Bg  ${}^{90}$ Sr (kg Ca)<sup>-1</sup> (vertebrae). From diet measurements the  ${}^{137}$ Cs content in Greenlanders was estimated at 2000 Bg  ${}^{137}$ Cs (kg K)<sup>-1</sup>.

## 4. MARINE ENVIRONMENTAL RADIOACTIVITY IN THE NORTH ATLANTIC REGION

## 4.1. The F/S Polarstern cruise in July 1985 to the Fram Strait

Since the Polarstern cruise in  $1984^{4}$  the  $^{137}$ Cs concentrations in the surface water between Norway and Svalbard (cf. Fig. 4.1.1.1) have remained unchanged. This was to be expected if the transit time from Sellafield to the Norwegian Sea is about five years<sup>11)</sup>. The discharges from Sellafield in 1978 was: 4.1 PBq  $^{137}$ Cs, in 1979: 2.6 PBq and in 1980: 3.0 PBq $^{13}$ ). We observed a decrease in the Norwegian Sea from 1983 to 1984 corresponding to the marked decrease in the discharges from 1978 to 1979, From 1979 to 1980 the discharges increased a little and therefore there was no further decrease in the water concertrations from 1984 to 1985.

In the Fram Strait (Fig. 4.1.1.2) the  $^{137}$ Cs concentrations were in general decreasing from east to west as also observed in 1983 and 1984. However, at two western stations around  $7^{\circ}W$  enhanced  $^{137}$ Cs levels were observed. As the  $^{90}$ Sr concentrations at these stations are similar to the neighbouring stations we assume that we see a strong Sellafield signal at the two western stations.



<u>Fig. 4.1.1.1</u>. Cesium-137 and Strontium-90 in surface water collected between N-Norway and Svalbard in July 1985. The abscissa shows the latitude of the samples.

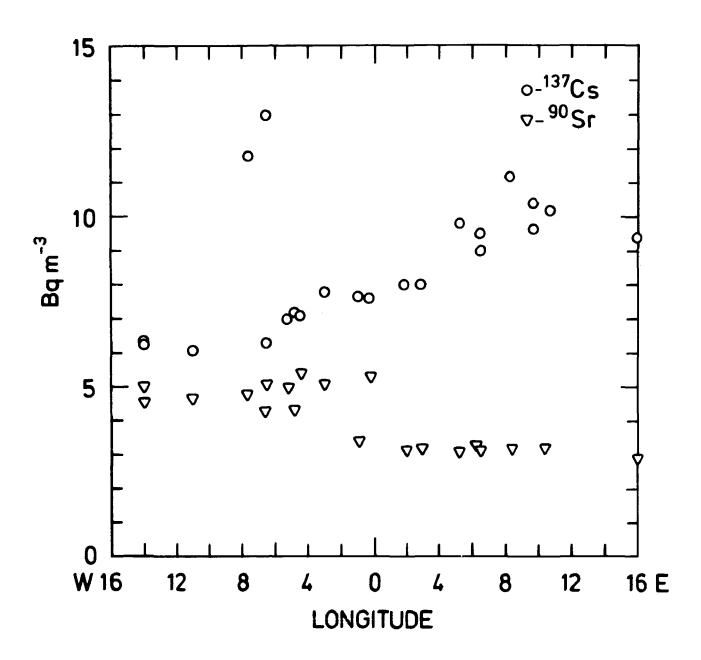



Fig. 4.1.1.2. Cesium-137 and Strontium-90 in surface water collected in the Fram Strait between Svalbard and East-Greenland in July 1985.  $(78-80^{\circ}N)$ . The abscissa shows the longitude of the samples.

- 57 -

We have combined a number of samples from the Fram Strait in order to measure the very low 134Cs concentrations. From the western part of the Fram Strait we made three <sup>134</sup>Cs determinations (samples a), b), and c) in Table 4.1.1). The mean concentrations in these samples varied between 0.006 and 0.016 Bq 134 Cs m<sup>-3</sup>. Assuming a transit time of 7 years<sup>11</sup> to the Fram Strait from Sellafield we may calculate a transfer factor from the  $^{134}$ Cs discharge observed in 1978, which decay corrected to 1985 was: 0.038 PBg. Hence the transfer factor becomes 0.2-0.4 Bg  $^{134}$ Cs m<sup>-3</sup> per PBg  $^{134}$ Cs discharged. From this and from the discharge in 1978 of 137Cs (decay corrected to 1985) we would expect a concentration of  $(0.2-0.4) \cdot 3.48 = (0.7-1.4)$  Bq m<sup>-3</sup> ~ 1 Bg  $m^{-3}$  of Sellafield derived cesium-137 in the western part of the Fram Strait in 1985. The mean concentrations in the nine samples considered was 8.0±2.6 (± 1 S.D.) Bq  $^{137}$ Cs m<sup>-3</sup>. If the two "outliers" mentioned above are omitted in the mean, it becomes 6.7±0.6 (± 1 S.D., n=7). Using this mean, a realistic estimated of the global fallout background in the western Fram Strait becomes 5.7 Bg  $^{137}$ Cs m<sup>-3</sup>. In a similar way the  $^{90}$ Sr fallout background is estimated as  $[4.9\pm0.35 (\pm 1 \text{ S.D.}, n=9) 0.3 \cdot 0.51$  = 4.7 Bg <sup>90</sup>Sr m<sup>-3</sup>. We have earlier<sup>6</sup> in 1983 estimated the fallout concentrations in polar water in the Fram Strait to 6.86 Bg  $^{137}$ Cs m<sup>-3</sup> and 5.72/1.225 = 4.67 Bg  $^{90}$ Sr m<sup>-3</sup> (cf. Introduction).

In the eastern part of the Fram Strait the transfer factor for Sellafield discharges was an order of magnitude higher than that observed in the western part.

A number of samples from the cruise have been analysed for  $^{99}$ Tc. In nearly all cases the concentrations are similar to those observed for  $^{134}$ Cs. This implies that the annual mean discharges of  $^{99}$ Tc have been similar to the decay corrected annual mean discharge of  $^{134}$ Cs, i.e. about 0.04 PBg. This figure is actually in the right order of magnitude for  $^{99}$ Tc<sup>9,13)</sup>.

| Posi<br>N            | E or W                | Station<br>No. | Date<br>in<br>July | Salinity<br>o/co | Temp.<br><sup>o</sup> c | 90<br>Sr<br>Bq m <sup>-3</sup> | 99<br>Tc<br>Bq m <sup>-3</sup> | 134<br>Cs<br>Bg m <sup>-3</sup> | 137<br>Cs<br>Bg m <sup>-3</sup> | 239,240 <sub>E-1</sub><br>mBg m <sup>-3</sup> | 238 <sub>Pu</sub><br>239,240 <sub>Pu</sub> | 241<br>Am<br>mBq m <sup>-3</sup> |
|----------------------|-----------------------|----------------|--------------------|------------------|-------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------|
| 54 <sup>0</sup> 29'  | 7º28'E                | 85601          | 3                  | 30,9             | -                       | 37                             |                                | -                               | 20.1                            | -                                             | -                                          | -                                |
| 58 <sup>0</sup> 20'  | 5 <sup>0</sup> 00'e   | 85602-05       | 4                  | 29.7             | -                       | 25                             | 1.3                            | 1.34                            | 53                              | 7.7                                           | 0,19                                       | -                                |
| 50 <sup>0</sup> 04 ' | 4 <sup>0</sup> 54 ' E | 85606-07       | 5                  | 29.9             | -                       | 21                             | 1.4                            | 2.03 A                          | 49                              | -                                             | -                                          | -                                |
| 63 <sup>0</sup> 151  | 6 <sup>0</sup> 00'E   | 85608-09       | 6                  | -                | -                       | -                              | 0.66                           | -                               | -                               | 9.1                                           | -                                          | 0.34                             |
| 63 <sup>0</sup> 30 ' | 6 <sup>0</sup> 15'E   | 85610-11       | 6                  | 33,3             | -                       | 12.8                           |                                | 1.09                            | 55                              | -                                             | -                                          | -                                |
| 5 <sup>0</sup> 30'   | 8 <sup>0</sup> 49'E   | 85612-13       | 6                  | 33.6             | -                       | 10.4                           | 0.51                           | -                               | 39                              | -                                             | -                                          | -                                |
| 68 <sup>0</sup> 231  | 13 <sup>0</sup> 10'E  | 85614-15       | 7                  | -                | 10.5                    | -                              | -                              | -                               | -                               | 5.8                                           | -                                          | 0.81 A                           |
| 58 <sup>0</sup> 37 ' | 13 <sup>0</sup> 35'E  | 85616-17       | 7                  | 33.8             | 11.4                    | 13.1                           | -                              | 0.82                            | 45                              | -                                             | -                                          | -                                |
| 70 <sup>0</sup> 40 ' | 18 <sup>0</sup> 50'E  | 85618-19       | 8                  | 33.9             | 8.3                     | 11.0                           | 0.40                           | -                               | 42                              | -                                             | -                                          | -                                |
| 71 <sup>0</sup> 08'  | 21 <sup>0</sup> 00'E  | 85620-21       | 8                  | -                | 8.7                     | -                              | 0.29                           | -                               | -                               | 6.5                                           | -                                          | 0.80                             |
| 71°15'               | 21 <sup>0</sup> 30'E  | 85622-23       | 8                  | 34.7             | 8.5                     | 7.1                            | -                              | 0.41                            | 24                              | -                                             | -                                          | -                                |
| 72 <sup>0</sup> 54 ' | 20 <sup>0</sup> 13'E  | 85624-25       | 9                  | 34.8             | 7.7                     | 6.0                            | B.D.L.                         | -                               | 23                              | -                                             | -                                          | -                                |
| 73 <sup>0</sup> 451  | 19 <sup>0</sup> 05'E  | 85626-27       | 9                  | -                | 5.1                     | -                              | 0.34                           | -                               | -                               | 12.3 A                                        | 0.045 B                                    | -                                |
| 74 <sup>0</sup> 00 ' | 18 <sup>0</sup> 45'E  | 85628          | 9                  | 35.0             | 5.1                     | 3.1                            | -                              | -                               | 11.0                            | -                                             | -                                          | -                                |
| 75 <sup>0</sup> 131  | 17 <sup>0</sup> 42'E  | 85629-32       | 10                 | 34.4             | 3.3                     | 3.3                            | 0.12                           | 0.135A                          | 11.2                            | 8.4                                           | 0.047                                      | 0,56                             |
| 76°22'               | 16 <sup>0</sup> 00'E  | 85633-34       | 10                 | 34.7             | 3.5                     | 2.9                            | 0.34                           | -                               | 9.4                             | -                                             | -                                          | -                                |
| 77 <sup>0</sup> 54 ' | 10 <sup>0</sup> 35'E  | 85635-36       | 11                 | 35.0             | 5.4                     | 3.2                            | -                              | -                               | 10.2                            | -                                             | -                                          | -                                |
| 77 <sup>0</sup> 55'  | 8 <sup>0</sup> 18'E   | 85637-39       | 11                 | 35.1             | 5.2                     | 3.2                            | -                              | 0,154                           | 11.2                            | 11.9                                          | -                                          | 1.45                             |
| 78 <sup>0</sup> 42 ' | 5 <sup>0</sup> 22'E   | 85640-43*      | 12                 | 34.4             | 4.7                     | 3.1                            | B.D.L.                         | 0.159                           | 9.8                             | -                                             | -                                          | 2.5                              |
| 78 <sup>0</sup> 27 ' | 1°55'E                | 85647-49       | 13                 | 33.1             | 0.5                     | 3.1                            |                                | 0.036 <sup>e</sup>              | 8.0                             | 9.8                                           | -                                          | 1.27                             |
| 79 <sup>0</sup> 02 ' | 0 <sup>0</sup> 52'W   | 85650-51*      | 14                 | 33.0             | 0.0                     | 3.4                            | -                              | 0.036 <sup>e</sup>              | 7.7                             | -                                             | -                                          | -                                |
| 78 <sup>0</sup> 53 ' | 3 <sup>0</sup> 06 ' W | 85655-56       | 14                 | 32.0             | -1.6                    | 5.1                            |                                | 0.011 <sup>b</sup>              | 7.8                             |                                               |                                            |                                  |
| 78 <sup>0</sup> 59'  | 5 <sup>0</sup> 16'W   | 85657-60       | 16                 | 31.4             | -0.6                    | 5.0                            | 0.037                          | 0.0116                          | 7.0                             |                                               |                                            | 0.38                             |
| 78 <sup>0</sup> 31 ' | 4 <sup>0</sup> 53'W   | 85661+         | 17                 | 31,6             | -0.2                    | 4.3                            |                                |                                 | 7.2                             |                                               |                                            |                                  |

