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Abstract
One of today’s greatest global challenges is the need for clean, reliable, and renewable
sources of energy, and wind energy has a key role in this process. However, in order
to compete with other less ”green” sources of energy the cost to produce wind made
electricity needs to be reduced. One way to achieve this is by improving the reliabil-
ity of wind turbine components and optimising operation and maintenance strategies.

This PhD project is part of the European research project MareWint, where the
main objective is to develop an innovative approach for coupled multi physics co-
simulation, testing, design and optimisation of offshore wind turbines. The MareWint
main scientific objective is to optimise the design of offshore wind turbines, maximise
reliability, and minimise maintenance costs.

Integrated within the innovative rotor blades work-package, this PhD project is
focused on damage analysis and structural health monitoring of wind turbine blades.
The work presented sets the required framework to develop a monitoring system
based on fibre Bragg gratings (FBG), which can be applied to the different life stages
of a wind turbine blade. In this concept, the different measured physical parame-
ters are used to improve the design process, and the implemented sensor are used to
control the manufacturing and operation stage of a wind turbine rotor blade. The
FBG sensors measurement principle is analysed from a multi-life-stage (design, mate-
rial testing, manufacturing, and operation) perspective, and supported/validated by
numerical models, software tools, signal post-processing, and experimental validation.

The damage in the wind turbine rotor blade is analysed from a material perspec-
tive (fibre reinforced polymers) and used as a design property, meaning that damage
is accepted in an operational wind turbine as long as it is monitored. Thus, a novel
crack/damage detection method using FBG sensors is presented, and software/tools
are developed for signal simulation and post-processing. The first part of the thesis is
an introduction to the multi-life-stage monitoring system based on FBG sensors and
the damage tolerant design of fibre reinforced materials, where the different theory
and numerical models used are presented. The second part of the thesis is a compi-
lation of scientific journal papers, in which the use of FBG sensors to monitor the
different life-stages of the wind turbine rotor blade is described in more detail.
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ii Abstract

In Paper P1, a methodology for reliable design and maintenance of wind turbine
rotor blades based on a damage tolerance and structural health monitoring approach
is presented. Paper P2 presents a novel method to obtain independent strain and
temperature measurements using embedded FBG sensors in polymeric tensile tests.
In paper P3, a novel method for assessing crack growth in fibre reinforced polymer or
structural adhesive bonded structures by combining conventional measured param-
eters with parameters associated with measurement errors is presented. Paper P4
presents a FBG signal post-processing tool. In paper P5, a software development
tool to simulate the FBG signal from a finite element method model is described.
Paper P6 fits within the manufacturing stage, describing a residual strain measure-
ment solution based on FBG sensors. In paper P7, the fracture process zone length
in double cantilever beam specimens is analysed analytically and numerically.



Resumé
En af vore dages største globale udfordringer er efterspørgslen efter ren, pålidelig, og
vedvarende energi. Vindenergi spiller her en central rolle men for bedre at kunne
konkurrere med andre mindre ”grønne” energikilder skal omkostningerne hertil dog
skulle reduceres. En måde at gøre dette på er ved at forbedre holdbarheden af vind-
møllekomponenter samt ved at optimere drift og vedligeholdelsen.

Dette ph.d.-projekt er en del af det europæiske forskningsprojekt MareWint, hvis
hovedformål er at udvikle en innovativ tilgang til en koblet multifysik simulering, test-
ning, designing og optimering af havvindmøller. MareWints videnskabelige hovedfor-
mål er at finde det optimale design af offshore vindmøller, maksimere pålidelighed og
minimere vedligeholdelsesomkostningerne.

Ph.d.-projektet er integreret i vindmøllevingearbejdespakken med fokus på skades-
analyse og -overvågning af vindmøllevinger. Det udførte studie sætter rammerne for
en udvikling af et vingeskadeskontrolsystem baseret på optiske Fiber Bragg Gratings
(FBG) sensorer, som kan anvendes til en detektering af skadesudvikling i løbet af en
vindmøllevinges levetid. En detektering som efterfølgende kan bruges til at forbedre
selve vingedesignet. Derudover kan de optiske FBG også bruges til at styre selve
fremstillingsprocessen af vindmøllevinger samt den efterfølgende drift. Outputtet fra
FBG sensorerne analyseres ud fra et multi-life-stadie perspektiv (design, materialetest,
fremstilling og drift), og bliver herunder understøttet og valideret af numeriske mod-
eller, software-værktøjer, signalbehandling and eksperimentel validering.

De opståede skader i vindmøllevingen analyseres ud fra et materiale perspektiv
(fiberforstærket polymerer) og bruges som en designegenskab, hvilket betyder, at
skadesniveauet vil blive accepteret under selve vindmølleoperationen, hvilket kan ske
så længe skaden er overvåget. En ny revne/skades-påvisningsmetode ved hjælp af
FBG sensorer blevet herved præsenteret hvorunder et stykke software til signalsimu-
lering og efterbehandling er blevet udviklet. Den første del af afhandlingen er en intro-
duktion til dette multi-life-stadie overvågningssystem baseret på FBG sensorer brugt
på de skadestolerante fiberforstærkede materialer hvorunder de forskellige teorier og
numeriske modeller vil blive præsenteret. Den anden del af afhandlingen er en samling
af videnskabelige tidsskriftsartikler, hvor brugen af FBG sensorer til en overvågning
af de forskellige stadier af levetiden af en vindmøllevinge vil blive beskrevet mere
detaljeret.
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iv Resumé

Artikel P1 præsenterer en metode til en pålidelig udformning og vedligeholdelse af
en vindmøllevinge baseret på et skadestolerant materiale. Artikel P2 præsenterer en
ny metode til at opnå uafhængige tøjnings- og temperatur-målinger ved hjælp af ind-
byggede FBG sensorer i forbindelse med trækprøvning af polymere. I artikel P3, bliver
en ny fremgangsmåde foreslået hvor målefejlen fra de optiske FGB fibre bliver brugt
til en vurdering af revnevæksten inden i såvel som i limsamlingen mellem fiberforstær-
ket kompositter. Artikel P4 præsenterer et udviklet FBG-signalbehandlingsværktøj.
I artikel P5, bliver et udviklet stykke software til brug til at simulere et FBG signal
præsenteret. Dette stykke software bygger på en finite element bestemt spændings-
og tøjningsfelt. Artikel P6 adressere selve fremstillingsprocessen af fiberforstærkede
kompositter hvorunder størkningstøjningerne kan måles ved hjælp af FBG sensorer og
relateret til udmattelsesegenskaberne af kompositmaterialet. I artikel P7, bliver læng-
den af skadesområdet i forbindelse med revnevækst i en såkaldt ”Double Cantilever
Beam” analyseret analytisk og numerisk.
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Chapter 1
Introduction

This chapter gives a brief introduction to the project scope, the different fields of
research, and the main objectives for the thesis.

1.1 Problem Statement
Modern society is moving towards a low-carbon economy, and demands an environ-
mentally responsible energy sector, which means a shift to renewable sources of energy.
Adding this to the increasing energy demand, it is estimated that the wind energy
sector will have the opportunity to double, or even triple its power production in
the next decades [1]. Although, the wind energy sector still has to compete for this
market share with other sources of energy, in which the cost of energy (CoE) plays
an important role. Lowering the CoE is a central topic shared by all the different
industry, government, and research fields.

In a simplified version, the cost to produce energy (CoE in kWhs) during the
life-time of a wind turbine is described by equation (1.1),

CoE = CoT + CoI + CoM

PP
(1.1)

where CoT is the wind turbine cost of production, CoI is the cost of installation and
transport, CoM is the cost of operation and maintenance, and PP the power produced
during the turbine life-time. The cost to produce energy can be then reduced either
by increasing the power produced by each individual wind turbine during its life-time
(PP), or by decreasing the cost related with the wind turbine production, installation,
and maintenance (CoT, CoI, and CoM).

By analysing the wind energy sector in the last decade and the latest research
programmes initiatives, a trend is visible in the wind turbine R&D to achieve this
common objective of reducing CoT:

• Larger Wind Turbines; the most cost-effective way of increasing the PP is to
increase the rotor diameter [2]. This pattern is visible in the size of the state-
of-the-art wind turbines installed over recent years, as shown in figure 1.1. Ad-
ditionally, even if a larger wind turbine is more costly to manufacture (CoT),
this cost increase is compensated by the absolute saving when factoring cost of
installation (CoI) and the cost of maintenance (CoM) with the power produced
(PP).

1



2 Introduction

Figure 1.1: Growth in size of commercial wind turbine designs (taken from The
Economics of Wind Energy, a report by the EWEA [3]).

• More reliable wind turbines, and efficient maintenance plans; other way to
increase CoE is by increasing the amount of hours that the wind turbine oper-
ates/produces energy. This can be done by increasing the wind turbine reliabil-
ity and consequently extending its life-time, and also by decreasing its failure
rate and maintenance/repair time. When this is achieved, less wind turbines
fail, the time to failure increases, and less time is used to repair, which leads
to a higher rate of wind turbine availability and consequently reduces the cost
per energy output. Additionally, a better maintenance plan and less repair
activities leads to a reduction in CoM and consequently lower CoE.

1.2 MareWint Project
This PhD project is part of the European research project MareWint, new MAte-
rials and REliability in offshore WINd1, where the main objective is to develop an
innovative approach for coupled multi physics co-simulation, testing, design and op-
timisation of reliable Offshore Wind Turbines. This project was created to follow
the strategic objectives of the industrial initiative of the European Strategic Energy

1Marie-Curie Action ITN, Nr. 309395, MareWint website: http://www.marewint.eu/



1.2 MareWint Project 3

Technology (Set)-Plan2, to reduce the total cost of energy (CoE) by improving the
reliability of wind turbine components and optimising the operation and maintenance
strategies.

With a especial focus in the offshore sector, where operation and maintenance
represent a high percentage of total cost, MareWint’s main scientific concept is to find
the optimal design of offshore wind turbine, maximise its reliability, and minimise
its maintenance cost. To achieve this, a consortium of 6 universities, 7 research
institutes, and 10 private sector enterprises are involved in this research project, and
14 researchers (PhD students) from different multidisciplinary areas are divided into
5 work packages, as shown in figure 1.2. The different work packages are cross-linked
and the knowledge from different areas is expected to be integrated into a final global
model representing some of the offshore wind turbine hydro-aero-mechanical issues.
Thus, the MareWint structure defines the research objectives of this PhD project, as
the knowledge developed needs to be integrated with the other work packages and
ultimately in the multi-physics model.

1.2.1 Project Reference Wind Turbine: DTU 10MW
The DTU 10MW3 reference wind turbine [4], was agreed as the common platform for
the MareWint project and work packages. This reference wind turbine (RTW) is an
open-source/free and publically available model, and it is considered a state-of-the-
art design; thus, its geometries, operational constrains, materials, components, etc.,

2SETIS Website: https://setis.ec.europa.eu/
3DTU 10MW reference wind turbine website: http://dtu-10mw-rwt.vindenergi.dtu.dk

Figure 1.2: MareWint project structure.
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were used by all the researches in the different sub-projects as a reference to produce
the MareWint multi-physics model concept.

The DTU 10MW RTW was developed by DTU Wind Energy and Vestas Wind
Systems, as part of a collaborative research to create the design basis for the next
generation of wind turbines, and its design summary is presented in table 1.1.

Table 1.1: DTU 10MW reference wind turbine design summary [4].

Parameter Value
Rating 10MW
Rotor orientation, configuration Upwind, 3 blades
Control Variable speed, collective pitch
Drivetrain Medium speed, Multiple stage gearbox
Rotor, Hub diameter 178.3m, 5.6m
Hub height 119m
Rated tip speed 90m/s
Pre-bend 3m
Rotor mass 229tons (each blade 41tons)
Nacelle mass 446tons
Tower mass 605tons

As discussed later, this PhD project is focused on the material damaged behaviour,
structure reliability analysis, and damage detection methods that can be applied to
the rotor blades. Thus, the material properties, the structure/specimens geometry,
load configuration, and the location of critical/failure used along this project are
defined by this DTU 10MW RTW.

1.2.2 Work Package 1 - Innovative Rotor Blades
This PhD project is integrated with the MareWint work package 1, Innovative Ro-
tor Blades, where the structural and fluid dynamics of the rotor blade are analysed
by experimental and numerical methods. Within the work package, two individual
projects were developed: the first project (this PhD project) studies the behaviour
of the composite material within the rotor blade structure, its damage mechanism
and damage detection methods; and, the second project describes the structural be-
haviour and rotor blade performance by using computational fluid dynamic models.
Both project cross-link with other work-packages by providing structural health mon-
itoring tools that can predict the rotor structural performance, and a fluid-structure
interaction model to predict the structure response to the varying wind conditions.
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1.3 Scientific Objectives within the MareWint Project
The main objective of this PhD project within the MareWint project are:

• damage/defects analysis from a material point of view;

• damage as a design property;

• improve damage detection systems;

• crack/defect detection in wind turbine rotor blade, fibre reinforced polymer;

• structural health monitoring implementation tools (to be used in the global
model);

1.3.1 Thesis Structure
The thesis is written as a collection of peer-reviewed papers. In chapter 2, the concept
of the multi-life-stage monitoring system based on fibre Bragg gratings is presented,
which defines the structure of the thesis and the research topics addressed. Chapter 3
contains the summary of results presented in the paper collection, and its contribution
to the PhD project. In appendix A, it is demonstrate that delamination in a rotor
blade trailing edge can be analysed, from a material perspective, as a delamination
in a double cantilever beam, and the finite element method models used to represent
this damage mechanism are explored.
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Chapter 2
Wind Turbine Blade

Multi-Life-Stage Monitoring
System Based on Fibre Bragg

Gratings
This chapter presents a short introduction to a new emerging design philosophy for
wind turbine rotors, where the structure is designed to operate even in the presence
of damage. The requirements of a structural monitoring system to achieve such a
concept are described, together with an analysis of good sensor candidates for this
function. The selected monitoring system for wind turbine rotor blade, fibre Bragg
grating, is then applied to a multi-life-stage monitoring system. Finally, the research
activities performed in this PhD project are matched to the structure of the multi-
life-stage monitoring system.

2.1 From a Conventional Design to a Damage Tolerance
Design

As previously discussed, lowering the cost of energy (CoE) will require larger wind
turbines and more reliable components. Thus, changes in the design philosophy will
happen as a natural consequence of this process; the traditional design of wind turbine
rotor blades and consequently fibre reinforced polymers (FRP) is based on conserva-
tive analysis methods, with larger safety factors, where only the linear behaviour
of the structure/material is considered. This traditional design philosophy underes-
timates the material properties and its maximum strength, making it an obsolete
approach to design high performance structures, such as large wind turbine rotor
blades, with high reliability standards [5–7].

In paper [P1], a new methodology for reliability design and maintenance of wind
turbine rotor blades is presented. This methodology is based on a damage tolerance
and structural health monitoring approach, which enables the structure to operate
despite the presence of damage. To accomplish this, the structure is designed with
damage tolerant materials with built-in sensors, the damage is detected and charac-

7
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terised by sensors, and models predict the residual life of the structure; then, this
information enables decision-making with respect to whether the rotor blade should
be repaired or replaced. Thus, ”perfect” wind turbine rotor blades are not a require-
ment any more, and manufacturing defects, handling damage, and in-service damage
can be accepted and controlled.

This design methodology can be applied to different wind turbine sub-components
or different materials configurations, however in this PhD project the focus was on
the FRP delamination mechanisms. During delamination of a FRP material, there is
a balance between the energy applied to the structure and the energy consumed by
the fracture process. Therefore, the crack will only grow once the energy applied to
the structure, per unit of crack advance, is higher than the energy consumed by the
crack tip fracture process, per unit of crack advance [8–10].

Two options to design a FRP structure to hold damage without failure are:

• Load design: designing a structure that can sustain an additional load, even if a
crack is formed and locally have a reduced load capability; this can be achieved
if the material does not have brittle behaviour and it can be altered to a stable
and controlled crack growth.

• Damage mechanism design: increasing the fracture resistance and consequently
the amount of stable cracks that the structure can hold; in FRP laminates, a
rising fracture resistance means that the energy absorbed per unit of crack in-
creases with the increase of the fracture process zone length (R-curve behaviour
[8]). The R-curve behaviour can be schematically observed in Fig. 2.1, and
it happens when delamination is accompanied by the formation of a fracture
process zone, in which intact fibres connect the crack faces behind the crack tip
increasing the energy required for a crack to grow (see Fig. 2.2).

Figure 2.1: Schematics of stable and unstable crack growth due to R-curve be-
haviour. The crack growth resistance increases from an initial value,
J0, to a steady-state value, Jss.
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Figure 2.2: Fibre bridging phenomena during delamination in a glass fibre double
cantilever beam specimen.

Accepting that a wind turbine rotor blade can operate with a certain amount
of damage, requires that each structure must be characterized individually with a
unique damage map. Then, once this is achieved, the service life and maintenance
plan of each rotor blade can be decided based on their damage state.

2.2 Structural Health Monitoring
A standalone damage tolerance design criterion without a damage monitoring system
is not enough for a reliable wind turbine rotor blades design. Due to the wind turbine
operational nature and its remote location without easy access, inspection and main-
tenance activities cannot be made regularly. Therefore, checking if the structure is
still inside the damage tolerance limits becomes almost impossible; additionally, it is
impossible to predict the aerodynamic load history on a rotor blade for 20-30 years of
operation, which makes an accurate and detailed model of its damage behaviour, for
that period of time, difficult to produce. Furthermore, each blade will experience its
own combination of load history, and its material properties can have some variation
as this cannot be accurately controlled during the manufacturing stage.

A structural health monitoring system (damage condition monitoring) integrated
in the damage tolerance design gives information about the presence of damage and
its severity; then, this information is fed back to the damage tolerance model, where
the structure damage state and remaining operational life are evaluated; if a repair
action is required, the sensor provides the damage location with a good resolution and
a repair plan can be establish. A good structural health monitoring system should
be applicable to different life-stages of the wind turbine, as manufacturing, design,
operation, emergency situation, etc., in order to measure the maximum information
possible and produce the unique damage map of the structure.

In terms of sensing systems, there is a large variety of techniques that have been
implemented in the different wind turbine sub-components to prevent failure. Oil
debris monitoring can detect early damage in bearing and gear elements [11]; tem-
perature measurements can identify a premature degradation of the different oils,
bearings and generator windings [12]; wind turbine performance monitoring is a good
indication of the structure efficiency, and it can measure global structural problems
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like rotor imbalance [12, 13]; operational modal analysis is a technique that estimates
the modal parameters by measuring vibration in the structure [14, 15]. Takoutsing,
et al.[16] did an overview of all the different sensing technologies available and imple-
mented in operational/research wind turbines (see Table 2.1).

Table 2.1: Wind turbine failure types in different components and monitoring tech-
niques. Based on table 1 from [16].

Wind
Turbine

Component

Sub-
Component Type of failure Sensing Technology

Blades
Cracks; Adjustment
error; Coating ero-
sion;

Ultrasound; Active thermography;
High resolution images; Strain
measurements; Visual inspection;
Torque measurements; etc.

Rotor Bearings
Spalling; Wear; De-
fect of bearing shells
and rolling elements;

Vibration; Modal analysis; Perfor-
mance monitoring; Acoustic Emis-
sion; Strain measurements; Visual
inspection; Torque measurements;
etc.

Shaft Fatigue; Cracks;

Vibration; Modal analysis; Perfor-
mance monitoring; Acoustic emis-
sion; Strain measurements; Visual
inspection; etc.

Main
Shaft
Bearing

Wear; Vibration;
Vibration; Modal analysis; Strain
measurements; Visual inspection;
Power signal; Thermography etc.

Drive Train Mechanical
Brake Locking position; Temperature; Visual inspection;

Power signal; etc.

Gearbox

Wearing; Electrical
problems; Slip rigs;
Winding damage; Ro-
tor asymmetries; Bar
break; etc.

Performance monitoring; Temper-
ature; Vibration; Power signal
analysis; Electrical effects; etc.

Tower Crack formation; Fa-
tigue; Vibration; etc.

Vibrations; Strain measurements;
High resolution images;

Tower Nacelle Fire; Yaw error;
Damage; etc.

Smoke, heat and flame detectors;
Strain measurements; etc.
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In terms of monitoring systems for delamination/cracks detection in FRP struc-
tures, some techniques have been extensively study and applied to wind turbine rotor
blades: acoustic emission technique evaluates the energy released during crack prop-
agation [17, 18]; modal analysis method uses inertia sensors to identifying and locate
damage in the rotor blade cross section [17]; and, ultrasonic scan measurements are
used to detect defects, especially in the layer between the skin laminate and the
load carrying main spar [19]. Although, it should be pointed out that most of these
techniques can only be applied in controlled environments, as test wind turbines in
laboratories or testing facilities, and cannot be applied to an operational wind turbine.
Additionally, some of these techniques are not commercially available and have some
reliability issues.

The requirements that a structural health monitoring system need to fulfil in order
to be considered a good solution for delamination/cracks detection, and support the
damage tolerance design of wind turbine rotor blades are:

• commercially available with di-
verse sensing solutions/configura-
tion, and competitive price;

• can be used in an operational wind
turbine;

• can be integrated/embedded into
the structure material;

• high resolution and accuracy;

• long-term reliability,

• electromagnetic isolation;

• non-conductive (lighting isolation);

• can be implemented during the
manufacturing process;

• can measure different type of pa-
rameters, and performed these mea-
surements in different life-stages of
the wind turbine;

Based on these requirements, a structural health system based on optical fibres
was selected for this PhD project. A detailed description of this type of sensors, and
examples of its application to different life-stages of the wind turbine are presented
in the next section and in the papers [P2-P6].

2.3 Fibre Bragg Grating as a Structural Health
Monitoring System for Wind Turbine Rotor Blades

2.3.1 Fibre Optic
A fibre optic is a cylindrical shaped cable, made of a transparent material (usually
silica), within which light propagates with a very small optical loss [20, 21]. The glass
fibre is typically composed of a core, a cladding, and an external coating (usually
polyamide), and its external diameter varies from 100 µm to 250 µm, as shown in
Fig. 2.3. The light propagation through the optical fibre can be describe by Snell law
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[20, 22], which defines the relation between the reflection and refraction angle of an
electromagnetic wave, as described by Eq. (2.1).

ncoresin(θi) = ncladdingsin(θt) (2.1)

The parameters ncore and ncladding are the refractive index of the fibre optic core
and cladding, respectively, and θi and θr are the light incidence and refraction angle,
respectively. The parameter θc defines the critical angle that the light is transmitted;
in other words, if the light incidence angle is greater than θc no light is transmitted
and the optical power is lost (see Fig. 2.4).

In a conventional optical fibre, the core refractive index is slightly higher than the
cladding, due to the presence of dopants; then, the critical angle can be defined as
the incidence angle that corresponds to a reflected angle of θr = π/2:

θc = sin−1
(
ncladding

ncore

)
(2.2)

Note that for angles θr < π/2 the light is not reflected back to the core.

Figure 2.3: Schematic representation of optical fibre dimensions: singlemode and
multimode optical fibre.
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Figure 2.4: Schematic of Snell’s law for light propagation in an optical fibre.

In terms of light propagation modes the optical fibre can be divided in two types
(see Fig. 2.5):

• Singlemode/Monomode optical fibre; this type of fibre optic has a small core
diameter, ≈ 10µm, and the light propagates in a single mode; the main advan-
tage of this type of optical fibre is its low optical attenuation, which makes it
the most used technology for sensing applications; (Note: this is the type of
optical fibres used during the PhD project)

• Multimode optical fibre; with a larger core diameter, between 30 − 100µm,
this type of optical fibre has a higher light-gathering capacity, which allows
more waveforms to be transmitted, however with a big attenuation; the main
advantage of this type of optical fibre is that requires simple connections and
uses lower-cost electronic components.

Figure 2.5: Schematic of the different fibre optics’s light propagation mode: single-
mode and multimode.
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Regarding fibre optic sensors, these can be classified based on its [23]:

• Location: intrinsic, when the sensing region is within the fibre structure; or
extrinsic, when the light leaves the optical fibre to reach the sensor and then
returns to it;

• Operation principles: intensity, phase, frequency, or polarization;

• Application: physical sensor; chemical sensor;

In table 2.2, some sensing solutions that are used for structural health monitoring
are presented. In all these sensing solutions, the measured information is encoded
as a light (reflected or transmitted) giving this system unique properties, such as
immunity to optical/power fluctuation, insulation and immunity to optical/power,
long distance measurements, high rate sampling, etc.

Table 2.2: Different type of sensing solutions based on fibre optic.

Type of sensor Sensing principle

Intrinsic Local Intensity-based sensors; Micro-bending sensor; Fabry-Perot
interferometer; Michelson interferometer; Bragg gratings;

Distributed Raman scattering; Brillouin scattering;

Extrinsic Optical Coherence Tomography; Encoders; Temperature
measurement using a pyrometer;

As observed, there is a large variety of fibre optic based sensors that can be
used as a monitoring system for wind turbine rotor blades; however, it is important
to select a type of sensor that is commercially available, economically competitive
(when compared with other measurement technology’s), can measure different type
of physical properties, and has a big potential in the wind energy and FRP materials
field. Thus, the fibre Bragg grating sensor was selected as the monitoring technology
for this PhD project.

2.3.2 Fibre Bragg Grating
A fibre Bragg grating (FBG) is a sensor based on fibre optic technology that was
first demonstrated by Hill, et al. [24, 25]. The grating structure is formed by a
permanent periodic modulation of the refractive index along a section of an optical
fibre, obtained by exposing the optical fibre to an interference pattern of intense ultra-
violet light [20–22]. The photo-sensitivity of the silica exposed to the ultra-violet light
is increased, so when the optical fibre is illuminated by a broadband light source part
of this light is reflected back. The reflected light shape and wavelength depends on
the modulation of the fibre optic core refractive index (δneff ).
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The δneff is described by Eq. (2.3),

δneff (x) = δneff (x)
{

1 + νcos

[
2π
Λ
x+ ϕ(x)

]}
(2.3)

where the parameter ν is the fringe visibility, ϕ(x) is the change in the grating period
along the length, Λ is the grating nominal period, and δneff (x) is the mean induced
change in the refractive index [26, 27]. The index x denotes the longitudinal direction
along the optical fibre. Any combination of these parameters allow the fabrication of
a grating, although the two most common types are (see Fig. 2.6):

• homogeneous grating; where the grating has a uniform periodic perturbation
in the refractive index of the fibre core (ϕ(x) = 0), and the reflection spectrum
has one narrow peak at the Bragg wavelength [21];

• chirped grating; where the perturbation in the refractive index has a linear
variation along the grating’s length, which causes a broad reflected spectrum
[28];

Figure 2.6: Schematic of the light reflection in a homogeneous and chirped grating.
The parameter Λ0 is the grating nominal period in an unstrained state;
ϕ(x) is the change in the grating period along the length.
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Both type of gratings have a similar measurement principle; i.e., any external
load or temperature variation affecting the grating region changes the effective index
of refraction and/or the period of modulation, which creates a change in the shape
and/or wavelength of the reflected light. Then, by tracking this change, it is possi-
ble to obtain an indirect measurement of the strain field and temperature variation
around the grating region.

The homogeneous grating is the most common type of FBG sensor, and it can be
found with a large choice of sensor configurations; also, this type of sensor has been
extensively studied, and examples of FBG’s applied to monitor different physical pa-
rameters within different fields (as aerospace, civil engineering, automotive, and wind
energy), can be found in literature [29–32]. The chirped FBG sensor is a more recent
technology, and it presents some advantages compared to the homogeneous grating,
as it is highly sensitive to non-uniform strain fields. This property gives the sensor
the ability to monitor crack propagation in polymers or fibre reinforced polymers
with a high resolution [33, 34]. However, the chirped FBG uses a larger bandwidth
per grating, fact that reduces its multiplexing capability. Therefore, having fewer
sensor per fibre optic line is the trade-off for higher non-uniform strain measurement
resolution.

The MareWint project partner that provided the FBG sensors (HBM-Fibersensing),
only produces the homogeneous grating type; thus, only homogeneous FBG were used
in this PhD project. However, the FBG’s were customized, in length and in its mul-
tiplexing configuration, to fit the different tests and applications addressed.

2.3.2.1 Measurement Principle
The spectral response of a homogeneous fibre Bragg grating is a single peak centred
at wavelength λb, as shown in Fig. 2.6. This can be described by the Bragg condition,

λb = 2neff Λ0 (2.4)

where neff is the mean effective refractive index at the location of the grating, and Λ0
is the constant nominal period of the refractive index modulation [21]. Any measured
change of the reflected spectrum can be correlated with the strain field or temperature
variation in the structure.

Response to uniform uniaxial strain field: when the grating is under a uniform
uniaxial strain field, the reflected peak λb shifts proportionally to the strain magni-
tude, as shown in Fig. 2.7a). This strain-wavelength shift relation can be describe
by,

∆λb = λb(1 − pe)ε (2.5)

where the parameter ∆λb is the reflected peak wavelength shift, pe is the optical fibre
photo-elastic coefficient, and ε is the uniform uniaxial strain field magnitude [20, 35].
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Figure 2.7: Homogeneous fibre Bragg grating response: a) response to uniform uni-
axial strain field, ∆λb is the reflected peak wavelength shift; b) response
to transverse stress, ∆λwv is the width of the peak split, λz and λy are
the polarized reflect waves; c) response to non-uniform uniaxial strain
field.

Response to transverse stress: a grating under a transverse stress field can ex-
hibit a birefringent behaviour, which can be described by the change of the refractive
index of the two polarized directions, neffy and neffz. This change in the isotropic
optical fibre structure creates a separation of the reflected peak in to two polarized
waves, as shown in Fig. 2.7b). The width of the peak split ∆λwv can be calculated
by,

∆λwv = Λn3
o

Ef
[(1 + νf )(p12 − p11)]|σz − σy| (2.6)

where the parameter Ef is the elastic modulus of the optical fibre, νf is the Poisson’s
ratio, n0 is the initial refractive index, p11 and p12 are the photo-elastic coefficients
of the optical fibre, and σy and σz are the stress acting in the grating transverse
direction [36–38].

Response to non-uniform uniaxial strain field: when the grating is under
a non-uniform strain field (strain gradient), its grating periodicity Λ changes from
uniform to non-uniform, which causes a distortion in the reflected peak [36, 39–41].
Strain evaluation based on a distorted peak can be very challenging, however this
information can be used to quantify other phenomena that can cause this type of
non-uniform strain field, like cracks, defects, etc.

Response to temperature: in a free grating (not embedded), temperature varia-
tion causes the fibre optic to thermally expand, which changes its grating periodicity
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Λ, and its refractive index neff . Thus, the wavelength shift ∆λb caused by tempera-
ture variation can be described by,

∆λb = 2
(
neff

∂Λ
∂T

+ ∂neff

∂T
Λ

)
∆T = λb[(1 − pe)αf + ξ]∆T (2.7)

where the parameter ∆T is the temperature change, αf is the optical fibre thermal
expansion coefficient, and ξ is the thermo-optic coefficient [29, 42, 43].

Embedded FBG response to strain and temperature: an embedded FBG
sensor presents a strain-temperature cross sensitivity; i.e., the load induced strain,
the temperature induced thermal expansion, and the thermal-optic cross dependency
generates the same sensor response, a wavelength shift of the reflected peak ∆λb.
Therefore, this temperature-strain cross sensitivity can be problematic for tests/ap-
plications where strain and temperature varies simultaneously. The response of an
embedded FBG response to strain and temperature is described by Eq. (2.8), where
the parameter αh is the thermal expansion coefficient of the host material.