Table 4.1.1. Radionuclides in surface sea water collected from N-Norway via Svalbard to N.E.-Greenland in July 1985

Table 4.1.1. (continued)

| Position<br>N E or W                     | Station<br>No. | Date<br>in<br>July | Salinity<br>o/oo | Temp.<br>°C | 90<br>Sr<br>Bg m <sup>-3</sup> | 99<br>Tc<br>Bq m <sup>-3</sup> |                      | 137<br>Ca<br>Bq m <sup>~3</sup> | 239,240 <sub>Pu</sub><br>mBq m <sup>-3</sup> | 238 <sub>Pu</sub><br>239,240 <sub>Pu</sub> | 241<br>Am<br>mBg m <sup>-3</sup> |
|------------------------------------------|----------------|--------------------|------------------|-------------|--------------------------------|--------------------------------|----------------------|---------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|
| 78°46' 6°27'W                            | 85665-66       | 18                 | 31,2             | -0.5        | 4.3                            |                                | 0.011 <sup>b</sup>   | 13.0                            | <u> </u>                                     |                                            |                                  |
| 79 <sup>0</sup> 02' 7 <sup>0</sup> 44'N  | 85667-68       | 18                 | 31.1             | -1.8        | 4.8                            |                                | 0.011 <sup>b</sup>   | 11.8                            |                                              |                                            |                                  |
| 79 <sup>0</sup> 20' 14 <sup>0</sup> 07'W | 85669-70       | 19                 | 31.7             | -0.5        | 5.0                            |                                | 0.0056B <sup>4</sup> | 6.4                             |                                              |                                            |                                  |
| 79 <sup>0</sup> 20' 11 <sup>0</sup> 00'W | 85671-72       | 19                 | 31.5             | -           | 4.6                            |                                | 0.0056B              | 6.1                             |                                              |                                            |                                  |
| 79 <sup>0</sup> 40' 8 <sup>0</sup> 00'W  | 85674          | 20                 | -                | 0.4         | -                              | -                              | -                    | -                               | -                                            | -                                          | 0.50                             |
| 80 <sup>0</sup> 00' 14 <sup>0</sup> 00'W | 85675-77       | 21                 | 32.1             | 0.0         | 4.5                            | 0.21                           | 0.0056B              | 6.3                             |                                              |                                            |                                  |
| N:00011 1000                             | 85678          | 21                 | -                | 0.0         | -                              | -                              | -                    | -                               | 7.6                                          | -                                          | 0.86                             |
| 80 <sup>0</sup> 00' 6 <sup>0</sup> 25'W  | 85679-80       | 22                 | 32.1             | 1.6         | 5.1                            |                                | .0.016AC             | 6.3                             |                                              |                                            |                                  |
| 80 <sup>0</sup> 00' 4 <sup>0</sup> 28'W  | 85681-82       | 22                 | 31.5             | 2.2         | 5.4                            | -                              | 0.016A <sup>C</sup>  | 7.1                             | -                                            | -                                          | -                                |
| 80 <sup>0</sup> 00' 3 <sup>0</sup> 00'W  | 85683          | 23                 | -                | 0.0         | -                              | -                              | -                    | -                               | -                                            | -                                          | 0.40                             |
| 80 <sup>0</sup> 00' 0 <sup>0</sup> 08'W  | 85684-85       | 23                 | 32.2             | 0.0         | 5,3                            |                                | 0.036*               | 7.6                             |                                              |                                            |                                  |
| 80 <sup>0</sup> 00' 2 <sup>0</sup> 50'E  | 85686-87       | 24                 | 33,3             | 3.0         | 3.2                            |                                | 0.078 <sup>d</sup>   | 8.0                             |                                              |                                            |                                  |
| 80 <sup>0</sup> 00' 4 <sup>0</sup> 25'E  | 85688          | 24                 | -                | 3.3         |                                |                                |                      |                                 | 7.9                                          | 0.037                                      | 0.95                             |
| 80 <sup>0</sup> 00' 6 <sup>0</sup> 30'E  | 85689-90       | 25                 | 34.2             | 3.8         | 3.2                            |                                | 0.078 <sup>d</sup>   | 9.5                             |                                              |                                            |                                  |
| 79 <sup>0</sup> 50' 9 <sup>0</sup> 46'E  | 85691-92       | 25                 | 34.7             | 6.6         | -                              | -                              | 0.16                 | 10.4                            | -                                            | -                                          | -                                |
| 78 <sup>0</sup> 40' 6 <sup>0</sup> 20'E  | 85693-94       | 27                 | 34,8             | 6,9         | 3,3                            |                                |                      | 9.0                             |                                              |                                            |                                  |
| 78 <sup>0</sup> 30' 9 <sup>0</sup> 30'E  | 85695-96       | 28                 | 34.9             | 5.8         |                                |                                | 0.12                 | 9.6                             |                                              |                                            |                                  |

a) Three samples representing 5.35  $m^3$  combined to <sup>134</sup>Cs analysis.

b) Four samples representing 7.05  $m^3$  combined to  $^{134}$ Cs analysis.

c) Two samples representing 3.5  $m^3$  combined to  $^{134}$ Cs analysis.

d) Two samples representing 3.55  $m^3$  combined to  $^{134}$ Cs analysis.

e) Three samples representing 5.3  $m^3$  combined to  $^{134}$ Cs analysis.

\*) Cf. corresponding deep- ater samples in Table 4.1.2.

1

Table 4.1.2 shows the data for three sets of deep-water samples collected in the Fram Strait. The three stations all showed a decrease in activity from surface to 200 m. From 200 to 400 m the concentrations did not change very much. But from 400 to 700 m there was again a significant decrease. All the deep-water samples showed  $13^7$ Cs/ $^{90}$ Sr ratios significantly larger than those expected in global fallout (~ 1.45) indicating a significant contribution from Sellafield.

| Pos                  | ition                | Depth | Station | Date       | Salinity | Temp.      | 90 <sub>Sr</sub>   | 137 <sub>C\$</sub> | 137 <sub>CE</sub> |
|----------------------|----------------------|-------|---------|------------|----------|------------|--------------------|--------------------|-------------------|
| N                    | E or W               | in m  | No.     | in<br>July | 0/00     | <b>°</b> c | Bq s <sup>-3</sup> | 8g m <sup>-3</sup> | 90 <sub>51</sub>  |
| 78 <sup>0</sup> 42'  | 5°22 'E              | 200   | 85644   | 12         | 35.2     | 2.5        | 2.5                | 6.9                | 2.8               |
| - • -                | - • -                | 400   | 85645   | 12         | 35.1     | 1.8        | 2.9                | 7.0                | 2.4               |
| - • -                | - • -                | 700   | 85646   | 12         | 35.0     | -0.4       | 1.71               | 3.5                | 2.0               |
| 79 <sup>0</sup> 02 ' | 0 <sup>0</sup> 52'W  | 200   | 85652   | 14         | 35.2     | 2.1        | 2.5                | 7.0                | 2.8               |
| - • -                | <b>. • .</b>         | 400   | 85653   | 14         | 35.0     | 1.9        | 2.2                | 7.7                | 3.5               |
| - * -                | - • -                | 700   | 85654   | 14         | 35.1     | 0.2        | -                  | 4.7                | -                 |
| 78 <sup>0</sup> 311  | 4 <sup>0</sup> 53 'N | 200   | 85662   | 17         | 34.8     | 0.8        | 2.0                | 5.0                | 2.5               |
| - • -                | - • -                | 400   | 85663   | 17         | 35.1     | 1.1        | 2.0                | 4.2                | 2.1               |
| - • -                | - • -                | 700   | 85664   | 17         | 35.1     | 0.3        | 0,87               | 2.1                | 2.4               |

Table 4.1.2. Radionuclides in deep-water samples collected in July 1985 in the Fram Strait

The samples were collected in the EGC between  $66^{\circ}N$  and  $61^{\circ}N$  along the Greenland east coast:

| Position                                  | ₽g <sup>90</sup> Sr m <sup>-3</sup> | Bg <sup>137</sup> Cs m <sup>-3</sup> |
|-------------------------------------------|-------------------------------------|--------------------------------------|
| 65°53'N 30°52'N                           | 3.92                                | 6.7                                  |
| 63004'N 30011'W                           | 3.51                                | 6.7                                  |
| 62 <sup>0</sup> 10'N 41 <sup>0</sup> 25'W | 2.53                                | 5.9                                  |
| 60 <sup>0</sup> 57'N 42 <sup>0</sup> 47'W | 3.10                                | 6.0                                  |
| Nean                                      | 3,27                                | 6.33                                 |
| \$.D.                                     | 0,59                                | 0.43                                 |
| S.E.                                      | 0,30                                | 0.22                                 |

Table 4.2.1.

Another set of samples were collected outside the EGC. These samples are assumed to represent Atlantic water contaminated by fallout only

Table 4.2.2.

| Position                                  | Bg <sup>90</sup> Sr m <sup>-3</sup> | Bq 137 <sub>Cs m</sub> -3 |
|-------------------------------------------|-------------------------------------|---------------------------|
| 65°45'N 28°17'W                           | 1,55                                | 2,7                       |
| 63 <sup>0</sup> 38'N 40 <sup>0</sup> 05'W | 1.63                                | 2.15                      |
| 61 <sup>0</sup> 56'N 40 <sup>0</sup> 27'W | ;.47                                | 2.5                       |
| 60 <sup>0</sup> 48'N 41 <sup>0</sup> 16'W | 1.44                                | 2.5                       |
| Mean                                      | 1.52                                | 2.46                      |
| S.D.                                      | 0.09                                | G.23                      |
| s.e.                                      | 0.04                                | 0,11                      |

In 1983 five samples of arctic water were collected in the Fram Strait at  $79^{\circ}-80^{\circ}N$  and between  $1^{\circ}09'W$  and  $12^{\circ}05'W$ . These samples contained 4.70 Bg 90Sr m<sup>-3</sup> (1 S.D.: 0.64, 1 S.E.: 0.28), and 7.04 Bg 137Cs m<sup>-3</sup> (1 S.D.: 0.15, 1 S.E.:0.07). Samples collected in Atlantic water in 1983 contained:

Table 4.2.3.

| Location         |                                    | Bq <sup>90</sup> Sr m <sup>-3</sup> | (1 S.D.;1 S.E.;n) | Bq <sup>137</sup> Cs m | <sup>-3</sup> (1 S.D.;1 S.E.;n) |
|------------------|------------------------------------|-------------------------------------|-------------------|------------------------|---------------------------------|
| Norwegian coast  | 60 <sup>0</sup> -73 <sup>0</sup> N | 10.4                                | (4.2;2.1;4)       | 45                     | (8.9;3.3;7)                     |
| Barents Sea      | 73 <sup>0</sup> -77 <sup>0</sup> N | 3.76                                | (0.12;0.05;5)     | 13.8                   | (2.2;1.0;5)                     |
| Pram Strait Bast | 79 <sup>0</sup> -82 <sup>0</sup> N | 3.27                                | (0.24;0.07;11)    | 11.3                   | (1.24;0.37;11)                  |

The fallout background in these samples was assumed to be 2 Bg  ${}^{90}$ Sr m<sup>-3</sup> and 3 Bg  ${}^{137}$ Cs m<sup>-3</sup>, respectively. The contributions of  ${}^{90}$ Sr and  ${}^{137}$ Cs from Sellafield were calculated by subtraction of the fallout background from the respective figures.

Let us now assume that the water seen in the EGC in 1984 between  $66^{\circ}$  and  $61^{\circ}W$  north (Table 4.2.1) consisted of 100x % Arctic water with the same concentrations of 90Sr and 137Cs as found in the western part of the Fram Strait in 1983<sup>6</sup>, i.e. 4.70 Bg 90Sr m<sup>-3</sup> and 7.04 Bg 137Cs m<sup>-3</sup>.

Furthermore, there was a contribution of 100y % Sellafield-contaminated water coming from the Norwegian coastal Current with the concentrations 10.4 - 2 = 8.4 Bg  $^{90}$ Sr m<sup>-3</sup>, and 45 - 3 = 42Bg  $^{137}$ Cs m<sup>-3</sup> (cf. Table 4.2.3), and finally 100(1-x-y) % of Atlantic water of the composition shown in Table 4.2.2.

The equations become:

 ${}^{90}$ sr: 4.70x + 8.4y + (1-x-y) · 1.52 = 3.27 (1)

 $^{137}$ Cs: 7.04x + 42y + (1-x-y) · 2.46 = 6.33 (2)

The equations give x = 0.4517; y = 0.0456, and (1-x-y) = 0.5027.

We may instead assume that the Atlantic water with Sellafield effluents has the same composition as that from the Barrents Sea between  $73^{\circ}$  and  $77^{\circ}N$  (cf. Table 4.2.3). In that case the equations become:

$$^{90}$$
Sr: 4.70x + 1.76y + (1-x-y) 1.52 = 3.27 (3)

$$^{137}$$
Cs: 7.04x + 10.8y + (1-x-y) 2.46 = 6.33 (4)

$$x = 0.5376; y = 0.1689, and (1-x-y) = 0.2935$$

Finally, we may assume that the Sellafield contribution to the EGC has the composition seen in the eastern part of the Fram Strait (cf. Table 4.2.3) and we get:

$$^{90}$$
Sr: 4.70x + 1.27y + (1-x-y) · 1.52 = 3.27 (5)

137Cs: 7.04x + 8.3y + (1-x-y) · 2.46 = 6.33 (6)

$$x = 0.5674; y = 0.2177, and (1-x-y) = 0.2149$$

The concentrations of Sellafield derived  $^{137}Cs$  in the EGC at  $66^{\circ}-61^{\circ}N$  estimated from the 3 above determinations become  $0.0456\times42 = 1.92$  Bg m<sup>-3</sup>;  $0.1639\times10.8 = 1.82$  Bg m<sup>-3</sup>, and  $0.2177\times8.3 = 1.81$  Bg m<sup>-3</sup>. The mean is 1.85 (1 S.D.:0.06; 1 S.E. = 0.04) by  $^{137}Cs$  m<sup>-3</sup>: This is from an annual mean discharges of 3.278 PBg  $^{137}Cs$  (rel. S.D. 23%) $^{12,13}$ . Hence the transfer factor from Sellafield to the EGC becomes 0.56 Bg m<sup>-3</sup> per PBg  $a^{-1}$ .

(relative S.D. estimated to 
$$\sqrt{3^2 (+23^2)} = 23$$
)

(relative S.E. (3 areas) 13%)

In case of 90Sr the 3 determinations gave:

 $0.0456 \times 8.4 = 0.38$  Bg m<sup>-3</sup>·0.1639×1.76 = 0.30 Bg m<sup>-3</sup>, and 0.2177× 1.27 = 0.28 Bg m-3. The mean is 0.32 (1 S.D.: 0.05; 1 S.E.: 0.03) Bg  ${}^{90}$ Sr m<sup>-3</sup>. This is from an annual discharge of 0.343 PBg (rel. S.D. 27%)<sup>12,13</sup>), and the transfer factor then becomes 0.93 Bg m<sup>-3</sup> per PBg a<sup>-1</sup>. If we correct for contributions of  ${}^{90}$ Sr from sources other than Sellafield<sup>6</sup>) the factor becomes

$$0.93 \times 0.83 = 0.77$$
 Bq  $90$ Sr m<sup>-3</sup> per PBq  $90$ Sr a<sup>-1</sup>  
(relative S.D.:  $\sqrt{17^2 + 27^2} = 32$ )

(relative S.E. (3 areas): 18%)

These transfer factors may be compared with those found for  $^{134}$ Cs in water collected at west Greenland in August 1984. The mean of the 6 determinations was 0.68 Bg m<sup>-3</sup> per PBq a<sup>-1</sup> (1 S.D.:0.28, 1 S.E.:0.11), which is in good agreement with the above estimates<sup>9</sup>).

Tranfer factors based on  $^{99}$ Tc measurements in Fucus samples collected along the east and west coast gave 1.5 and 0.4 Bq m<sup>-3</sup> per PBq a<sup>-1</sup>, respectively<sup>9)</sup>. It may be noticed that the water transfer factors are nearly the same on the east and west coast, whereas the factors based upon Fucus samples apparantly are lower on the west than on the east coast. This may be because the EGC runs close to the coastline on the east side of Greenland, but moves away from the coast when it has passed Kap Farwel and moves northward along the west coast (cf. also 3.2.5).

We presume that the 1983 data rather than those from 1984 from the Arctic and NE-Atlantic Ocean give the most correct answer because the water collected off East Greenland in 1984 due to transit time most likely corresponds to the water collected in the Arctic and the NE Atlantic Ocean in 1983.

#### 4.3. Radioecological studies along the English channel in 1985

In samples collected from the German Bight and along the west coast of Jutland we have in recent years<sup>1)</sup> seen radionuclide

ratios:  ${}^{90}$ Sr/ ${}^{137}$ Cs,  ${}^{134}$ Cs/ ${}^{137}$ Cs and  ${}^{99}$ Tc/ ${}^{137}$ Cs definitely higher than those expected in effluents from Sellafield in the U.K. and we have assumed that this was an indication of a contribution of activity from Cap de la Hague in France.

In a joint French, Swedish and Danish effort samples of sea water, sea weed and mussels were collected in the first half of 1985 from the Continental as well as from the British side of the English Channel.

The samples have been analysed for  $\gamma$ -emitters by Ge(Li) spectroscopy, for <sup>90</sup>Sr, <sup>99</sup>Tc, and transuranics by radiochemistry at Lund University and Risø National Laboratory.

The purpose of the study was to see how the discharges from the two European reprocessing plants Cap de la Hague and Sellafield, and from other sources influenced the radioactivity levels in the English Channel and the southeastern part of the North Sea.

Figure 4.3.1 shows the water mass transport from Cap de la Hague according to Kautsky<sup>23</sup>). In Table 4.3 the results of the measurements are presented. It appears that the concentrations in sea weed and sea plants decrease after power functions with the distance from la Hague as shown in Figs. 4.3.2-4.3.6. A detailed discussion of the results has been given elsewhere<sup>24</sup>).