∆λb = λb[(1 − pe)ε+ ((1 − pe)αh + ξ)∆T ] (2.8)

A detailed description of the FBG measurement principle can be found in:

• [P3] and [P4]- FBG response to uniform uniaxil strain, non-uniform strain,
and transverse stress field; FBG response during crack growth;

• [P2]- FBG response to strain and temperature; strain-temperature cross-sensitivity;
technique for independent measurement of strain and temperature;

• [P6]- FBG response to strain and temperature; strain-temperature cross-sensitivity;
cure-induced residual strain measurement;

2.4 ”Smart” Rotor Blade Design
As previously discussed, a unique damage mapping of each wind turbine rotor blade
is required to support the damage tolerance design and to accurately predict its re-
maining lifetime. To achieve this, the different life stages of the rotor blade need
monitoring, and the measured information integrated into a global multi-life-stage
model, a smart rotor blade model.
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For a monitoring system based on fibre Bragg gratings some measured parameters
at each life stage of the wind turbine rotor blade are:

• Manufacturing process: ensuring manufacturing quality level; process/blade
certification; initial structure damage map; control cure process; improve man-
ufacturing process; ensure consistency of defects, cracks, voids, dry-spots, etc.
within an acceptable tolerance;

• Transport: ensuring that critical loads are not achieved; pre-assembly check;

• Operation: damage detection; load monitoring; structural stability; active
control; vibration; damage mapping;

• Extreme situation/Emergency stop: damage assessment; load control;

• Repair: damage location; repair certification;

• Decommissioning: structural state; decommissioning or refurbishing; final
structure damage map;

In a ”smart” blade design philosophy (see Fig.2.8), the measured information is
fed back to other stages. This allows improvement of each individual stage in the
design process, and ultimately increases the structural reliability. For example, data
from the operation stage will allow an analysis of the structural performance and
a continuous improvement of the structure latest designs (concurrent engineering);

"Smart" Rotor Blade Design

Design

Manufacturing

Operation

Transport

Extreme Situation/ Emergency Stop
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Figure 2.8: Life stages of a wind turbine rotor blade: ”Smart” design based on
structure health monitoring (SHM).
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and, when an extreme load or a change in the material stiffness is detected, caused
by damage, the wind turbine operation limit can be readjusted so the structure can
operate safely until the next repair action.

However, it is not realistic to jump from the conventional turbine design to this
purposed smart wind turbine concept, by simply implementing a FBG in the struc-
ture and monitoring different parameters at different life-stages of the structure and
expect that this will lead to a structure that is able to operate safely in the presence
of damage. The current FBG technology is only half the way through; i.e., the sensor
and its different applications have been extensively studied and validated in a con-
trolled environment, however there is a lack of knowledge about its behaviour in real
applications, and how to integrate the data into the different stages. Also, there is a
visible knowledge and skill gap between the structural design and monitoring design,
where tools that can support the implementation of sensors into the design process
are lacking.

2.5 Multi-Life-Stage Monitoring System Based on Fibre
Bragg Gratings

Thus, this PhD project goals are to address these questions and decrease the gap be-
tween structural design and monitoring design, understand and improve measurement
of different physical parameters, and to develop tools that allow an easy implementa-
tion and signal post-processing. To do this, the FBG technology is applied conceptu-
ally to three life stages of the wind turbine rotor blade: design, manufacturing and
operation, as shown in Fig. 2.9.

This multi-life-stage concept defines the research activities performed during this
PhD project, and consequently the publications content. The different areas ad-
dressed are:

• FBG sensor: from FBG fundamentals to fibre reinforced polymer
measurements.
As this field is applicable to all life-stages presented in Fig. 2.9, it was im-
portant to do a complete overview of the FBG technology and study how this
knowledge can be applied to the different life-stages of the rotor blade. The
different measurement possibilities are addressed in the different annexed pub-
lications, together with solutions for overcoming some sensor limitations, such
as temperature-strain cross-sensitivity. The application of the FBG sensor to
the material testing procedure, manufacturing process, and operation/damage
situation, was analysed with the objective of finding the best implementation
solution so different parameters can be monitored according to the relevant
life-stage.
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Figure 2.9: Schematic of the multi-life-stage monitoring system based on FBGs.

Topics addressed:

– FBG work principle: uniform strain, non-uniform strain, and transverse
stress [P3, P4];

– FBG work principle: strain and temperature measurement [P2, P6];
– FBG signal post-processing [P4];
– FBG signal modulation [P5];
– Crack detection by FBG sensors [P3, P4];
– Cure-induced residual strain measurement [P6];
– Temperature-strain decoupling in tensile fatigue testing [P2];
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• Design stage: damage tolerant design and structural health monitor-
ing.
At the design stage, and within the damage tolerant and structural health mon-
itoring philosophy, two different topics were studied:

a) Damage modelling. It is important to fully understand the fracture
mechanisms that are present during delamination of FRP structures, so
this can be connected with the FBG measurement principle, and the min-
imal crack length that can be detected by the sensor system can be de-
termined. Thus, finite element method (FEM) models of delamination in
a double cantilever beam (DCB) specimen and rotor blade trailing edge
were developed and analysed. These FEM models were used to optimise
the FBG sensors, in terms of location and multiplexing configuration, and
also to study the impact of different fracture modes and loading condition
on the FBG response.
Further, FEM models rely on accurate material mechanical properties,
such as fracture energy, cohesive behaviour, yield stress, Young’s modulus,
etc., to simulate the details of the damage mechanism in FRP structures.
Thus, the fracture testing procedure by loading DCB specimens with un-
even moments, was the other topic analysed within the damage modelling
topic; where, the impact of the DCB specimen geometry, fracture proper-
ties, and fracture mode in the fracture process was analysed. In addition,
this study allowed development of FEM models that are numerically and
analytically validated, and that can be used as reference for the following
work (as FBG crack detection).
Topics addressed:

– Delamination/fracture mechanisms overview [P3, Appendix A];
– 2D/3D FEM model of DCB specimen: numerical and analytical vali-

dation [P3, Appendix A];
– Fracture process zone length: geometry and fracture properties depen-

dency [P7];
b) FBG response simulation. The FBG sensor response depends on the

way that the grating is deformed, i.e., the stress and strain field acting
along the grating defines the shape of the reflected spectrum. Thus, FBG
simulation becomes important in order to optimize the sensor for a certain
application or physical parameter being monitored. As an example, in the
crack detection approach using FBG sensors presented in paper [P3], FBG
simulation was used to support the sensor configuration and location, and
to obtain a sensing solution where the measurement capabilities were max-
imized while maintaining the sensor integrity/reliability (not damaging).
Also, these FBG simulations give a prediction of the signal output, which
can be used as the reference in the development of a real-time damage
monitoring system.
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Thus, a software (FBG_SiMul) to virtually simulate the FBG output and
support the implementation of the sensors in different structures, which
does not require a user with extensive knowledge about FBG sensors,
was developed. This software’s main objective was to reduce the knowl-
edge/skill gap between structural design and the monitoring system field.
Topics addressed:

– FBG signal modulation [P5];
– FBG signal output simulation from a FEM model [P5];
– User-interface software: FBG spectrum simulation and FBG time re-

sponse [P5];

• Manufacturing stage: FRP curing monitoring.
Within the manufacturing stage, FBG sensors can be used to monitor different
parameters, such as the curing temperature, resin flow, presence of dry spots,
etc., and eventually to certify the manufacturing process. The information
measured can be used to improve the manufacturing process, and to ensure
that critical parameters, like residual strain, maximum temperature, load, etc.,
are within the process limits. Additionally, these sensors, implemented in the
manufacturing stage can be used to monitor other parameters in other life stages
of the structure; for example, a sensor placed in the blade root to monitor the
resin flow during the manufacturing stage can be used later, in the operation
stage, to monitoring the loads/ bending moments at that location.
In this PhD Project, the cure-induced residual strain and its impact on the FRP
static and fatigue performance was studied. The main objective was to develop
a residual strain measurement solution based on FBG sensors, which could be
used to evaluate the impact of different curing parameters (temperature and
curing time), on the total amount of epoxy shrinkage and residual strain. This
information was used to design an optimum cure cycle, where the residual strain
is minimized and the fatigue performance maximized.
Topics addressed:

– Multi-parameter measurement [P2, P6];
– Temperature-strain decoupling [P2, P6];
– Residual strain monitoring [P6];
– Influence of residual strain in the FRP static and fatigue performance [P6];

• Operation and Damage Detection stage
Within the operation stage, FBG sensors can be used to monitor different struc-
tural parameters, as load/ strain levels, vibration, temperature, which can be
used to ensure that the structure is within the operation limits. When imple-
mented with an active control system, the FBG sensors can be used to control
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the blade pitching in real-time, using the strain measurements from the rotor
blade root1. However, only damage detection during operation was the focus of
this PhD project within the operation stage.
In order to simulate the failure of the trailing edge of the DTU 10 MW reference
wind turbine, DCB specimens produced with the same material configuration
as the trailing edge were tested in different fracture modes, and the different
features of the damage mechanism were analysed using digital image correlation.
Thus, specific phenomena caused by the crack, such as non-uniform strain or
transverse stress, were correlated with the FBG response, and proved that by
tracking this information the sensor response is independent of the loading
type, geometry and boundary conditions, and depends only on the presence of
damage. Additionally, the DCB FEM models and sensor simulation developed
at the design stage were validated experimentally, and the consistency of the
results showed that the FBG_SiMul software can predict the sensor output,
and it is an excellent tool to design the sensor configuration in an intuitive and
reliable way.
Topics addressed:

– Damage detection by FBG sensors [P3, P4];
– DCB experimental validation: crack detection with embedded FBG sensors

[P3, P4];
– FBG_SiMul software: sensor optimization, sensor position and signal sim-

ulation [P3, P4, P5];
– Trailing edge delamination detection by FBG sensor: FBG_SiMul simula-

tion [P5];

1Prototype system for pitch control: Eleon On-Shore Prototype Wind Turbine, http://www.
fibersensing.com/market/wind/view/pitch-control-16

http://www.fibersensing.com/market/wind/view/pitch-control-16
http://www.fibersensing.com/market/wind/view/pitch-control-16


Chapter 3
Summary of Results and

Concluding Remarks
The SEVEN PAPERS [P1-P7] and their contribution to this PhD project are briefly
presented below. The papers cover all the topics addressed within the multi-life-stage
monitoring system based on fibre Bragg grating sensors. Starting from a new de-
sign philosophy, based on damage tolerant design and structural health monitoring,
where a wind turbine rotor blade can operate even in the presence of damage. Then,
this concept is explored using FBG sensors as the selected structural health mon-
itoring technology, and its capability to measure different parameters at different
stages, such as crack detection, independent strain-temperature, residual strain, etc.,
is demonstrated. There is then presented a software (FBG_SiMul) developed to
simulate the FBG sensor signal response to most of the applications. This software
reduces the knowledge/skill required to implement this structural monitoring system
in the design process of a wind turbine rotor blade. Within the topics addressed in
this PhD, the software was applied to FEM models of the DCB and trailing edge
delamination. Collectively, these articles seek to trace the research path required for
a viable multi-life-stage monitoring system, which can be applied to a wind turbine
rotor blade.

3.1 Summary of Results
Damage tolerance and structural health monitoring, Paper P1
In Paper P1, a methodology for reliable design and maintenance of wind turbine
rotor blades based on a damage tolerance an structural health monitoring approach is
presented. This design philosophy allows a structure to operate despite the presence of
damage. To accomplish this, the structure is designed with damage tolerant materials
with built-in sensors; and, the damage detected by the sensors is feedback in to
models that predict the residual life of the structure, and then plan the required
maintenance/inspection action.

Examples are given on how materials can be tailored to provide higher damage
tolerance, and the concept of a damage tolerance index is introduced. Finally, the
steps required for a gradual implementation of this proposed design philosophy are
presented.
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Independent measurement of strain and temperature by embedded
FBG sensors, Paper P2
Paper P2 was developed within the FBG measurement fundamentals, and it presents
a novel method to obtain independent strain and temperature measurements using
embedded FBG sensors in polymeric tensile tests. The temperature and strain cross-
sensitivity is an issue for measurements with embedded FBG sensors, especially in
long tests, where external variation of temperature can occur. This temperature
variation generates a thermal strain that is not taken into account by the measurement
system, inducing an error on the strain measurement.

Thus, the fundamental equations that describe the sensor response to tempera-
ture and strain are analysed in this article; and, the strain and temperature cross-
sensitivity is decoupled by using a novel tensile specimen set-up, composed of two
FBGs sensors embedded with a certain angle between them. Equations describing
this method, which allows strain and temperature calculation from the FBGs signal,
were derived from the general FBG work principal. This multi-parameter measure-
ment method is demonstrated and validated in an epoxy tensile specimen, tested in
a unidirectional tensile test machine with a temperature controlled cabinet. Finally,
two calibration protocols are suggested, one that is fast to perform, and the other
having higher accuracy, obtaining an independent measurement of temperature and
strain with an error smaller than 1%.

Crack detection in FRP materials by FBG sensors, Paper P3
Paper P3 fits within the design and operation stage, described in the wind turbine
rotor blade multi-life-stage monitoring system. The crack detection by embedded
FBG sensors is the central topic addressed in this article, where a novel method is
presented for assessing a crack growth event in fibre reinforced polymer or structural
adhesive bonded structures by combining conventional measured parameters, such
as wavelength shift ∆λb, with parameters associated with measurement errors. It
is demonstrated that specific FBG responses, peak-splinting and peak-width, can be
correlated with the presence of damage, and it was shown that this information is
independent of the loading, structure geometry, and boundary conditions, and only
depends on the proximity of the crack.

To achieve this, three different topics in the article are explored:

• damage mechanisms. Where the delamination/fibre bridging in DCB specimens
is analysed for different fracture modes, and the stress distribution along the
crack is simulated;

• FBG crack detection principle. Here, the sensor response for different damage
situations is characterized (experimentally);
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• FBG simulations using DCB FEM models. Both previous topics are merged
together into a tool (algorithm) used to predict the sensor output, and where
the sensor-structure configuration can be optimized.

This monitoring method was demonstrated and validated using DCB specimens
instrumented with an array of 5 FBGs embedded in the material, and tested using an
experimental fracture procedure. The strain field in the DCB specimens during the
fracture test was monitored with the digital image correlation technique, which was
used to link the different fracture features with the sensor response, and consequently
validate the FBG detection principle suggest by the authors.

FBG signal post-processing algorithm for crack detection, Paper P4
This paper P4 is a continuation of the work developed in paper P3, with a special focus
on the FBG signal post-processing. The digital image correlation measurements, and
the correlation between the FBG response and the different fracture/crack features are
explored with more detail here. An algorithm for post-processing the FBG output raw
signal is presented, which can evaluate the shape of the reflected wave and distinguish
between a single peak and a multi-peak. This algorithm gives two more parameters
than the conventional FBG measurements (conventional system- wavelength shift;
algorithm- number of peaks,wavelength shift, and peak width). The algorithm was
demonstrated and validated using DCB specimens instrumented with an array of 5
FBGs embedded in the material and tested using an experimental fracture procedure.

FBG_SiMul: FBG signal simulation software, Paper P5
There is a lack of tools that can support the implementation of FBG sensors into
structural health monitoring application, and there is a knowledge gap between the
wind turbine rotor blade designer and the fibre optic expert. Thus, in paper P5
a software to simulate the FBG signal from a FEM model was developed. This
software is a design tool that can be applied to any kind of structure or application,
and it removes the need of an expert user in fibre optic technology. The software
FBG_SiMul has a graphical user-interface, meaning that no programming knowledge
is required from the user, and parameter manipulation is more intuitive. All the input
parameters are pre-checked by the code, meaning that the simulation is robust and
does not crash or give calculation errors.

The software uses a modified T-Matrix method to simulate the reflected spectrum
based on the stress and strain from a FEM model. The theory and algorithm imple-
mentation are presented, and an empirical validation is performed. The software is
divided in to 3 main tools: a tool to extract the stress and strain along an optical
fibre path from a FEM model; a tool to simulate the reflected spectrum for a specific
time increment; and, a tool to simulate the FBG time response. A user-manual is
provided together with the software, and a illustrative case is presented, where the
FBG sensor is simulated and optimized for crack detection.
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Cure induced residual strain measurements by FBG, Paper P6
Paper P6 fits within the manufacturing stage, described in the wind turbine rotor
blade multi-life-stage monitoring system, in which a residual strain measurement
solution based on FBG sensors is presented. The main goal is to evaluate the impact
of different curing parameters (cure of an epoxy system), in the cure induced residual
strain, static performance, and fatigue life.

To do this, a new FBG measurement methodology (algorithm) was developed,
which allows temperature-strain cross sensitivity decoupling, and gives as output the
residual strain, the resin temperature, and curing gelation time. It is demonstrated
experimentally that the residual strain strongly depends on the curing temperature
and on the reaction exothermic peak, increasing as these two parameters increase.
The tensile tests performed showed that the residual strain had no impact on the
epoxy and FRP static performance; although, the fatigue test results showed that
the FRP fatigue performance is decreased when the curing temperature increases,
suggesting that the FRP fatigue performance strongly depends on the amount of
cured induced residual strain.

The results achieved have a tremendous importance for the control and optimisa-
tion of the cure process of wind turbine rotor blades, and demonstrates that a FBG
sensor can be used to minimize the residual strain and ensure that critical parameters,
such as residual strain or resin temperature, are within design limits.

Fracture process zone length in DCB specimens: geometric and
cohesive-law dependency, Paper P7
This article is a result of the work presented in Appendix-A, and even if it does not
fit within the multi-life-stage monitoring system, it has a big impact on the DCB
fracture testing, and consequently in the fracture properties used in the FEM models
that were developed within this PhD project.

One requirement of the DCB fracture test procedure, where the J-integral is used
to evaluate the energy release rate, is that a steady state fracture energy should be
obtained; in other words, a fully formed fracture process zone should fit within the
specimen length. Thus, the specimen geometry and cohesive law influence on the
fracture process zone length (FPZL) is analysed in the article. Analytical equations
describing the FPZL for 3D DCB specimens are derived from literature and beam
theory, and numerical validation is performed. It is demonstrated that the FPZL is
strongly influenced by the specimen geometry, especially in DCB specimens with side-
grooves, where the FPZL increases exponentially with the ratio side-groove/specimen
width. Also, it is shown that ductile cohesive-law materials have a larger FPZL, which
can be critical in fracture mode-II loading. Finally, simplified equations that describe
how the FPZL scales with the geometry and fracture properties are developed, these
can be used to design the specimen dimension in order to obtain a valid fracture test.
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3.2 Contributions and Impact
The work presented sets the required framework to developed a multi-life-stage moni-
toring system based on fibre Bragg gratings, and how it fits within a damage tolerant
design for a wind turbine rotor blade. The work focused on three life stages, design,
manufacturing, and operation, and in future should be applied to the reaming life-
stages. Nevertheless, it is shown that a structural health monitoring system should be
applicable to all design stages and considered an integrated part of the structure, and
not only a damage assessment tool. To the author’s knowledge, no research papers
deal with the integration of FBG sensors at different life stages of the wind turbine,
or approach the FBG measurement principles in different fields, as signal simulation,
FEM prediction, material testing, etc.

Paper [P1] describes a completely new approach of wind turbine rotor blade design,
based on a damage tolerance design, where a wind turbine can operate safely even in a
damaged state. The materials and monitoring requirements needed to achieve this are
set in this work; and, once accomplished it can give the technological opportunity to
enable the future very large wind turbine rotor blades. This article sets the common
ground for the remaining articles developed in this PhD project.

In paper [P2] and [P6], the measurement capabilities of FBG sensors in material
testing and its strain-temperature coupling issues are explored. The author believes
that a FBG sensor, implemented in the manufacturing stage of a wind turbine ro-
tor blade, can control a large variety of parameters during the different life stages
of the structure; one application can be to monitor if the material mechanical prop-
erties (ex: stiffness) are within the design limits. Thus, it becomes important to
use FBG sensors in the material testing procedure, not only to characterize the ma-
terial but also to understand and calibrate the sensor for that application. Paper
[P2] addresses the strain and temperature cross-sensitivity issue of embedded FBG
sensors, and a method to obtain independent strain and temperature measurement
in polymeric tensile test specimens is presented. This method is specially useful for
fatigue testing, where the material self-heating generates a thermal-strain caused by
thermal expansion. The main advantage of this method is that it does not required
any extra hardware (uses conventional FBGs and conventional interrogators), and is
simple and fast to implement.

In Paper [P6], the effect of the curing temperature in the residual strain and
material performance is analysed. To the author’s knowledge, no research has been
made to link the curing profile with these different material properties, or even using
FBGs to optimize the curing process. This methodology (algorithm developed) can
be directly implemented in the rotor blade manufacturing stage, allowing a real-time
residual strain measurement and a controlled curing process.

In paper [P3] and [P4], the crack detection in FRP structure by embedded FBG
sensors is addressed. A novel method for crack detection by combining conventional
measured parameters with parameters associated with measurement errors is pre-
sented. A signal output post-processing algorithm is developed, and the crack detec-
tion method is applied to DCB specimens loaded in different fracture modes. The
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novelty of this work, is that the sensor measurement principle was analysed from
a material and damage mechanism perspective, which allowed us to create a tool
that can be used to predict the sensor output, and to optimize the sensor-structure
configuration.

The implementation of FBG sensors in monitor application is not a trivial task, as
it requires a user/designer with an extensive knowledge about the FBG measurement
principle. Inspired by this, in paper [P5] a software that simulates the FBG signal
from a FEM model is presented. This software will allow sensor simulation to become
part of the design process, where output is simulated and optimised to a structure
or application. This will have an immediate impact on the planning, development
and implementation of monitoring approaches, as well as promoting further research
to include active control elements in the software and real-time data-driven feedback
control for smart structures in the future. Equally important is that the software
is robust and runs from a user friendly interface, and can be applied to any kind of
FEM software, and to the author’s knowledge, no tool has been developed to perform
such function.

3.3 Future Work
As mentioned previously, this work sets the framework required to obtain a multi-life-
stage monitoring system based on FBG sensors; however, due to the short duration
of the PhD project, there is more research topics that need to be addressed to achieve
such a concept. The sensor can provide useful information in other life-stages of the
wind turbine rotor blade, such as repair, transport, etc.; thus, expanding this concept
to those stages, and analysing which physical parameters can be monitored by the
FBG sensors, is the next step to take into consideration. Furthermore, inside the
life-stages addressed, there are more parameters that can be monitored, especially
in operation, where the sensor can monitor loads and provide information for active
control of the structure.

Measurement reliability and viability studies in an operational wind turbine rotor
blade will raise other type of challenges that need to be considered, such as how to
install the sensors, sensor replacements/repair, calibration, etc.

Finally, all this FBG-measured information will require decision making algo-
rithms, and action protocols, to deal with possible problems detected. Thus, there is
a lot of work to be made in terms of data post-processing/analysis, and integration
with other measurement systems.
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Appendix A
Double Cantilever Beam
Delamination Modelling:
a representation of a rotor blade trailing edge

The intention of this appendix is to demonstrate that the delamination in a rotor
blade trailing edge can be analysed, from a material perspective, as a delamination in
a double cantilever beam. To achieve this, the wind turbine rotor blade structure and
its main failure types are described, and linked with the failure mechanisms present
in the DCB fracture test. Then, different FEM damage modelling techniques that
can be applied to the simulation of delamination in DCB specimens are explored, and
a DCB FEM model is produced and validated analytically.

Additionally, it is described how the DCB specimen material and geometry (for the
FEM models and experiments) were selected; to match the trailing edge of the DTU
10 MW reference wind turbine. Keep in mind that this DCB specimen configuration
and FEM model are used in the different topics addressed throughout this PhD
project.

A.1 Wind Turbine Rotor Blade Structure
The most common wind turbine configuration is three bladed horizontal axis (HAWT).
The blades have a significant contribution to the final structure price, and conse-
quently the cost to produce energy [1, 2], as shown in Fig. A.1. The output power of
a wind turbine is related to the rotor length (see Fig. 1.1); thus, it is important to
develop new design methodologies, manufacturing processes, and to apply advanced
materials in order to design longer structures. On the other hand, the weight of the
rotor blade has a big impact on the other components of the wind turbine, i.e., heavier
rotor blades require stronger bearings, thicker and heavier towers, deeper foundations,
etc. Thus, reducing the amount of material and saving some weight in the rotors will
decrease the final price of the wind turbine, and consequently the cost to produce
energy.

In terms of design, the wind turbine rotor is composed of a big variety of sub-
components that are produced by different processes and combination of materials,
and the requirements of these sub-components are based on several structural and
aerodynamic considerations. The design of a wind turbine rotor is a multidisciplinary
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field with a high level of complexity, and it relies on improvements in structural design,
manufacturing processes, and material properties to meet the requirements for longer,
light-weight, and stronger rotor blades.

The aerodynamic profile (airfoil shape), formed by two asymmetric shell structures
glued together, defines the other shape of the turbine rotor [3–5]. These streamlined
shells form the aerodynamic suction and pressure side, which generates the torque
moment that is transferred to the load-carrying components. There are two main
types of load-carrying configuration designs [5, 6]: a load-carrying laminate in a
rectangular hollow beam, also called spar, as shown in Fig. A.2a); or a combination
of load-carrying laminate incorporated in the outer shell reinforced with two or three
shear webs, as shown in Fig. A.2b);

Figure A.1: Cost share of 5 MW wind turbine main components. (Picture modified
from figure 1.11 in The Economics of Wind Energy, a report by the
EWEA [1]).
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Figure A.2: Schematics of the two main load-carrying configuration design types. a)
load-carrying laminate in a rectangular hollow beam, and b) combina-
tion of load-carrying laminate incorporated in the outer shell reinforced
with two or three shear webs.

The spars/shear webs are the components responsible for carrying the bending
moments and restraining the cross section against torsion and buckling deformation.
Sandwich cores are assembled between the outer shells at the leading edge, between
the spar and outer shell, and between the outer shells, using structural adhesives,
which increase the structure’s moment of inertia and consequently less material is
required [5, 6]. In summary, the main parameters that drive the material selection
for wind turbine rotor blades are high stiffness, low density (high stiffness-weight
ratio), and long fatigue performance [7]. The most commonly used materials in the
modern wind turbine rotor blade are:

• Composite materials:

– Reinforcements: glass fibre, carbon fibre, natural fibre;
– Matrix: epoxy, vinylester, polyester, bio-based;

• Sandwich cores: balsa, polyvinyl chloride, Polyethylene terephthalate, polystyrene;

• Structural adhesives: epoxy, vinylester, methyl methacrylate;

A.2 Wind Turbine Rotor Blade Failure
A wind turbine rotor blade can develop various types of damage, as shown in Fig. A.3,
which ultimately can lead to its failure. This damage can occur in the component
itself, when the materials limit is reached; for example, when the laminate fails by
fibre failure in tension, or by delamination (cracking along the laminate plies). Or
this damage can occur in the components joints, as failure in the adhesive bonded
joints. Of these, delamination of the laminate and failure of the bonded joints are
usually the most critical and difficult to predict during the design process [6, 8, 9].
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Figure A.3: Schematic representation of the major failures and critical areas in the
wind turbine rotor blade.

Ataya and Ahmed [10] found multiple trailing edge damage when they analysed wind
turbines that has been operating for more than 17 years (81 blades of 100kW and
18 of 300 kW wind turbines); they found cracks with lengths up to 0.59 m on the
blade root and 1.35 m in the trailing edge, and concluded that transverse cracks were
mainly concentrated in the high fatigue areas.

For these reasons, this PhD project was focused on these two failure mechanisms,
delamination and adhesive bonded failure, at the trailing edge, and its different failure
mechanisms were analysed and modelled. Thus, all the specimens, models, and cases
developed along the PhD project were based on the trailing edge configuration of the
DTU 10 MW reference wind turbine (described in section 1.2.1).

A.2.1 Trailing Edge Failure
Even though the trailing edge failure has been identified as a common cause of rotor
blade premature failure, it is still poorly understood, mainly due to its complex ge-
ometry and loading conditions, and the lack of models that can represent its complex
and multiple damage mechanisms. Haselbach, et al. [11, 12] conducted a comprehen-
sive numerical and experimental investigation of the trailing edge damage, where the
effect of geometric non-linear cross section deformation and the formation of trailing-
edge waves were studied. In these studies, it was concluded that the trailing-edge
components experience not only mode-I fracture, but a mixed mode of fracture con-
ditions, and that delamination can promote local buckling, decreasing the structure
resistance.

Thus, despite the promising results from Haselbach the trailing edge damage mech-
anism is too complex to be analysed by conventional models, and experimental vali-
dation requires a full scale test of a wind turbine blade that will be very expensive or
even impossible to be make. To overcome this, some authors (and also in this PhD
project) approximate the trailing edge with cases already studied and with known
solutions, double cantilever beam (DCB) specimens; also, DCB specimens have been
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used by several authors for material testing (ex: fracture properties), therefore sev-
eral test procedures were developed based on this specimen configuration. Eder and
Bitsche [8] investigate the fracture energy release of prescribed cracks in the trailing
edge, by using DCB specimens as a representation of different trailing edge config-
urations. In this study, the DCB experimental results were linked with numerical
models of the trailing edge failure.

A.3 DCB specimen as a Trailing Edge Representation
Some phenomena observed in the damage process of the trailing edge, at the rotor
blade length scale, need to be studied at a smaller scale, as sub-component, laminate,
or even at fibre-matrix scale, in order to understand the damage mechanism and its
impact on the structure behaviour. For this reason, and from a material point-of-view,
the DCB specimen is a good starting point to study the trailing edge failure, as this
specimen configuration has been extensively studied and characterized. In Fig. A.4,
some DCB configurations used to test delamination and adhesive bonded failure are
shown.

Figure A.4: DCB specimen schematic representation: laminate-adhesive and
laminate-laminate failure interface.
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Figure A.5: Schematic representation of the three fundamental fracture modes.

Before describing the numerical modelling and experimental testing of DCB spec-
imens, the fracture mode concept needs to be introduced. There are three funda-
mentals fracture modes, mode-I, mode-II, and mode-III, (see Fig. A.5) which can be
defined by the direction of the stress and opening to the crack plane; mode-I is an
opening fracture mode, where the tensile stress and opening are normal to the crack;
mode-II is a shear (sliding) mode, where the shear stress and opening are parallel
to the crack plane and perpendicular to the crack front; and, mode-III is a tearing
mode, where the shear stress and opening are parallel to the crack plane and parallel
to the crack front (out-of plane). As the DCB specimen can be loaded with different
combination of forces and moments, any combination of these fracture modes can be
obtained, also called mixed-mode fracture.

A.3.1 Numerical Modelling
Several authors developed numerical models that can represent the adhesive failure
and the delamination mechanisms in DCB specimens. Two distinct approaches have
been applied:

a) Linear elastic fracture mechanics (LEFM). In LEFM theory, the material
behaviour is considered linear and the structure is modelled as a continuously
distributed material. The strain energy release rate, G, is the amount of energy
consumed per unit area by the crack tip fracture process as the crack advances,
and it is described by Eq. (A.1).

G = −dΠ
dA

(A.1)

The parameter dΠ represents the variation of the potential energy, and dA is the
created fracture surface [13]. Therefore, the fracture toughness (Gc) can be defined
as the minimum amount of energy required for a crack to grow,

Gc = dWs

dA
= 2wf (A.2)
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where Ws is the work required to create new surfaces, and wf is the fracture energy.
LEFM allows the fracture toughness to be evaluated from the stress intensity
factors Ki, as described by Eq. A.3.

Gc = K2
I

E′ + K2
II

E′ + K2
III

2µ
(A.3)

The parameter KI , KII and KIII are the stress intensity factors for mode I, II,
and III, respectively, µ is the shear modulus, and E′ is E (Young’s Modulus)
for plane stress cases and E/(1 − ν2) for plain strain cases (ν is the Poisson’s
ratio). The stress intensity factor is a parameter that scales the magnitude of the
singular stress field in the region near the crack tip, and for an isotropic linear
elastic material can be defined as:

KI = lim
r→0

√
2πrσyy(r, 0) (A.4)

KII = lim
r→0

√
2πrσyx(r, 0) (A.5)

KIII = lim
r→0

√
2πrσyz(r, 0) (A.6)

Thus, delamination is predicted by LEFM theory when a combination of the stress
intensity factors is equal to, or greater than, the fracture toughness. In terms of
DCB numerical modelling using LEFM theory, different techniques can be found
in literature: virtual crack closure technique (VCCT) [8, 14], virtual crack ex-
tension method (VCE) [15], and finite crack extension method [16, 17]. How-
ever, these techniques present some limitations. It is not possible to predict the
crack initiation, because LEFM requires a crack tip (singularity) to calculate the
stress intensity factors; and, progressive and stable crack propagation is difficult
to model.

b) Cohesive Zone Modelling (CZM). In CZM theory, the fracture process is anal-
ysed phenomenologically, and the effect of the material damage initiation, pro-
gression and failure is incorporated into the model. The CZM theory was initially
develop by Dugdale [18] and Barenblatt [19], and it has been improved/modified to
represent different damage mechanism, as FRP delamination and fibre bridging, by
other authors [20–22]. A CZM model describes the material stiffness degradation
at the damage interface by a traction-separation law, which relates the traction
stress at the crack faces with normal and tangential crack opening directions[23].
The traction-separation law can be described as:

σn =σn(δn) (A.7)
σt =σt(δt) (A.8)
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where σn and σt are the cohesive stress in the normal and tangential direction,
respectively, and δn and δt are the crack face displacement also in the normal and
tangential direction. Under mixed-mode loading, the coupling effects between the
different opening modes need to be considered, which can be handled by different
theories available in literature. The two most used mixed-mode coupling theories
are the power-law and the BK-law [24, 25]. The power law is defined as,

(
GI

GIc

)α

+
(
GII

GIIc

)β

+
(
GIII

GIIIc

)γ

= 1 (A.9)

where the parameters GIc, GIIc, and GIIIc are the fracture toughness for the three
fundamental fracture modes, GI , GII , and GIII are the individual component of
energy release rate (for a given time), and α, β, and γ are fitting parameters. Thus,
the material is considered damaged when power-law is full-filled (=1).
The BK-law is another failure criterion that, in some cases, can fit the experiments
more accurately, which was initially developed by Benzeggagh and Kenane [24],
the BK-law is described by Eq. (A.10).

GIc + (GIIc −GIc)
(

GII +GIII

GI +GII +GIII

)η

= Gc (A.10)

The parameter η is a parameter found by fitting the BK-law with experimental
data. The traction-separation curve, σn(δn), for mode I is schematically repre-
sented in Fig. A.6. The material does not develop permanent deformation/-
damage before the stress reaches σ̂n; however, once σ̂n is reached, the damage
is initiated and the cohesive traction decreases with increasing separation. The
traction-separation can present different shapes, as linear, bi-linear, exponential,
etc., which depends on the material fracture properties; yet, the area under the
traction-separation curve represents the material fracture toughness (Gc). In
terms of FRP delamination with fibre-bridging behaviour, CZM is a more com-
plete damage modelling approach when compared with LEFM, as it can handle
crack initiation and crack growth within the same model. Additionally, a CZM
approach is easier to implement, as the simulation is more stable and has fewer
convergence issues. However, CZM requires that the user pre-defined the cohe-
sive surfaces or cohesive element, which eventually limits the crack growth to that
pre-defined plan/path.
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Figure A.6: Schematic representation of a traction-separation curve (σn(δn)) for
mode-I fracture; L represents the fracture process zone, σ̂n is the maxi-
mum traction stress that defines damage initiation; the area under the
curve represents the fracture energy Gc.

A.4 Experimental Testing
From an experimental point view, the DCB is a common type of test specimen,
and it has been extensively used in research and industry to determine the fracture
properties of FRP materials and structural adhesives [26–29]. With relevance for this
PhD project, a fracture test machine developed by Sørensen1 [27], allowed testing of
the DCB specimens in different fracture modes (mode I, II and mixed mode) with
a stable crack growth. This was especially important during the DCB test with
embedded FBG sensors, where the test could be paused without reducing the applied
load, allowing a correct measurement of the FBG signal for different crack positions.

A.4.1 Determination of Bridging/Cohesive Laws by J-integral
During large-scale bridging, such as found in FRP delamination, LEFM cannot fully
represent the damage mechanisms. However, the cohesive-law and consequently the
energy release rate can be calculated using the path independent J-integral.

1fracture test machine located at DTU Wind Energy-composite material section;
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Initially developed by Rice [30], the J-integral is defined as:

Gc = J =
∫

Γ
Wdx2 − σijnj

∂ui

∂x1
dS (A.11)

where Γ is a contour around the crack faces, ui indicated the displacement vector,
nj is the outwards normal direction to the contour, W is the strain energy density,
and σij is the stress tensor. S denotes the curve length along the contour Γ, and the
strain energy density can be described by Eq. (A.12).

W =
∫ ε

0
σijεij (A.12)

Due to its path-independent nature, the J-integral evaluated around the fracture
process zone and around the external boundaries is identical (Jext = Jloc) [31], as
shown in Fig. A.7. Therefore, the calculation of the cohesive-law and fracture energy
in a DCB specimen can be obtained by integrating the J-integral around the external
boundaries.

Figure A.7: J-integral path independent integration: Jloc and Jext around the frac-
ture process zone.

Sørensen and Kirkegaard [23] developed a generalised mixed-mode J-integral, de-
scribed by Eq. (A.13), which can be applied despite the shape of the cohesive-law
and the interaction of different modes.

J = Jloc =
∫ δ∗

n

0
σn(δn, δt)dδn +

∫ δ∗
t

0
σt(δn, δt)dδt + J0 (A.13)

The parameter δ∗
n and δ∗

t represent the end-crack opening/sliding in normal and
tangential directions, respectively, and J0 is the crack tip fracture energy. Then,
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the cohesive traction-separation law for any mixed-mode can be determined by Eq.
(A.14) and (A.15).

σn(δ∗
n, δ

∗
t ) =∂J(δ∗

n, δ
∗
t )

δ∗
n

(A.14)

σt(δ∗
n, δ

∗
t ) =∂J(δ∗

n, δ
∗
t )

δ∗
t

(A.15)

A.4.2 J-integral Measurement in a DCB Specimen
For a symmetric DCB specimen loaded with moments2 (see Fig. A.8), the J-integral
evaluated around the external boundaries is given by [27]:

Gc = J = 21(M2
1 +M2

2 ) − 6M1M2

4B2H3E′ for |M1| < M2 (A.16)

The parameter E′ represents the E (Young’s Modulus) for plane stress cases and
E/(1−ν2) for plain strain cases (ν is the Poisson’s ratio), M1 and M2 are the moments
applied to the top and bottom beams, respectively, B is the specimen width, and H
is the specimen height. Note that the J-integral is valid for both LEFM problems
and large-scale bridging, and for LEFM cases J = Gc.

During the DCB fracture testing, the values of M1, M2, δ∗
n, and δ∗

t are recorded
until a steady crack growth state is achieved. The moments are calculated from the
force applied to the test machine’s transverse arms (see Fig. P3.20), and the opening
is measured from an extensometer and a LVDT mounted at two pins between the two
crack faces.

Figure A.8: DCB specimen loaded with moments, M1 and M2; L represents the
specimen length, δ is the opening, B is the specimen width, and H is
the specimen height.

2load configuration used in the fracture test machine developed by Sørensen [27];
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The J is calculated using Eq. (A.16), and the traction-opening cohesive-law (σ(δ))
is obtained by partial derivation J in function of δ∗

n, and δ∗
t , as described in Eq. (A.14)

and (A.15).
This procedure can be performed for multiple M1-M2 combinations to determine

the cohesive-law for pure mode I, pure mode II, or any mixed-mode combination; Ψ
defines the mode mixity of the test based on the moments ratio [27]:

Ψ = tan−1
(√

3
2
M1 +M2

M2 −M1

)
for |M1| < M2 (A.17)

A.5 DCB Specimen Configuration Based on the DTU 10
MW Wind Turbine

The configuration of the DCB specimen used in this PhD project was based on the
DTU 10 MW reference wind turbine; i.e., the modelling and experimental properties
(material and geometry) of the DCB specimen were based on the properties presented
in the report ”Description of the DTU 10 MW reference wind turbine”[32]. The
experimental protocol, specimen manufacturing, and DCB testing is described with
more detail in papers [P3, P4].

Figure A.9: DCB specimen configuration based on DTU 10 MW wind turbine: a)
Wind turbine cross section geometry; b) Trailing edge finite element
model; c) DCB specimen produced based on DTU 10 MW configura-
tion.
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Laminate Configuration
The laminate configuration of the trailing edge varies along the rotor blade length, as
shown in Fig. A.10 and table A.1; however, in order to manufacture DCB specimens
that can be tested and validated by models from the literature, constant material
properties and standard laminate lay-up are required. In addition, its location in
the blade should represent a known critical area, with large deformation or material
variation (ex: balsa to no-balsa transition). For these reasons, we select the position
at 70 m from the rotor blade root as reference for the geometry and material configu-
ration, as specimens with that geometry and material configuration can be produced
and tested in our in-house testing machine; and also, at 60-70 m there is a transition
point in sandwich structure making it an interest location, where damage can initiate.

⇒ Selected laminate configuration (at 70 m):
2.2 mm Triax/ 2.6 mm UD/ 2.6 mm UD/ 2.2 mm Triax.

Table A.1: Layup configuration of the DTU 10 MW rotor blade trailing edge [32].

X position
[m]

Triax
[mm]

Uniax
[mm]

Balsa
[mm]

Uniax
[mm]

Triax
[mm]

10 7.1 7.2 30.0 7.2 7.1
20 4.2 5.5 70 5.6 4.4
30 2.8 5.1 55.0 5.1 2.9
40 2.6 4.5 30.0 4.5 2.6
50 2.5 3.8 15 3.8 2.5
60 2.3 3.3 5.0 3.2 2.3
70 2.2 2.6 0.0 2.6 2.2
80 2.0 1.9 0.0 2.0 1.9

Figure A.10: Trailing edge layup configuration along the rotor blade length (picture
from ”Description of the DTU 10 MW reference wind turbine” [32]).
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Theoretical Mechanical Properties of the Laminate
The theoretical mechanical properties of the laminate, implemented in the numerical
models, were calculated based on the properties of the constituent materials using
micro-mechanics equations and classical laminate theory. The mechanic properties
of the constituent materials, epoxy matrix and E-glass fibres, are presented in table
A.2.

Table A.2: Mechanical properties of the epoxy matrix and E-Glass Fibre [32, 33].

Property Epoxy Matrix E-Glass Fibre

Young’s modulus (GPa) 0.35 (Em) 75 (Longitudinal Ef1)
75 (Transverse Ef1)

Poisson’s ratio 1.4815 (νm) 0.2 (νf12)

Shear modulus (GPa) 1.4815 (G(a)
m ) 31.25 (In-plane G(b)

f12)
31.25 (Transverse G(c)

f23)
(a)Gm = Em/(2(1 + νm))
(b)chosen as Gf12 = Ef1/(2(1 + νf12))
(c)chosen as Gf23 = Gf12

The laminate Young’s modulus is given by Eq. (A.18), where Ef1 and Ef2 are
the E-Glass fibre longitudinal and transverse Young’s modulus, respectively, Em is
the epoxy matrix Young’s modulus, Vf is the fibre volume fraction, and Vm is the
matrix volume fraction [32].

E1 = Ef1Vf + EmVm; E2 = Em

1 −
√
Vf

(
1 − Em

Ef2

) ; (A.18)

The laminate shear modulus is given by Eq. (A.19), where Gf12 and Gf23 are the
E-Glass fibre in-plane and transverse shear modulus, Gm is the epoxy matrix shear
modulus.

G12 = Gm

1 −
√
Vf

(
1 − Gm

Gf12

) ; G23 = Gm

1 −
√
Vf

(
1 − Gm

Gf23

) ; (A.19)
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Table A.3: Mechanical properties of the theoretical laminate with a fibre volume
fraction Vf of 60%.

Property Laminate Unit
Fiber volume fraction Vf 0.60 -
Young’s modulus in Fiber direction E1 46.20 GPa
Young’s modulus transv. Fiber dir. E2 11.70 GPa
Young’s modulus transv. Fiber dir. E3 11.70 GPa
In-plane shear modulus dir. G12 4.393 GPa
In-plane shear modulus dir. G13 4.393 GPa
Out-of-plane shear modulus dir. G23 4.393 GPa
In-Plane Poisson’s ratio dir. ν12 0.2600 -
In-Plane Poisson’s ratio dir. ν13 0.2600 -
Out-of-Plane Poisson’s ratio ν23 0.3301 -

The laminate Poisson’s ratio is defined by Eq. (A.20),

ν12 = νf12Vf + νmVm; ν23 = E2

2G23
; (A.20)

where νf12 and νm are the E-Glass fibre and epoxy matrix Poisson’s ratio, and E2
and G23 are given by Eq. (A.19) and (A.20). Symmetric condition were used to
determine the remaining parameters, as shown by Eq. (A.21).

E3 = E2; G13 = G12; ν13 = ν12; (A.21)

Thus, the theoretical mechanical properties of the laminate with a fibre volume
fraction Vf of 60%, calculated from the equations above, are presented in table A.3.
The theoretical elastic properties of the multi-directional plies (Triax and UD) com-
posed by the theoretical laminate, were determined using classic laminate theory, and
are presented in table A.4.
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Table A.4: Theoretical elastic properties of the multi-directional plies: Unidirec-
tional and Triax laminate.

Property UD Triax Unit
Fiber volume fraction Vf 0.60 0.60 -
0◦ fibers 95 30 %
90◦ fibers 5 0 %
+45◦ fibers 0 35 %
-45◦ fibers 0 35 %
Young’s modulus in Fiber direction E1 44.3386 23.8299 GPa
Young’s modulus transv. Fiber dir. E2 12.9438 15.05 GPa
Shear modulus G12 4.393 10.544 GPa
Poisson’s ratio ν12 0.2325 0.5125 -
Shear modulus G13 = G23 4.393 4.393 GPa

Structural Adhesive Mechanical Properties
In the DTU 10 MW reference wind turbine report, there is no information about the
structural adhesive used in the rotor blade trailing edge. However, as most of the
structural adhesives are epoxy based, we used the mechanical properties of an adhesive
already tested, and used in our in-house testing lab. This structural adhesive was
used in Sørensen, et al.[34], where DCB specimens composed of two laminate plates
[±45, 08,±45] (similar to our laminate) glued with an epoxy structural adhesive were
tested in different fracture modes. The structural adhesive mechanical properties are
shown in table A.5.

Table A.5: Epoxy structural adhesive elastic and fracture properties [34].

Property Adhesive Unit
Young’s modulus 3.0 GPa
Poisson’s ratio 0.35 -

Mode-I Fracture
Peak stress σn 2.64 MPa
Critical opening δ0

n 1.40 mm
Fracture Energy 1.85 kJ/m2

Mode-II Fracture
Peak stress σt 20.15 MPa
Critical opening δ0

n 0.37 mm
Fracture energy 3.73 kJ/m2
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DCB Geometry
The DCB geometry and material lay-up used in the modelling and experimental tests
are shown in Fig. A.11. These dimensions were based on the laminate configuration
presented previously, and on the specimen geometric requirements defined by our
in-house fracture test machine.

Triax

Structural Adhesive

UD

2.2 mm
2.6 mm

300 mm (30 mm wide)

M1

M2

7 mm

2.2 mm

Figure A.11: Double cantilever beam model dimensions and material configuration.

A.6 DCB FEM Model and Validation
The FEM software ABAQUST M was used to create the numerical models of the DCB
specimen delamination. Three damage tools from ABAQUS were used to simulate the
delamination mechanism, virtual crack closure technique (VCCT), cohesive-elements
(CE), and cohesive-surfaces (CS).

Even though VCCT cannot represent the non-linear behaviour of the fracture pro-
cess zone (fibre-bridging), this technique has the capability to calculate the energy
release rate for each fracture mode, allowing us to independently evaluate the con-
tribution of each fracture mode. This is especially useful to determine the fracture
mixed-mode ratio (Ψ) in complicated loading configurations. The CE and CS damage
formulation are similar and give identical results, however the CS technique requires
less elements and can be more easily implemented in models with multiple parts.
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A.6.1 Geometry and Material Definition
Two models with different geometries and material configurations were created:

• DCB Validation Model: A simple DCB model was created to validate the
accuracy of the different damage techniques, VCCT, CE, and CS, against an-
alytical results. This DCB validation model is composed of a symmetric DCB
without structural adhesive, where the crack grows in the middle plane; each
beam is 8 mm in height, 50 mm in width, and 500 mm in length, and is com-
posed of UD laminate. The cohesive-law that defines the fracture interface
between the two beams was selected so the simulation could converge (small
values, close to unitary), and its properties are presented in table A.6.

Table A.6: DCB validation model material properties.

UD mechanical properties
Young’s modulus in Fiber direction E1 44.33 GPa
Young’s modulus transv. Fiber dir. E2 12.94 GPa
Shear modulus G12 4.39 GPa
Poisson’s ratio ν12 0.23
Shear modulus G13 = G23 4.39 GPa

Interface damage properties
Mode I Mode II

Traction-separation law
σ̂n 1.1 (MPa) σ̂t 11 (MPa)
δ0

n(mm) 1.1 (mm) δ0
t (mm) 0.11 (mm)

Energy criterion
Jss

n 0.605 kJ/m2 Jss
t 0.605 kJ/m2

• DCB Test Model (DCB used in the experiments): This model is based on
the DCB Validation Model, after analytical validation, where its geometry and
materials were modified to match the properties of the DCB specimen used in
the experiments (described in section A.5).

Note that for both cases analysed, 2D and 3D FEM models were created, as shown
in Fig. A.12.
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Validation Model Test Model

2D

3D

Figure A.12: 2D and 3D DCB FEM models: DCB Validation Model and DCB Test
Model.

A.6.2 Damage Constitutive Response
Cohesive Element and Cohesive Surface

The cohesive elements/surface are modelled to express the cohesive-law (traction-
separation), meaning a progressive loss of the cohesion between the two crack faces
with the local crack opening δ∗. In an undamaged state, the elements defined as
CS/CE follow a linear-elastic behaviour, defined as the penalty stiffness Kn, which
relates the nominal stress (σn, σs, σt) to the nominal opening (δn, δn, δt), as shown
in Fig. A.13.

ABAQUS can calculate the damage initiation by different criteria, which should
be chosen accordingly to the materials behaviour that the user wants to simulate.
The Maximum stress criterion was used as damage initiation criterion in the DCB
Validation Model, defined by:

f = Max

{
σn

Nmax
; σt

Tmax
; σs

Smax

}
= 1 (A.22)

and, the Quadratic stress interaction criterion was used as damage initiation criterion
in the the DCB Test Model, defined by:

f =
(

σn

Nmax

)2

+
(

σs

Smax

)2

+
(

σt

Tmax

)2

= 1 (A.23)

The parameter f is the damage criterion, and it is fulfilled when it reaches the
value f = 1. The parameters σn,s,t are the nominal stress in the normal, first shear
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Figure A.13: Constitutive behaviour of the cohesive element or cohesive surface
(doi:10.1371/journal.pone.0141495.g009).

and second shear directions, respectively, and Nmax, Smax, and Tmax are cohesive-law
parameters; the parameters δ∗

0 and δ∗
c are the crack opening displacement to the local

crack plane for damage initiation and critical damage.
When the initiation criterion is fulfilled, a damage evolution law describes the

material stiffness degradation. A scalar damage variable, D, ranging from 0 (no dam-
age) to 1 (fully damaged), represents the damage in the cohesive element. Abaqus
offers different softening responses: linear, exponential, and tabular; however, only
linear softening displacement criterion was used in both models. The linear softening
displacement criterion is defined by the opening at damage initiation (δ∗

0) and the
opening at failure (δ∗

c ). The mixed-mode behaviour was set as mode-independent,
meaning that no fracture coupling behaviour is modelled.

Virtual Crack Closure Technique

The VCCT criterion uses LEFM concepts (presented in section A.3.1) to calculate
the energy release rate in the different opening modes. For a crack propagating in
the direction 1→2→3 (see Fig. A.14), the energy release rates at the node pair 5-2 is
calculated as [8]:

GI = 1
2b∆a

F2u2 (A.24)

GII = 1
2b∆a

F1u1 (A.25)

GIII = 1
2b∆a

F3u3 (A.26)
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where Fi represents the nodal forces at the crack tip, ui is the nodal displacements be-
hind the crack tip along direction xi, b is the element width, and ∆a is the crack incre-
ment length (= element length). In terms of mixed-mode behaviour, ABAQUS offers
different methods, BK-law, power-law, and Reeder-law [35], however only power-law
was used to simulate the mixed-mode behaviour.

The nodes at the crack tip (2-5) debond when the fracture criterion, f , reaches
the value 1.0 within a given tolerance, ftol, described as follows:

f = Gequiv

Gc
(A.27)

1 ≤ f ≤ 1 + ftol (A.28)

where Gc is the critical energy release rate, and Gequiv is the equivalent energy release
calculated by the mixed-mode coupling method.

Gequiv

Gc
= GI

GIc

α

+
(
GII

GIIc

)β

+
(
GIII

GIIIc

)γ

(A.29)

The Gequiv calculated by the Power-law is described in Eq. (A.29). The parameter
GIc, GIIc, and GIIIc are the fracture toughness for the three fundamental fracture
modes, GI , GII , and GIII are the individual components of energy release rate, and
α, β, and γ are fitting parameters.

1

2 3

45

6

F2,(5-2)

F1,(5-2)

F3,(5-2)

x1

x2

x3

Crack Propagation Direction

Load

Displacement

Gc

Fx(node)

ux(node)u2,(6-1)

Δa
b

Figure A.14: Schematic representation of the VCCT principle: nodal forces and
displacements.



58 Double Cantilever Beam Delamination Modelling

The VCCT assumes a self-similar propagation, meaning that the crack growth
does not modify the stress state at the crack tip, and the nodal displacement ahead
of the crack tip (node 1-6) is assumed to be equal to the nodal displacement that
occurs upon crack extension (node 2-5); however, to fulfill this assumption, a pre-
crack is required, which makes the VCCT unable to predict crack initiation [8].

A.6.3 Mesh and Model Convergence
Mesh size is an important issue that needs to be considered in any FEM model,
as it can strongly affect the model accuracy and the required computational power.
Additionally, in FEM models where the damage is modelled by a CE/CS approach,
it is also important to ensure that the fracture process zone is accurately represented.

Some authors [36, 37] suggested a minimum of 10 cohesive elements inside the
active fracture process zone, as using too few elements will introduce errors in the
crack growth resistance (fracture energy) calculation; however, finer meshes require
more computational resources. A mesh sensitivity study was conducted to find the
best compromise between the fracture process representation accuracy and the com-
putational power required. A fracture process zone length of 38 mm was obtained for
mode-I fracture in the DCB Test Model, as shown in Fig. A.15; thus, the minimal
element size that can accurately represent the fracture process is 3.8 mm. Despite
this, an even smaller element size was selected, 0.5 mm, to represent the stress/s-
train variation in the fracture process zone with more accuracy, which it is important
to obtain high resolution in the FBG simulations. For more details about this, see
publication [P3] section P3.4.1.

Figure A.15: Fracture process zone length in DCB mode-I fracture; minimum ele-
ment size used: 3.8 mm.
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In terms of numerical errors, the DCB model can present some shear locking
behaviour, which is caused by overly stiff elements in bending-loading conditions.
Thus, elements with incompatible modes were used to improve the bending behaviour
and reduce the shear locking behaviour. The description of the different elements used
in the DCB models is presented in table A.7. In all the DCB models non-linear effects
were considered (Nlgeom), and the 2D models were developed assuming plane stress
conditions.

Table A.7: DCB validation model material properties.

Element Type 2D 3D

FRP Laminate
CPS4I: 4-node bilinear plane
stress quadrilateral, incompati-
ble modes;

C3D8I: 8-node linear
brick, incompatible
modes;

Elastic Adhesive
CPS4I: 4-node bilinear plane
stress quadrilateral, incompati-
ble modes;

C3D8I: 8-node linear
brick, incompatible
modes;

Cohesive Element COH2D4: 4-node 2D cohesive el-
ement;

COH3D8: 8-node 3D co-
hesive element;

Convergence issues and ”heavy” (time consuming) simulations can be an issue
found in damage progression simulations based on CS, CE and VCCT. To solve this,
Abaqus have a numerical artifice, viscous regularization, which ensures a consistent
positive tangent stiffness of the softening material, i.e., when the element is damaged
and its stiffness is decreasing, the viscous regularization parameter ensures that the
nodes movement is damped and a force equilibrium is found. However, this parameter
introduces an extra artificial energy to the system that increases the load required
for the crack to grow; thus, this parameter should be as small as possible to decrease
this numerical error.

The influence of the viscous regularization parameter in the mode-I fracture en-
ergy of the DCB Validation Model using cohesive elements (CE) is shown in Fig.
A.16. The models with higher viscous regularization have a faster convergence, how-
ever this increases the ratio of dissipated visco-energy/internal energy, which induces
a numerical error artificially increasing the energy release rate (J); on the positive
side, small viscous regularization values give accurate energy release rate simulation,
where the energy dissipated by the viscosity regularization is minimal. Although,
for viscous regularization values smaller than 1E-7, convergence was not found. A
simple way to tune the viscous regularization parameter is by evaluating the ratio
of dissipated visco-energy/internal energy, where values << 0.1% give a reasonably
accurate prediction of the energy release rate in a model that can converge.
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Figure A.16: Influence of the viscous regularization parameter in the fracture en-
ergy: Mode I fracture of the DCB Validation Model using cohesive
elements (CE).

This viscous regularization parameter needs to be tuned for every model; thus, a
sensitivity study was performed for the different FEM models, and the final tuned
viscous regularization values are shown in table A.8.

Table A.8: Tuned viscous regularization parameter for the different DCB models.

Model 2D 3D
DCB Validation Model 1E-6 (VCCT, CE, CS) 5E-6 (VCCT, CE, CS)
DCB Test Model 1E-4 (VCCT, CE, CS) 5E-4 (VCCT, CE, CS)
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A.6.4 DCB Model Validation: back calculation of the cohesive-law
As the FEM model represents the fracture testing of a DCB specimen, the J-integral
can be measured virtually, similar to a real fracture test, by recording the moments
applied to the beams and the crack opening, as shown in Fig. A.17. Then, the J
can be calculated by Eq. (A.16), and the cohesive-law obtained should be consistent
with the cohesive-law that was set in the FEM model. This back calculation of the
cohesive-law is used to validate the different DCB models.

The virtual J-integral, calculated from the 2D DCB models using the three dif-
ferent damage methods (CE, CS, and VCCT), and loaded in mode-I and mode-II is
shown in Fig. A.18. In the DCB specimens with CS and CE, the energy release rate
(Jss) was accurately predicted for both fracture modes; however, in the DCB modelled
with VCCT, the simulated energy release rate was higher than the theoretical.

The VCCT criterion has some numerical issues to simulate growing damage, there-
fore it uses a tolerance parameter (Eq. (A.27)) which allows higher initiation energy
in the nodes subsequent to the crack tip. For the DCB case, the model does not con-
verge if the tolerance parameter is set as f = 0; thus, a tolerance value of f = 0.1 was
used, which matches the energy measured by the VCCT criterion (JV CCT

SS = 0.665).
Further, the DCB modelled with VCCT cannot describe the non-linear behaviour of
the damage process nor the damage initiation, which makes this technique not the
best approach to model delamination in FRP materials. The only advantage of the
VCCT against the CE/CS is that it allows computation of contribution of each mode
independently, which is useful to evaluate the mixed-mode ratio in complex loading
configurations or non-symmetric specimens.

Figure A.17: Virtual measurement of the J-integral in a DCB specimen. FEM
model output: bending moments, M1 and M2, crack opening δ.
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Figure A.18: Virtual measurement of the J-integral in a DCB specimen. FEM
model output: bending moments, M1 and M2, crack opening δ.

Finally, the cohesive-law was back calculated by derivation of the J-integral curves,
as described by Eq. (A.14) and (A.15). The original cohesive-law was accurately
obtained, for both fracture modes and CE/CS damage modelling techniques (see Fig.
A.19). These results validate the accuracy of the DCB Validation Model, and its
capability to represent the delamination of FRP materials. This validation procedure
was repeated for the 3D cases, and similar results were obtained.
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Figure A.19: Mode-I and mode-II traction-opening curves for DCB specimens mod-
elled by CE and CS: back calculated cohesive-law from the virtual
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Abstract

The paper proposes a methodology for reliable design and maintenance of wind
turbine rotor blades using a condition monitoring approach and a damage tolerance
index coupling the material and structure. By improving the understanding of mate-
rial properties that control damage propagation it will be possible to combine damage
tolerant structural design, monitoring systems, inspection techniques and modelling
to manage the life cycle of the structures. This will allow an efficient operation of the
wind turbine in terms of load alleviation, limited maintenance and repair leading to
a more effective exploitation of offshore wind.

P1.1 Introduction

P1.1.1 Offshore wind energy
The potential for Offshore Energy production in Europe is enormous. Industry pro-
jection from the European Wind Energy Association (EWEA) is for an increase from
5GW in 2012 to 150GW in 2030 (EWEA, www.ewea.org), and achieving that poten-
tial is an important objective of the European Communities. In 2008 the executive
body of the European Union issued a communication detailing the Roadmap for Mar-
itime Spatial Planning [1]. This roadmap was intended to balance the requirements of
various sectorial interests utilising marine resources, and offshore energy (particularly
wind) was anticipated to make very significant increases in the near to medium term.

However, in order to support this growth it is vital to make significant reductions in
the Cost of Energy (CoE) of offshore wind, as it was discussed at the most important
wind energy conference EWEA 2014 [2]. A radically different approach is needed to
design and operate offshore wind turbines. This is what we propose in this paper.
The most eye-catching trend for wind energy structural components is the up-scaling
history where new turbine designs have consistently provided larger turbines with
higher power ratings. The most cost effective way of increasing the power produced
(PP) by a wind turbine is to increase the rotor diameter [3], currently prototype rotor
blades are exceeding 70 m in length (SSP-technology: 7 MW-83.5 m. blade project).
The industry relies on advances in materials technology to deliver cost-effective light-
weight structures.

Although larger turbines cost more to manufacture per unit (Cost of Turbine-
CoT), this small relative increase is more than compensated for by the absolute
saving possible when factoring installation costs (CoI) and the cost of maintenance
(CoM) with larger turbine units. These costs are factored against the power produced
PP:

CoE = (CoT + CoI + CoM)/PP (P1.1)

www.ewea.org
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The manual inspection of wind turbines (inconveniently placed on high towers in
remote places) involves a certain amount of travel time as equipment and personnel
are moved between them; higher Mega Watt turbines help to reduce this cost relative
to the power output of the farm. However, economies of up-scaling for the operation of
an offshore, multi-MW farm can be challenged as the consequence of a single turbine
downtime is more significant, and all personnel operation offshore is more expensive.
Therefore, cost reduction by using remote monitoring becomes increasingly attractive
as a means to suppress unexpected downtime, and focus limited maintenance and
repair operations.

P1.1.2 Multi-physics global model
Some research groups are working on a Multi-physics Global Model [4–8], as repre-
sented by the scheme in the Fig. P1.1. A Multi-physics Global Model is defined
as a fluid-structural interaction model, that aims to capture and integrate several
phenomena; meteorology, aerodynamics, hydrodynamics, aero-elasticity, structural
vibration, energy output, control, etc. (For example, the integrated response of the
tower pillar to the aerodynamic load on the blades and waves on the foundations).
However, this approach will not be achieved until all physical phenomena are fully
understood. Wind turbines are a multi-physics problem, and the complexity of the

Weather/Wind forecast
Scale: 100-1000 Km

Multi-physics Global Model

Scale: 1-10 Km
Wind Farm

Scale: 10m-500m

Wind

Ocean current

Waves

Floating O�shore Turbine

Aero-Elastic Load

Scale: 1m-80m
Wind Turbine Blade

Scale: 1mm-2m
Wind Turbine Blade-Substructure

Force

Scale: 1μm-10mm
Micro-Mechanics: Crack on �ber/matrix

Figure P1.1: Multi-physics Global Model scheme.
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structure and loading, and the variability and turbulence of the wind create challenges
for the application of such a method. At this time, significant research effort is being
made in order to fully research the most complex phenomena at each of the scales
presented in Fig. P1.1. Obviously, it is not possible to predict the aero-dynamical
load history on a wind turbine rotor blade in details for a 20-years period of time.
There are two approaches to address this. One is to make lifetime predictions based
on statistics. Another approach, as will be pursued here, involves the use of sensors
to detected the conditions of the blades to obtain an updated lifetime prediction.

P1.1.3 Wind Turbine Rotor Blade Structures
A wind turbine rotor blade structure is defined in terms of its outer geometry and
inner structural layout. It can be made from different materials and will be subjected
to varying loads from wind and varying direction of gravity due to the rotation of
the rotor. A typical turbine blade design is based on a load-carrying laminate in a
rectangular hollow beam (spar). In another common blade design there is no spar;
instead there is a combination of a load-carrying laminate incorporated in the aero
shell together with two shear webs [9]. The beam spar and the sandwich face sheets
of the aero shell are made from fibre reinforced polymer composite materials, see Fig.
P1.2; the sandwich cores are made from polymeric foam or balsa wood; and the blade
is assembled with adhesives between the aero shells at the leading edge, between the
spar and the aero shell, and between the aero shells at the trailing edge.