| Station<br>nu <b>mber</b> | Species  | Date | Posit<br>N           | LON<br>E or W        | Location              | Ka* | t dry<br>matter | Salinity<br>in c/cc | 40 <sub>K</sub> ++ | 60 <sub>C0</sub> | 90sr  | ** <sub>Te</sub> | 106 <sub>Ru</sub> | 125 <sub>86</sub> | 137 <sub>C</sub> | 238 <sub>PU</sub> | 239,240 <sub>Pu</sub> | 241 <sub>Am</sub> |
|---------------------------|----------|------|----------------------|----------------------|-----------------------|-----|-----------------|---------------------|--------------------|------------------|-------|------------------|-------------------|-------------------|------------------|-------------------|-----------------------|-------------------|
| 85501                     | fu.ve.   | 9/4  | 530521               | 8 <sup>0</sup> 43'E  | Cushaven (D)          | 940 |                 |                     | 26.1               |                  |       | 70               |                   |                   | 2,3              |                   |                       |                   |
| 85502                     | Seawater | -    | •                    | •                    | •                     | •   |                 | 11.0                |                    |                  | 24    | 1,6              |                   |                   |                  |                   |                       |                   |
| 85503                     | Fu.ve.   | •    | 53 <sup>0</sup> 371  | 7 <sup>0</sup> 10'E  | Norddeich (D)         | 835 | 18,7            |                     | 35.5               | 2.4              | 5.2   | 200              |                   | 1.6 A             | 2,1              | 0.013             | 0.030                 |                   |
| 85504                     | My.ed.   | -    | •                    | •                    | •                     | •   | 13.3            |                     | 17.4               | 1,05             | 0.056 |                  | 6.5 A             |                   | 1.89             |                   |                       |                   |
| 85505                     | Fu.ve.   | 10/4 | 53 <sup>0</sup> 10'  | 5°24 'E              | Harlingen (NL)        | 720 |                 |                     | 32.3               | 8.1              |       | 280              |                   |                   | 1.4              |                   |                       |                   |
| 85506                     | Seawater | •    | •                    | •                    | •                     | •   |                 | 11.0                |                    |                  |       | 11.7             |                   |                   |                  |                   |                       |                   |
| 85507                     | Fu.ve.   | •    | 52°28'               | 4º36'E               | IJmuiden (NL)         | 595 | 23.8            |                     | 31.6               | 3.2              | 4.1   | 124              | 4.3 A             | 1.55              | 2.3              |                   | 0.022                 | 0,011             |
| 85509                     | Seawater | •    | •                    | •                    | •                     |     |                 | 15.2                |                    |                  | 33    | 2.2              |                   |                   |                  |                   |                       |                   |
| 85509                     | Fu.ve.   | •    | 51°27 ·              | 3°36'E               | Vlissingen (NL)       | 435 |                 |                     | 32.4               |                  |       | 360              |                   |                   | 1,4              |                   |                       |                   |
| 85510                     | Fu.ve.   | 11/4 | 51014                | 2055'E               | Oestende (B)          | 390 | 19.6            |                     | 35.6               | 5.4              | 4.7   | 200              | 3.8 B             | 2.0               | 1.97             |                   | 0.035                 | 0.023             |
| 85511                     | Seawater |      | •                    | •                    | •                     | •   |                 | 30.7                |                    |                  | 40    | 4,4              |                   |                   |                  |                   |                       |                   |
| 85512                     | Fu.ve.   | -    | 50 <sup>0</sup> 58'  | 1 <sup>0</sup> 51 'E | Calais (F)            | 305 |                 |                     | 29.0               | 6.9              |       | 250              |                   |                   | 1.8              |                   |                       |                   |
| 85594                     | Fu.ve.   | 24/6 | 50 <sup>0</sup> 46 ' | 1°37'B               | Fimereux (P)          | 280 | 14              |                     | 40.8               | 17.6             | 4.3   | 780              | 13.9 A            | 4.7               | 3,9              | 0,046             | 0.096                 |                   |
| 85513                     | Fu.ve.   | 11/4 | 50052                | 1º35'E               | Cap Gris-Nez (F)      | 290 | 11.9            |                     | 45.9               | 7.6              | 5.1   | 670              | 8.2 A             | 1.4               | 2,9              | 0,043             | 0.088                 | 0,029             |
| 85514                     | Seawater | -    | •                    | -                    | •                     |     |                 | 31.0                |                    |                  |       | 3,6              |                   |                   |                  |                   |                       |                   |
| 85515                     | Fu.ve.   | •    | 50 <sup>0</sup> 04'  | 1°22'E               | Le Treport (F)        | 240 |                 |                     | 29.2               | 9.4              |       | 350              | 11.3              |                   | 2.0              |                   |                       |                   |
| 85516                     | Seawater | 12/4 | •                    | •                    | •                     | •   |                 | 5.2                 |                    |                  | 10.7  | 0.48             |                   |                   |                  |                   |                       |                   |
| 85593                     | Fu.ve.   | 4/7  | •                    | •                    | •                     | •   | 20              |                     | 31.8               | 32               | 4.7   | 670              | 23                | 3.8               | 3.1              | 0.077             | 0,169                 |                   |
| 85517                     | Fu ve.   | 12/4 | 490521               | 0 <sup>0</sup> 42'E  | St.Valery-en-Caux (") | _00 | 18.1            |                     | 41.1               | 14.3             | 5.6   | 1350             | 12 B              | 3.0 A             | 3.0              | 0,083             | 0.20                  | 0.026             |
| 85518                     | Fu.se.   |      | •                    | •                    | •                     | •   |                 |                     | 33,3               | 10.8             |       | 620              | 21,7              |                   | 1.0              |                   |                       |                   |
| 85519                     | Seawater | -    | •                    | •                    | •                     |     |                 | 31,1                |                    |                  |       | 4.4              |                   |                   |                  |                   |                       |                   |
| 85592                     | Fu.ve.   | 4/7  | •                    | •                    | •                     | •   | 19              |                     | 41.8               | 28               | 4.8   | 1370             | 17.3              | 3.2               | 4.0              | 0.076             | 0,150                 |                   |
| 85520                     | Fu.ve.   | 12/4 | 490461               | 0°22'E               | Fécamp (F)            | 170 | 19.6            |                     | 38.7               | 12.2             | 5.5   | 906              | 16.9              | 2.8               | 2.6              | 0.093             | 0,199                 | 0,050             |
| 85521                     | Fu.se.   | -    | -                    | •                    | •                     |     |                 |                     | 32.7               | 13.4             |       | 540              | 22                |                   | 1.9              |                   |                       |                   |
| 85522                     | Seawater | •    | •                    | •                    | •                     |     |                 | 32.3                |                    |                  |       | 6.1              |                   |                   |                  |                   |                       |                   |
| 85591                     | Fu.ve.   | 4/7  | 49 <sup>0</sup> 30 · | 0 <sup>0</sup> 06'E  | Le Havre (P)          | 150 | 20              |                     | 48.8               | 14.8             | 4.5   | 380              |                   | 2.9 A             | 4.8              |                   |                       |                   |
| 85590                     | Fu.ve.   | 5/7  | 490171               | 0 <sup>0</sup> 18'W  | Luc sur Mer (F)       | 125 | 17              |                     | 40.3               | 17,1             | 6,1   | 730              | 13.6 A            | 4.6               | 3.9              | 0,050             | 0.054                 |                   |
| 85523                     | Fu.ve.   | 12/4 | 490211               | 0 <sup>0</sup> 45'N  |                       | 105 | 18.4            |                     | 34.6               | 13.7             | 6.5   | 450              | 23                | 3.3 A             | 2.8              | 0,107             | 0,184                 | U.088             |
| 85524                     | Seawater |      | •                    | •                    | •                     | •   |                 | 32.9                |                    |                  |       | 6.4              | -                 |                   | • •              | -                 |                       |                   |
| 85525                     | Fu.ve.   | -    | 490341               | 1 <sup>0</sup> 16'⊌  | St.Vast-la-Hague (P)  | 75  |                 |                     | 33.7               | 14.7             | 6.9   | 790              | 10.7 B            | 3.4 A             | 2.6              | 0.080             | 0.27                  |                   |
| 85526                     | As.no.   | -    | •                    | •                    | •                     |     | 22.1            |                     | 30.2               | 7,9              | 6.4   | 1180             | 13.2 A            |                   | 2.8              | 0.092             | 0,136                 | 0.073             |

<u>Table 4.3</u>. Redionuclides in seaweed and surface sea water along the English Channel in 1985  $(Unit: Bq kg^{-1} dry weight for seaweed and Bq m^{-3} for sea water)$ 

| Table | 4.3. | (continued) |
|-------|------|-------------|
|       |      |             |

|         |          |       |                      |                       | · · · · · · · · · · · · · · · · · · · |       |      | * <u></u>           | 40                 | 60    | 90               | 69               | 106 <sub>Ru</sub> | 125 <sub>Sb</sub> | 1 2 7             | 334               | 239, 240 <sub>Pu</sub> | 741               |
|---------|----------|-------|----------------------|-----------------------|---------------------------------------|-------|------|---------------------|--------------------|-------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|
| Station | Species  | Date  | Posit<br>N           | E or W                | Locat ion                             | Km*   |      | Salinity<br>in o/oo | 40 <sub>K</sub> ++ | ●°Co  | 90 <sub>5r</sub> | 99 <sub>TC</sub> | 100Ru             | 123Sb             | 137 <sub>C6</sub> | 236 <sub>94</sub> | 239,240 <sub>Pu</sub>  | 24 1 <sub>A</sub> |
| 85527   | Fu.sp.   | 12/4  | 49034.               | 1 <sup>0</sup> 16'N   | St.Vaast-la-Hague (P)                 | 75    |      |                     | 30.2               | 13,4  | 5.6              | 470              | 27 M              | 4.8               | 2.0               | 0.064             | 0.125                  |                   |
| 85528   | Pe.ca.   | -     | •                    | •                     | •                                     | •     | 52.9 |                     | 22.8               | 9.9   | 4.9              | 760              | 14.8 A            | 43                | 2.0               | 0.057             | 0.125                  | 9.04              |
| 85529   | Seawater | •     | •                    | •                     | •                                     |       |      |                     |                    |       |                  | 3.8              |                   |                   |                   |                   |                        |                   |
| 85589   | Fu.ve.   | 27/6  | •                    | •                     | •                                     | ٠     | 20   | 33.4                | 37.0               | 23    | 6.4              | 790              | 13 B              | 4.9               | 4.0               | 0.068             | 0.174                  |                   |
| 05530   | Fu.ve.   | 13/4  | 49 <sup>0</sup> 42'  | 1°16'W                | Ptr.de Barfleur (F)                   | 55    |      |                     | 35.3               | 46    | 8.0              | 1500             | 30                | 4.2 A             | 3.6               | 0,125             | 0.35                   |                   |
| 85531   | Fu.se.   | •     | •                    | •                     | •                                     | ٠     | 17.1 |                     | 37.1               | 52    | 7.7              | 1100             | 53                | 6.2               | 4.1               |                   |                        | 0.24              |
| 85532   | As.no.   | -     | •                    | -                     | •                                     | •     |      |                     | 30.1               | 16.5  | 6.9              | 2100             | 48                | 6.5               | 2.7               | 0.22              | 0.43                   |                   |
| 85533   | Pe.ca.   | •     | •                    | -                     | •                                     | ٠     | 24.1 |                     | 23.9               | 18.3  | 1.14             | 980              |                   | 12.9              | 2.3               | 0.096             | 0.175                  |                   |
| 85534   | Pa.vu.   | -     | •                    | -                     | -                                     | •     | 18.0 |                     | 13,8               | 14.5  | 8.3              |                  | 119               | 10,4              | 5,9               |                   |                        |                   |
| 85535   | Seawater | -     | -                    | -                     | •                                     | •     |      |                     |                    |       |                  | 12.1             |                   |                   |                   |                   |                        |                   |
| 05536   | Fu.ve.   | -     | 490421               | 1 <sup>0</sup> 28 'W  | Cap Lévy (f)                          | 40    |      | 34.1                | 33.7               | 88    |                  | 1640             | 53                |                   | 4.1               |                   |                        |                   |
| 85588   | Fu.ve.   | 27/6  | 49 <sup>0</sup> 411  | 1 <sup>0</sup> 28'W   | Fermanvill (F)                        | ٠     | 18   |                     | 42.2               | 56    |                  | 1450             | 36 A              | 4.5 B             | 3.5               | 0,194             | 0.172                  |                   |
| 85537   | Fu.se.   | 1374  | 49 <sup>0</sup> 43 ' | 1°52'W                | Le Hable (P)                          | 11    | 19.8 |                     | 42.7               | 200   | 10.0             | 2400             | 153               | 6.7               | 4.8               | 0.44              | 0.79                   | 0.45              |
| 85538   | Fu.sp.   | •     | •                    | •                     | •                                     | ٠     |      |                     | 32.5               | 123   |                  | 2200             | 65                |                   | 3.4               |                   |                        |                   |
| 85539   | Seawater | -     | -                    | -                     | •                                     | •     |      | 34.9                |                    |       | 89               | 17.1             |                   |                   |                   |                   |                        |                   |
| 85540   | "u.sp.   | -     | 49 <sup>0</sup> 431  | 1 <sup>0</sup> 56 'W  | Goury,Cap de la Hauge                 | (2) 6 | 23.4 |                     | 36.8               | 200.3 | 20               | 2300             | 184               | 11.8              | 12.0              | 0.42              | 0.67                   |                   |
| 85597   | Fu.ve.   | 24/6  | •                    | •                     | -                                     | ٠     | 18   |                     | 33.4               | 260   | 6.3              | 4700             | 127               |                   | 5.2               | 0,51              | 0,55                   |                   |
| 85585   | Fu.se.   | 11/4  | 49 <sup>0</sup> 40'  | 1 <sup>0</sup> 56'W   | Herquemoulin (P)                      | ~6    | 17   | 31.1                | 49.6               | 410   | 15               | 4300             | 250               | 8.8 A             | 7.2               | 0.55              | 0.94                   | 2.25              |
| 85586   | Fu.se.   | 2/7   | •                    | •                     | •                                     | •     | 21   |                     | 47.2               | 270   | 3.8              | 3600             | 184               | 4.4 в             | 5.2               | 0.42              | 0,48                   |                   |
| 85584   | Fu.ve.   | 1/7   | 490221               |                       | Carteret (F)                          | -38   | 30   |                     | 40.1               | 48    | 3.5              | 1700             | 24 A              | 3.8 B             | 4.1               |                   |                        |                   |
| 85583   | Fu.ve.   | -     | 48 <sup>0</sup> 50'  | 1°35 'W               | Granville (P)                         | -101  | 20   |                     | 36.5               | 26    | 3.7              | 1210             | 17 A              | 2.1 A             | 2.3               |                   |                        |                   |
| 85582   | Fu.ve.   | 4/7   | 480411               | 1°51 'W               | Cancale (F)                           | -114  | 24   |                     | 33.5               | 18.6  | 3.5              | 750              | 15.3              | 2.0 A             | 3.2               |                   |                        |                   |
| 85545   | Fu.ve.   | 14,74 | 48°38°               | 2 <sup>0</sup> 02 'W  | Saint Malo (F)                        | -120  |      |                     | 31.7               | 9.2   |                  | 800              | 6.7               |                   | 0.7               |                   |                        |                   |
| 85546   | Fu.se.   | -     | -                    | •                     | •                                     | •     | 27.2 |                     | 38.9               | 15.1  | 2.6              | 460              | 9.5 A             | 1.8 A             | 1.63              | 0.098             | 0.24                   | 0.06              |
| 85547   | As.no.   | -     | -                    | •                     | •                                     | •     |      |                     | 38.2               | 7.3   |                  | 1260             |                   |                   | 1.8               |                   |                        |                   |
| 85548   | Fu.sp.   | -     | •                    | •                     | •                                     | •     | 35.8 | 32.9                | 32.0               | 12.8  | 3.5              | 500              | 5.6 B             | 1.7 A             | 1.35              |                   | ü.120                  | B.D.              |
| 85549   | Pe.ca.   | -     | -                    | •                     | -                                     | •     |      |                     | 22.9               | 6.1   |                  | 650              |                   |                   | 0.9               |                   |                        |                   |
| 05501   | Fu.ve.   | 4/7   | 480311               | 2 <sup>0</sup> 45 * W | St.Brieuc (F)                         | -134  | 24   |                     | 30.0               | 36    | 3.0              | 1020             | 23                | 1.8 A             | 1.66              | 0.087             | 0,146                  | 0.02              |
| 85544   | Fo.ve.   | 14/4  | 48 <sup>0</sup> 50 ' | 3°28'W                | Perros Guirec (F)                     | -145  | 19.8 |                     | 42.7               | 1,36  | 0.39             | 46               |                   |                   | 0.74 #            | N                 | 0.059                  |                   |
| 85541   | Fu.ve.   | 13/4  | 48 <sup>0</sup> 43*  | 3 <sup>0</sup> 58 'N  | Roscoff (F)                           | -185  |      |                     | 42.2               |       | 0.27             | 12,6             |                   |                   | 0.89              |                   | 0.102                  |                   |
| 85542   | Fu.se.   | •     | •                    | •                     | •                                     |       | 21.8 |                     | 49,9               |       | 0.44             | 3.3              |                   |                   | 1.10 /            | A                 | 0.089                  | 0.01              |