At the structural scale, a wind turbine rotor blade can develop various types
of damage, such as cracks along adhesive joints (e.g. leading and trailing edges
as well as internal bondlines at beam/laminate assemblies). Laminates can fail by
cracks parallel to the fibre direction (e.g. splitting cracks and transverse cracks),

Delamination in
Load-Carrying Laminate
(Main Spar)

Trailing Edge
Adhesive Bond
Failure

Leading Edge
Adhesive Bond
Failure

Sandwich/Core
Debonding

Figure P1.2: Schematics of major failure modes in a part of a wind turbine rotor
blade. The shaded areas indicate cracked internal regions.
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fibre failure in tension (distributed damage) or compression (localised damage), and
by delamination (cracking along the plane between plies). Of these, delamination of
laminates and adhesive bonded joints are usually the most critical [9, 10].

P1.1.4 Fibre Reinforced Polymer Composite Materials
Fibre reinforced polymer composite materials consist of two macroscopic phases, a
stiff fibre phase (usually glass or carbon) and a polymer matrix (usually polyester
or epoxy). One of the advantages of fibre reinforced polymer composites is that the
alignment of the fibres can be arranged to suit the required properties of the intended
structure. Thus the requirement for a stiff (but light-weight) structure means fibre
orientations primarily along the length of the blade and an inherently anisotropic
set of material characteristics. A key feature of structures designed using composite
material is that the manufacturing process itself will determine certain characteristics
of the material, and hence the behaviour of the final structure. All this is to say that
when looking to optimise the properties of a wind turbine blade, it is necessary to
consider material choice, design approach, and manufacturing process as an integrated
issue.

For example, a common processing procedure is to stack layers of the dry re-
inforcement fibres before infusing with a thermosetting resin to create the finished
composite material. This results in a laminated structure with significant stiffening
mainly along the length direction of the blade. But the effect on out-of-plane prop-
erties and the weak interfaces between layers of the composite material needs to be
understood at the material level, if the final structure is to be sound and resistant to
any out-of-plane loading.

P1.1.5 Structural Design Philosophies
The design philosophy for fibre reinforced polymer structures was initially based on
conservative analysis methods with large safety factors, underestimating the actual
material properties, and considering primarily the linear elastic material behaviour.
As knowledge about materials and structures increased it has now become possible
to safely adopt more advanced design philosophies. This general trend to more ad-
vanced structural design is described elsewhere [11]. In wind turbine blade design it is
important to take into account different non-linear effect as described in [12]. Failure
of a wind turbine blade has a small to minor consequence as the risk for human lives
is small, especially offshore since persons are not close to the wind turbines. The
optimal target reliability level can therefore be determined by cost benefit analysis,
where all the cost during the wind turbines design life is taken into account [13]. Par-
tial safety factors can be calibrated to obtain the desired target reliability level for
the structure [14]. And the uncertainties for the material properties for composite
materials can be modelled [15]. Probabilistic design methods give a prediction for the
risk of failure in average, but give in principle no information for the condition and
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risk of failure for a particular blade. However, this information is available within a
structural design philosophy based on damage monitoring.

The approach is to use damage tolerant materials and a structural health and
prognostic management system as part of a condition based maintenance program.
It is an axiom of Structural Health Monitoring [16], that detectable changes in re-
sponse must exist between undamaged and damaged states, thus implying damage
tolerance. Damage tolerance (see section P1.3.2 for details) is a property emerging
from the particular combination of structure design, loading environment, and ma-
terial characteristics. Accepting that a distribution of damage types and locations
can exist within the blades of an operating offshore wind farm, it follows that each
structure must be characterised individually with a unique ”damage map” for that
structure. Evaluating the severity of the particular combination of damage types
requires models that describe the progression parameters for each type under the full
range of operating conditions. Only in this way can condition based maintenance be
effectively implemented.

P1.2 Vision
Our vision consists of a damage tolerance approach that can be made using condi-
tional inspections and models that describe progression for all known failure types
[17, 18]. The future design philosophy will be based on a Structural Health Monitor-
ing approach where sensors integrated during manufacture provide fed back that is
used to optimise the entire life-cycle. And this again requires an advance in materi-
als knowledge to implement effectively. The already established concept of composite
materials structural design based on an integrated material/structure/manufacturing
iteration, should be extended to include an application of the deeper material level
(microscopic level) understanding of the damage propagation. So in much the same
way as structural load and stiffness requirements are already ”tailored” at the material
level, optimisation of the material properties can be used to match design objectives
related to damage tolerance and reliability for the final structure. All this needs to
be achieved in a framework of condition based maintenance, remote monitoring, and
prognosis, as presented in Fig. P1.3.

It is important to appreciate that in comparison with aerospace structures, wind
turbine rotor blades are unique in the sense that they are made of very large parts,
using relative ”low cost” composite materials and manufacturing methods. Requiring
a very strict quality control and allowing only parts with small manufacturing defect
size may lead to a high rate of discarded blade parts. Obviously, this would lead to a
higher blade price. An alternative approach, proposed here, is to allow more blades
with manufacturing defects to be used in service by ensuring that the defects lead to
stable damage, i.e. avoiding unstable blade failure. For a given wind turbine design,
the damage evolution will depend on structural details and materials properties that
cannot be accurately controlled during manufacturing. Furthermore, each blade on
a wind turbine in an off shore wind farm will experience its own, unique combination
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+
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Current Design Philosophy

Damage Tolerant Design

Figure P1.3: Expanded design and manufacturing process including structural
health monitoring.

of load history. Consequently, blades will not undergo identical damage evolution.
One blade may undergo a loading history that leads to more damage in one area,
while another blade, having a different set of manufacturing defects and experiencing
another load history, may develop damage in other areas of the blade.

The key features in the proposed condition based maintenance approach can be
summarised as follows. First, in the design phase, the designer will choose materials
and structural layout that give a high damage tolerance. The designer also will decide
on the type of sensors for damage detection and determines (from structural analysis)
which areas are the most critical and where the sensor should be placed. Next, in
the manufacturing phase, sensors will be placed inside the rotor blade, either as
sensors embedded in laminates or adhesive bond lines or mounted inside the blade
after manufacturing. Sensors surveillance can cover transportation, installation and
in-service operation, and be part of the post-manufacturing control by contributing
to non destructive inspection (NDI) procedures.

For the few blades that will develop serious damage, sensor alarms will be sent from
the off-shore wind turbine to the on-shore surveillance centre, which can then send out
a maintenance team to inspect the blade at the position where the damage is detected.
The team will use non-destructive techniques such as ultrasound scanning,radiography
(x-ray) etc. to identify the damage type, its size and depth. This information will be
used in detailed structural models (e.g. finite element models) of the blade with the
characterised damage to assess the residual fatigue life and residual strength, using
information about fracture data (stress-strain, traction-separation, fatigue data) of
the materials and the anticipated future load history. It will then be possible to assess
the criticality of the damage and decide whether the blade can be used under normal
operation, or whether the aero-loads should be reduced, or the blade repaired on site,
or taken down (replaced with a new blade or repaired on shore).

Such an approach will allow the service life of blades to be decided by their damage
state. There is thus potential for life extension beyond the original planned service
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life (typically now 20 years) for healthy blades that do not possess significant damage.
A condition based approach also has the advantage that it is not critical to be able

to calculate the aero-loads with high accuracy on all individual rotor blades in an off-
shore wind turbine park, since the damage evolution can be assessed on basis of the
sensor signal. The proposed approach, Fig. P1.4, consists of condition monitoring to
detect damage, NDI methods to characterise the damage, and damage and fracture
mechanical modelling to predict future damage evolution [19–21], creating the science-
based knowledge required to make a decision about what to do.

The proposed new approach has some similarities with the ”retirement for cause”
approach used in military aircrafts, where the life time of gas turbine engines is de-
termined on the basis of the detection of flaws of a certain detectable size rather
than being retired prematurely by the traditional pre-determined life approach [22].
In the following section of the paper, the material properties contributing to struc-
tural damage tolerance are presented. These properties are the ”levers” that future
designs will consciously utilise when engineering reliability from the material level to
the structural level. The expanded design and manufacture process showed in Fig.
P1.3, will include consideration of the approach for maintenance and repair that is
to be adopted for the entire group of structures, and the integrated sensorisation
necessary to achieve remote characterisation of the material and structural condition.
Finally, the vision is presented of offshore wind farms designed using smart structure
technology made possible by this deeper understanding of material behaviour.

Modelling
- blade with damage
- representative loads
- material properties

Condition monitoring
- sensors signals
- data analysis

NDI inspection
- ultra sound scanning
- X-ray

- damage detection
- location

- damage type
- size and depth

- residual life prediction
- residual strength

- continue use
- reduce aero loads
- repair
- replace blade

Figure P1.4: Condition Monitoring Modelling Approach.
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P1.3 Increasing Reliability of Offshore Wind Turbine
Blades by Damage Tolerance

P1.3.1 The concepts of distributed and localised damage
The loads on each material point within a rotor blade structure can be characterised
mechanically by considering a small volume of the material. On the materials level,
the load is characterised in terms of stress σ (defined as load per cross-section area),
and deformation is characterised in terms of strain ε (elongation divided by original
length). The stress-strain relationship (σ − ε) of an undamaged material is in most
cases linear (Fig. P1.5a). In a loaded wind turbine rotor blade, distributed damage
(e.g., small cracks in the matrix and breakage of fibres in a composite material) can
develop in some regions of the blade. The distributed damage may be characterised
by the crack area per volume or the number of broken fibres per volume. Damage
induces non-linearity in the stress-strain relationship. Therefore, non-linear stress-
strain laws must be used to describe the mechanical response of materials experiencing
distributed damage (Fig. P1.5a). Distributed damage may over time lead to localised
damage. During localisation, the material undergoes weakening in a so-called failure
process zone, so that its ability to transfer stress decreases, with increasing local
deformation δ (separation). It is then appropriate to describe the material behaviour
in terms of a traction-separation law (σn − δn) (see Fig. P1.5b). With increasing
separation (corresponding to more localised damage) the traction that the fracture
process zone can transmit decreases. When the end-opening of the fracture process
zone δ∗

n exceeds a critical value δ0
n, the traction vanishes completely so that a crack

surface forms. The traction-separation law is taken to be a material property, being
the same law along the entire fracture process zone. The area under the traction
separation curve is the work of the traction, i.e., the fracture resistance.

Owing to the difference in stress levels for different parts of the blade and uneven
distribution of the manufacturing defects, the damage state may vary from part to
part between undamaged material, distributed damage and localised damage. De-
pending on the conditions the localised damage may either exhibit stable or unstable
crack growth. The damage state can be described by a ”damage map” in terms of
the location, damage type and size, as well as a parameter indicating how close the
damage state is to the critical condition (unstable crack growth).

Offshore wind turbine rotor blades will be subjected to high extreme wind loads
(heavy storms) and lower, varying loads from wind changes and rotor rotation. Cyclic
loads may induce fatigue damage evolution, i.e., stable crack growth occurring as a
very small increase in the crack length during each load cycle. The crack can then
become so long that it leads to unstable, fast crack propagation at the maximum cyclic
load, potentially leading to structural failure of the rotor blade. The condition for
unstable crack growth is thus a key issue. The transition from stable to unstable crack
growth can be analysed as crack growth under constant load (the maximum value of
the cyclic load). The stability of crack growth will be the focus of the remainder of
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Figure P1.5: The relationship (a) between stress, σ, and strain, ε, is used to char-
acterise deformation of undamaged material (linear stress-strain re-
sponse) and material with distributed damage (non-linear stress-strain
response), while the relationship (b) between stress (traction), σn, and
separation, δn, is appropriate for describing localised damage (frac-
ture). Away from the localised damage the material is unloaded along
the dotted part of the stress-strain curve (a).

the section.

P1.3.2 Damage tolerant materials and structures
In the following, we will discuss how materials properties and structural design can
be used to achieve enhanced damage tolerance, being the ability to sustain damage
without unstable catastrophic failure. In particular, we wish to argue a design phi-
losophy where materials and the structural design are chosen so that each structural
detail can be designed to possess a high damage tolerance.

For distributed damage, damage tolerant behaviour is obtained as follows. For un-
damaged composite materials, the stress-strain behaviour is linear. Damage induces
non-linear stress-strain behaviour - the material decreases in stiffness with increas-
ing damage. An undamaged material loaded beyond the linear-elastic limit σp will
start to develop damage and thus exhibit non-linear stress-strain behaviour up to the
failure stress σ̂n (strength). Damage tolerance requires that the materials strength
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should be significantly higher than its linear-elastic limit and that the damage can
be detected by sensors. It then becomes possible to detect whether the material has
been overloaded and to repair or replace the structure while the material still retains a
strength above its design stress. Material design can create composite laminates hav-
ing non-linear stress-strain behaviour even though most fibre types used in composite
materials are linear elastic. A non-linear stress-strain behaviour can be obtained by
the use of laminates with multiple fibre orientations (enabling some layers to crack
at lower strains, denoted ”first-ply-failure”) or by the use of fibres having different
failure strain (hybrid composites).

Localised fracture, such as delamination, can be analysed by fracture mechanics,
e.g. by the use of traction-separation laws. With respect to the propagation of a
crack, damage tolerance implies that the crack growth should be stable, requiring
that the load level for unstable crack growth should be significantly higher than the
load level that initiates crack growth. Classic fracture mechanics considers an energy
balance between the energy supplied (or released) by the structure and the energy
absorbed by the fracture processes at the crack tip. Crack growth will not occur when
the energy released by the structure per unit crack advancements is less the energy
consumed by the crack tip fracture processes per unit crack advancement.

The energy released per unit cracked area depends on the magnitude of the applied
load, the elastic properties and the shape of the structure. If the fracture resistance is
constant, the crack growth can be stable (i.e. causing cracking to stop, denoted crack
arrest) or unstable depending on how the energy released depends on the load and
geometry, i.e., structure properties. The structure should be designed so that it can
take the additional load when a crack has formed and the local region carries less load
(Fig. P1.5b). It is possible, however, to increase the amount of stable crack growth by
designing interfaces that possess increasing fracture resistance with increasing crack
extension. Rising fracture resistance, denoted R-curve behaviour, implies that the
energy absorbed per unit area of the fracture process zone increases with the crack
extension. Typically, the crack growth resistance increases from an initial value to a
steady-state value. It follows that the stability of crack growth now depends on the
load, geometry (including the initial crack length), and the fracture resistance of the
material. Often in composites, delamination is accompanied by the formation of a
crack bridging zone, where intact fibres connect the crack faces behind the crack tip.
This can lead to a large-scale crack bridging zone, resulting in R-curve behaviour [23].
The bridging law, i.e. the normal traction σn as a function of the normal opening
δn, σn(δn), plays a central role in the stability of crack growth, since the R-curve
behaviour is related to the traction-separation law. Two conditions for stable crack
growth, expressed in terms of the bridging law parameters, are:

Jext = J0 +
∫ δ∗

n

0
σn(δn)dδn and

∂Jext/∂a

∂δ∗
n/∂a

≤ σn(δ∗
n). (P1.2)

In (P1.2), Jext is the energy released per unit cracked area, J0 is the energy at
which cracking initiates, σn and δn are traction and separation (Fig. P1.5b), δ∗

n is
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the separation at the end of the crack, and a is the crack length. To obtain stable
cracking during an increasing load, these two equations should be fulfilled at all times.
The cracking will be unstable when the right hand side inequality is violated.

Equation (P1.2) makes it possible to think intelligently about the damage toler-
ance of almost any large-scale bridging cracking problem in a structural part of a wind
turbine rotor blade. The left hand sides of both equations include all the structural
parameters (loads and structural geometry), while the right hand sides depend only
on the fracture properties. Thus the initial structure design can be specified to achieve
a minimum damage tolerance level throughout the blade. Once the load and geom-
etry of the blades have been fixed, options to modify local stiffening, manufacturing
specifications, or material options allow an assessment of which traction-separation
law (the right hand side) gives the highest damage tolerance/longest stable crack ex-
tension. In this way these relations are very helpful for both the structural designer
and the material scientist.

Optimising materials damage tolerance with traction-separation laws

Micromechanical models of crack bridging show that the bridging traction depends on
microscale parameters such as the fibre stiffness, the fibre diameter and the fibre/ma-
trix debond energy [23, 24]. It is thus possible to change the traction-separation laws
by changing the properties of microscale parameters (this is sometimes called ”mi-
crostructural optimisation”). For instance, the surface of the fibres can be subjected
to chemical or physical treatments before the processing of the composite material.

Crack bridging is only an effective toughening mechanism as long as fibres remain
intact. If the fibre/matrix bond is too strong, the fibres break instead of peeling
off and create crack bridging. Experimental work has shown that weakening the
fibre/matrix interface can lead to more ”surviving” fibres, resulting in more fibre
bridging [25]. In contrast, for layered structures, e.g., adhesive bonded joints, it has
been shown that plasma treatment can increase the fracture resistance of the joint,
causing the formation of a parallel crack within the laminate just outside the adhesive
layer [26]. Yet another study has shown that simply changing the ply layup, the
cracking mechanism changes from the propagation of a single crack to the development
of two or three parallel cracks (with two or tree bridging zones), resulting in a doubling
or tripling of the fracture resistance [27]. These examples show that materials design
can change the damage tolerance of materials significantly.

These observations suggest that fracture mechanics properties of fibre/matrix in-
terfaces as well as the fracture mechanics properties of interfaces between layers in
laminates play a central role in the fracture resistance of laminates. Mastering the
interface design is thus the key to optimise the fracture resistance. There are many
interfaces across the laminate at which delamination cracks can potentially propa-
gate. It is challenging and difficult to design and control the fracture properties of
all interfaces. However, the concept of cohesive laws enables us to propose an idea
to design/tailor laminates so that cracks will propagate along high-energy absorbing
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Figure P1.6: Cracking of a laminate having thin plies may shift to the neighbor
interface if it has a lowest peak traction value.

interfaces. The idea is that the normal stresses1 σ22 are continuous and do not vary
much across a thin layer, so that the normal tractions σn is almost the same for two
neighbouring interfaces, see Fig. P1.6. Therefore, we postulate that cracking will oc-
cur along the interface that possesses the lowest peak traction, σ̂n. Thus, it should be
possible to design an interface such that it combines a low peak traction and a large
work of the cohesive traction (e.g., by having a large critical opening), see Fig. P1.6.
Such an interface will then trap the cracking along a high energy-absorbing path
and thus impart high damage tolerance. Only a few low-strength, high-toughness
interfaces may be needed. The design of interfaces is then reduced to designing and
controlling fewer interfaces.

Possible definition of a structural damage tolerance index
It would be useful to have an index that would give a number for the safety margin of
offshore wind turbine rotor blades. A practical approach would be to consider various
critical parts of the blade individually. Each structural part can then be modelled
by numerical modelling, using typical defect or damage sizes (e.g. corresponding to
the detection limit of NDI methods) and the relevant cohesive laws. Such progressive

1For a real applications where craking is mixed mode, the shear stress σ12 and the shear traction
σt should also be considered.
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damage analysis should simulate the damage evolution from initiation to unstable
growth. Onset of unstable damage growth gives a fracture load (that should exceed
the expected service loads) and a change in the compliance of the structural part.

A damage tolerance index would enable the comparison of two designs made of the
same material/interface or the same structural design made of two different materials
and quantify which combination offers the most damage tolerant behaviour. Such an
index D could for instance be a non-dimensional number with the characteristics that
D = 0 indicates no damage tolerance (always unstable damage evolution or crack
growth) while D → ∞ indicates that damage or crack growth is always stable. A
damage tolerance index could be defined by the structural compliance at which the
cracking becomes unstable, Cc,

D = Cc − C0

C0
, (P1.3)

where C0 is the compliance of the undamaged structural part of the blade. The
compliance of a structural part is defined as the deflection of the structural part
per unit applied load. A change in compliance due to damage may not be seen for
the whole structure but only locally. Furthermore, each structural part may contain
one or more competing damage modes for which a damage tolerance index could be
calculated.

Different damage modes are likely to have different damage tolerant index values.
The structural designer should ensure that all damage types of all structural parts
have sufficiently high D values, so that damage evolution can be detected by com-
pliance changes. He can modify the structural design to raise the value of d of the
damage mode that has the lowest D values, in order to ease the damage detection by
compliance changes. In case the damage type and traction separation laws are such
that a sufficiently high compliance change cannot be obtained, the damage detection
must rely on sensors that are not based on compliance, e.g. acoustic emission sensors.

Then, the damage tolerance of the entire rotor blade could be assessed in a way
similar to the ”damage map” mentioned in the Introduction a set of damage tolerance
indices. In should be assessed whether unstable damage evolution of a structural part
would lead to failure of the entire blade. The damage tolerance of specific material
selections and structural designs could then be compared in the design phase.

P1.4 Structural Health Monitoring
A structural health monitoring (SHM) system’s main purpose is to give information
about the presence of damage in an accurate way, it’s location with a good resolution
for possible repair/maintenance, the type of damage (that in a complex structure like
a wind turbine can be very diverse), the severity of the damage, and finally prognostic
information about the remaining operating life [28].

In fact a great deal of sensor information is already available from offshore wind
farms concerning the wind conditions, power output, temperatures, gearbox/drive-
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train vibrations, and so on; but little or no sensor data specifically for the blades. As
modern wind farms have a data handling and transfer framework already in place, an
eventual monitoring suite for the blade condition can be designed to be a ”module”
inside the already existing system. Furthermore, many of these other sources will
provide valuable parametric data to the blade sensor outputs.

The current maturity level for state-of-the-art blade damage sensing is very broad,
with a great deal of research at the material level on integration/embedding of promis-
ing sensors into the composites. This includes fibre optic sensors using fibre Bragg
gratings [29] or continuous optical fibre measurement [30], electrically conducting
sensors based on conductive polymers and carbon fibres [31], acoustic emission meth-
ods using piezoelectric transducer materials for transmission and receiving of stress
waves, spatial mapping of filament-matrix interface defects-reflectometry. Closer to
application there are various sensor system approaches (including strain gauges [32],
structural vibrations [18], and local stress wave [33]) that have been demonstrated
as suitable to monitor damage initiation and growth within blades during structural
blade testing in commercial or research facilities where support (including hardware
control and NDI) is available and the loading conditions are known.

In operation, particularly for long-term remote monitoring, commercial systems
exist that can detect ice formation and report changes in vibration response or re-
turn strain readings measured around the root section. Although not fulfilling the
definition of SHM given above, these systems indicate that issues of robustness, re-
liability, price competitiveness, and functional operation can be overcome. In order
to implement the methodology described in Section P1.2 (Vision), a suite of sensor
approaches must be available within the designer ’toolbox’ that can be combined and
specified to meet the damage tolerance criteria. The resolution for detection of spe-
cific types of damage is given by the damage propagation calculations, which in turn
calibrates the sensor distribution. However, it is clear that a significant maturation
of applied blade sensor technology is required. Monitoring methods are needed from
the manufacture process stage to ensure a certain level of quality, controlled cure of
matrix material during processing, and improve certification, to produce composite
parts in a repeatable and consistent manner with defects such as dry-spots, cracks,
delamination and moisture held within acceptable tolerances.

P1.4.1 Traditional design and operation methodology
The traditional design and operation methodology as showed in Fig. P1.7 is no longer
optimal for this type of requirements, particularly as blades become larger and more
expensive to manufacture, the need for information fed back to maximise their lifetime
utilisation increases.

A post manufacture quality assessment using advanced NDI technology can iden-
tify defects in the blade. In most cases these are minor, ”surface effect” problems
that can be corrected easily. In some cases however a major structural repair will
be necessary that involves removing material and laying new laminate in place. This
operation is best done immediately after production with all manufacturing resources
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Figure P1.7: Life stages of a turbine: traditional design methodology.

available and results in repairs giving close to the maximum theoretically possible
structural strength recovery. The quality of the cured repair should also be inspected
before the finished blade leaves the production facility. Once in operation wind tur-
bine blade damage can only be detected by visual inspections (since no sensors are
build-in), either by on blade maintenance crews or possibly from examining high-
definition images obtained from the ground. Such focused blade inspections are most
usually done near the end of product warranty periods. The repair of damage on-site
is clearly more challenging than those done in a manufacturing facility. Again the ma-
jority of problems identified on operating blades are characterised as ”maintenance”
and involve correcting hairline surface cracks or pitting/erosion at the leading (or
trailing) edge of the blade. In these cases the recovery of a good surface finish is the
success criteria for the maintenance effort. But occasionally a major structural repair
will be necessary where working conditions are far from optimal; low temperatures,
wet conditions, and challenging access issues. The quality of the work will depend
heavily on the training level of the technicians, the quality of the materials used, the
resources (tools, platforms, tenting, heating, etc.) and the time available to do the
repair. Ensuring the effectiveness of repair is also difficult as afterwards the blade
surface is again returned to a good finish.

P1.4.2 Smart structure design
In either a post-production repair or an in-situ structural repair the fed back from
embedded sensors can improve confidence in the quality and effectiveness of the work
undertaken. Furthermore, the smart structure design will help ”single-out” blades
that return exceptional sensor responses, thus providing an early warning of structural
damage in operation, that currently relies on purely visual observations of surface
cracking.

The presence of sensors will provide fed back at each stage of the structure life-
cycle. For example, the design and manufacture process will become iterative with
data from embedded sensors helping to make subtle improvements to the infusion and
cure processes as well as making blade manufacture reactive to external effects and
thus minimising product variability. In operation data returned from the structure
will allow an analysis of the structural performance and a concurrent engineering
approach with modified designs for the latest versions of the structure. The main
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Multi-physics Global Model

Figure P1.8: Life Stages of a Turbine: Smart Structure Design.

function of the embedded sensors during operation is early detection of changes in
response that could indicate damage present in the material or at interfaces/bondlines.
The damage tolerance and structural monitoring methodology described in this paper
requires a ”damage map” for each structure with an assessment of the blade condition
using local and global damage indices. This permits a damage management approach
with tools for avoiding (or alleviating) the structural loadings (high wind conditions)
that will propagate damage in a particular blade.

All offshore turbines require on-site maintenance, but with detailed structure-
specific response history available it becomes possible to make a more efficient ap-
plication of maintenance tailored to the need of each particular turbine. This is in
contrast to the traditional methodology where generic manuals specify the amount
of proactive maintenance required. Normally an expensive life assessment program
would be required in order to justify any decision to extend the service life of an entire
group of structures. But with the approach shown in Fig. P1.8, all the relevant data
is already available and near the design end-of-life this database of structure specific
histories allows a more informed management decision regarding reinsurance/recom-
missioning or decommissioning, resale and/or recycle.

P1.5 Discussion
P1.5.1 The path towards condition monitoring based approach
Is not realistic to jump from the conventional turbine to the proposed design and
maintenance approach based on condition monitoring since not all tools required are
not fully demonstrated and mature. For sensors, for instance, a number of sensors
have been tested with satisfactory results in the laboratory or at prototype blade
test. However, the durability over many years in hash offshore environment needs to
be demonstrated. Concerning NDI methods, many of these have been successfully
demonstrated in inspection of blades, both in the laboratory, full scale prototype
testing, and in the field. Thus, these methods are demonstrated. Within progres-
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sively damage modelling, a lot of progress has been made over the past two decades.
However, specific models of blade damages are not yet demonstrated. We think it is
possible to bring-in the tools for condition monitoring gradually, by applying them
to dedicated problems, where information of damage evolution provide high value.
For instance, testing sensors on wind turbine rotor blade during full scale prototype
testing is likely to be worth the cost, since more data on damage evolution during
the test could lead to the detection of damage originating from a design weakness
or pour manufacturing procedures, which could lead to the necessity of many blade
repairs if the blade had gone into mass production. Likewise sensors should be used
on blades where primary structural parts have been repaired, since the repaired area
is likely to act as a site for damage initiation. Installation of few sensors at a critical
repair may thus provide very valuable information about the quality of repair, and
may allow blades that would otherwise be discarded to be repaired and used.

The condition monitoring modelling approach Fig. P1.4 requires developing the
science based knowledge available within sensor application (for detection), NDI (for
characterisation), and modelling (for prediction). A plausible order of steps of this
gradual implementation of the proposed approach is given below.

Sensors:

• Demonstration of sensors in the laboratory;

• Sensor calibration of output against known damage (location, type, size, depth);

• Sensor durability on subcomponent tests in the lab (long term, cyclic loading);

• Demonstrate sensors during full-scale blade tests;

• Demonstrate sensors on repaired blades in operation;

• Demonstrate sensors on new blades in operation;

Modelling approach (prediction of progressive damage evolution):

• Characterisation of blade materials in terms of traction-separation laws (mixed
mode);

• Demonstration of predictability of static and cyclic crack growth on medium
size specimens in the lab;

• Development of models for major structural failure modes in rotor blades;

• Formulate guidelines for industrial use of model approach;

Based on the condition monitoring approach, a number of decisions can be made
(Fig. P1.4), including the decision to repair a blade. In case the blade is repaired,
the repair techniques used should be documented scientifically and the repaired areas
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should be checked by NDI methods following the repair to document the quality of
the repair. Steps to improve repair techniques are:

• Optimisation of repair techniques in the lab (maximise residual strength and
fatigue life);

• Demonstrate repair methods on blade parts in the laboratory;

• Develop and demonstrate NDI methods for quality control;

• Formulation of guidelines for repair approach;

P1.5.2 Towards integration in the Global Model
Sensing and monitoring systems will undoubtedly continue to become cheaper, more
robust, and effective. This will increase the amount of monitoring systems in all the
blade stages (manufacturing, testing, operation, maintenance, repair, etc.), leading to
a better understanding and control of key parameters on the structure performance of
the blade. For instance, dedicated sensors will regulate the manufacturing, improving
the product quality and dedicated operation sensors will give information about the
response of that structure, helping to identify exceptions and improving the limited
inspection and maintenance functions.

Better structural models and improved multi-physics global integration will allow
for damage management by automatically shutting down a turbine in local conditions
likely to progress damage within that particular turbine, and will enable the modifi-
cation of the operational limits for individual turbines based on their known damage
condition enable then to maintain power production. In other words, the smart tur-
bine ability to analyse and adapt to environmental and structural conditions will lead
to a more efficient operation of the wind turbine.

P1.6 Summary
In the present paper we have outlined a future approach for the the design and main-
tenance of wind turbine rotor blades for off-shore farms. This approach is based on
the premise that it is not possible to manufacture large ”perfect” blades, and that
large blades with manufacturing defects or damages are too costly to discard. Further-
more, since manual inspection is very costly for off-shore wind turbines, we propose an
approach that can handle blades with manufacturing defects, handling damage and
in-service damage to be used. The approach is based on the use of damage tolerant
structural design and damage tolerant materials combined with built-in sensors that
can detect damage evolution. The concept, which can be termed ”condition monitor-
ing and maintenance”, consists of detection of damages by sensors, characterisation
of damage (type and size) by NDI methods, model predictions of residual life, giving
information that enables decision-making with respect to whether a damaged blade
should be repaired or replaced. The majority of blades that do not develop significant
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damage will not require any manual inspection. Examples are given on how materials
can be tailor-made to provide higher damage tolerance. The development of more
damage tolerant structures and damage tolerant materials could provide the tech-
nological opportunity that enables the future very large wind turbine rotor blades,
approaching 100 m in length.
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Abstract
A novel method to obtain independent strain and temperature measurements us-

ing embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is
presented in this paper. The FBG strain and temperature cross-sensitivity was de-
coupled using two single mode FBG sensors, which were embedded in the specimen
material with a certain angle between them. It is demonstrated that, during temper-
ature variation, both FBG sensors show the same signal response. However, for any
applied load the signal response is different, which is caused by the different levels of
strain acting in each sensor. Equations to calculate independently the strain and tem-
perature are presented in the article, together with a measurement resolution study.
This multi-parameter measurement method was applied to an epoxy tensile specimen,
tested in a unidirectional tensile test machine with a temperature controlled cabinet.
A full calibration procedure (temperature and strain) was performed to this material-
sensor pair, where a calibration error < 1% was achieved. This was followed by a
strain-temperature test case, where multiple two loading/strain stages of ε = 0.30%
and ε = 0.50% were applied during a continuous variation of temperature, from 40oC
to −10oC. The consistency of the expected theoretical results with the calibration
procedure and the experimental validation shows that this proposed method is appli-
cable to measure accurate strain and temperature in polymers during static or fatigue
tensile testing. Two different calibration protocols are presented and analysed.