I. 67

I.

| Station<br>number | Species       | Date  | Position<br>N E o    | LON<br>E OL M        | Location              | , W  | a dry<br>matter | Salinity<br>in 0/00 | 40 <sub>K</sub> | 60 <sup>Co</sup> | 908£        | 99 <sub>rc</sub> | 106 <sub>RU</sub> | 125 <sub>8b</sub> | 137 <sub>C=</sub> | 236 <sub>PU</sub> | 239,240 <sub>PU</sub> | 241Am |
|-------------------|---------------|-------|----------------------|----------------------|-----------------------|------|-----------------|---------------------|-----------------|------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------|
| 85543             | As. no.       | 13/61 | .64084               | M. 850E              | Roscoff (F)           | -185 |                 |                     | 32.1            |                  | 6.29        | 14.9             |                   |                   | 0.46A             | 0.041             | 0,136                 |       |
| 85580             | Pu.ve.        | 26/6  | •                    | •                    | •                     | •    | 20              |                     | 45.8            | 7.6              | 0.25        | 116              |                   |                   | 0.7 B             |                   | 0.094                 | 96'0  |
| 85550             | Fu.ve.        | 20/4  | 50°04'               | 8°42 %               | Sennen Cove (GB)      | 27   | 20.6            |                     | 42.9            | 1.64             | 0.27        | 5                |                   |                   | 0.68              |                   | 0,053                 | 0.011 |
| 85352             | Seawater      | •     | •                    | •                    | •                     | •    |                 | 15.1                |                 |                  |             | 2.0              |                   |                   |                   |                   |                       |       |
| 05552             | Fu.ve.        | •     | - 10 <sub>0</sub> 05 | M. 50 <sub>0</sub> 5 | Coverack (GB)         | 230  |                 |                     | 96.96           | 2.3              |             | 81               |                   |                   |                   |                   |                       |       |
| 65558             | Fu, ve.       | •     | 50014                | M. 150E              | Hope Cove (u8)        | 150  | 0.16            |                     | 35.1            | 1 7              | 0.41        | 145              | 3.6 8             |                   | 0.74              | 0.017             | 0.105                 | 0.008 |
| 85554             | Fu.se.        | •     | •                    | •                    | •                     | •    |                 |                     | 38.3            | 6.9              |             | 115              |                   |                   | 1.2               |                   |                       |       |
| 85558             | Seawater      | •     | •                    | •                    | •                     | •    |                 | 34.9                |                 |                  |             | 0.5              |                   |                   |                   |                   |                       |       |
| 85556             | Pu.sp.        | 21/4  | . VC 095             | H.92 <sub>0</sub> 2  | Bill of Portland (GB) | 105  | EBT             |                     | 35.7            | 3                | 0.46        | 134              |                   |                   | A 1.1             | 0.0174            | 0.073                 |       |
| 85557             | Seawaler      | •     | •                    | •                    | •                     | •    |                 | 35.0                |                 |                  |             | 2.1              |                   |                   |                   |                   |                       |       |
| 85578             | Fu.sp.        | •     | 50°37.               | N-1201               | Svanage (GB)          | •    |                 |                     | 32.8            | 224              |             | 611              |                   |                   |                   |                   |                       |       |
| A1359             | Fu.sp.        | •     | 500431               | M. ( %0              | Selsey (GB)           | 145  | 20.5            |                     | 30.5            | 4                | 0.98        | 219              |                   |                   | A 6.1             | 0.0116            | 160.0                 | 0.013 |
| 85560             | Seawater      | •     | •                    | •                    | •                     | •    |                 | 33.6                |                 |                  |             | 0.83             |                   |                   |                   |                   |                       |       |
| 85561             | Pu.sp.        | •     | 50°44                | 3.21°0               | Birling Gap (GA)      | 195  |                 |                     | 51.8            | 55               | 0.77        | 310              |                   |                   |                   |                   |                       |       |
| 85562             | Fu.ve.        | •     | •                    |                      | •                     | •    | 19.7            |                     | 41.8            | 11               |             | 700              |                   |                   | 1.6 A             | 0.025             | 0.079                 | 0.017 |
| 85563             | Pc. 54.       | •     | •                    | •                    | •                     | •    |                 |                     | 55.4            | 228              |             | 320              |                   |                   |                   |                   |                       |       |
| 85564             | Fu.sp.        | 22/4  | 510061               | a'El <sup>c</sup> I  | Dover (GB)            | 275  | 16.5            |                     | 33.6            | 54               | 0.65        | 156              |                   |                   | 1.65              | 0.0105            | 0.041                 | 0.09  |
| 85565             | Seawater      | •     | •                    | •                    | •                     | •    |                 | 9.96                |                 |                  | 21          | 2.3              |                   |                   |                   |                   |                       |       |
| 85566             | Fu. 20.       | •     | 51°211               | 1°27'E               | Broadstairs (GB)      | 30E  |                 |                     | 44.8            | 13.6             |             | 300±20           |                   |                   | 1.8               |                   |                       |       |
| 85567             | Fu.se.        | •     | •                    | •                    | •                     | •    | 20.3            |                     | 34.7            | 15.0             | 0.91        | 156              |                   |                   | 2.6               | 0.0165            | 0.014                 | 0,020 |
| 8556A             | Pu.sp.        | 1/62  | •95 <sub>0</sub> 15  | 1017'E               | Harvich (GB)          | 340  |                 |                     | 29.8            | 4.4              |             | 110              |                   |                   | 7.4               |                   |                       |       |
| 85569             | Pu.se.        | •     | •                    | •                    | •                     | •    | 19.8            |                     | 35.6            | 7.6              | 1.53        | 104              |                   |                   | 11.3              |                   | 0.038                 | 0.044 |
| 85570             | Seawater      | •     | •                    | •                    | •                     | •    |                 | 34.2                |                 |                  |             | 0.76             |                   |                   |                   |                   |                       |       |
| 85571             | Pu.ve.        | •     | •62 <sub>0</sub> 55  | 8°25'E               | Esbjerg N (DK)        | 1140 | 23.7            |                     | 24.9            | 1.15             | <b>6.</b> 4 | 200              |                   | 1.4 A             | 2.4               |                   |                       |       |
| 85572             | Seauater      | •     |                      | •                    | •                     | •    |                 | 26.6                |                 |                  |             | 2.5              |                   |                   |                   |                   |                       |       |
| 6611              | Fu.ve.        | 19/4  | ss°?a،               | 8°24'E               | Esbjerg S (DK)        | •    | 21.6            |                     | 29.3            | 1.36             | 4.2         | 320              |                   | 2.1 A             | 3.1               |                   |                       | 0.030 |
| 1194              | Seawater      | •     |                      | •                    | •                     | •    |                 | 22.9                |                 |                  |             | 2.0              |                   |                   |                   |                   |                       |       |
| 85573             | Pu.ve.        | 25/4  | •50°22               | 8°34'5               | Rese (DK)             | 1100 | 19.3            |                     | 30.6            | 1.0 A            | 3.3         | 190              |                   |                   | 3.4               |                   |                       |       |
| 85574             | Seawater      | •     | •                    |                      | •                     | •    |                 | 27.1                |                 |                  |             | 1.27             |                   |                   |                   |                   |                       |       |
| 1189              | <b>8</b> 1 48 | 19.4  | S CORT               | a01415               | •                     | •    | 19 6            |                     |                 |                  |             |                  |                   |                   | •                 |                   |                       | 010 0 |

Table 4.3. (continued)

Table 4.3. (continued,

| Station<br>number | Species  | Date | Posit<br>N          | ion<br>EorW         | Location          | Ka*   |      | Salinity<br>in 0/00 | 40 <sub>K**</sub> | 60 <sub>C0</sub> | 90 <sub>81</sub> | 99 <sub>TC</sub> | 106 <sub>RU</sub> | 125 <sub>8b</sub> | 137 <sub>CB</sub> | 238 <sub>Pu</sub> | 239,240 <sub>Pu</sub> | 24 1 <sub>Am</sub> |
|-------------------|----------|------|---------------------|---------------------|-------------------|-------|------|---------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|--------------------|
| 1190              | Fu.ve.   | 18/4 | 55°05'              | 8 <sup>0</sup> 3418 | Rene (DK)         | 1100  | 21,2 |                     | 28.6              | 0.71A            | 3.9              | 240              |                   | 1.1 A             | 3.2               |                   |                       | 0.0167             |
| 1191              | Ny.ed.   | •    | •                   | •                   | •                 | ٠     | 14 6 |                     | 8.42              | 0.78             | 0.0198           |                  | 4.9 A             |                   | 1,34              |                   |                       |                    |
| 1192              | Seawater | -    | •                   | •                   | •                 | •     |      | 25.1                |                   |                  | 31               | 2.9              |                   |                   |                   |                   |                       |                    |
| 1183              | Fu.ve.   | 17/4 | 54 <sup>0</sup> 08' | 8 <sup>0</sup> 52'E | Büsumhafen (D)    | 990   | 17.9 |                     | 26.0              |                  | 3,4              | 81               |                   |                   | 2.2               |                   |                       | 0,043              |
| 1184              | Seavater | •    | •                   | •                   | •                 | •     |      | 24.5                |                   |                  |                  | 2.6              |                   |                   |                   |                   |                       |                    |
| 1185              | Fu.ve.   | -    | 54 <sup>0</sup> 311 | 8 <sup>0</sup> 50'E | Norderhafen (D)   | 1030  | 20.7 |                     | 29.2              | 0.84             | 3.5              | 2 30             |                   | 1.5 A             | 2,3               |                   | 0.027                 | 0.0063             |
| 1186              | Seawater |      | •                   | •                   | •                 | •     |      | 28,1                |                   |                  |                  | 3.5              |                   |                   |                   |                   |                       |                    |
| 1187              | Fu.ve.   | 18/4 | 540441              | 8 <sup>0</sup> 43'E | Dagebüllhafen (D) | 1060  | 23,8 |                     | 26.4              | 0,76A            | 3,5              | 118              |                   | 1.7 A             | 2,8               |                   | 0,091                 | 0,049              |
| 1188              | Seawater | -    | •                   | •                   | •                 | •     |      | 28.5                |                   |                  |                  | 3.5              |                   |                   |                   |                   |                       |                    |
| 1184              |          |      |                     |                     | Büsumhafen/       |       |      |                     |                   |                  |                  | 119              |                   |                   |                   |                   |                       |                    |
| 1186              | Seawater | 17/4 | ~540311             | 8 <sup>0</sup> 50'E | Norderhafen/ (D)  | ~ 990 |      | ~ 27                |                   |                  |                  |                  |                   |                   |                   |                   |                       |                    |
|                   |          |      |                     |                     | Dagebüllhafen     |       |      |                     |                   |                  |                  |                  |                   |                   | 16,7              |                   |                       |                    |

\* Shortest sea distance from Cap de la Hague in Rm

\*\*Unit: g K kg<sup>-1</sup> dry weight

Fulvel: Fucus vesiculosus, Fulsel: Fucus serratus, Fulspl: Fucus epiralis, Asinol: Ascophyllum nodosum, Pelcal: Pelvetia canaliculata, Palvul: Patella vulgata, Myled.: Mytilus edulis.

85507: 0.12 B in these four samples it was possible to determine  $^{134}Cs$ , and the  $^{134}Cs/^{137}Cs$  ratios 85510: 0.11 B were calculated. In the samples collected close to Cap de la Hague the background 85534: 0.34 was too high for a reliable  $^{134}Cs$ . 85540: 0.14

A: counting error 20-33% B: counting error > 33%

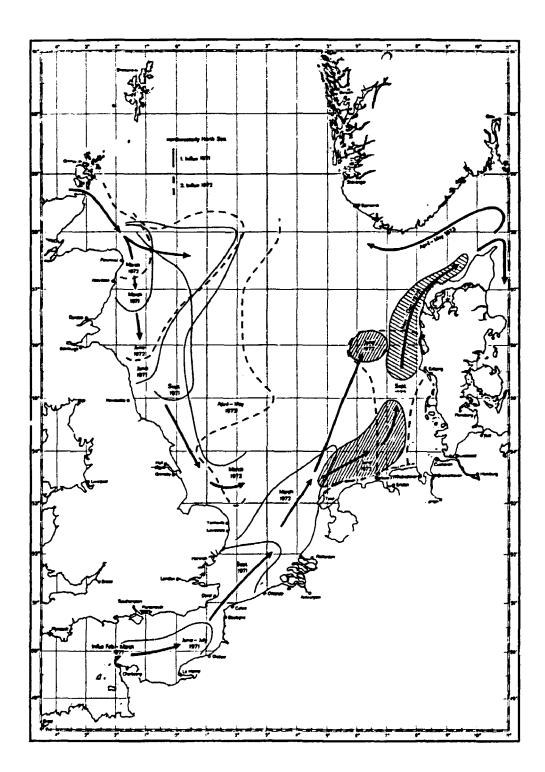



Fig. 4.3.1. The water mass transport from La Hague according to Kautsky<sup>23</sup>.

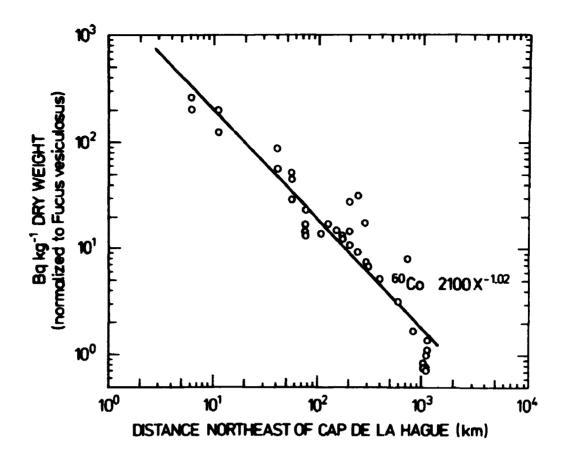
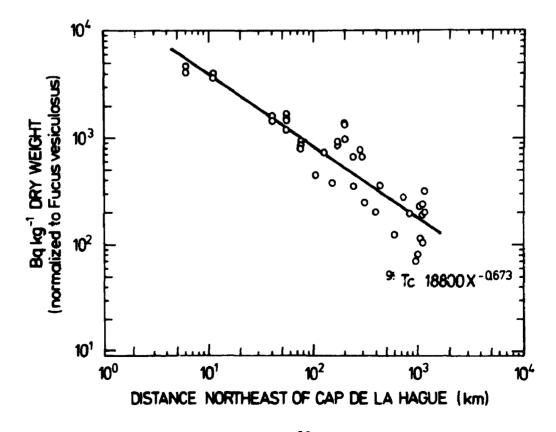




Fig. 4.3.2. The concentration of  $^{60}$ Co in Fucus vesiculosus as a function of distance in km from La Hague in 1985.



<u>Fig. 4.3.3</u>. The concentration of  $^{99}$ Tc in Fucus vesiculosus as a function of distance in km from La Hague in 1985.

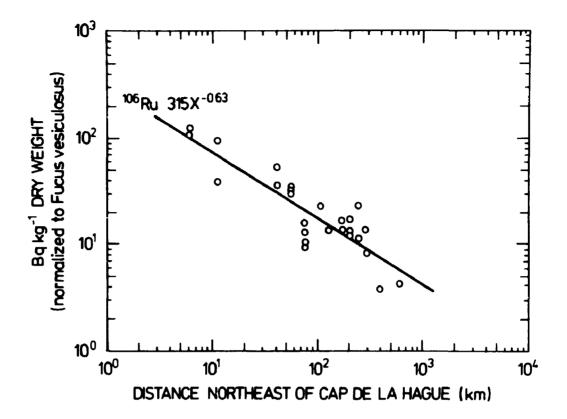



Fig. 4.3.4. The concentration of  $^{106}$ Ru in Fucus vesiculosus as a function of distance in km from La Hague in 1985.

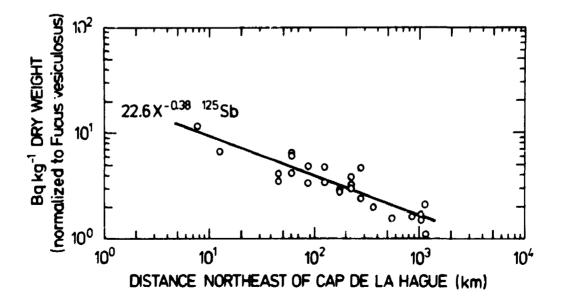



Fig. 4.3.5. The concentration of  $^{125}$ Sb in Fucus vesiculosus as a function of distance in km from La Hague in 1985.

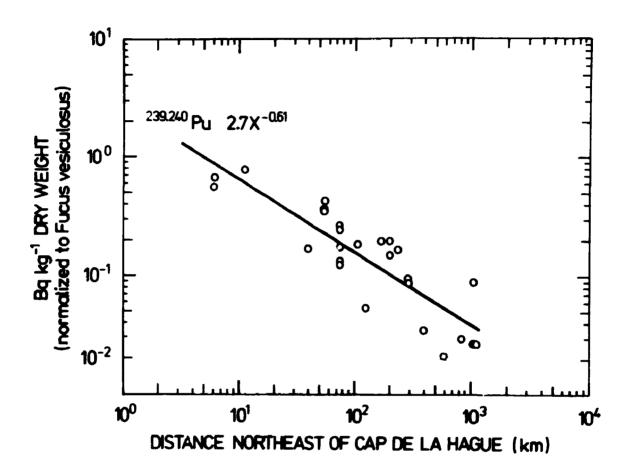



Fig. 4.3.6. The concentration of  $^{238,240}$ Pu in Fucus vesiculosus as a function of distance in km from La Hague in 1985.