Notation
λb reflected wavelength peak;
λA

b reflected wavelength peak of the FBGA;
λB

b reflected wavelength peak of the FBGB ;
∆λb wavelength shift;
neff effective refractive index for unstrained condition;

Λ0
nominal period of the refractive index modulation for unstrained
condition;

pe optical fibre photo-elastic coefficient;
αh thermal expansion coefficient of the host material;
ξ thermo-optic coefficient of the optical fibre;
θ angle between FBGA and FBGB;
ε1 strain in the longitudinal direction of the optical fibre;
εx strain in the x axis direction of the specimen;
εy strain in the y axis direction of the specimen;
εL specimen strain caused by the uniaxial loading;
T specimen temperature (K);
∆T specimen temperature variation;
E Young’s modulus of the host material;
ν12 Poisson’s ratio of the host material;
εresolution

L method strain resolution;
εresolution

hardware signal acquisition hardware resolution;
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P2.1 Introduction
Improving measurement techniques to obtain more accurate strain measurements is
a central research topic in the material characterization field. Specifically in the
polymeric materials field, some authors have developed new methods to perform
strain measurement, and improved current techniques to obtain more accurate and
reliable strain measurement. Zike et al.[1], have developed a procedure to correct the
gauge factor for strain gauges used in polymer composite testing. Jerabek et al.[2]
and Crupi et al.[3] have developed digital image correlation techniques to evaluate
the strain during shear and static/fatigue tensile testing.

Fibre Optic Bragg grating (FBG) sensors are considered a promising alternative
to the conventional strain measurement techniques. Due to its small diameter, 125
µm, it is possible to embed the sensor in the specimen without compromising the
material resistance. Additionally, the fact that the FBG is embedded improves the
strain transfer between the host material and the sensor, increasing the measurement
accuracy. The FBG measured information is encoded as a light resonance wavelength,
giving this system unique properties, such as immunity to optical/power fluctuation,
insulation and immunity to electromagnetic fields [4]. However, strain and tempera-
ture cross-sensitivity, limited measuring range, expensive hardware and difficulties in
handling the sensors are some of the drawbacks of this technology.

Strain and temperature cross-sensitivity is especially problematic for long tests,
where external variation of temperature can occur. On the other hand, during dy-
namic tests, such as fatigue testing, the material self-heating can generate a strain
caused by thermal expansion. A simple solution to decouple the strain from the tem-
perature measurement is by embedding two gratings in the material, one of which is
isolated with a glass or a metallic sleeve [5, 6]. However, the sleeve used to isolate
the grating will increase the sensor diameter, which becomes more intrusive to the
material and can lead to a decrease in the measured mechanical strengths. Moreover,
the optical fibre needs to be cut to introduce the sleeve, which makes having several
gratings in the same fibre optic (multiplexing) impossible. Other authors propose
an indirect measurement method that can be used for simultaneous measurement of
the bending force and temperature. This is done by drilling a hole in the material,
near the grating location, which will create a change in the width of the standardised
sum of the transmission spectra, and consequently a decoupling of strain from the
temperature [7]. However, as this technique requires a hole to be drilled near the
grating, the material strength is reduced, compromising the results of the material
testing. Within the optical fibre sensors field, new techniques and sensors have been
developed for multi-parameter measurement, such as a dual grating in the same lo-
cation using a standard FBG and a Long Period Grating (LPG) [8], chirped FBG
and Fabry-Perot [9], different FBG sensor diameter [10], FBG with a thermochromic
material [11]. However, these techniques require more advanced and costly technol-
ogy, skilled operators, and some cases are not commercial available. In this article, a
simple approach for multi-parameter measurement is presented, where the strain and
temperature can be measured independently in a tensile test specimen using commer-
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cially available technology. This method can be used in static testing, but it was
developed especially for fatigue/dynamic testing where the specimen can experience
temperature variation.

The article is divided into four sections: FBG Working Principle, where the sensor
response to strain and temperature is shown; Strain and Temperature Independent
Measurement Method, the independent strain and temperature method is discussed,
and its impact to the measurement resolution is studied; Experimental Procedure and
Validation, the calibration procedure is performed, and the strain and temperature
are independently measured in a tensile specimen under thermal and strain loading;
and Proposed Calibration Protocol, where two different measurement protocols, with
or without calibration, are presented and analysed.

P2.2 Fibre Bragg Grating Working Principle
A Fibre Bragg Grating is formed by a permanent periodic modulation of the refrac-
tive index along a section of an optical fibre [12]. This is made by exposing the
optical fibre to an interference pattern of intense ultraviolet light, which will increase
the photosensitivity of the silica. Then, when the optical fibre is illuminated by a
broadband light source, a narrow wavelength band is reflected back, as showed in Fig.
P2.1.

Figure P2.1: Fibre Bragg Grating working principle: spectral response of a homo-
geneous FBG. The parameter λb is the wavelength of the reflected
peak, and Λ0 is the constant nominal period of the refractive index
modulation.
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The spectral response of a homogeneous FBG is a single peak centred at the
wavelength λb, described by the Bragg condition Eq. (P2.1),

λb = 2neff Λ0 (P2.1)

where the parameter neff is the effective refractive index at the location of the grating,
and Λ0 is the constant nominal period of the refractive index modulation [13]. Any
external load or temperature variation affecting the grating region will change the
effective index of refraction and/or the period of modulation, which will create a
shift in the wavelength reflected peak. Tracking this wavelength peak shift is the
sensing principle of the FBG sensor, giving an indirect measurement of strain and/or
temperature in the structure.

P2.2.1 Embedded FBG Response to Strain and Temperature
Variation

If perfect strain transfer between the embedded FBG sensor and the host material
is assumed. The wavelength shift (∆λb) caused by the load induced strain in the
longitudinal direction of the optical fibre (ε1), and temperature change (∆T ), is given
by Eq. (P2.2).

∆λb

λb
= (1 − pe)ε1 + (1 − pe)αh∆T + ξ∆T (P2.2)

The parameter pe is the optical fibre photo-elastic coefficient, αh is the thermal
expansion coefficients of the host material and ξ is the thermo-optic coefficient [14].
The effect of the optical fibre to the overall specimen stiffness is very small, because
the FBG cross section << specimen cross section. Thus, it can be assumed that
the FBG measurements represent the true material behaviour and the FBG thermal
expansion contribution to Eq. (P2.2) can be neglected.

P2.3 Strain and Temperature Independent Measurement
Method

Multi-parameter measurement is an important topic within the fibre measurement
field, allowing parameter discrimination in situations where cross-sensitivity is a crit-
ical issue. In the following section a technique to perform independent strain and
temperature measurements in a polymeric tensile specimen with embedded optical
fibres is presented.
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Figure P2.2: FBG sensors configuration for independent strain and temperature
measurement. The FBG sensors are placed parallel to the xy plan,
being the FBG-A in the middle-plan and the FBG-B 1 mm ahead.

P2.3.1 Strain and Temperature Cross-sensitivity Decoupling
For a single FBG sensor configuration, it is impossible to measure independently the
temperature and strain variation if both happen at the same time. By analysing
Eq. (P2.2), the load induced strain (ε1), the temperature induced strain/ thermal
expansion (αh∆T ) and the thermal-optic dependency (ξ∆T ) creates the same sensor
response, a wavelength shift of the reflected peak ∆λb. Thus, it is impossible to
determine each phenomenon contribution to the wavelength shift. To overcome this
problem, the authors propose a new sensor configuration during tensile testing, as
presented in Fig. P2.2.

The tensile specimen is instrumented with a pair of embedded FBG sensors,
aligned in different directions; one FBG sensor is aligned with the loading direction
(FBG-A), and the other is tilted with a certain angle (θ). With this configuration,
the FBG sensors will have a distinct response to temperature variation and to strain,
as shown schematically in Fig. P2.3.

Assuming that the specimen material has isotropic thermal expansion, i.e. it
expands or contracts with the same magnitude in all directions, both sensors will
experience the same deformation under temperature variation; however, when the
specimen is loaded (direction y and FBG A), the sensors will have a different response
from each other. This is caused by the different level of strain that is acting along each
sensor longitudinal direction. While the FBG-A will measure the maximum strain
caused by the load, the FBG-B will measure a smaller strain that is dependent on the
angle θ and the specimen Poisson’s ratio. Herewith, by knowing the angle (θ) between
the FBG-B and the loading direction, and the difference in the sensors response it
is possible to calculate directly the specimen strain by extracting the temperature
effect.
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Figure P2.3: Schematic representation of the FBG sensors signal response under
strain (εy) or temperature variation (∆T ). The solid line represents
the FBG-A wavelength shift, and the dashed line the FBG-B wave-
length shift.

P2.3.2 Strain-angle relationship between the FBG sensors
As previously mentioned, the magnitude of strain measured by each sensor will depend
on the angle between the FBG sensors. Considering the directions shown in Fig. P2.4,
the transformation matrix from xy coordinate system to x’y’ coordinate system is
given by the Eq. (P2.3).

[T ]xy→x′y′ =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(P2.3)

The parameter θ is the angle between the two coordinate systems (FBG sensors
longitudinal direction). The strain tensor in the xy coordinate system is described
by Eq. (P2.4), where εx and εy are the strain components in the direction x and y.
As this measurement method was developed for unidirectional tensile tests, the shear
strain component does not contribute (γxy = 0).

[ε]xy =
[
εx 0
0 εy

]
(P2.4)

The strain tensor in the x’y’ coordinate system can be calculated by the Eq.
(P2.5).

[ε′]x′y′ = [T ][ε][T ]T (P2.5)
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Figure P2.4: Coordinate system transformation from FBG-A to FBG-B. The pa-
rameter θ is the angle formed between the FBG sensors.

Finally, the strain in the longitudinal direction of the optical fibre (sensor mea-
surement direction) for any given angle is given by Eq. (P2.6).

εθ = εycos(θ)2 + εxsin(θ)2 (P2.6)

P2.3.3 Temperature Measurement (εL = 0)
Both FBG sensors will measure the same wavelength shift during any temperature
variation. Thus, if we consider that no load/strain is applied to the specimen during
temperature variation, the wavelength shift measured by the FBG can be described
by Eq. (P2.7).

∆λA
b

λA
b

= ∆λB
b

λB
b

= [(1 − pe)αh + ξ]∆T (P2.7)

However, Eq. (P2.7) only remains valid if the temperature in the two FBG sensors
is the same, which is true if the gratings are close enough to each other.

P2.3.4 Strain Measurement (∆T = 0)
For the specimen configuration presented in Fig. P2.2, loaded in the specimen y
direction, the parameter εL represents the strain caused by the loading the specimen.
Thus, the strain in the xy coordinate system can be described by Eq. (P2.8),

εy = εL ; εx = −ν12εL (P2.8)
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where the strain εy is equal to the strain caused by the loading and εx is caused
by the Poisson’s effect. Therefore, the wavelength shift measured by each FBG sensor
can be obtained by combining Eqs. (P2.6), (P2.8) and (P2.2).

∆λA
b

λA
b

= (1 − pe)εL (P2.9)

∆λB
b

λB
b

= (1 − pe)(cos(θ)2 − ν12sin(θ)2)εL (P2.10)

P2.3.5 Strain and Temperature Independent Measurement Method
For a simultaneous strain and temperature variation, the wavelength shift measured
by each grating are shown in Eqs. (P2.11) and (P2.12).

∆λA
b

λA
b

= (1 − pe)εL + [(1 − pe)αh + ξ]∆T (P2.11)

∆λB
b

λB
b

= (1 − pe)(cos(θ)2 − ν12sin(θ)2)εL + [(1 − pe)αh + ξ]∆T (P2.12)

As can be observed, the effect of temperature as a wavelength shift is identical in
both FBG sensors. Therefore, the difference between the two responses is caused by
the strain in the specimen (εL) without the temperature effect, as demonstrated by
Eq. (P2.13).

εL =
(

∆λA
b

λA
b

− ∆λB
b

λB
b

)
= 1

(1 − pe)(cos(θ)2 − ν12sin(θ)2)
(P2.13)

Finally, the temperature change (∆T ) can be calculated by subtracting the strain
contribution to the wavelength shift measured. Reorganizing Eq. (P2.14), the tem-
perature variation is given by:

∆T =

∆λA
b

λA
b

− (1 + pe)εL

(1 − pe)αh + ξ
(P2.14)

P2.3.6 Measurement Resolution
The strain resolution of this method strongly depends on the angle between the
FBG sensors (θ) and the material Poisson’s ratio, as demonstrated in Eq. (P2.15).
The parameter εresolution

Hardware is the resolution given by the signal acquisition hardware,
typically around 1µε.
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Figure P2.5: Strain resolution for different FBG angles (θ) and Poisson’s ratio (ν12).
The different lines represent different Poisson’s ratios (ν12).

εresolution
L = εresolution

Hardware

1
(1 − cos(θ)2 − ν12sin(θ)2)

(P2.15)

The angle between FBG sensors (θ) has a big impact on the strain resolution, as
shown in Fig. P2.5. For an angle θ around 90o, the resolution is actually improved,
benefiting from the Poisson’s effect. However, for some cases, the FBG sensors angle
is limited by the tensile specimen width (specimenwidth > FBGlengthsin(θ)).

P2.4 Experimental Procedure and Validation
Two tensile test specimens were manufactured with the dimensions presented in Fig-
ure 2 using an epoxy system based on Araldite LY 1564 and Aradur 3486. Two
uncoated single mode FBG sensors, with a grating length of 10 mm, were embedded
in each specimen; both gratings were placed parallel to the xy plan, being the FBG-A
in the middle plan and the FBG-B 1 mm ahead. The FBG-A was aligned with the
load/y direction, and the FBG-B was aligned with an angle θ of 37.5o. The test was
performed in a tensile testing machine, Instron 8802, where the head displacement
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Figure P2.6: Experimental set-up apparatus. Epoxy tensile specimen with two em-
bedded FBG sensors and two side mounted extensometers.

speed was set to 0.02 mm/s. A tensile testing cabinet from Weiss was used to per-
form a controlled temperature variation testing. Two side mounted extensometers
were used to monitor the specimen strain and to calibrate the FBG sensors, as shown
in Fig. P2.6. The FBG sensor signal was acquired using a FS2200-Industrial Brag-
gMeter supplied by FiberSensingTM , and synchronized with the strain measured by
the extensometers. The optical fibre parameters, material properties and specimen
geometry used are presented in Table P2.1.

Table P2.1: Optical fibre parameters, material properties, and specimen geometry.

Specimen Geometry
Thickness 5 mm Width 25 mm
FBG angle (θ) 37.5o

Epoxy Properties (Manufacture Data Sheet)
Young’s modulus (E) 3.3 GPa Poisson’s ratio (ν12) 0.35
Thermal expansion coeffi-
cient (αh) [15]

8.3E-5
ε/K

Fibre Optic Parameters
Photo-elastic coefficient
(pe) [13] 0.22 Thermo-optic coefficient

(ξ) [13] 8.3E-6

Wavelength peak FBG-A
(λA

b )
1566.65
nm

Wavelength peak FBG-B
(λB

b )
1553.75
nm
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P2.4.1 Measurement Calibration
A calibration procedure was performed to determine accurately the material and fibre
optic parameters, and to minimize any measurement errors.

The calibration procedure was divided in two parts:

• Strain calibration: calibration of the photo-elastic coefficient (pe), using the
strain measured by the surface mounted extensometers;

• Temperature calibration: calibration of the thermo-optic coefficient (ξ) and the
host material thermal expansion coefficient (αh), by a controlled variation of
temperature in the environmental chamber;

Strain Calibration

To perform the strain calibration three loading/strain stages of 0.15, 0.30, and
0.50 ε(%) at a constant temperature were applied. The strain measured by the
extensometers and the temperature from the environmental chamber are shown in
Fig. P2.7a). The wavelength shift ∆λb response of each sensor is different, as can be
observed in Fig. P2.7b), which proves the authors’ statement that the sensors have
different responses during loading.

The strain without thermal effect was calculated using Eq. (P2.13), and good
agreement between the applied strain and FBG measured strain was found, as shown
in Fig. P2.8. This material-geometry pair was calibrated for strain measurement
with a maximum error of 0.9%. The calibrated parameters are presented in Table
P2.2.

Figure P2.7: Strain calibration procedure; a) Machine measurement of temperature
and strain; b) FBG wavelength shift ∆λb.
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Figure P2.8: Strain and temperature measured independently by the FBG sensors.
The lines show the strain and temperature measured by the machine,
and the symbols the strain and temperature obtained by the developed
method using the FBG sensors measurement.

Table P2.2: FBG strain calibration: calibrated parameters.

Calibrated Parameters
Photo-elastic coefficient (pe) 0.21 ±0.05
Poisson’s ratio (ν12) 0.35 ±0.07
Calibration Error (εmachine − εF BG/εmachine) 0.9 %

Temperature Calibration

To perform the temperature calibration, three temperatures stages (25oC, -10oC
and 40oC) controlled by the environmental chamber were applied. No load or dis-
placement constrains were applied to the specimens, which allows them to expand
or contract freely. The temperature was kept constant for 60 min at each stage to
ensure a complete temperature homogenisation in the specimen and, consequently,
in the FBG sensors.
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Figure P2.9: Temperature calibration procedure; a) Machine measurement of tem-
perature and strain; b) FBG wavelength shift ∆λb.

The strain measured by the extensometers and the temperature from the envi-
ronmental chamber are shown in Fig. P2.9a). As previously described, both FGB
sensors have the same response to temperature variation, as can be observed in Fig.
P2.9b). However, a small difference in the sensor response is observed every time the
temperature changes. This is because FBG-B is closer to the specimen surface, which
makes it experience the temperature change first.

The strain without thermal effect and temperature were calculated using Eqs.
(P2.13) and (P2.14), as shown in Fig. P2.10. Good agreement between the predicted
and measured temperature was found. However, the small difference in the sensor
response observed in Fig. P2.9b) caused an error in the strain measurement, which
disappears once the temperature homogenised inside the specimen. Thus, the distance
between the sensors can be problematic for the strain measurement accuracy and it
should be as small as possible to minimize this effect. The temperature calibrated
parameters are presented in Table P2.3.

Table P2.3: FBG temperature calibration: calibrated parameters.

Calibrated Parameters
Thermo-optic coefficient (ξ) 8.3E-6
Thermal expansion coefficient (αh) 6.31 ±0.03E-5
Calibration Error (Tmachine − TF BG/Tmachine) 0.05 %
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Figure P2.10: Strain and temperature measured independently by the FBG sen-
sors during temperature calibration. The lines show the strain and
temperature measured by the machine, and the symbols the strain
and temperature obtained by the developed method using the FBG
sensors measurement.

Simultaneous Strain and Temperature Measurement

As a final test, a continuous variation of temperature from -10oC to 40oC was
applied to the specimen and, at the same time, the specimen was cyclically loaded
with two strain stages of ε= 0.30% and ε= 0.50% , as shown in Fig. P2.11a). However,
in order to compare both measured strains without the thermal effect, the machine
strain was converted using the load applied by the tensile machine (εnoT hermal =
F/(AsectionE)); E = 4.4GPa).

The wavelength shift ∆λb of each FBG sensor can be observed in Fig. P2.11b) and,
as expected, the signal global behaviour follows the specimen temperature variation
in both sensors, and the difference in the sensor response [(∆λA

b /∆λA
b )−(∆λB

b /∆λB
b )]

increases as the strain in the specimen increases.
The strain and temperature measured independently by the FBG sensors during

the tensile test are shown in Fig. P2.12. The strain in the specimen caused by
the loading without the thermal expansion effect was successfully measured with a
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Figure P2.11: Simultaneous strain and temperature measurement; a) Machine mea-
surement of temperature and strain; b) FBG wavelength shift ∆λb.

maximum error of 2.4%. This measurement error can be justified by the mismatch
in temperatures acting in each sensor, as this error is only observed during large
temperature variation. This problem can be solved by minimizing the distance be-
tween sensors. Nevertheless, the error value achieved is acceptable, and in common
tests or application this magnitude of temperature variation will not happen. The
observed difference between the two measured temperatures is caused by fact that
the machine temperature is measured in the environmental chamber, and the FBG
temperature is measured inside the specimen. Therefore, the specimen needs more
time to homogenise its temperature, creating a delay in the measurement.

In summary, these results showed that by using this method it is always possible
to determine the strain without the thermal effect within a reasonably low error, even
for a complicated temperature-loading case.

P2.5 Proposed Calibration Protocol
A calibration procedure is required before any measurement can be made. The two
calibration options are:

• Full calibration or using already calibrated parameters; this is the most accurate
method but it is time consuming;

• Strain/partial calibration; it is faster to perform but the temperature cannot
be measured;
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Figure P2.12: Strain and temperature measured independently by the FBG sen-
sors during a tensile test with simultaneous temperature and strain
variation. The lines show the strain and temperature measured by
the machine, and the symbols the strain and temperature obtained
by the developed method using the FBG sensors measurement.

P2.5.1 Measurement with Full Calibration
The full calibration procedure allows more parameters to be measured; it is possible
to measure the specimen strain and temperate independently, and also to measure
the material Poisson’s ratio (ν12) and thermal expansion coefficient (αh). The full
calibration procedure requires the following steps:

(a) Strain calibration:

1. Load/Unload the specimen and maintain the temperature constant during the
test;

2. Measure the wavelength shift from both FBGs, ∆λA
b and ∆λB

b ;
3. Measure the specimen strain using the surface mounted extensometers; this

strain is considered the reference strain (εref = εextensometer);
4. Calibrate the photo-elastic coefficient (pe) using Eq. (P2.16);
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∆λA
b

λA
b

= (1 − pe)εref (P2.16)

5. Calibrate the Poisson’s ratio (ν12) using the Eq. (P2.17); Use the calibrated
pe value;

εref =
(

∆λA
b

λA
b

− ∆λB
b

λB
b

)
1

(1 − pe)(1 − cos(θ)2 − ν12sin(θ)2)
(P2.17)

(b) Temperature calibration:

1. Apply a controlled variation of temperature, ensuring that no load or any
displacement constrains are applied to the specimen;

2. Measure the wavelength shift from both FBGs, ∆λA
b and ∆λB

b ;
3. Measure the chamber temperature variation; This temperature is considered

the reference value (∆Tchamber = ∆Tref );
4. Calibrate the thermo-optic coefficient (ξ) and the host material thermal ex-

pansion coefficient (αh) using the Eq. (P2.18); Use the calibrated pe value;

∆λA
b

λA
b

= ∆λB
b

λB
b

= [(1 − pe)αh + ξ]∆Tref (P2.18)

5. This material-sensor calibrated parameters: ν12; pe; ξ; αh;

P2.5.2 Measurement with strain/partial calibration
If the thermal expansion coefficient (αh) is unknown and the full calibration was not
performed, the temperature of the specimen cannot be measured by the developed
method. However, it is still possible to measure the strain without the thermal
effect by executing a strain/partial calibration. This calibration method is faster to
execute and it does not requires surface mounted extensometers or an environmental
chamber, which makes it a good calibration alternative (for measurements where the
temperature is not a requirement). The strain/partial calibration procedure requires
the following steps:

(a) Strain/partial calibration:

1. Load/Unload the specimen and maintain the temperature constant during the
test;

2. Measure the wavelength shift from both FBGs, ∆λA
b and ∆λB

b ;
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3. The strain measured by the FBG-A is considered the reference strain (εref =
∆λA

b /(λA
b [1 − pe]));

4. Assume the parameter pe as the value provided by the manufacture (in this
case pe=0.22);

5. Calibrate the Poisson’s ratio (ν12) using Eq. (P2.17);

(b) Execute the tensile test, and calculate the strain without the thermal expansion
effect using Eq. (P2.13) and the calibrated Poisson’s ratio.

A comparison between the two calibration methods, full calibration and strain/-
partial calibration, is presented in Appendix P2-A.

P2.6 Summary and Conclusions
The FBG sensors have a strain and temperature cross-sensitivity, making them inac-
curate for tests where the temperature can change. A temperature variation in the
specimen will create an additional strain, caused by the thermal expansion. A simple
measurement method to decouple this cross-sensitivity, enabling independent and ac-
curate measurement of strain and temperature, was developed in this article. This
technique was developed especially for polymeric tensile test specimens, and it can
be accomplished by using two single mode FBG sensors embedded in the material.

Equations describing this method, which allows strain and temperature calcula-
tion from the FBGs signal, were derived from the general FBG work principle. It
was demonstrated that, during temperature variation, both sensors will measure the
same amount of wavelength shift ∆λb, caused by the material thermal expansion.
However, during loading, the sensor response will have a different evolution, which
gives information about the strain in the material. Moreover, the angle between FBG
sensors (θ) has a big impact on the strain resolution. For an angle θ around 90o, the
resolution is actually improved, benefiting from the Poisson’s effect.

Two different calibration protocols were presented; one, fast that allows measuring
the strain without the thermal effect, sacrificing temperature measurement and ac-
curacy; other, more time consuming but that allows accurate measurement of strain
and temperature. Nevertheless, the authors suggest that for each material-sensor
configuration the full calibration procedure should be performed, in order to tune the
parameters used by the method.

This multi-parameter measurement method was applied to an epoxy tensile spec-
imen. The full calibration protocol was performed and achieved a calibration error
smaller than 1%. Then, multiple two loading/strain stages of ε= 0.30% and ε= 0.50%
during a continuous variation of temperature, from 40oC to -10 oC, were applied to
the specimen. The consistency of the expected/theoretical results with the calibra-
tion procedure, and the experimental validation, suggests that this proposed method
is applicable to measure accurate strain and temperature in a wide range of polymer
materials during tensile testing, being specially promising for polymer fatigue test
specimens.
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P2 Appendix-A: Comparison Between The Two Calibration
Methods: Full And Strain/Partial Calibration
In this appendix the two calibration methods, full and strain/partial calibration,
are compared. To simulate the case where only the strain/partial calibration was
performed, only the FBG data measured during tests is considered (without included
the strain measured by the surface mounted extensometers).

The parameters obtained after preforming the calibration protocols are shown in
Table P2.4.

Table P2.4: Calibrated and assumed parameters used. Comparison between the
two calibration methods, full and strain/partial calibration.

Parameters Full Cal. Strain/Partial Cal.
Photo-elastic coefficient (pe) 0.21±0.05 0.22 (given by manufacturer)
Poisson’s ratio (ν12) 0.35±0.07 0.35±0.04
Thermo-optic coefficient (ξ) 8.3E-6 8.3E-6 (given by manuf.)
Thermal expansion coefficient (αh) 6.1±0.03E-5 Not possible to obtain

The comparison between the strain and temperature measured by the two meth-
ods are shown in Fig. P2.13 and the maximum strain measurement error obtained
is presented in Table P2.5. The measurement where full calibration was performed
shows a lower strain measurement error, but it requires a more time consuming proce-
dure. On the other hand, the measurement where only strain/partial calibration was
performed shows an error slightly larger; however it does not allow any temperature
measurement. In any case, both options will give accurate measurement of strain
without the thermal effect.

Table P2.5: Maximum strain measurement error obtained during the test: Compar-
ison between the two calibration methods.

Full Calibration Strain/Partial Calibration
Maximum Strain error 2.4% 3.7%
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Figure P2.13: Strain and temperature measured independently by the FBG sensors
during a tensile test with simultaneous temperature and strain vari-
ation: Comparison between the two calibration methods, full and
strain/partial calibration. The line represents the control strain and
temperature measured by the machine, the cross symbol the strain
and temperature measured by the full calibration method, and the
square symbol the strain measured by the strain/partial calibration
method.
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Abstract

In a fibre-reinforced polymer (FRP) structure designed using the emerging dam-
age tolerance and structural health monitoring philosophy, sensors and models that
describe crack propagation will enable a structure to operate despite the presence of
damage by fully exploiting the material’s mechanical properties. When applying this
concept to different structures, sensor systems and damage types, a combination of
damage mechanics, monitoring technology, and modelling is required. The primary
objective of this article is to demonstrate such a combination. This article is divided
in three main topics: the damage mechanism (delamination of FRP), the structural
health monitoring technology (fibre Bragg gratings to detect delamination), and the
finite element method model of the structure that incorporates these concepts into
a final and integrated damage-monitoring concept. A novel method for assessing a
crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded
structures using embedded fibre Bragg grating (FBG) sensors is presented by com-
bining conventional measured parameters, such as wavelength shift, with parameters
associated with measurement errors, typically ignored by the end-user. Conjointly,
a novel model for sensor output prediction (virtual sensor) was developed using this
FBG sensor crack monitoring concept and implemented in a finite element method
code. The monitoring method was demonstrated and validated using glass fibre dou-
ble cantilever beam specimens instrumented with an array of FBG sensors embedded
in the material and tested using an experimental fracture procedure. The digital
image correlation technique was used to validate the model prediction by correlating
the specific sensor response caused by the crack with the developed model.

P3.1 Introduction
P3.1.1 Damage Tolerant Design and Structural Health Monitoring in

Fibre-Reinforced Polymer Material Structures
Fibre-reinforced polymer materials (FRP, often referred to as composite materials)
have been extensively used in aerospace, automotive, naval, wind energy and civil
engineering applications, mostly due to their high stiffness/weight ratio. A fibre-
reinforced polymer composite material consists of two distinct macroscopic phases: a
stiff phase (generally glass or carbon) and a polymer matrix. One of the advantages
of FRP material is their ability to be tailored for a specific application; this enables
an enhancement and a high level of customisation of their mechanical properties.
Thus, in a FRP structure, it is possible to align the reinforcement in the directions
where higher stiffness is required, which makes the structure lighter compared with
the structure of a conventional material [1].

Currently, the higher demand for more cost-effective, light-weight FRP structures
is pushing advances in material technology and design philosophy. In this way, the
design philosophy of FRP structures that is based on conservative analysis methods,
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with large safety factors, underestimation of the material properties, and considering
only the linear behaviour of the materials, is becoming obsolete. A shift in the design
philosophy has been discussed by several authors [2, 3], where the concept of damage
tolerance is suggested as an energy concept based on a particular combination of
structural design, loading environment, and material characteristics, which will enable
the structure to operate despite the presence of damage. However, a standalone
damage tolerance approach will not be achieved until all physical phenomena present
in the FRP field are fully understood. The solution starts by accepting the presence
of damage and its unpredictability, tracking this damage using a structural health
monitoring approach, where sensors integrated during manufacturing will provide
information about the presence of damage in an accurate way, its location, the type
of damage and the remaining operating life of the structure.

P3.1.2 Article Objectives
The main objective of this article is to provide a better understanding of the different
fields that need to be addressed to design a structure using a damage tolerance and
structural health monitoring philosophy, as well as a methodology that can follow this
concept to different structures, sensor systems and damage types.

To achieve this goal, it is necessary to explore three different fields in more detail;
thus, the following key concepts are linked and fully described.

• Damage mechanism: delamination in FRP as a damage tolerance property of
the structure. Fracture mechanism and stress distributions along the crack/-
damage area.

• Structural health monitoring technology: embedded fibre Bragg gratings to de-
tect and track cracks/delamination in FRP structures. FBG working principle.

• Finite element method (FEM) model of the structure: incorporation of the
damage mechanism with the structural health monitoring technology to a final
and integrated damage-monitoring concept. Virtual FBG: FEM sensor output
model for FRP delamination.
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Figure P3.1: Fibre bridging phenomenon during delamination in a glass fibre spec-
imen.

P3.2 Delamination as a Damage Tolerant Mechanism
Interface fracture resulting from crack growth along interfaces in laminated struc-
tures is called delamination, and it can be considered as the most widespread cause
of life reduction and one of the most important failure mechanisms in FRP structures.
Delamination can be analysed through fracture mechanics; thus, damage tolerance
implies that the crack growth is stable and that the energy required for unstable
crack growth (catastrophic event) is higher than the energy level required to initiate
the crack. This damage tolerant mechanism can be defined as a crack bridging phe-
nomenon, i.e., the delamination is accompanied by the formation of a fracture process
zone, in which intact fibres connect the crack faces behind the crack tip, as shown in
Fig. P3.1, which increases the energy required for a crack to grow.

This large-scale crack bridging zone cannot be addressed by linear elastic fracture
mechanics (LEFM). Rather, a cohesive model can be used to describe the fracture
process zone [4]. The cohesive law σn(δn) can be briefly described as a normal traction,
σn, as function of the normal opening, δn, in the active cohesive zone [5].

P3.2.1 Stress Distribution in the Crack/Damage Area
To successfully detect the growth of a crack in an FRP material, the measurement
technique should track specific fracture features that only occur in the vicinity of a
crack. Thus, the stress distribution around the crack tip in an FRP specimen was
analysed. This allowed the different measured parameters to be linked with all the
different fracture features.

The fracture process zone (FPZ) is a region near the crack tip where the material
strength is locally reduced. The stress distribution in the FPZ can be divided into
two distinct contributions: the crack tip singularity at the front of the FPZ and the
crack bridging at the FPZ wake. Near the crack tip, the singularity dominated the
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Figure P3.2: Finite element method simulation: stress σ22 distribution at the frac-
ture process zone (FPZ) for Mode I fracture.

zone (K-dominant). The stress field closely approached the singular stress field of
LEFM, indicating that the stress tends to infinity, creating a high stress gradient
area, as shown in Figs. P3.2 and P3.3a).