## 4.4. Various samples from the northern North Atlantic

### 4.4.1. Sea weed

A number of sea weed samples have been analysed for <sup>99</sup>Tc and a few other radionuclides (Table 4.4.1). The samples from the Iberian peninsula (Cascais and Vigo) are supposed to represent global fallout only. We have earlier shown that the ""Tc concentrations in Fucus serratus and in Fucus spiralis are half of that in Fucus vesiculosus, and that Ascophyllum nodosum contains twice as much <sup>99</sup>Tc as Fucus vesiculosus. From this we conclude that the fallout background of <sup>99</sup>Tc in Fucus vesiculosus is about 1-1.5 Bg kg<sup>-1</sup> dry weight. The sample from Grindavik in Iceland may thus also be considered to represent fallout of  $^{99}$ Tc only. The  $^{99}$ Tc/ $^{90}$ Sr ratios in the three samples mentioned above are, however, higher than what we would expect for global fallout in Fucus vesículosus, where we in Greenland found a ratio of approximately only  $one^{9}$ . Although we are dealing with other species, we do not think that this provides sufficient explanation for the discrepancy. We can thus not for the time being be completely sure whether the three samples actually represent fallout only.

At Cascais in Portugal a sea water sample was collected. It contained 4.2 Bg  $^{137}$ Cs m<sup>-3</sup>. From this we may calculate a concentration factor between Fucus spiralis and sea water of 150, which is in agreement with earlier observations<sup>25</sup>.

# 4.4.2. Technetium-99 in surface sea water collected off West Greenland in 1984

At the CSS Baffin cruise to Thule in 1984 four large (~ 1  $m^3$ ) sea water samples were collected and the Tc was precipitated on board with Pe(OH)<sub>2</sub>). We made double determinations at each of the two locations. The two duplicates were spiked with  $97m_{Tc}$ tracer, in order to determine the yield.

The sample from Aug 3 was colected in Arctic water and the  $^{99}$ Tc concentration is as expected higher in this sample due to a con-

| Location                                                          | Species | Date           | 99 <sub>TC</sub> | 90 <sub>Sr</sub> | 137 <sub>Cs</sub> | 239,240 <sub>Pu</sub> | 241 <sub>Am</sub> |
|-------------------------------------------------------------------|---------|----------------|------------------|------------------|-------------------|-----------------------|-------------------|
| Daneborg<br>74°19'H 20°15'N                                       | Pu.     | Aug 9, 1982    | 5.8              |                  |                   |                       |                   |
| Trondhjens Fjord<br>63 <sup>0</sup> 35'H 09 <sup>0</sup> 46'E     | fu.ve.  | Aug 13, 1984   | 81               |                  | 4.5               |                       |                   |
| - • -                                                             | Pu.se.  | - • -          | 65               |                  | 5.6               |                       |                   |
| Longyearby, Svalbard<br>78 <sup>0</sup> 13'# 15 <sup>0</sup> 40'E | Pu.di.  | July 29, 1985  | 13.8             |                  |                   |                       |                   |
| Jersey<br>49 <sup>6</sup> 10'H 02 <sup>0</sup> 02'W               | Fu.ve.  | April 15, 1986 | 1080             |                  |                   |                       |                   |
| Trondhjens Pjord<br>63 <sup>0</sup> 35'H 09 <sup>0</sup> 46'E     | Pu.ve.  | Aug 19, 1985   | 47               |                  |                   |                       |                   |
| - • -                                                             | ru.se.  | <b>. •</b> -   | 47               |                  |                   |                       |                   |
| Cascals<br>38 <sup>0</sup> 62'8 89 <sup>0</sup> 25'8              | fu.sp.  | May 10, 1985   | 0,56             | 0.21 A           | 0.63 A            | 0.080                 | 0.021             |
| Vieo<br>42 <sup>0</sup> 15'8 08 <sup>0</sup> 43'W                 | Fu.sp.  | Nay 11, 1985   | 0.74             | 0.09 B           | 0.88 A            | 0.086 A               | -                 |
| Grindavík<br>63 <sup>0</sup> 50'H 22 <sup>0</sup> 27'W            | As.no.  | Oct 10, 1985   | 2.3              | 0.20 A           | 0.22 A            |                       |                   |

<u>Table 4.4.1</u>. Technetium-99, 90Sr and 137Cs in seaweed samples from various locations in the morthern North Atlantic. (Unit: Bg kg<sup>-1</sup> dry weight)

Fu.: fucus disticus or vesiculosus; Fu.ve.: fucus vesiculosus; Fu.di.: Fucus disticus; Fu.se.: fucus serratus; Fu.sp.: Fucus spiralis; As.no.: Ascophyllum nodosum.

Table 4.4.2. Technetium-99 in surface sea water collected off West Greenland in August 1984

| Location                                  | Date  | Temp.<br>°C | Salinity<br>o/oo | Bg <sup>99</sup> Tc m <sup>-3</sup> |
|-------------------------------------------|-------|-------------|------------------|-------------------------------------|
| 57 <sup>0</sup> 18'N 54 <sup>0</sup> 40'W | Aug 1 | 8.5         | 33.8             | 0.016±0.003                         |
| 63 <sup>0</sup> 29'N 53 <sup>0</sup> 38'W | Aug 3 | 1.9         | 3?.0             | 0.045±0.017                         |

The error term is 1 S.E. of double determinations.

stitution of Sellafield-derived  $^{99}$ Tc. The observed concentration of  $^{99}$ Tc off West Greenland is in good agreement with an expected transfer factor from Sellafield<sup>9)</sup> in the order of 1 Bq m<sup>-3</sup> per PBq yr<sup>-1</sup>.

# 4.5. Studies of <sup>90</sup>Sr and <sup>137</sup>Cs in surface sea water collected off West Greenland by the Greenland Fisheries and Environmental Research Institute

The systematic sampling of sea water along the Greenland west coast, which began in 1983<sup>4</sup>), was continued in 1985. The mean contents of  $^{137}$ Cs were 4.7 Bg m<sup>-3</sup> in the July as well as in the November sampling. This was the same mean as observed in the sampling in June-July 1984, but lower than the corresponding samples from November 1984. The  $^{90}$ Sr concentrations were approximately 80% of those observed in 1984. Two low salinity samples from July 1985 (Table 4.5.1) contained relatively high  $^{90}$ Sr concentrations (3.7 Bg m<sup>-3</sup>). This is in agreement with observations made earlier<sup>4</sup>). The  $^{137}$ Cs/ $^{90}$ Sr is in general higher than expected for global fallout. Minor amounts of  $^{137}$ Cs from Sellafield in West Greenland waters are undoubtedly the reason for this observation. As in 1983 and 1984 the  $^{137}$ Cs concentrations is in particular evident for the stations closest to the coast.

| Latitude<br>N        | Longitude<br>W       | Name of Location         | 90 <sub>Sr</sub><br>Bg m <sup>-3</sup> | 137 <sub>Cs</sub><br>Bg m <sup>-3</sup> | Salinity<br>o/oo |
|----------------------|----------------------|--------------------------|----------------------------------------|-----------------------------------------|------------------|
| 64 <sup>0</sup> 01'  | 52 <sup>0</sup> 19'  | Fylla Bank (Nuuk)        | 2.9                                    | 5.3                                     | 32.3             |
| 63 <sup>0</sup> 58 ' | 52 <sup>0</sup> 44'  | - • -                    | -                                      | 6.1                                     | 33.0             |
| 63 <sup>0</sup> 551  | 53 <sup>0</sup> 07 ' | - * -                    | 3.0                                    | 6.0                                     | 32.0             |
| 63 <sup>0</sup> 53 ' | 53°22'               | - * -                    | -                                      | 5.4                                     | 33.6             |
| 63 <sup>0</sup> 48 ' | 530561               | - • -                    | 2_1                                    | 4.2                                     | 34.2             |
| 65 <sup>0</sup> 06 ' | 53 <sup>0</sup> 00'  | Sukkertoppe (Maniitsog)  | 3.0                                    | 5.0                                     | 33.5             |
| 65 <sup>0</sup> 06 ' | 53 <sup>0</sup> 59'  | - * -                    | -                                      | 5.3                                     | 33.4             |
| 65 <sup>0</sup> 06 ' | 54 <sup>0</sup> 58'  | - <b>•</b> -             | 2.4                                    | 5.1                                     | 33.7             |
| 66 <sup>0</sup> 53 ' | 54 <sup>0</sup> 10'  | Holsteinsborg (Sisimiut) | -                                      | 4.3                                     | 33.8             |
| 66 <sup>0</sup> 46 ' | 55 <sup>0</sup> 36'  | - • -                    | 3.7                                    | 4.3                                     | 26.3             |
| 66 <sup>0</sup> 41'  | 56 <sup>0</sup> 38'  | - * -                    | -                                      | 4.5                                     | 33.6             |
| 67 <sup>0</sup> 34 ' | 57 <sup>0</sup> 10'  | Intermediate Station     | 2.8                                    | 4.6                                     | 33.0             |
| 68 <sup>0</sup> 00'  | 55 <sup>0</sup> 00'  | Egedesminde (Aasiaat)    | -                                      | 4.2                                     | 33.9             |
| 68 <sup>0</sup> 04 ' | 56 <sup>0</sup> 00'  | - • -                    | 2.4                                    | 4.5                                     | 33.5             |
| 68 <sup>0</sup> 08'  | 57 <sup>0</sup> 17'  | - • -                    | -                                      | 4.1                                     | 33.4             |
| 68 <sup>0</sup> 14 ' | 58 <sup>0</sup> 40'  | - • -                    | 3.7                                    | 3.9                                     | 31.9             |
| 68 <sup>0</sup> 43'  | 55 <sup>0</sup> 03'  | Disko rende              | -                                      | 4.6                                     | 33.9             |
| 69 <sup>0</sup> 42 ' | 510381               | Arveprinsen              | 2.4                                    | 3.6                                     | 33.1             |
| 68 <sup>0</sup> 55'  | 52 <sup>0</sup> 24'  | Skansen-Akunag           | _                                      | 3.7                                     | 33.2             |

I I

I.

Table 4.5.1. Strontium-90 and Cesium-137 in surface sea water off West Greenland in July 1985

| Latitude<br>N        | Longitude<br>N       | Name of Location         | 90 <sub>Sr</sub><br>Bq m <sup>-3</sup> | 137 <sub>Cs</sub><br>Bg m <sup>-3</sup> | Salinity<br>0/00 |
|----------------------|----------------------|--------------------------|----------------------------------------|-----------------------------------------|------------------|
| 64 <sup>0</sup> 01'  | 52 <sup>0</sup> 19*  | Fylla Bank (Nuuk)        | 2.9                                    | 5.7                                     | 33.0             |
| 63 <sup>0</sup> 55'  | 53 <sup>0</sup> 07 ' | - • -                    | 2.5                                    | 4.0                                     | 33.7             |
| 63 <sup>0</sup> 48 ' | 53°56 '              | - • -                    | 2.6                                    | 4.1                                     | 33.8             |
| 65 <sup>0</sup> 06 ' | 53 <sup>0</sup> 00 ' | Sukkertoppen (Maniitsog) | 2.7                                    | 5.9                                     | 33.3             |
| 65°06 '              | 53 <sup>0</sup> 59'  | - • -                    | 2.8                                    | 5.2                                     | 33.3             |
| 65 <sup>0</sup> 06 ' | 54 <sup>0</sup> 58 ' | - • -                    | 2.6                                    | 4.4                                     | 33.9             |
| 66 <sup>0</sup> 53'  | 54 <sup>0</sup> 10 * | Holsteinsborg (Sisimiut) | 2.8                                    | 5.2                                     | 33.0             |
| 66 <sup>0</sup> 46 ' | 55 <b>°36 '</b>      | - • -                    | 2.8                                    | 5.0                                     | 33.0             |
| 66 <sup>0</sup> 41'  | 56 <sup>0</sup> 38 ' | - • -                    | 2.7                                    | 4.4                                     | 33.1             |
| 67 <sup>0</sup> 34 ' | 57°10'               | Intermediate Station     | 3.6                                    | 4.5                                     | 32.7             |
| 68 <sup>0</sup> 00 ' | 55 <sup>0</sup> 00 * | Egedesminde (Aasiaat)    | 3.0                                    | 4.7                                     | 32.9             |
| 68 <sup>0</sup> 04 ' | 56 <sup>0</sup> 00 * | - • -                    | 2.6                                    | 4.3                                     | 32.8             |
| 68 <sup>0</sup> 08 ' | 57 <sup>0</sup> 17 • | - • -                    | 2.7                                    | 4.6                                     | 32.7             |
| 68 <sup>0</sup> 43 ' | 55°03 ·              | Disko rende              | 3.0                                    | 4.7                                     | 32.7             |
| 69 <sup>0</sup> 08 ' | 58 <sup>0</sup> 24 ' | - • -                    | 3.2                                    | 4.8                                     | 32.7             |
| 69 <sup>0</sup> 30 ' | 58 <sup>0</sup> 20 ' | Disko Fjord              | 3.0                                    | 4.4                                     | 32.7             |
| 70 <sup>0</sup> 34 ' | 54 <sup>0</sup> 47 ' | Hare Ø North             | 2.4                                    | 3.9                                     | 33.2             |
| 68 <sup>0</sup> 55'  | 52°24 '              | Skansen-Akunag           | 3.2                                    | 4.5                                     | 32.6             |

Table 4.5.2. Strontium-90 and Cesium-137 in surface sea water off West Greenland in November 1985

<u>Table 4.5.3</u>. Analysis of variance of ln Bg  $^{90}$ Sr m<sup>-3</sup> surface sea water off West Greenland in July and November 1983, 1984, and 1985

.

| Variation         | SSD   | f  | s <sup>2</sup> | v <sup>2</sup> | P       |
|-------------------|-------|----|----------------|----------------|---------|
| Between locations | 0,563 | 29 | 0.019          | 0.778          | -       |
| Between months    | 1,224 | 5  | 0.245          | 9.809          | >99.95% |
| Month × loc.      | 1.447 | 58 | 0.025          | 0.790          | -       |
| Remainder         | 0.063 | 2  | 0.032          |                |         |

I I I

| Variation         | SSD   | f  | s <sup>2</sup> | v <sup>2</sup> | P       |
|-------------------|-------|----|----------------|----------------|---------|
| Between locations | 1.170 | 30 | 0.039          | 3.052          | >99.95% |
| Between months    | 0.623 | 5  | 0.125          | 9.748          | >99.95% |
| Month × loc.      | 0.844 | 66 | 0.013          | 1.140          | -       |
| Remainder         | 0.022 | 2  | 0.011          |                |         |

I.

Table 4.5.4. Analysis of variance of ln Bg  $^{137}$ Cs m<sup>-3</sup> surface sea water off West Greenland in July and November 1983, 1984, and 1985

#### ACKNOWLEDGEMENTS

The authors wish to thank Anna Holm Pedersen, Else Marie Sørensen, Jytte Clausen, Anna Madsen, Karen Wie Nielsen, Elise Ebling, Oda Brandstrup, Alice Kjølhede, Helle Porsdal, and Karen Mandrup Jensen for their conscientious performance of the analyses.

Our thanks are furthermore due the Institute of Hygiene in Thorshavn, to the district physicians in Greenland and the telestations, GTO and all other persons and institutions in the Faroe Islands, Greenland and Denmark who have contributed by collecting samples.

The Alfred Wegener Institute for Polar Research, Bremerhaven, are acknowledged for their kind invitations to participate in the cruise with the R.V. "Polarstern" in 1985.

Martin Munch Hansen the Greenland Fisheries and Environmental Research Institute kindly provided us with sea weed samples from Greenland.

The present study was partly sponsored by the C.E.C. Radiation Protection Research Programme.

We finally thank the Commission for Scientific Research in Greenland for permission to collect samples in Greenland.

- Environmental Radioactivity in the Faroes 1962-1982. Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 362, 387, 404, 422, 448, 470 and 488 (1963-1983).
- 2) Environmental Radioactivity in Greenland 1962-1982. Risø Reports Nos. 65, 87, 109, 132, 155, 182, 203, 222, 247, 267, 293, 307, 325, 347, 363, 388, 405, 423, 448, 471 and 489 (1963-1983).
- 3) A. Aarkrog, S. Boelskifte, L. Bøtter-Jensen, H. Dahlgaard, Heinz Hansen, and S.P. Nielsen, Environmental Radioactivity in Denmark in 1985. Risø Report No. 540 (1986).
- 4) Environmental Radioactivity in the North Atlantic Region. The Farce Islands and Greenland included. 1983-1984. Risø Reports Nos. 510 and 528 (1984-1985).
- 5) A. Aarkrog, Environmental Studies on Radioecological Sensitivity and Variability. Risø-R-437 (June 1979).
- 6) A. Aarkrog, H. Dahlgaard, H. Hansen, E. Holm, L. Hallstadius, J. Rioseco and G. Christensen. Radioactive Tracer Studies in the Surface Waters of the northern North Atlantic including the Greenland, Norwegian and Barents Seas. Proceedings from a Nordic Symposium on Chemical Tracers for Studying Water Masses and Physical Processes in the Sea in Reykjavik Aug 28-Sept 1, 1984. RIT FISKIDEIL-DAR 9. 37-42 (1985).
- 9) A. Aarkrog, S. Boelskifte, H. Dahlgaard, S. Duniec, L. Hallstadius, E. Holm and J.N. Smith. Technetium-99 and Cesium-134 as long distance tracers in Arctic waters. Estuarine, Coastal and Shelf Science <u>24</u>, 637-647 (1987).
- A. Aarkrog, H. Dahlgaard, L. Hallstadius, H. Hansen, and E. Holm. Radiocesium from Sellafield Effluents in Greenland Waters. Nature <u>304</u>, p. 49-51 (1983).
- 12) R.S. Cambray. Annual discharges of certain long-lived radionuclides to the sea and to the atmosphere from the Sellafield works, Cumbria 1957-1981. AERE-M 3269 (1982).

- 13) BNFL 1978-1985. Annual Report on Rudioactive Discharge and Monitoring of the Environment. British Nuclear Fuels Limited, Risley, Warrington, Cheshire, U.K.
- 21) A. Aarkrog. Risk Assessment of long-lived radionuclides in the marine environment. Invited paper to International Symposium on the behavior of long-lived radionuclides in the marine environment. La Specia, 28-30 Sept. 1983, p. 419-442.
- 23) H. Kautsky, Deutschen Hydrographischen Zeitschrift <u>26</u>, 242-246 (1973).
- 24) A. Aarkrog, H. Dahigaard, S. Duniec, P. Guequeniat, and E. Holm. The application of sea weeds as bioindicators for radioactive pollution in the Channel and southern North Sea. To be oublished in the proceedings from International Symposium on radioactivity and oceanography, June 1-5, 1987, Cherbourg.
- 25) A. Aarkrog (editor). Bioindicator studies in Nordic waters. Risø-M-2517 (1985).

| Risø National Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Riso - R -</b> 541                                                                                                                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Title and author(s)<br>ENVIRONMENTAL RADIOACTIVITY IN<br>THE NORTH ATLANTIC REGION.<br>THE FAROE ISLANDS AND GREENLAND INCLUDED. 1985<br>A. Aarkrog, S. Boelskifte, E. Buch <sup>O</sup> , G.C.<br>Christensen*, H. Dahlgaard, L. Hallstadius**,<br>H. Hansen, E. Holm***, and J. Rioseco**                                                                                                                                                                                                                                                                                                                                             | Date June 1987<br>Department or group<br>Health Physics<br>Groups own registration number(s)                                                                                                                         |  |  |
| <ul> <li>o The Greenland Fisheries and Environmental<br/>Research Institute, Denmark</li> <li>* Institute for Energy Technology, Kjeller,<br/>Norway</li> <li>** University of Lund, Sweden</li> <li>*** International Laboratory of Marine<br/>Radioactivity, Monaco</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | Project/contract no.                                                                                                                                                                                                 |  |  |
| Pages 83 Tables 48 Illustrations 32 References 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISBN 87-550-1342-2                                                                                                                                                                                                   |  |  |
| Measurements of fallout radioactivity in the<br>region including the Faroe Islands and Green<br>Strontium-90 and cesium-137 was determined in<br>cipitation, sea water, vegetation, various for<br>milk in the Faroes) and drinking water. Estin<br>the mean contents of 90Sr and 137Cs in human<br>and Greenland in 1985. Results from samplings<br>water and seaweed in the English Channel, the<br>along the Norwegian and Greenland coasts are<br>radiocesium and 90Sr some of these samples ha<br>lysed for tritium, plutonium and americium. I<br>data on seaweed and sea water samples collect<br>Atlantic region are presented. | land are reported.<br>In samples of pre-<br>bodstuffs (including<br>mates are given of<br>diet in the Faroes<br>of surface sea<br>Fram Strait and<br>reported. Beside<br>ave also been ana-<br>finally technetium-99 |  |  |
| AMERICIUM 241; ANIMALS; ATMOSPHERIC PRECIPITAT<br>CESIUM 134; CESIUM 137; COASTAL WATERS; DIET; I<br>MI<br>ENVIRONMENT; FAROE ISLANDS; FOOD CHAINS; GLOBA<br>MAN; MILK; MOLLUSCS;NORWAY; PLANTS; PLUTONIUM<br>RADIOACTIVITY; SEAWATER: SEAWEEDS; SEDIMENTS;                                                                                                                                                                                                                                                                                                                                                                             | IONS; BONE TISSUES;<br>DRINKING WATER;<br>L FALLOUT; GREENLAND;<br>238; PLUTONIUM 239;                                                                                                                               |  |  |

Available on request from Rise Library, Rise National Laboratory, (Rise Bibliotek, Forskningscenter Rise), P.O. Box 49, DK-4000 Roskilde, Denmark. Telephone 02 37 12 12, ext. 2252. Telex: 43116, Telefax: 02 35 06 09

TECHNETIUM 99; UNITED KINGDOM

Sales distributors: G.E.C. Gad Strøget Vimmelskaftet 32 DK-1161 Copenhagen K, Denmark

Available on exchange from: Risø Library, Risø National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark

ISBN 87-550-1342-2 ISSN 0106-2840 ISSN 0900-8098