Considering the crack tip where the material is developing damage at x = 0, in
the fracture process zone given by −L < x < 0, the material is damaged, and its
ability to transfer stress is decreased, as described by the cohesive law. This FPZ
is characterised by a positive stress zone, as shown in Figs. P3.2 and P3.3b), which
is balanced by a compression zone ahead of the crack tip (x > 0). The size of the
compression zone will depend on the cohesive law and the material parameters [4].

P3.3 Structural Health Monitoring
Accepting damage and incorporating it as part of the design process will require
full control over the structural integrity. A structural health monitoring system’s
main purpose is to provide information about the presence of damage in an accurate
way, its location with good resolution, and the prognosis for the remaining life of
the structure. Some techniques have already been implemented to detect cracks
and monitor their growth, such as acoustic emission [6], where ultrasonic stress waves
generated by crack growth are detected; vibration [7], by measuring the change in the
specific damping capacity; modal analysis [8], by monitoring the natural frequencies
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Figure P3.3: Illustration of bridging zone stress distribution. (a) Crack tip singular
stress field and (b) schematic of a bridging law: relationship between
the normal stress, σn, and separation, δn, across the FPZ.

and mode shapes; piezoelectric actuators/sensors; and wavelet analysis [9] based on
the energy variation in the structural dynamics. However, applying these techniques
in operational structures presents some difficulties due to technical limitations, the
need for manual inspections performed by qualified operators, expensive hardware,
and so forth.

P3.3.1 Fibre Optic Sensors as Structural Health Monitoring
Technology

Fibre optic sensors, such fibre Bragg gratings (FBG), have the ability to perform
damage/failure monitoring during the operation of a structure without compromis-
ing its performance and structural resistance. The small size of an FBG, a diameter
of 125 µm, makes it virtually non-intrusive when embedded in the material. Addi-
tionally, FBG sensors have high resolution, multiple measurement points per fibre
capability (multiplexing), immunity to electromagnetic fields, chemical inertness, im-
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munity to optical power fluctuations, and long-term stability. These characteristics
make embedded FBGs a very promising technology for tracking cracks in composite
materials.

Knowing that an embedded FBG sensor will be under the influence of different
fracture phenomena during a crack growth event, such as a crack bridging zone, where
intact fibres connect the crack faces and a stress concentration zone near the crack
tip that influences the stress distribution (stress gradient), being able to identify and
measure these specific phenomena is the key factor for determining the presence of
damage and its growth in a structure. In the next section, FBG sensor responses for
three different stress/strain states that occur during crack growth are presented.

P3.3.2 Fibre Bragg Grating Sensor
A fibre Bragg grating is formed by a permanent periodic modulation of the refractive
index along a section of an optical fibre grating by exposing the optical fibre to an
interference pattern of intense ultra-violet light [10]. The photosensitivity of the
silica exposed to the ultra-violet light is increased; thus, when the optical fibre is
illuminated by a broadband light source, the grating diffraction properties are such
that only a very narrow wavelength band is reflected back, as shown in Fig. P3.4.

In a free state, without strain and at a constant temperature, the spectral response
of a homogeneous FBG is a single peak centred at wavelength λb, with a certain
bandwidth λ0 (distance between the two first minima), as shown in Fig. P3.4. The
wavelength λb is described by the Bragg condition,

λb = 2neff,0Λ0 (P3.1)

where neff,0 is the mean effective refractive index at the location of the grating, the
index 0 denotes unstrained conditions (initial state), and Λ0 is the constant nominal
period of the refractive index modulation [11]. The bandwidth is given by

λ0

λb
= 1
neff,0

√
(ξδneff,0)2 + (λb/L)2 (P3.2)

where L is the gauge length, δneff,0 is the mean induced change in neff,0, and ξ
is the amplitude of the induced index change [12]. An external load or temperature
variation will change the effective index of refraction and/or the period of modulation;
this will create a shift of the wavelength reflected peak from its original value.
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Figure P3.4: Fibre Bragg grating response in a free state.

In the following sections, the temperature is assumed to be constant and to have
no effect on the sensor response.

Response to Uniform Axial Strain

The sensor response to a uniform axial strain is schematically shown in Fig. P3.5.
Assuming a uniform strain εxx along the grating length, the wavelength shift ∆λb in
the sensor response is described by equation (P3.3)[13].

∆λb

λb
= (1 − pe)εxx (P3.3)

The parameter pe is a photo-elastic coefficients.
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Figure P3.5: Embedded FBG response to a uniform variation of strain and/or tem-
perature.

Response to Transverse Deformation: Birefringence Effect

An optical fibre can exhibit birefringent behaviour, which is defined by the change
in the refractive index neff of the two directions neffy and neffz when the grating
is subjected to a transverse force [14–17]. The change in the refractive index of the
two directions neffy and neffz is given by equations (P3.4) and (P3.5).

∆neffz = − n3
0

2Ef
{(p11 − 2νfp12)σz + [(1 − νf )p12 − νfp11](σy + σx)} (P3.4)

∆neffy = − n3
0

2Ef
{(p11 − 2νfp12)σy + [(1 − νf )p12 − νfp11](σz + σx)} (P3.5)

The parameter Ef is the elastic modulus of the optical fibre, νf is Poisson’s ratio, n0
is the initial refractive index, and p11 and p12 are the photo-elastic coefficients of the
optical fibre.

With this, when a transverse stress is applied to the grating, a separation of the
reflected Bragg peak occurs (peak splitting), as presented in Fig. P3.6. The width
variation of the reflected peak due to transverse deformation [15] ∆λ′

W V = |λz − λy|
can be calculated using equations (P3.1), (P3.4) and (P3.5).
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Figure P3.6: FBG response under a transverse force: Birefringent effect.

∆λ
′

W V = 2Λ|∆neffz − ∆neffy| (P3.6)

= Λn3
o

Ef
[(1 + νf )(p12 − p11)]|σz − σy| (P3.7)

Response to Non-uniform Strain

A crack or defect in the material can create a stress concentration/gradient, which
leads to an abrupt variation in strain. If the FBG sensor is inside this strain gra-
dient zone, the grating will experience a non-uniform deformation, causing a sensor
response that is significantly more complicated compared to a uniform case [14, 18].
The non-uniform strain along the sensor length will change the periodicity of the
grating pattern. In this way, the grating pattern is modified from a uniform to a
chirped configuration [19, 20], as shown in the Fig. P3.7.
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Figure P3.7: FBG response under a non-uniform strain.

As demonstrated by Peters [12], in a non-uniform grating, the applied strain will
induce a change in both the grating period and the mean index. These two effects
can be superimposed by applying an effective strain of ”(1 −pe)εxx(x)”, where εxx(x)
is the strain variation along the x direction. Thus, it is possible to rewrite the grating
period from (P3.1) as [12].

Λ(x) = Λ0[1 + (1 − pe)εxx(x)] (P3.8)

The effective mode index along the x direction δneff (x) can be calculated by [12].

δneff (x) =
(

1 + ξcos

[
2π

Λo[1 + (1 − pe)εxx(x)]
z

])
(P3.9)
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In a real crack growth situation, the strain variation along the grating εxx(x) (non-
uniform strain) can be difficult to predict/simulate due to its strong non-linearity. The
authors propose a simple method for evaluating the contribution of the non-uniform
strain to the width variation of the reflected peak by subtracting the bandwidth of
the grating in a free state λ0 from the bandwidth λW V of the grating under a linear
variation of strain calculated using the maximum εmax

xx (x) and minimum εmin
xx (x)

strains along the grating length.
The bandwidth of an FBG in a free state can be calculated using an approximate

expression that provides the full-width at half-maximum (FWHM) bandwidth [21],

λ0 ≈ λF W HM = λbs

[(
δneff

2ncore

)2

+
(

Λ
L

)2
]1/2

(P3.10)

where s ≈ 1 for strong gratings with high reflectivity, and s ≈ 0.5 for weak gratings,
ncore is the unexposed core refractive index.

The width variation of the reflected peak resulting from the non-uniform strain
effect can be approximated using the maximum and minimum strain values along the
grating, εmax

xx (x) and εmin
xx (x), respectively. The maximum grating period Λmax and

minimum grating period Λmin can be calculated using equation (P3.8), and the width
variation of the reflected peak resulting from non-uniform strain ∆λ′′

W V is obtained
by combining equations (P3.8) and (P3.1).

∆λ
′′

W V = [2neff Λmax − 2neff Λmin] − λF W HM (P3.11)

P3.3.3 FBG Response During Crack Growth
The FBG responses under different stages of crack growth are shown in Fig. P3.8.

P3.8(a) - No crack is present and a uniform strain, εxx, builds up around the
grating area as the structure is loaded. The FBG response is a uniform wavelength
shift in the reflected peak, ∆λ.

P3.8(b) - A crack has initiated and is approaching the grating area. A compressive
strain transverse to the FBG, εyy, forms ahead of the crack tip. Compressive strain
changes the FBG response creating a splitting (and hence a widening) of the reflected
peak, ∆λ′

W V .

P3.8(c) - Progression of the crack causes a non-uniform strain field around the
crack tip to reach the grating area. This modifies the FBG response by significantly
increasing the width of the reflected peak, ∆λ′′

W V .

P3.8(d) - The crack has passed the FBG sensor, and the FBG response has re-
turned to its original shape. Only uniform strain acts on the grating, resulting in a
uniform shift of the FBG reflected peak, ∆λ.
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Figure P3.8: Different stages of the FBG response under a crack growth event.

P3.4 Finite Element Method Model

P3.4.1 Delamination Model
To analyse the delamination problem and to link it with the structural health moni-
toring technique, a finite element method (FEM) model of a double cantilever beam
(DCB) specimen was developed using the commercial software ABAQUS™. This
specimen geometry, DCB, was chosen because it is commonly used in fracture test-
ing of composite materials, and later in this article, it will be used for experimental
validation. The model was developed assuming plane stress conditions (plane stress
elements), and the delamination/fibre bridging was modelled using 4-node cohesive
elements along the delamination plane [22, 23].

This method assumes that one or more interface elements (cohesive elements) can
be predefined to hold the delamination phenomenon, allowing the introduction of a
discontinuity in the displacement field. The cohesive elements are modelled to express
the cohesive law (traction-separation), meaning a progressive loss of the cohesion be-
tween the two crack faces with the local crack opening δ. The crack was modelled to
occur between the interface of the adhesive and the glass fibre arm beam. A cohe-
sive element with a small thickness (0.5% of the adhesive layer thickness) was used
to model only the interface between the two materials and to avoid neglecting the
elastic contribution of the adhesive to the DCB global behaviour. In an undamaged
state, the cohesive element follows a linear-elastic behaviour, defined as the penalty
stiffness Kn, which relates the nominal stress (traction vector- σn, σs, σt) to the nom-
inal strains (δn, δs, δt), as presented in Fig. P3.9.
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Figure P3.9: Constitutive behaviour of the cohesive element.

The damage initiation was calculated using a quadratic stress criterion presented
in equation (P3.12) [24].

f =
(

σn

Nmax

)2

+
(

σs

Smax

)2

+
(

σt

Tmax

)2

= 1 (P3.12)

The parameter f is the damage criterion, and it is fulfilled when it reaches the
value f = 1. The parameters σn,s,t are the nominal stress in the normal, first shear
and second shear directions, respectively, and Nmax, Smax, and Tmax are cohesive law
parameters; these parameters are determined experimentally. The parameters δ∗

0 and
δ∗

c are the crack opening displacement to the local crack plane for damage initiation
and critical damage. For mixed mode loading, δ∗

0 and δ∗
c were calculated using the

law of Pythagoras.

δ∗
0 =

√
δ2

0,n + δ2
0,s ; δ∗

c =
√
δ2

c,n + δ2
c,s (P3.13)

When the initiation criterion is reached, a damage evolution law will describe
the material stiffness degradation. A scalar damage variable, D, ranging from 0 (no
damage) to 1 (fully damaged), represents the damage in the cohesive element. A
linear softening displacement criterion was used, given by δ0, which is the opening at
damage initiation, and δc, which is the opening at failure. In terms of mixed mode
behaviour, a linear relation between Modes I and II was implemented.
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Figure P3.10: Double cantilever beam geometry dimensions.

Description of the Delamination FEM Model

The dimensions of the DCB specimen are shown in Fig. P3.10, and the material
properties implemented in the FEM model are presented in Table P3.1.

The beams were modelled using a combination of two different laminates: unidi-
rectional glass fibre (UD) and triaxial glass fibre (Triax). Moments were applied to
the extremities of the beams, as shown in Fig. P3.11. Three different loading combi-
nations were used: pure mode I-opening fracture, by applying identical moments to
the DCB arms; pure mode II-shear fracture, by applying symmetric moments to the
DCB arms; and mixed mode-opening and shear fracture, by applying a moment to
one arm and leaving the other arm free.

Table P3.1: Double cantilever beam material properties.

Composite Material Adhesive
Triaxial Fabric (Composite) Uniaxial Fabric (Composite) Elastic
E1 = 44.3 GPa E1 = 23.8 GPa E = 4.56 GPa
E2 = E3 = 12.9 GPa E2 = E3 = 15.05 GPa ν = 0.35
ν12 = ν13 = ν23 = 0.23 ν12 = ν13 = ν23 = 0.513
G12 = G13 = G23 = 4393GPa G12 = G13 = G23 = 4.393GPa

Interface (Cohesive Law)
Penalty Stiffness Damage (Quadratic stress) Damage Evolution

K = 4.2 E12 Pa; σn = 2.64 MPa (Mode I) δc1 = 1.4 (Mode I)
σt = 22.15 MPa (Mode II) δc2 = 0.37 (Mode II)
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Figure P3.11: FEM simulation of different fracture modes in a DCB specimen.

A minimum of 10 cohesive elements inside the active fracture process zone is
suggested by some authors [25, 26]. Using too few elements will introduce error
in the crack growth resistance (fracture energy) calculation; however, finer meshes
require more computational resources. Moreover, the mesh should be sufficiently fine
to accurately represent the cohesive zone and the stress/strain variation along the
grating length. An example of a coarse mesh is shown in Fig. P3.12. The stress and
strain are not correctly represented along the grating length, leading to an inaccurate
prediction of the sensor output.

A mesh resolution and result convergence study was conducted, as presented in
Table P3.2. The maximum stress σy that is possible to measure along the sensor
length (10 mm) and the maximum strain variation ∆εxx at the crack tip were analysed.
Based on this analysis, a cohesive element size of 0.5 mm was selected, which meets
the minimum element number requirement and provides a good stress and strain
resolution along the sensor length.
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Figure P3.12: Mesh resolution study: cohesive zone and the stress/strain variation
along the grating length.

Table P3.2: Mesh resolution and result convergence study.

Mode I Mode II
Element
size(mm) Max σy(MPa) Max ∆εxx(%) Max σy(MPa) Max ∆εxx(%)

5.0 3.81 0 1.29 0
3.8 3.78 0 2.36 0.012
1.0 6.27 0.2 5.55 0.022
0.5 7.84 0.7 10.13 0.82
0.25 7.88 0.71 10.67 0.87

P3.4.2 FBG Response Model: Crack Detection/Prediction
One of the goals of this article is to develop a numerical model for predicting the
FBG output in a general crack growth situation, thus making it possible to use this
material-structure-sensor model as a design tool, and to study the application of this
monitoring technology in different composite material structures/locations.
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To accomplish this goal, an algorithm was developed using Python and incorpo-
rated into the FEM model, as shown in Fig. P3.13. The algorithm was developed as
a post-processing tool that uses the stress σ and strain ε state at the grating positions
as input. In the first step, the algorithm synchronises the stress, the strain, and the
crack tip position with the virtual grating positions. Then, the algorithm computes
the wavelength shift ∆λ and width variation of the reflected peak ∆λW V versus the
crack position for each virtual grating using the equations developed in this article.

Figure P3.13: Algorithm applied to the FEM model to obtain the FBG output
prediction.
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Some assumptions were made to compute the contribution of each fracture phe-
nomenon to the sensor response. In a real application, the grating has a finite length,
generally 8-10 mm; however, the FEM technique discretised the grating into finite
parts or elements. Thus, to compute the wavelength shift ∆λb, which only depends
on the global state of strain εxx around the grating, the average strain εx in the
elements at the position of the virtual grating was used. Similarly, to compute the
width variation of the reflected peak due to the compressive strain ∆λ′

W V , the aver-
age stress in the transverse direction σy and σz at the virtual grating position was
used. To compute the non-uniform strain contribution to the reflected peak width
variation ∆λ′′

W V , a linear strain variation was assumed, using the maximum and min-
imum strain values along the elements in the virtual grating position. In reality, the
strain distribution follows a polynomial curve, which depends on the material, geome-
try and crack shape. However, this approximation can be considered good due to the
small size of the sensor. The final width variation ∆λW V value is obtained by simply
adding both contributions: the non-uniform strain (∆λ′′

W V ) and the transverse stress
(∆λ′

W V ). The Python script used to calculate the sensor response from the FEM
model is shown in Supporting information (P3-S1 File).

Description of the Sensor Response FEM Model

In the FEM model, pure mode I, pure mode II and mixed mode were simulated to
represent different crack growth conditions. An FBG array of 5 gratings was defined
as virtual measurement points, each with a 10 mm length and spaced 10 mm from
each other. The first grating was placed 10 mm from the beginning of the adhesive,
as shown in Fig. P3.14. The FBG array was placed between the interface of the
composite material and the structural adhesive. Table P3.3 lists the parameters of
the optical fibre used to implement the algorithm.

Table P3.3: Fibre Bragg Grating Parameters.

Parameters:

λb- Initial wavelength
From manufacturer
(Ex:1528.81;1541.31;
1554.25;1567.12;1580.24 (nm))

L- FBG length 10 (mm)
neff,0- Initial refractive Index 1.45
pe- Photo-elastic coefficient 0.215
p11- Photo-elastic coefficient [20] 0.121
p12- Photo-elastic coefficient [20] 0.270
Ef - Elastic modulus of FBG 75 GPa
νf - Poisson’s ratio of FBG 0.17
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Figure P3.14: FBG measurement point in the FEM model.

P3.5 Numerical Simulation of the FBG Sensor Output
During Crack Growth

In Fig. P3.15, the numerical simulation of the FBG output response for a crack
growing in a DCB specimen is shown.

The plots in the left column represent the wavelength shift ∆λb caused by the
longitudinal strain εxx. The plots in the right column represent the width variation
of the reflected peak ∆λW V caused by the fracture/damage phenomenon near the
grating. Different fracture modes were addressed, namely, Mode I, Mixed Mode and
Mode II in the first, second and third plot rows, respectively. The wavelength shift
∆λb and the width variation of the reflected peak ∆λW V vs. crack tip position (CTP)
were plotted in all figures. At each abscissa point (CTP), the output values of the 5
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Figure P3.15: FBG sensor output simulation under crack growth: Mode I, II and
mixed Mode fracture.

FBG sensors in that specific crack position are presented. A jump in the wavelength
shift ∆λb was observed when the crack passed the position of the grating. The dam-
age/crack changes the local compliance of the material and load distribution, making
the area that surrounds the sensor less stiff and more deformed; therefore, an increase
in the strain was measured. However, it is possible to observe some differences in the
evolution (shape) of the wavelength shift ∆λ because the position of the sensor and
the crack related to the applied moments is different.
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Figure P3.16: FBG sensor position analysis scheme.

The model predicted that a variation in the width of the reflected peak ∆λW V

will occur when the crack is near the grating, in which the original peak width is
restored after the crack passes the grating. The width variation response in all cases
showed the same evolution pattern, exhibiting a loading- and geometry-independent
behaviour. The magnitude of the differences of the ∆λW V in mode II is related to the
fracture material properties, i.e., the fracture resistance in mode II is higher than that
in mode I. This means that the stress distribution during crack growth in mode II is
different, creating a higher strain variation. The differences observed in the ∆λW V

response for the FBG 5 in Mode I, FBG 1 in Mode II, and FBG 1 in Mixed Mode
are due to the effect of the model boundary conditions.

As previously discussed, this material-structure-sensor can be used as a tool for
studying the application of this monitoring technology in different locations or struc-
tures. A grating position analysis scheme is presented in Fig. P3.16. Four positions
were analysed: bottom composite laminate, bottom adhesive-composite interface, top
adhesive-composite interface, and top composite laminate for Mode I and Mode II
fractures. The sensor response for each position is shown in Fig. P3.17. As expected,
in Mode I fracture (Fig.P3.17a)), the gratings located closer to the crack tip measure
higher magnitude values. However, placing the sensor close to the crack can be tech-
nically difficult or even increase the probability of damaging the sensor during crack
growth.
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Figure P3.17: FBG sensor position analysis. a)Sensor output for Mode I fracture;
b)Sensor output for Mode II fracture.

This analysis revealed that the sensor in position 2 (interface) can confidently
detect damage because the common resolution of measurement equipment is approx-
imately 0.01 nm and ensure the structural integrity of the sensor by increasing the
distance from the crack surface. In Mode II fracture (Fig. P3.17b)), the sensor in
position 1 showed a greater magnitude of ∆λb and ∆λW V . This result is because
at position 1, the sensor is more distant from the bending neutral-axis, consequently
deforming more, εxx → ∆λb, and experiencing a larger amount of non-uniform strain,
εxx(x) → ∆λW V .

Note that the sensor output ∆λW V showed a variation in the signal that depends
on the location of the crack and the loading type. However, for the width variation
of the reflected peak ∆λW V , the sensor showed the same behaviour for different
fracture modes, presenting a loading-independent behaviour. This makes ∆λW V a
key parameter for detecting cracks in composite material structures.
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P3.6 Model Experimental Validation
P3.6.1 Material and Experimental Procedure
To measure the FBG sensor response under a crack/delamination situation, double
cantilever beam specimens with embedded fibre Bragg grating sensors were subjected
to a controlled fracture progression. A special effort was made to identify specific
fracture features, such as compression stress and non-uniform fields, during the crack
growth.

P3.6.1.1 Loading and Fracture Modes
The three different combinations of forces that can cause a crack to grow are presented
in Fig. P3.18. Mode I crack: opening mode, by tensile stress normal to the plane of
the crack. Mode II crack: shear mode, by shear stress acting parallel to the plane
of the crack and perpendicular to the crack front. Mode III: tearing mode, by shear
stress acting parallel to the plane of the crack and parallel to the crack front.

Nominal mode mixity or phase angle, ψnom, is a parameter that defines the ratio
of Mode I and Mode II [27],

ψnom = tan−1
(
KII

KI

)
(P3.14)

where KII and KI are the mode II and mode I stress intensity factors, respectively.

Figure P3.18: Scheme of the three modes of loading that can be applied to a crack.
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Figure P3.19: Homogeneous mixed mode specimen scheme.

For a homogeneous specimen without considering the adhesive layer, as shown in
Fig. P3.19, the parameter ψnom can be defined as [28],

ψnom = tan−1
(√

3
2
M1 +M2

M1 +M2

)
(P3.15)

where M1 and M2 are the moments applied to the top and bottom arms, respectively.
The mixed mode ratio ψnom can be defined by the ratio of the moments applied to
the DCB arms (M1/M2). For pure Mode I (opening fracture ψnom = 0◦), when the
moments are the same and applied in opposite directions, M1 > M2 and ∥ M1 ∥=∥
M2 ∥, and for pure Mode II (shearing fracture ψnom = 90◦), when the moments are
the same and applied in the same direction, M1 = M2.

The three different fracture modes used to conduct the experiments were as follows:
pure Mode I, opening fracture ψnom = 0◦; pure Mode II, shear fracture ψnom = 90◦;
and mixed mode I/II, with a phase angle of ψnom = 68◦. The experiments were
conducted with a constant displacement rate of the lower beam of the test machine
of 2.5 mm/min [29].

P3.6.1.2 Fracture Testing Procedure
To correctly evaluate the different stages in the FBG response, a stable and controlled
crack growth is required. However, the standard test methods used to characterise the
macroscale fracture energy provide an unstable crack growth, particularly in Mode
II loading. To overcome this, the fracture test machine developed by Sørensen [29],
shown in Fig. P3.20, was used. In this testing apparatus, the loading is applied
through moments, providing a stable crack growth in the range of mode I to Mode II.
Moreover, this testing apparatus allows the test to be stopped without decreasing the
applied load, making it possible to perform measurements in a process that simulates
continuous crack growth conditions.

To perform the loading, wires apply an equal transverse force to the transverse
arms, which are attached to the DCB beams. The position where the wires are
connected to the transverse arms defines the moments applied to each DCB beam,
meaning that different wire positions will provide different loading types, from pure
Mode I to pure Mode II. The force in the wires is measured by two load cells. One
extensometer and two LVDTs (linear variable differential transformers) measure the
crack face opening and sliding in the DCB specimen.
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Figure P3.20: Schematic illustration of the double cantilever beam test set-up.

P3.6.1.3 DCB Specimen Manufacturing

Two plates with dimensions of 700 × 1000 mm and a thickness of approximately 7
mm were produced using multiaxial glass fibre. Ten layers of fabric per plate were
used, consisting of two triaxial fabrics (Saertex Triax S32E4590) as skin layers and
eight unidirectional central layers (Saertex S35EU910). The layup stacking of the
laminates was [90/ + 45/ − 45/04/04/ + 45/ − 45/90], and the backing of the unidi-
rectional layers was facing outwards, away from the central plane. The plates were
made by hand lay-up of dry fibre fabric, followed by epoxy impregnation (Momentive-
Epikote/Epikure-100:30) by vacuum infusion at 50◦C for 5 hours and post-curing at
80◦C for 3 hours. The plates were glued using a commercial structural adhesive
(Momentive-Epikote/Epikure MGS BPR 135G/137G), and 7 mm spacers were used
to obtain a well-defined specimen thickness and geometry. A thin slip foil was placed
on the edge of the structural adhesive to act as a pre-crack and ease crack initiation.

An array of 5 uncoated single-mode FBG sensors (5 gratings in one optical fibre),
with a length of 10 mm, were embedded in the interface of the laminate plate with
the structural adhesive. The gratings in the array were spaced 10 mm from each
other, and the first grating was positioned 10 mm from the edge of the adhesive.
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Figure P3.21: Sketch of the specimen geometry and FBG sensor position.

Five specimens, 30 mm in width, were cut from the sandwich plates. Steel parts
were fixed to each beam by 4 steel screws (M5) by an epoxy adhesive (Scotch-Weld
DP 460 from 3M, hardened at 40◦C for two hours). The DCB dimensions, different
components, and fibre grating locations are shown in Fig. P3.21.

P3.6.2 Measurement Technology

P3.6.2.1 Digital Image Correlation Technique

The digital image correlation (DIC) technique was used during the DCB fracture
testing to determine the presence of specific phenomena caused by the crack, such
as non-uniform strain or transverse stress, and correlate it with the FBG sensor
output. The DIC technique is a non-contact optical method that can correlate the
deformation/strain in a material by tracking changes in a random pattern on the
specimen.

A pattern was painted on the side surface of the DCB specimen, as shown in
Fig. P3.22, and ARAMISTM V6.3 software was used to calculate the strains in
each measurement. To perform the measurements, ARAMIS recognises the surface
pattern in the unloaded specimen and allocates coordinates to the image pixels. Then,
ARAMIS compares the pattern in the loaded specimen picture and, by tracking the
changes, calculates the displacement and consequently the strain distribution in the
specimen face. The facet parameters used for strain calculation were 60 × 60 pixel
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Figure P3.22: DIC pattern painted on the side surface of the DCB specimen.

facets with a facet step of 15 pixels, which corresponds to a 45 pixel overlapping area
[30].

P3.6.2.2 Fibre Bragg Grating Optical Spectral Analyser System
The FBG sensor was connected to an optical spectral analyser (OSA) FS2200- In-
dustrial BraggMeter from FiberSensingTM [31]. Each measurement performed by the
OSA is a file with 20000 points, corresponding to the reflected light spectrum for the
bandwidth from 1500 to 1600 nm. To manage this amount of data, an algorithm us-
ing Python was developed that computes from the reflected spectrum the wavelength
shift ∆λb and the increase in width of the reflected peak ∆λW V . Similar to the DIC
technique, the algorithm uses the first reflected optical spectrum, measured in the
unloaded specimen, to calculate the variation in the wavelength shift and increase in
reflected peak width for each measurement (see Fig. P3.23).

To calculate the wavelength shift ∆λb, the algorithm detects the maximum re-
flected optical power of each grating and then computes ∆λb in relation to the original
reflected peak. If the reflected peak is distorted or shows a split shape, the algorithm
interpolates ∆λb between the maximum points in the grating bandwidth and the
last maximum peak before the split occurred. To calculate the width of the reflected
peak λW V , the algorithm determines the maximum and minimum reflected optical
power for each grating and measures the peak width at half maximum optical power
((maximum + minimal)/2). It then computes the width variation of the reflected
peak ∆λW V relative to the original reflected peak width.
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Figure P3.23: Algorithm for calculating the wavelength shift ∆λb and the width
variation of the reflected peak ∆λW V from the reflected optical spec-
trum.
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Figure P3.24: Fracture modes addressed in the DCB testing.

P3.7 Experimental Results and Discussion
Three DCB specimens loaded with different fracture modes, namely, Mode I (ψnom =
0◦), Mode II (ψnom = 90◦), and Mixed Mode (ψnom = 68◦), are shown in Fig. P3.24.
The type of fracture mode performed for each DCB specimen is described in Table
P3.4.

Table P3.4: Fracture Modes Tested.
DCB specimen 1 2 3 4 5
Fracture Mode I/II I I I II

I I/II
II I

In specimens 1 and 5, an initial fracture test was performed until the crack reached
the middle of the FBG array. Then, the test was restarted with a different fracture
mode to simulate a change in the loading conditions and evaluate the ability of the
sensors to measure a crack independent of the loading configuration.
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Figure P3.25: Crack face in the DCB specimen.

A critical issue found when using FBG sensors embedded in the FRP material
is the possibility of damaging the sensor. If the crack changes it path direction and
crosses the optical fibre, this will cut the signal, losing all the gratings ahead of that
point. To avoid this situation, crack initiation between the triaxial laminate and the
unidirectional laminate was promoted by using a thin slip foil, as shown in Fig. P3.25.
Thus, the FBG sensor was 0.3-0.4 mm away from the crack face, protected from any
damage, as long as the crack did not change direction. As planned, the crack followed
the predicted path for the Mode II and mixed mode testing. However, the crack did
change direction during the test of specimens 2, 3 and 4 under Mode I, losing some
of the gratings during the propagation of the crack. Nevertheless, sufficient data was
acquired during these tests, allowing the validation of the structure-material-sensor
model in mode I fracture.

The FBG response and DIC strain measurements during crack growth in a DCB
specimen are shown in Fig. P3.26. The reflected peak of the Bragg grating that is
situated closer to the adhesive edge corresponds to FBG 5, with an original reflected
peak of λb = 1580 nm. All the different crack features/phenomena that can change
the shape of the reflected peak were identified and correlated with a specific FBG
response. The left row pictures are DIC measurements, where the top shows the
negative component of strain in the y direction, εy (”compression” strain), and the
bottom shows the strain in the x direction, εx.

The blue spot in the top DIC measurements is the compression field εy formed
ahead of the crack tip. The colour gradient in the bottom DIC measurements is the
indication of longitudinal variation of strain that moves with the crack tip.

By analysing the three figures, it is possible to identify all the different stages in the
sensor response during crack growth, as described previously. In Fig. P3.26a), before
the crack reaches the proximity of the grating, the material accumulates uniform
strain. This induces a uniform wavelength shift in the sensor response, from λb,0 =
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Figure P3.26: FBG sensor output during crack growth in Mode II. a) Before crack
initiation; b) crack growth: compression field at grating position; c)
crack growth: non-uniform strain at grating position; and d) crack
growth and passing all grating length.

1580.00 nm to λb = 1580.25 nm. Next, the compression field formed ahead of
the crack tip reaches the grating area. This modified the shape of the reflected
peak to a split peak shape, with a peak width increase of ∆λW V = 1.33 nm, as
shown in Fig. P3.26b). Additionally, an increase in the wavelength shift, ∆λb =
1.41 nm, was measured, which was caused by the loading increase that consequently
increased the strain in the specimen. If the crack continues to grow, the grating
will gradually experience the influence of the crack singularity (region dominated
by stress concentration), which creates a non-uniform strain distribution around the
sensor length. This non-uniform strain will create a change in the reflected peak
shape, where multiple reflected peaks appear and the peak width increases ∆λW V =
2.21 nm, as shown in Fig. P3.26c). Following the previous stages, an increase in the
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wavelength shift was measured, ∆λb = 2.17 nm, which was caused by the continuous
load increase. Finally, after the crack passed the grating full length, the reflected peak
width decreased, ∆λW V = 1.32 nm, and the shape of the reflected peak gradually
recovered its original shape, as shown in Fig. P3.26d). However, the wavelength shift
continued to vary, ∆λW V = −3.44 nm, following the increase of load and strain in
the specimen.

Due to the large quantity of data saved during the fracture tests, it is impossible
to present all the results in this article. However, to provide the reader with a better
understanding of the crack detection technique, three movies from the three fracture
modes tested (S1 Video, S2 Video and S3 Video) are presented in the Support-
ing Information in the article1. In each movie is shown the reflected spectrum from
the FBG array, a picture of the specimen during the test, and the DIC results, syn-
chronised with the wavelength shift ∆λb and peak width variation ∆λW V measured
during the test.

Figure P3.27: Embedded FBG sensor output in a DCB specimen under Mode I
fracture testing: numerical and experimental results.

1See supporting information in DOI: 10.1371/journal.pone.0141495
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The Mode I, Mode II and Mixed Mode fracture testing experimental results are
compared with the numerical simulation in Figs. P3.27, P3.28 and P3.29. The
wavelength shift ∆λ and width variation of the reflected peak ∆λW V were computed
from the measured reflected spectrum given by the OSA of the Braggmeter using the
developed algorithm. The crack tip position was calculated using the DIC technique.

Figure P3.28: Embedded FBG sensor output in a DCB specimen under Mixed
Mode fracture testing: numerical and experimental results.

Note that the goal of this technique is to detect cracks, not to quantify stress or
strain. Thus, the magnitude of the measured values can vary, but the information
obtained that is used to determine the presence of the crack is accurate. With this,
a good agreement between the experiments and simulation was found.

The wavelength shift, ∆λb, difference between the experimental results and the
numerical prediction is due to the loading and geometric dependency of this param-
eter; i.e., small variations in the position of the sensor or a different crack growing
path can vary the measured strain. For the Mode II and Mixed Mode cases, the
path of the crack shifts during the test, changing the position of the grating from the
top crack face to the bottom face, as shown in Fig. P3.25. This causes a change in
the measured strain, ∆λb), from positive to negative. However, in terms of absolute
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Figure P3.29: Embedded FBG sensor output in a DCB specimen under Mode II
fracture testing: numerical and experimental results.

values, both cases exhibited the predicted behaviour.
As previously discussed, the main advantage of this monitoring technique is the use

of two different FBG output parameters, ∆λb and ∆λW V , to determine the presence
of the crack and to track its growth. The wavelength shift, ∆λb, is a parameter
related to the strain level in the structure, but it is dependent on the loading and
geometry configuration. This can be observed in mode I loading, where an increase
of ∆λb is observed, and in Mode II/Mixed, where a decrease in ∆λb occurs. However,
the rapid increase in the magnitude of ∆λb is caused by a damage event that reduces
the stiffness of the structure. In contrast, the width variation of the reflected peak,
∆λW V , is a parameter that only depends on the presence of a crack, independent of
geometry and loading type. The width of the reflected peak, ∆λW V , increases when
the crack is near the grating area, being low in magnitude before and after the crack
passes. In summary, these two parameters are a good indicator of the presence of
cracks, and a structural health monitoring system based on FBG sensor technology
needs to evaluate both variables to accurately detect such damage.
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As an example of this crack detection methodology, refer to Fig. P3.28, when the
crack tip is at 50 mm (beginning of FBG3). The value of ∆λb is larger for FBG1 and
FBG2; the FBG3 ∆λb value is starting to increase; and the FBG4 and FBG5 ∆λb

values are still low. This indicates that the compliance of the material is changing
in location 3. However, the value of ∆λW V is higher for FBG3 and FBG4, and it is
lower for FBG1, FBG2, and FBG5. This result indicates that these two locations, 3
and 4, are experiencing specific fracture features ahead of the crack tip (compression
and non-uniform strain). Using this information, we can confidently predict the crack
position, which has already passed positions 1 and 2 and is located at position 3.

P3.8 Summary and Conclusions
Inspired by the change in the ”conventional” structure design philosophy to a dam-
age tolerant structural design, through the use of damage tolerant materials com-
bined with structural health monitoring techniques, an approach to detect damage in
structures composed of composite materials and structural adhesive was outlined in
this paper. This concept will eventually lead to a condition monitoring-maintenance,
which consists of the detection of damage by sensors, characterisation of damage (type
and size), and model predictions of residual life that will enable decision-making with
respect to whether a structure should be repaired or replaced.

The ability of fibre Bragg gratings embedded in composite materials to detect
and track cracks/delamination by identifying the response of a sensor to a specific
fracture/damage phenomena was demonstrated. Three different mechanisms that
can change the sensor output, namely, longitudinal strain εxx, transversal stress σy,z

and non-uniform strain εxx(x), were described and linked with the different damage
mechanisms that occur during a crack growth event. These different measurement
concepts were incorporated into a finite element model of a delamination of a double
cantilever beam to simulate the sensor output under different conditions. Using this
technique, it becomes possible to extract information from the sensor output that
is independent of the loading type, structure geometry and boundary conditions,
depending only on the proximity of the crack and the material properties.

The material-structure-sensor model can be used as a design tool for applying
this monitoring technology in different composite material structures, predicting the
sensor output, and determining the optimised sensor-structure configuration. As per
the authors’ vision, this material-structure-sensor model concept will make it possible
to design structures in composite materials that can operate safely, even when in
damaged conditions.
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Appendix P3-S1: Python script to calculate the FBG
sensor response from the FEM model

1 """
2 Created by Gilmar Pereira---Contact email: gfpe@dtu.dk
3

4 This code is used as Abaqus Post-processing tool to predict the
5 FBG sensor output during crack Growth for a 2D Case.
6 """
7 #Packages
8 import numpy as np
9 import scipy as sp

10 import sympy
11 import matplotlib.pyplot as plt
12 import math
13

14 """
15 The code starts by loading the report files given by Abaqus.
16 Export 2 different files(sigma_22 and epsilon_11), using the path

tool,
17 along the fiber optic position. This script will work for a 2D case.
18 For a 3D case, add a third file with the stress in the transverse
19 direction (sigma_33).
20 """
21 #Load file sigma_22
22 filess22='filename_s22.txt'
23 #Load file epsilon_11
24 fileLE11='filename_E11.txt'
25 """Script Input"""
26 #Size of elements (mm)
27 se=0.5
28 #Length of the grating(mm)
29 lg=10
30 #Number of gratings
31 ng=5
32 #Space between gratings(mm)
33 sbg=10
34 #Number of elements per grating
35 neg=lg*se
36

37 """Optical Fiber input Parameters"""
38 #Original wavelength
39 LFBG=[1528.813*10**(-9) ,1541.317*10**(-9) ,1554.252*10**(-9),

1567.121*10**(-9) ,1580.246*10**(-9)]
40

41
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42 #PhotoElastic Parameter
43 pe=0.215
44 #Initial refractive index
45 n0=1.45
46 #Optical fiber young's module
47 Ef=75*10**3
48 #Poisson's coefficient of the optical fiber
49 vf=0.17
50 #Directional refractive index parameters.
51 p11=0.121
52 p12=0.270
53 # Inital Grating period calculation
54 igp=[x/(2*n0) for x in LFBG]
55

56 """------------------------------------------------------------
57 Loading Data: FBGX-Y; x- is the FBG number,
58 Y is the element number- starting from 0 to neg."""
59 names =('x',)
60 formats=('f8',)
61 for x in np.arange(ng,0,-1):
62 FBGref= 'FBG'+str(x)
63 for i in np.arange(neg,0,-1):
64 names= names + (FBGref+'-'+str(i),)
65 formats=formats+ ('f8',)
66 dtypes = {'names' : names,'formats': formats}
67 #Loading file
68 s22=np.loadtxt(filess22 , dtype=dtypes,skiprows=5)
69 LE11=np.loadtxt(fileLE11 , dtype=dtypes,skiprows=5)
70 """------------------------------------------------------------
71 Calculation of the Wavelength shift - uniform strain contribution ,
72 wlv: wavelength variation: average of the strain in the length
73 of the grating """
74 LEaverage={}
75 for b in range(1,ng+1):
76 LEaverage['FBG'+str(b)]= []
77 for a in range(0,size(LE11)):
78 for f in range(1,ng+1):
79 temp=0
80 temp2=0
81 FBGname= 'FBG'+str(f)
82 for l in range(1,neg+1):
83 sensorname=FBGname+'-'+str(l)
84 temp=temp+ LE11[sensorname][a]
85 temp2=temp/neg
86 LEaverage[FBGname].append(temp2)
87

88
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89 # Wavelength shift calculation (Units of wavelength in nm)
90 WaveShift={}
91 for b in range(1,ng+1):
92 Fbgname= 'FBG'+str(b)
93 WaveShift[Fbgname]=[x*LFBG[b-1]*(1-pe)*10**9 for x in
94 LEaverage[Fbgname]]
95 """------------------------------------------------------------
96 Reflected Peak Width Variation calculation: Transversal Stress
97 Using an average of the transverse stress values. """
98 s22average={}
99 for b in range(1,ng+1):

100 s22average['FBG'+str(b)]= []
101 for a in range(0,size(s22)):
102 for f in range(1,ng+1):
103 temp=0
104 temp2=0
105 FBGname= 'FBG'+str(f)
106 for l in range(1,neg+1):
107 sensorname=FBGname+'-'+str(l)
108 temp=temp+ s22[sensorname][a]
109 temp2=temp/neg
110 s22average[FBGname].append(temp2)
111 # Peak Width Variation calculation
112 #Equation fixed component
113 fce=(((1+vf)*p12-(1+vf)*p11)*n0**3)/Ef
114

115 Wavegap={}
116 for b in range(1,ng+1):
117 Fbgname= 'FBG'+str(b)
118 #Units of the wavelength in nm (*10**9)
119 Wavegap[Fbgname]=[abs(abs(x)*fce*igp[b-1]*10**9) for x in
120 s22average[Fbgname]]
121 """------------------------------------------------------------
122 Reflected Peak Width Variation calculation: Non-uniform strain
123 Using maximum and minimum strain along the grating. """
124 graperiodmax={}
125 graperiodmin={}
126 Wavegap2={}
127 for b in range(1,ng+1):
128 graperiodmax['FBG'+str(b)]= []
129 graperiodmin['FBG'+str(b)]= []
130 Wavegap2['FBG'+str(b)]= []
131 for a in range(0,size(LE11)):
132 for f in range(1,ng+1):
133 maxim= None
134 minm= None
135 FBGname= 'FBG'+str(f)
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136 for l in range(1,neg+1):
137 sensorname=FBGname+'-'+str(l)
138 if LE11[sensorname][a]>maxim or maxim== None:
139 maxim=LE11[sensorname][a]
140 if LE11[sensorname][a]<minm or minm== None:
141 minm=LE11[sensorname][a]
142 graperiodmax[FBGname].append(igp[f-1]*(1+(1-pe)*maxim))
143 graperiodmin[FBGname].append(igp[f-1]*(1+(1-pe)*minm))
144 #Units of wavelength in nm (*10**9)
145 Wavegap2[FBGname].append(2*n0*(graperiodmax[FBGname][a]
146 -graperiodmin[FBGname][a])*10**9)
147 """------------------------------------------------------------
148 Writing file with Results """
149 file = open("Name_of_the_file.txt", "w")
150 file.write("Step increment\t")
151 for b in range(1,ng+1):
152 file.write("Wavelength Shift (nm)- FBG" + str(b)+'\t')
153 for c in range(1,ng+1):
154 file.write("Peak Splitting (nm)- FBG" + str(c)+'\t')
155 file.write('\n')
156

157 for a in range(0,size(LE11)):
158 file.write('%5f \t' %(LE11['x'][a]))
159 for b in range(1,ng+1):
160 Fbgname= 'FBG'+str(b)
161 file.write('%5f \t' %(WaveShift[Fbgname][a]))
162 for b in range(1,ng+1):
163 Fbgname= 'FBG'+str(b)
164 file.write('%5f \t' %(Wavegap[Fbgname][a]
165 +Wavegap2[Fbgname][a]))
166 file.write('\n')
167 file.close()

.
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Abstract

A novel method to assess a crack growing/damage event in fibre reinforced plastic,
using conventional single mode Fibre Bragg Grating sensors embedded in the host ma-
terial is presented in this article. Three different damage mechanisms that can change
the sensor output, longitudinal strain εxx, transversal stress σyy,zz, and non-uniform
strain εxx(xx), were identified. These damage mechanisms were identified during
the experimental testing and linked with the sensor output using a digital image cor-
relation technique. A dedicated algorithm to extract information from the reflected
spectrum that enables crack detection was developed. Double Cantilever Beams spec-
imens made with glass fibre and bonded with structural adhesive, were instrumented
with a Fibre Bragg Grating array embedded in the host material, and tested using
an experimental fracture procedure. This method was successfully validated in three
different loading conditions, where were obtained very promising results that enable
crack growth monitoring.

P4.1 Introduction
P4.1.1 Fibre Reinforced Polymer Materials
Fibre Reinforced Polymer (FRP) materials, or as often called composite materials,
have been extensively used in aerospace, automotive, naval, civil engineering and wind
energy applications. The main difference with FRP materials compared to metals is
that they have an isotropic behaviour, which means that it shows different mechanical
properties in different directions. These FRP materials consist of two macroscopic
phases, a stiff fibre phase usually glass or carbon fibre, and a polymer matrix usually
polyester or epoxy. The main advantage of this material is its capability to be tailored
for a specific application, enabling an enhancement, and a high level of customization
of mechanical properties, such as light-weight, thermal expansion, chemical/corrosion
resistance, fatigue behaviour, etc [1].

P4.1.2 FRP Failure and Damage Mechanism
Many structures made of FRP material, such as aerospace structures, ships, air-crafts
and wind turbine blades, are constructed using multi-directional laminates that are
bonded together using structural adhesives. Therefore, the most common failures in
this type of structures are delamination, by crack growth along interfaces between
layers inside the laminates, or adhesive joint failure, by cracking along the interface
of the laminate and structural adhesive, as shown in Fig. P4.1.

In both failure situations a fibre crack bridging is often created, where intact
fibres connect the crack faces behind the crack tip, as shown in Fig. P4.2. This fibre
crack bridging creates an extra resistance that the crack has to overcome to grow,
meaning that the energy required for the crack to grow is higher than that the energy
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Structural adhesive

FRP lam
inate

Delamination

Adhesive joint failure

Figure P4.1: Most common type of failure in FRP laminate structures: delamina-
tion and adhesive joint failure.

required to initiate it. However, this damage mechanism can’t be analysed by classic
linear elastic fracture mechanics. Instead, a cohesive law can be used to describe the
fracture mechanism, as described by some authors [2, 3]. The cohesive law, σ(δ), is
a traction-separation relation that represents the stress transmitted between crack
faces in the active cohesive zone (active fracture process zone).

To develop a monitoring system capable of detecting cracks/delamination, the
stress distribution around the crack and the active cohesive zone needs to be anal-
ysed. A Finite Element Method Model (FEM) that simulates the delamination of a
FRP structure bonded with structural adhesive was developed, based on the materi-
al/structure tested in this study.

The stress distribution along the active fracture process zone is shown in Fig. P4.3,
and can be divided in two distinct contributions:

• near the crack tip (x = 0), where the material strength was reduced, and due to
the proximity with the stress singularity (crack tip) the stress tends to infinite,
creating a high stress gradient region;

• in the fibre bridging zone (x < 0), the fibres connecting the crack faces behind
the crack tip will act like cables, forcing the faces to close, which creates a trac-
tion stress in that area. However, to maintain a force equilibrium, a compression
field is formed ahead the crack tip;

These two crack/fracture phenomena, stress gradient and compression field, will move
as the crack grows.
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 Fibre bridging

 FRP Laminate

 Adhesive

Figure P4.2: Fibre bridging phenomenon during adhesive joint failure of a FRP
specimen.

P4.1.3 Crack/Delamination Detection in Fibre Reinforced Polymer
Materials

Sensing technology has been implemented in FRP materials to track delamination.
Acoustic emission [4] that measures the stress waves generated by the crack front
growing, vibration [5] that detects changes in the specific damping capacity of the
structure, modal analysis [6] by monitoring the material natural frequencies and mode
shapes, piezo-electric actuators/sensors and wavelet analysis [7] based on the energy
variation of the structural dynamic. However, these measurement systems have sev-
eral limitations, among these the need for qualified operators, expensive hardware and
impractical to use under operation. Also, to detect delamination in FRP materials
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Figure P4.3: Finite element method simulation: Stress σ11 and σ22 distribution
along the crack surface.

the sensor must be embedded in the laminate layers or in the interface between the
FRP and the structural adhesive.

Fibre Bragg Gratings (FBG) have the capability to be embedded in the FRP mate-
rial, even in an operational structure, without compromising its structural resistance.
This is due to the FBG reduced size, with a diameter of 125µm it is virtual non-
intrusive to the material. Also, FBG sensors present other interesting features, such
high resolution, multiplexing capability, immunity to electromagnetic fields, chemical
inertness and long term stability.

P4.1.4 Crack/Delamination Detection by Embedded Fibre Bragg
Gratings

During a crack/delamination event different fracture features will be present near the
crack tip, as such as a stress gradient and a compression field. Thus, being able to
identify and measure this specific phenomena with a FBG sensor is a key factor to
correctly determine the presence of damage and it growth.

Different FBG response stages under a crack growth event are presented in Fig.
P4.4. First, before the crack reaches the proximity of the grating, Fig. P4.4a), the
material will build up uniform strain (considering structure loading or geometric
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Figure P4.4: Different stages of the FBG response under a crack growth event.

singularities distant enough from the grating), which will make a uniform wavelength
shift in the FBG reflected peak. Next, the compression field formed ahead the crack
tip due to the the fibre bridging will reach the grating area, creating a splitting of
the FGB reflected wave, as shown in Fig. P4.4b). Then, when the grating is near the
influence of the crack singularity, the non-uniform strain field will change the shape of
the reflected peak increasing the width of the reflected wave, as shown in Fig. P4.4c).
At last, after the crack passes the FBG sensor, the shape of the reflected wave will
return to it original shape, and the sensor response will be again a simple wavelength
shift, because at this stage only uniform strains will be acting in the FBG, as shown
in Fig. P4.4d).
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P4.2 Fibre Bragg Grating Working Principle
A Fibre Bragg Grating (FBG) is formed by a permanent periodic modulation of the
refractive index along a section of an optical fibre, by exposing the optical fibre to an
interference pattern of intense ultra-violet light [8]. The photosensitivity of the silica
exposed to the ultra-violet light is increased, so when the optical fibre is illuminated
by a broadband light source a very narrow wavelength band is reflected back. The
spectral response of a homogeneous FBG is a single peak centred at the wavelength
λb, as shown in Fig. P4.5. The wavelength λb is described by the Bragg condition,

λB = 2neff,0Λ,0 (P4.1)

where n0 is the mean effective refractive index at the location of the grating, the
index 0 denotes unstrained conditions (initial state). The parameter neff is the
effective refractive index and Λ is the constant nominal period of the refractive index
modulation [9].
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P4.2.1 Fibre Bragg Grating Response to Uniform Variation of Strain
and/or Temperature

The wavelength shift ∆λb of an embedded FBG under a uniform variation of strain
εxx, and temperature ∆T is given by the Eq. (P4.2),

∆λb

λb
= (1 − pe)εxx + [(1 − pe)(αs − αf ) + ξ]∆T (P4.2)

where pe is a photoelastic coefficients, αs and αf are the thermal expansion coefficients
of the host material and the optical fibre, respectively, and ξ is the thermo-optic
coefficient.

P4.2.2 Fibre Bragg Grating Response Under Transverse Force:
Birefringent Effect

An optical fibre can present a birefringent behaviour, defined by the change of the
refractive index neff in the two directions neffy and neffx, when the grating is
subjected to a transverse force. The variation of the refractive index in the two
directions neffy and neffz is given by the Eq. (P4.3) and (P4.4) [10–13].

∆nx = − n3
0

2Ef
{(p11 − 2νfp12)σz + [(1 − νf )p12 − νfp11](σy + σx)} (P4.3)

∆ny = − n3
0

2Ef
{(p11 − 2νfp12)σy + [(1 − νf )p12 − νfp11](σx + σz)} (P4.4)

σy,z is the transverse stress, Ef is the elastic modulus of the optical fibre,νf is the
Poisson’s ration, n0 is the initial refractive index, p11 and p12 are the photo-elastic
coefficients of the optical fibre.

Rewriting the Eq. (P4.3) and (P4.4), it is possible to determine the increase in
the width of the reflected wave, ∆λ′

IW = ∥λx − λy∥, caused only by a transverse
stress.

∆λ
′

IW = 2Λ|∆neffz − ∆neffx|

= Λn3
o

Ef
[(1 + νf )p12 − (1 + νf )p11]|σz − σy|

(P4.5)

P4.2.3 Fibre Bragg Grating Response Under Non-Uniform Strain
When an FBG sensor is near a defect, a crack, a material change or a geometric
variation, this can create a stress concentration that will lead to an abrupt variation
of strain. This non-uniform strain, or strain gradient, can change the periodicity of
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the grating along the sensor length, modifying the grating pattern configuration from
”uniform” to ”chirped” [14, 15].

As demonstrated by Peters [16], in a uniform grating the applied strain will induce
a change in both grating period and the mean index. These two effects can be
superimposed by applying an effective strain of ”(1−pe)εxx(x)”, similar the first part
of Eq. (P4.2) but taking into account the strain variation along the x direction. Then
it is possible to rewrite the grating period as:

Λ(z) = Λ0[1 + (1 − pe) × εxx(x)] (P4.6)
Where the parameter Λ0 is the grating period with zero strain. The non-uniform
strain effect can be approximated by using the maximum and minimum strain values
along the grating. So, the maximum grating period Λmax and minimum Λmin can be
calculated using the Eq. (P4.6). Thus, an approximated increase of the width of the
reflected wave due to a non-uniform strain, ∆λ′′

IW , is given by combining Eqs. (P4.6)
and (P4.1).

∆λ
′′

IW = 2neff Λmax − 2neff Λmin (P4.7)

P4.3 Crack Detection Algorithm
Conventional signal processing software, provided by the FBG measurement system
manufactures, were developed for simple and reliable strain and temperature mea-
surements. This is made by tracking only the wavelength shift of the reflected wave
maximum optical power. However, this software has several limitations for crack
detection. It isn’t possible to evaluate the shape of the reflected wave or distinguish
between a single peak from a multi-peak, which are key features for a reliable crack
detection method. Thus, a dedicated algorithm was developed to detect and evaluate
the different stages of the FBG response during a crack growth event, as presented
in Fig. P4.4.

The FBG signal acquision system used in this work, FS2200 Industrial BraggMeter
from FiberSensingTM, measures the reflected light coming from the optical fibre every
second (1 Hz), where it is outputted the reflected power amplitude for the bandwidth
1500-1600 nm as a 20 000 points file. The algorithm developed computes this raw
data at this level, allowing us to extract more information per sensor.

All the different reflected wave spectrum features that the algorithm will detect
are schematically shown in Fig. P4.6. The Grating Band is a parameter, inputed by
the user, which will define the bandwidth boundaries where the algorithm will make
the measurements considering only one FBG sensor in that interval. This will allow
us to detect multi-peaks and connect them with a single FBG sensor, as well as the
moment that the peak splitting occurred. The Peak Height is the maximum optical
power of the reflected wave inside each Grating Band. The Height Threshold is a
percentage of the Peak Height, defined by the user, used to determine the number
of peaks in each FBG, and consequently determine the correspondent wavelength
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Figure P4.6: Crack Detection Algorithm: reflected spectrum features detected.

λ1,2,... for a single peak or multi-peak FBG. The Peak Width, λIW , is the width of
the reflected wave that is calculated at half of the peak height for each FBG.

The algorithm is schematically shown in Fig. P4.7. Initially, the user will define
the number of FBG sensors per optical fibre, and assign to each one a grating band.
The user will define the height threshold and register the initial wavelength of each
FBG in a free-state (unstrained). During operation and every second (1Hz), the algo-
rithm will perform a measurement inside each grating band defined. The maximum
height of the reflected wave will be calculated, and the number of peaks detected in-
side the defined height threshold together with the correspondent wavelength. At this
point, the algorithm will output the number of peaks and the wavelength shift, as-
signed to each grating. Finally, the algorithm will measure the width of the reflected
wave at half height.
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In summary, every second for each FBG, the algorithm measures the number of
peaks (NP), the wavelength shift (∆λ) using the wavelength measured in a free-state
as reference, and the peak wave (∆λIW ).
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P4.4 Material and Experimental Procedure
In order to measure all the different features of the damage mechanism and to relate
them with the FBG response, experiments were conducted on Double Cantilever
Beams (DCB) with embedded FBG sensors, subjected to a fracture testing procedure.

P4.4.1 Material and Testing Procedure
To correctly evaluate the different stages in the FBG response, a stable and con-
trolled crack growth is required. Eight (8) DCB specimens were tested in a fracture
test machine commonly used to determine material fracture properties, developed by
Sørensen [17]. The DCB specimens were loaded in different conditions at 1 mm/min,
ranging pure Mode I (tensile loading) to pure Mode II (shear loading), in order to
simulate the different crack/delamination situations. This testing technique allows
stable crack growth that makes it possible to correctly evaluate the FBG response at
different stages.

The DCB specimens were manufactured using two composite material arms, glued
by a commercial epoxy structural adhesive, Epikote MGS BPR 135G/Epikote MGS
BPH137G. The geometry of the DCB specimen is presented in Fig. P4.8. To man-
ufacture the DCB arms two plates of 700 × 1000mm, and approximately 7 mm of
thickness, were produced using multiaxial glass fibre. Ten layers of fabric per plate
were used, consisting of two triaxial fabrics, Saertex Triax S32E4590, as skin layers,
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25
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FBG
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Figure P4.8: DCB specimen geometry and FBG array Configuration.
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and eight unidirectional central layers, Saertex S35EU910. The layup stacking of the
laminates was : [90/+ 45/− 45/04/04/+ 45/− 45/90], and the backing of the unidi-
rectional layers was facing out-wards, away from the central plane. The plates were
made by hand-lay up of dry fibre fabric followed by epoxy impregnation, Momentive-
Epikote/Epikure-100:30, by vacuum infusion at 50◦C for 5 hours, and post-cured at
80◦C for 3 hours. The plates were glued using a commercial structural adhesive,
Momentive-Epikote/Epikure MGS BPR 135G/137G, and 7 mm spacers were used to
give a well defined specimen thickness and geometry. A thin slip foil was placed in
the edge of the structural adhesive, to act as a pre-crack and ease crack initiation.
An array of 5 uncoated single mode FBG sensors (5 gratings in one optical fibre),
with 10 mm of length, were embedded in the interface of the laminate plate with the
structural adhesive. The gratings array were spaced 10 mm from each other, and the
first grating was positioned 10 mm from the edge of the adhesive.

Digital image correlation (DIC) technique was applied to the specimens, in order to
determine the presence of specific phenomenon caused by the crack and to correlate
it with the FBG output. Digital image correlation is an optical method that by
tracking changes in a random pattern in the specimen, can correlate this information
with deformation/strain in the material. A pattern was painted on the side surface of
the DCB specimen and ARAMIS™software was used to calculated the strains from
each measurement. All the measurements from the BraggMeter and Aramis were
synchronized with the crack growth.

P4.5 FBG Response to Crack Growth: Experimental
Results

Fig. P4.9 shows some measurements from a five FBG array embedded in a DCB
specimen under a Mode II fracture testing. The reflected peak at 1580 nm, furthest
to the right, corresponds to the grating closest to the crack tip, and consequently the
peak at 1530 nm corresponds to the most distant. The table shows the algorithm
output for each measurement, where is possible to observe, as the crack propagates,
changes in the shape of the reflected wave (∆λIW ), in the number of peaks per FBG
(NP ), and in the wavelength shift(∆λ).

As mentioned before and observed here, the crack proximity to the FBG will make
a change in the shape of the reflected peak, thus evaluating and tracking this change
will permit an accurate determination of the crack. The shape of the FBG 5 reflected
wave during Mode II crack growth, and the strain distribution in the DCB surface
given by the DIC technique are presented in Fig. P4.10. It can be observed that
during propagation of the crack, different damage features can change the shape of
the reflected wave. In the left column are the DIC measurement of εy, where the red
area is a compressive stress/strain created ahead the crack tip. As mentioned, the
compression stress causes a birefringent effect in the FBG, making a peak separation
and an increasing of the reflected wave width, as can be observed in Fig. P4.4.
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In the center column DIC measurement of εx are represented, where the gradient
of colours represents variation of strain, indication of non-uniform strain acting in the
FBG length, and consequently the change in the reflected wave.

As described in section P4.1.4, it is possible to identify the different stages of the
crack growth from the sensor response, and therefore detect crack growth. Before the
crack reaches the proximity of the grating, the material builds up uniform strain, that
induces a uniform wavelength shift in the sensor response. Next, the compression
field formed ahead of the crack tip reaches the grating area, this creates a peak
splitting/increase of the width. Then, when the grating is near the influence of the
crack singularity, the non-uniform strain field creates a change in the shape of the
reflected wave. Finally, after the crack passes the FBG sensor the shape of the
reflected peak gradually recovers its original shape.
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P4.6 Discussion of Results
The wavelength shift ∆λ, the wave width ∆λIW , and the number of peaks per FBG,
computed using the algorithm developed in this article, are presented in Fig. P4.11,
P4.12 and P4.13, for three different loading conditions. Each symbol represents each
FBG in the sensor array, FBG5 being the sensor closest to the adhesive edge (initiation
of the crack), and FBG1 the sensor most distant. The crack growth in the order: FBG
5 → 4 → 3 → 2→ 1. During Mode I loading, three FBG sensors were lost during the
test, because the crack path crossed the fibre optic cutting the connection with the
measurement equipment. However, the system was capable to record the growth of
the crack.

The wavelength shift ∆λ, is a direct indication of strain εx along the specimen.
By analysing the graphs, it was observed that the magnitude of the ∆λ, measured
by each FBG, increases after the crack passes the grating area. This is because the
structure loses compliance and it becomes easier to deform the material surrounding
the FBG sensor.
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However, the evolution of the wavelength shift ∆λ is different for the three loading
types. For Mode I, the location where the fibre optic was embedded is under traction
loading, therefore a positive ∆λ was measured. For Mode II and Mixed Mode, the
location is under compression loading, resulting in a negative ∆λ value. Bases on this,
it can be concluded that an abrupt change of ∆λ is an indication that the structure
is losing compliance, probably due to crack growth.

The number of peaks and the reflected wave width ∆λIW , are a direct indication
of the presence of the crack. By analysing the graphs, it is observed that these values
increase when the crack is near the FBG sensor, in all loading cases, returning to its
original values after the crack passes. Thus, we can conclude that the wavelength
shift is dependent on the loading type, but the increase in the width and number of
peaks is related to the presence of a crack. Using this information it is possible to
track the crack independently of the loading conditions or geometry of the specimen.
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Figure P4.13: FBG sensor array output: mode-II crack growth.

P4.7 Conclusions
In this article, the capability of Fibre Bragg Gratings embedded in composite material
to detect and track cracks/delamination was demonstrated. Three different damage
mechanisms that can change the sensor output, longitudinal strain εxx, transversal
stress σyy,zz and non-uniform strain εxx(xx), were identified. By the use of digital
image correlation technique, these damage mechanisms were identified during the
experimental testing and linked with the sensor output. Thus, it is possible to extract
information from the sensor that is independent of the loading type, geometry and
boundary conditions, and only depends on the proximity of the crack.

A dedicated algorithm was developed to extract more information from the re-
flected spectrum when compared to conventional FBG signal processing software.
The algorithm presented is a tool to detect and evaluate all the different stages in the
FBG response during a crack growth event. This technique was successfully validated
in three different loading conditions, and very promising results were obtained that
enables crack growth monitoring.
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The authors vision is that this monitoring method can be implemented into oper-
ational structures, enabling the design of structures in fibre reinforced materials that
can operate safely, even when in damaged condition.
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FBG_SiMul V1.0: Fibre

Bragg Grating Signal
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Element Method Models

G. Pereira, M. McGugan, L.P. Mikkelsen, FBG_SiMul V1.0: Fibre Bragg Grating
Signal Simulation Tool for Finite Element Method Models, SoftwareX, Submitted,
(2016)

Code metadata

Current code version 1.0
Permanent link to
code/repository

https://github.com/GilmarPereira/FBG_
SiMul.git

Legal Code License GNU GPL-3
Computing platform/
Operating System Windows

Installation requirements
&
dependencies for the
standalone file

None

Installation requirements
&
dependencies for the
python file

Python 2.7.5: numpy, matplotlib, math

Link to user-manual
https://github.com/GilmarPereira/FBG_
SiMul/blob/master/Standalone_Version/
Software_Documentation.pdf

In FBG_SiMul user-manual (see link above), it is presented and detailed all the
software functionalities, however due to its size only a section is attached to the end
of this paper, where a tutorial/demonstration case is presented.
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Abstract

FBG_SiMul V1.0 is a tool to study and design the implementation of fibre Bragg
grating (FBG) sensors into any arbitrary loaded structure or application. The soft-
ware removes the need of an expert in fibre optics technology, which makes the sensor
signal simulation of a structural health monitoring solution based on FBG sensors
more comprehensible. The software uses a modified T-Matrix method to simulate the
FBG reflected spectrum, based on the stress and strain from a finite element method
model. The article describes the theory and algorithm implementation, followed by
an empirical validation.

P5.1 Introduction
More demanding structural applications and new design philosophies are increasingly
motivating engineers and researchers to implement sensors into structures and to de-
velop new structural health monitoring (SHM) solutions [1, 2]. This opportunity is
driven by new low-cost sensors and transducers, new electronics and new manufac-
turing techniques. In particular, the cost of fibre Bragg grating (FBG) sensors has
dropped over the last few years and robust fibre-optic monitoring systems suitable
for SHM have become commercial off the shelf hardware.

However, the sustainment of structures using these permanent on-board health
monitoring systems is a complex and multi-disciplinary technological field that re-
quires a holistic approach that cannot be addressed solely by advances in the various
technology platforms on which the SHM is constructed. What is required is twofold;
that the next generation of research scientists and engineers are specifically trained
with the skills, research experience, and multi-disciplinary background to adopt the
new structural sustainment concepts. And that tools are available that enable the
demanding task of integrating, supporting, and maintaining an innovative holistic
health management system and to propel its application in the aerospace, wind en-
ergy, and other industries.

The FBG_SiMul software described here is an example of the type of tool that
will allow sensor simulation to become part of the design process, where output is
simulated and optimised to a structure. This will have an immediate impact on
the planning, development and implementation of SHM as well as provoking fur-
ther research and development to include active control elements in the software and
real-time data-driven fed back control for smart structures in the future. Equally
important is that the software is robust and runs from a user friendly interface. This
ensures its uptake both within and outside the modelling and sensor communities
as it provides an opportunity for non-experts to simulate the signals and support
their sensor implementation plans; whether for a one-off full-scale structural test, or
a series of mechanical test specimens [3].
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P5.2 Problems and Background
The shape and response of the FBG reflected spectrum (measured signal) depends on
the way that the grating is deformed, i.e., the stress and strain field acting along the
grating will define the signal response. The FBG response simulation based on the
stress and strain state from a finite element method (FEM) model was only recently
addressed. Hu, et al.[4] developed a Matlab code to simulate the FBG response under
non-uniform strain fields caused by the transverse cracking in cross-ply laminates;
and in a similar work, Hasson el al.[5] developed a Matlab code to simulate the FBG
response for mode-I delamination detection. However, the code developed by both
authors is limited either by the type of FEM model or by the type of sensor response
analysed; and, in both cases the code/algorithm for the signal simulation code is not
provided.

Thus, FBG_SiMul was developed to tackle this gap in the FBG simulation field,
where the FBG response is simulated independently of the structure, loading, or
application type. As the software removes the need of a fibre optic expert user,
the FBG sensor response of a structural health monitoring solution becomes more
intuitive.

P5.2.1 Fibre Bragg Grating Signal Response
A FBG sensor is formed by a permanent periodic modulation of the refractive index
along its core. When the optical fibre is illuminated by a broadband light source a
narrow wavelength band is reflected back, as shown in Fig. P5.1.

Any external force/load acting in the grating region will change the effective index
and/or the period of modulation, which will create a shift in the wavelength and/or
modify the shape of the reflected peak. However, different stress and strain fields
acting in the FBG sensor create different signal responses [3, 6–9] (see Fig. P5.1); a

Figure P5.1: Fibre Bragg grating response for uniform strain, transverse stress and
non-uniform strain.
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longitudinal uniform strain field creates a wavelength shift in the reflected peak (∆λ),
but its shape remains unchanged; a longitudinal uniform and non-uniform strain field,
acting along the grating, causes an increase in the reflected peak width (∆λW V ) and
a wavelength shift (∆λ); a transverse stress field, acting along the grating, causes a
separation of the reflected Bragg peak due to the optical fibre birefringent behaviour,
which can be described by an increase in the reflected peak width (∆λW V ) and a
wavelength shift (∆λ).

P5.2.2 Spectrum Simulation: Transfer-Matrix Method
The transfer-matrix method was originally developed to simulate the reflected spec-
trum of FBG sensors under a uniform strain field by Yamada and Sakuda [10]; later,
this theory was modified to simulate the reflected spectrum of FBG sensors under
other types of strain field or different FBG configurations [11–14]. The modified T-
Matrix method, developed by Peters, et al. [15], consists of dividing the waveguides
(grating periodic pattern) into short segments, and in each segment the grating is
assumed to be periodic. This assumption allows each segment to be handled as a uni-
form grating and its signal to be simulated by the original Yamada T-Matrix method.
Then, when the grating is deformed, the grating period (Λ) in each increment is calcu-
lated using the average strain acting in that increment; and, the total reflected signal
is reconstructed by combining the signal contribution from all increments.

P5.2.3 From a Finite Element Method Model to Spectrum Simulation
In a FEM model the structure domain is divided in small sections called elements,
which contain stress and strain information that describes the structural behaviour.
In the T-Matrix method the grating is divided into short segments, and the simulated
signal from each segment is added to the total reflected signal. Thus, it is possible
to simulate the FBG reflected spectrum based on a FEM model, by matching the
number of short segments used by the T-Matrix method with the number of elements
in the FEM model, as shown in Fig. P5.2.

Then, the stress and strain from each FEM element is used by FBG_SiMul to
simulate the sensor signal, using a modified T-Matrix method. The different theory
and algorithm structure implemented in the software are presented in appendix A-
Spectrum Simulation Theory and Algorithm.
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Figure P5.2: Schematic representation of the algorithm implemented in the
FBG_SiMul software: from a FEM model to FBG spectrum simu-
lation.

P5.3 Software Description
FBG_SiMul was developed with a graphical user-interface, no programming knowl-
edge is required to perform FBG simulation; all the input parameters are pre-checked
by the software, meaning that the simulation is robust and the code does not crash.
However, the source code (python) is provided and it can be re-used or changed to
fit any purpose. The software is provided in two formats: a standalone file, in .exe
format, which does not require installation or any dedicated software; and, in Python
format, which can be modified but requires a python compiler.

A user-manual is provided together with the software. In this documentation, the
user can find information about the code structure, the type of functions/algorithms
implemented, the software input/output and different functionalities, and a software
tutorial case.

P5.3.1 Software Conceptual Structure
The FBG_SiMul conceptual structure is shown in Fig. P5.3. First, the software
extracts the stress and strain along a predefined path in a FEM model, and save it as
a .txt file. This can be made for a specific/single time increment, or for multiple time
increments (ex: dynamic models, time dependent behaviour). Next, the software
identifies the elements that are inside of each FBG, and creates a local variable per
FBG sensor containing all information needed to simulate the FBG response, as
the number of elements per grating, and the stress and strain field. Finally, two
simulation options are given to the user: reflected spectrum simulation for a specific
time increment, to evaluate the shape of the reflected signal; and, FBG time response,
to simulate the sensor response for multiple time increments.
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Figure P5.3: FBG_SiMul conceptual structure. FBG spectrum simulation from a
finite element method.

P5.3.2 Software Functionalities
The software is divided between 4 tabs according to functionality:

• Tab 1- Software: Software front page, where the user can find information
about all the different tabs and their functionalities, open the user manual, or
learn more about the software copyright and author;

• Tab 2- Extract Stress/Strain along Optical Fibre (Abaqus): Tool to
automatically extract the stress and strain along a pre-defined path in a FEM
model. The output is a .txt file containing the stress and strain distribution
along a FBG path for a specific time increment. Tool options: multiple FBG
paths; coordinate system rotation; single or multiple time increment;
Note: this tool was developed for Abaqus FEM models. Nevertheless, the user
can simulate the FBG response using a different FEM software by extracting the
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files manually, and ensuring that the files have the required format, as described
in the user-manual.

• Tab 3- FBG Spectrum Simulation (Specific Step Increment): FBG
reflected spectrum simulation for a specific time increment. Here, the user can
study the FBG spectrum response, plan the sensor location, optimise the sensor
wavelength, check available bandwidth, evaluate signal distortion or measure-
ment errors, and so forth. The tab output is the FBG reflected spectrum, and it
can be saved as an image or as a .txt file. Tool options: different SI units, mm or
m; type of simulation, as longitudinal uniform strain, longitudinal non-uniform
strain or transverse stress; user-defined optical fibre parameters; number of
FBG sensors per fibre; FBG length; user-defined FBG array configuration; plot
configuration;

• Tab 4- FBG Signal variation (Time Response): FBG signal response
for multiple time increments. Here, the user can study the wavelength shift
variation(∆λW V ) and the peak width variation (∆λ) along the selected time in-
crements, compare the sensor response for multiple FBG paths, plan the sensor
location, and so forth. The tab output is the ∆λW V and ∆λ along the selected
time increments, and it can be saved as an image or as a .txt file. Tool options:
different SI units, mm or m; user-defined optical fibre parameters; number of
FBG sensors per fibre; FBG length; user-defined FBG array configuration; plot
configuration;

P5.4 Software Empirical Validation
To validate the software algorithm, 3 input files representing known cases of uniform
strain, non-uniform strain and transverse stress were created. The wavelength shift,
∆λW V , and the peak width variation, ∆λ, for the 3 cases were calculated using the
analytical equations (Eq. (3), (7), and (11)) developed by Pereira, et al. [3]. Each
input file contains the stress and strain along a 10 mm grating, discretised in 20
segments.

Theoretical Benchmark cases:

• Uniform strain: grating under 1.0 ε(%) longitudinal strain. Default parameters:
pe = 0.215 and λb = 1550 nm;

• Non-uniform strain: half grating under 1.0 ε(%) and the other half under
0.5 ε(%) longitudinal strain. Default parameters:pe = 0.215, λb = 1550 nm,
neff = 1.46 and Λ0 = 530.82;

• Transverse stress: grating under a compressive stress of 100MPa in the z di-
rection. Default parameters: p11 = 0.121, p12 = 0.270, E = 70 GPa, ν = 0.17,
λb = 1550 nm, neff = 1.46 and Λ0 = 530.82;
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Figure P5.4: FBG_SiMul simulation results. Simulated test cases: uniform strain,
non-uniform strain, and transverse stress.

The three empirical test cases were simulated with good accuracy by the FBG_SiMul
software, as shown in Fig. P5.4 and table P5.1. Thus, it can be concluded that the
software can represent the FBG response for different type of strain/stress fields.

Table P5.1: Software empirical validation: comparison between theoretical and
FBG_SiMul simulation for three known cases.

Test Cases (nm) Theoretical Results FBG_SiMul Simulation

Uniform Strain ∆λ 12.16 12.16
∆λW V 0 0

Non-Uniform Strain ∆λ 9.15 9.14
∆λW V 6.07 6.08

Transverse Stress ∆λ 0 0
∆λW V 0.38 0.38
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Figure P5.5: FBG array configuration in the DCB specimen.

P5.5 Illustrative Example
In this section, FBG_SiMul was used to simulate and design a delamination/crack
monitoring solution based on FBG sensors. A double cantilever beam (DCB) FEM
model, based on the work presented by Pereira, et al. in [3], was used to represent the
delamination phenomenon. The complete FEM model description and a simulation
tutorial can be found in the FBG_SiMul user-manual.

The simulated virtual FBG array was composed of 5 gratings, spaced by 10 mm
(see Fig. P5.5), and its path was a 0.03 mm line parallel with the delamination plane.
Then, the FBG array spectrum response in the presence of a crack was simulated
using the FBG_SiMul tab 3; and, the FBG signal response during the delamination
process was simulated using the FBG_SiMul tab 4.

P5.5.1 FBG Spectrum Simulation
The reflected spectrum was simulated for a specific time increment using the FBG_SiMul
tab 3-FBG Spectrum Simulation, where the crack tip was situated 36 mm from the
beginning of the optical fibre, which corresponds to the middle of the second grating.

A screen-shoot of the FBG_SiMul plot/output window is shown in Fig. P5.6,
where the deformed reflected spectrum (red curves) can be compared with the original
reflected spectrum (grey curves). It can be observed that the two first FBGs measure
a high amount of wavelength shift (∆λ) and peak width variation (∆λW V ), as a result
of the presence of the crack.
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Figure P5.6: FBG_SiMul plot window: FBG reflected spectrum simulation for the
non-uniform strain contribution. The five peaks are the reflected spec-
trum of the five FBG sensors, where the grey curves represent the
unstrained state and the red curves the deformed state.

P5.5.2 FBG Time Response Simulation
The FBG response was simulated using the FBG_SiMul tab 4-FBG Signal Variation.
Multiple time increments represent the delamination of the DCB specimen from an
undamaged to a fully damage state. A screen-shoot of the FBG_SiMul plot/out-
put window is shown in Fig. P5.7, where the top plot represents the wavelength
shift(∆λW V ), and the bottom plot represents the peak width variation (∆λ). This
simulation shows an increase of the ∆λ as the crack passes the position of the grating,
caused by change in the material compliance and load distribution; and, an increase
of the ∆λW V when the crack is near the grating, caused by a non-uniform strain field
generated at the crack tip.
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Figure P5.7: FBG_SiMul plot window: FBG time response simulation.

P5.6 Conclusions
FBG_SiMul provides the user with a tool to study and design structural health
monitoring solutions based on FBG sensors. The software is divided in to 3 main
tools: a tool to extract the stress and strain along an optical fibre path from a FEM
model; a tool to simulate the reflected spectrum for a specific time increment; and a
tool to simulate the FBG time response.

The software uses a modified version of the T-Matrix method to simulate the FBG
signal from a FEM model. Thus, it can simulate the FBG response independently of
the type of structure, loading or application. Also, the software removes the need for
a fibre optic expert to plan and design monitoring solutions. The user interacts with
the software through a user-interface, meaning that no programming knowledge is
required, making parameter manipulation more intuitive to the user. Also, the input
data is pre-checked by the software, meaning that the simulation is robust and does
not crash or give calculation errors.
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P5 Appendix-A: Spectrum Simulation Theory and
Algorithm
In a free state, without strain and at a constant temperature, the spectral response of
a homogeneous FBG is a single peak centred at wavelength λb, which can be described
by the Bragg condition.

λb = 2neff Λ0 (P5.1)

The parameter neff is the mean effective refractive index at the location of the
grating, Λ0 is the constant nominal period of the refractive index modulation, and
the index 0 denotes unstrained conditions (initial state).

The change in the grating period due to a uniform strain field is described in Eq.
(P5.2),

Λ(x) = Λ0[1 + (1 − pe)εF BG(x)] (P5.2)

where the parameter pe is the photo-elastic coefficient, and εF BG(x) is the strain
variation along the optical fibre direction [11]. The variation of the index of refraction
δneff of the optical fibre is described by Eq. (P5.3),

δneff (x) = δneff

{
1 + νcos

[
2π
Λ0
x+ ϕ(x)

]}
(P5.3)

where ν is the fringe visibility, ϕ(x) is the change in the grating period along the
length, and δneff is the mean induced change in the refractive index [11].

By the couple-mode theory, the first order differential equations describing the
propagation mode through the grating x direction are given by Eq. (P5.4) and (P5.5).

dR(x)
dx

= iσ̂R(x) + iκS(x) (P5.4)

dS(x)
dx

= iσ̂S(x) + iκR(x) (P5.5)

The parameter R(x) and S(x) are the amplitudes of the forward and backward
propagation modes, respectively, σ̂ is the self-coupling coefficient as function of the
propagation wavelength λ, and κ is the coupling coefficient between the two propa-
gation modes [11–13].

The self-coupling coefficient σ̂ for a uniform grating (ϕ(x) = 0) in function of the
propagation wavelength λ is described in Eq. (P5.6), where the parameter λb is the
FBG reflected wavelength in an unstrained state defined by the Eq. (P5.1).

σ̂ = 2πneff

(
1
λ

− 1
λb

)
+ 2π

λ
δneff (P5.6)
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The coupling coefficient between the two propagation modes κ is defined by Eq.
(P5.7), where the parameter m is the striate visibility that is ≈ 1 for the conventional
single mode FBG [12, 13].

κ = π

λ
mδneff (P5.7)

Spectrum reconstruction

The optical response matrix of the ith (each segment) uniform grating can be
described by the coupled mode theory [4, 12]. By considering the FBG length (L)
divided in n short segments, then the ∆x = L/n is the length of each segment. Note
that n is constrained by the grating period [12], as described by Eq. (P5.8).

n ≤ 2neff

λb
L (P5.8)

For the FBG length limits, −L/2 ≤ x ≤ L/2, and the boundary conditions,
R(−L/2) = 1 and S(L/2) = 0, the solution of the coupling mode of Eq. (P5.5) and
(P5.5) can be expressed as:[

R(xi+1)
S(xi+1)

]
= Fxi,xi+1

[
R(xi)
S(xi)

]
(P5.9)

where R(zi) and S(zi) are the input light wave travelling in the positive and negative
directions, respectively, and R(zi+1) and S(zi+1) are the output waves in the positive
and negative directions, respectively. Thus, the TTM matrix Fxi,xi+1 for each segment
(∆x) of the grating can be calculated using the Eq. (P5.10) and (P5.11).

Fxi,xi+1 =
[
S11 S12
S21 S22

]
(P5.10)



S11 = cosh(γB∆x) − i
σ̂

γB
sinh(γB∆x)

S12 = −i κ
γB

sinh(γB∆x)

S21 = i
κ

γB
sinh(γB∆x)

S22 = cosh(γB∆x) + i
σ̂

γB
sinh(γB∆x)

γB =
√
κ2 − σ̂2

(P5.11)

Finally, the grating total response matrix F is obtained by multiplication of each
segment response matrix, as described in Eq. (P5.12).

F = Fx1.Fx2...Fxn. (P5.12)
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And, the reflectance of the grating can be described by the Eq. (P5.13).

R =
∣∣∣∣S(−L/2)
R(−L/2)

∣∣∣∣2

=
∣∣∣∣S21

S11

∣∣∣∣2

(P5.13)

FBG_SiMul spectrum simulation algorithm structure

The structure of the spectrum simulation algorithm implemented in the FBG_SiMul
is shown in Fig. P5.8.

Figure P5.8: FBG_SiMul spectrum simulation algorithm structure.
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P5 Annex: Software Example/Tutorial- Delamination of a
Double Cantilever Beam

Figure P5.9: Delamination of a Double Cantilever Beam.

In this section, the software FBG_SiMul is applied to a FEM model of delamina-
tion of a Double Cantilever Beam (DCB). Two ”virtual” FBG sensor lines with an
array of 5 gratings are simulated using two distinct paths.

Objectives/tasks:

• Stress/strain along two different paths;

• FBG spectrum simulation for different array configurations; FBG optimization
for crack detection;

• Time response simulation during the crack growth process;

Note: The FEM model, and the input files are provided and can be found in the
”InputData_Test.rar” file.
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1. FEM Model

A complete description of the DCB model used can be found in Pereira, et al.1.
The 2D Model was developed using Abaqus FEM software, and its .CAE file can be
found in the FBG_SiMul webpage. It was assumed a plane stress condition, and the
delamination was modelled using 4-node cohesive elements along the delamination
plane. The cohesive elements were modelled to express the cohesive law, meaning
a progressive loss of the cohesion between the two crack faces with the local crack
opening. The crack was modelled to occur between the adhesive and the glass fibre
arm beam interface, and a cohesive element size of 0.5 mm was selected. The damage
initiation was calculated using a quadratic stress criterion.

Figure P5.10: Double cantilever beam specimen dimensions. Picture taken from
(doi:10.1371/journal.pone.0141495.g010).

The dimensions of the DCB specimen are shown in Fig. P5.10, and its material
properties are presented in table P5.2. Note that the geometry and material properties
were implemented in SI (mm) units.

The specimen beams were modelled by considering a combination of two different
laminates: unidirectional glass fibre (UD) and triaxial glass fibre (Triax). Moments
were applied to the extremities of the beams to create a pure mode-I opening/delam-
ination.

1G.F. Pereira, L.P. Mikkelsen, M. McGugan, Crack Detection in Fibre Reinforced Plastic Struc-
tures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental
Validation., PLoS One. 10 (2015) e0141495. doi:10.1371/journal.pone.0141495.
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Table P5.2: Double cantilever beam material properties.

Composite Material Adhesive
Triaxial Fabric (Composite) Uniaxial Fabric (Composite) Elastic
E1 = 44.3 GPa E1 = 23.8 GPa E = 4.56 GPa
E2 = E3 = 12.9 GPa E2 = E3 = 15.05 GPa ν = 0.35
ν12 = ν13 = ν23 = 0.23 ν12 = ν13 = ν23 = 0.513
G12 = G13 = G23 = 4393GPa G12 = G13 = G23 = 4.393GPa

Interface (Cohesive Law)
Penalty Stiffness Damage (Quadratic stress) Damage Evolution

K = 4.2 E12 Pa; σn = 2.64 MPa (Mode I) δc1 = 1.4 (Mode I)
σt = 22.15 MPa (Mode II) δc2 = 0.37 (Mode II)

2. FBG Paths

Two different fibre paths will be simulated from the FEM model: one path is
0.03 mm parallel from the crack delamination plane; and the second path is 4.4 mm
parallel from the crack, as shown in Fig. P5.11.

Figure P5.11: Virtual FBG paths.

The coordinates that define the crack plane and the two fibre paths are presented
in table P5.3.

Table P5.3: Path points coordinates.

Initial point coordinates (mm) Final point coordinates (mm)
Crack -25 , 7.572 , 0 185 , 7.572 , 0
Path-1 -25 , 7.539 , 0 185 , 7.539 , 0
Path-2 -25 , 3.161 , 0 185 , 3.161 , 0
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3. Stress/strain along the paths (Tab 2)

Now, we will extract the stress and strain files using the two fibre paths. To do
this, we will use the tab 2- Extract Stress/Strain along Optical Fiber (Abaqus).

Stress/strain along the paths tutorial (Tab 2):

1. Station (1): Select the .odb file- MI_05.odb.

2. Station (2): Because the DCB model and the optical fibre longitudinal direction
are aligned with the x axis, there is no need to rotate the coordinate system
(see Fig. P5.12). Default option is selected.

Figure P5.12: FEM axis direction.

3. Station (3): Insert the optical fibre coordinates for the two fibre paths using
the values presented in table P5.3.

Figure P5.13: Dialogue window to insert the path coordinates: Path-1.
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Figure P5.14: FBG virtual fibre paths.

4. Station (4): Because we want to analyse the crack growth, it is needed to extract
all time increments. Select all time increments option;

5. Station (5): Select a folder to save the stress/strain files;

Figure P5.15: Tab 2: Stress and Strain along two optical fibre paths.

6. Press the push button Submit;
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A temporary folder is created inside the selected output folder, containing an
Abaqus post-processing script; Abaqus software should open and start to generate
the stress/strain files. After Abaqus finish to extract the stress/strain files, close the
software, and FBG_SiMul should delete the temporary folder and files, and show the
following message:

Figure P5.16: Extraction of Stress and Strain along a path completion message.

In the output folder, we can find the stress/strain files for the 2 paths and 3298
increments. The files are named as Pathyy_Step_xxxx.txt, where yy is the path
number and xxxx is the increment number.

Figure P5.17: Stress/Strain output files saved in the output folder.
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4. Simulation of the Reflected Spectrum for a Specific Time Increment

In this section, we will simulate the reflected spectrum of the two FBG arrays for
a specific time increment.

Figure P5.18: Crack tip position in the DCB specimen for the time increment 900.

At time increment 900 (see Fig. P5.18), the crack tip is located at 36 mm from the
beginning of the optical fibre line. A 5 FBG array was defined as virtual measurement
points, each with 10 mm of length and spaced 10 mm from each other. The first
grating was defined 5 mm from the beginning of the optical fibre, as shown in Fig.
P5.19.

Figure P5.19: FBG array configuration in the DCB specimen.
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Note that the FBG 2 is situated at the crack tip, where a large non-uniform strain
field is expected, which creates a distortion on the reflected peak signal (non-uniform
strain).

Reflected peak simulation tutorial (Tab 3):

1. Station (1): Insert the two files, Path1_Step_0900.txt and Path2_Step_0900.txt;

2. Select the file Path1_Step_0900.txt; it should become highlighted (see Fig.
P5.20); set the skip row to 3; toggle the input units to mm (units used in the
FEM model).

Figure P5.20: Select Stress/strain files for the time increment 900.

3. Station (2): We will analyse the three cases, but to start we will select uniform
strain; leave the simulation resolution as the default value 0.05 nm;

4. Station (3): Leave the Optical Fibre Parameters as the default values;

5. Station (4): Set the number of FBGs per array to 5; the FBG length to 10
mm; the FBG longitudinal direction as xx (see axis of Fig. P5.19); and, leave
the tolerance as the default value;

6. FBG position: Set the position of the FBG array as shown in Fig. P5.19; the
distance is from the beginning of the line to the beginning of each grating; FBG
position values (mm): 5; 25; 45; 65; 85;



206 FBG_SiMul V1.0

7. Press the button Auto to distribute automatically the array of original wave-
length (λb) along the available light bandwidth;

Figure P5.21: Fibre Bragg Grating Array Configuration.

8. Station (5): Toggle ”plot the undeformed FBG reflected signal” and press
the button Simulate;

9. If any error occurs it will be presented in the message board; then, when the
loading bar reaches 100%, it means that the reflected spectrum was successfully
simulated; press Plot to visualize it, or Save as file to save it as a .txt file;

10. Repeat this process to all type of simulations (uniform, non-uniform strain and
transverse stress) and for both files: Path1_Step_0900.txt and Path2_Step_0900.txt;

Results: All different type of simulations for the path-1:

A screen-shoot of the plot window, containing the path-1 simulation for uniform
and non-uniform strain contribution, is shown in Fig. P5.22. Then, to compare the
three type of simulations, the FBG reflected spectrum data was saved as .txt file and
plotted using an external software (see Fig. P5.23). The summarize FBG response
for the three contributions is presented in table P5.4.
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Figure P5.22: FBG_SiMul plot of the FBG simulation for non-uniform contribu-
tion.

Table P5.4: FBG array response for the time increment 900.

FBG Sensor Number 1 2 3 4 5
Original Wavelength (λb) 1516.66 1533.33 1550.0 1566.66 1583.33
Wavelength shift (∆λb) 7.54 5.87 0.41 0.06 0.06
Width variation (∆λwv) 0.45 1.21 0.71 0.01 0.01

By analysing the results of the three simulation methods, it becomes possible
to determine the individual contribution of each simulation method to the sensor
response. Thus, the strain field around the crack tip can be predicted and linked
with the FBG response.

The uniform strain simulation describes the average longitudinal strain in each
sensor. Thus, it is observed a large wavelength shift (∆λb) in the FBG 1 and 2,
meaning that at this location the material is damaged and losing its compliance. In
the non-uniform strain simulation, it is observed an increase of the FBG 1, 2 and 3
peak width. Particularly in FBG 2, the reflected peak is highly distorted, caused by
the grating proximity with the crack tip, which causes a strain gradient (non-uniform
strain). The transverse stress simulation does not show any peak splitting behaviour,
as the magnitude of transverse stress is small. However, in other FEM models or
loading configurations this can be different.

Based on this simulations, we can confidently say that it is the non-uniform strain
field that will govern the sensor response near the crack tip;
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Figure P5.23: Simulate FBG reflected spectrum for the three simulation.

Results: Path-1 and Path-2 simulation comparison

Now lets focus on the FBG 2 (25 mm) and do an analyse of the two different fibre
paths. The reflected peak simulation for the two FBG paths, considering non-uniform
strain contribution, is shown in Fig. P5.24 and summarized in table P5.5. The shape
of the reflected spectrum is similar for both paths; yet, in path-2, the wavelength shift
is smaller as the path is more distant from the crack plane, resulting in a higher local
compliance and less strain along the sensor. On the other hand, the strain gradient
is larger in the path-2, resulting in a higher width variation (∆λwv).
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Figure P5.24: FBG 2 reflected peak simulation for the non-uniform strain contri-
bution: path-1 and path-2 comparison.

Table P5.5: Summary of the FBG 2 reflected peak simulation for the non-uniform
strain contribution: path-1 and path-2 comparison.

FBG Sensor N.2 Path-1 Path-2
Original Wavelength (λb) 1533.33 1533.33
Wavelength shift (∆λb) 5.87 2.80
Width variation (∆λwv) 1.21 1.56

Initially, the path-1 seemed more obvious to detect crack, however its proximity
with the crack can promote the damage of the sensor. Thus, this simulation shows
that a FBG array along the path-2 can also detect a crack successful, however it
minimise the risk of damaging the sensor. Also, it can be concluded from this simula-
tion result (similar conclusions as presented by Pereira, et al.2, that the FBG output
parameters, wavelength shift (∆λb) and width variation (∆λwv), can be used to de-
termine the presence of the crack and to track its growth. The wavelength shift is a
parameter connected to the strain level in the structure, in which a rapid increase of
its magnitude is caused by a damage event that reduced the stiffness of the structure.
In contrast, the width variation of the reflected peak is a parameter that only depends
on the presence of the crack, independent of geometry and loading type. The width
of the reflected peak increases when the crack is near the grating area, being low in

2G.F. Pereira, L.P. Mikkelsen, M. McGugan, Crack Detection in Fibre Reinforced Plastic Struc-
tures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental
Validation., PLoS One. 10 (2015) e0141495. doi:10.1371/journal.pone.0141495.
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magnitude before and after the crack passes.

5. Simulation of the FBG Time Response

In this section, we will simulate the time response for the two FBG paths. The
FBG array configuration is the same as presented in Fig. P5.25.

FBG Simulation tutorial (Tab 4):

1. Station (1): Insert all step files of the path-1 (later, repeat the tutorial for the
path-2);

2. If the files are not sorted press the button Sort;

3. Station (2): Leave the optical fibre parameters as the default values;

4. Station (3): Set the number of FBG per array to 5; the FBG length to 10 mm;
the FBG longitudinal direction as xx; and, leave the tolerance with the default
value;

5. FBG position: Set the position of the FBG array as shown in Fig. P5.19; the
distance is from the beginning of the line to the beginning of the grating; FBG
position values (mm): 5; 25; 45; 65; 85;

6. Press the button Auto to distribute automatically the array original wavelength
(λb) along the available light bandwidth;

Figure P5.25: Fibre Bragg Grating Array Configuration.
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7. Station (4): Press the button Generate; this can take some time as the software
have to load multiple files;

8. If any error occurs it will be presented in the message board; when the loading
bar reaches 100% the FBG time response was successfully simulated; press Plot
to visualize it or Save as file to save it as a .txt file;

9. Repeat this process for the path-2;

Figure P5.26: Tab 4: Time response simulation input.
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Results: Paths comparison

Figure P5.27: Path-1 FBG time response plot.

The FBG_SiMul plot window showing the FBG time response for the path-1
is shown in Fig. P5.27. The top plot shows the wavelength shift ∆λb caused by
the longitudinal strain along the optical fibre, and the bottom plot shows the width
variation of the reflected peak ∆λwv caused by the non-uniform strain and transverse
stress.

A jump in the wavelength shift ∆λb can be observed when the crack passed the
position of the grating. The damage/crack changes the material’s local compliance
and the load distribution, making the area that surrounds the sensor less stiff and
more deformed; therefore, an increase in the strain was measured. However, it is
possible to observe some differences in the evolution (shape) of the wavelength shift
∆λb from each FBG, because the sensor and the crack position related to the applied
moments is different. It is also observed that a variation in the width of the reflected
peak ∆λwv occurs when the crack is near the grating, and that the original peak
width is restored after the crack passes the grating.
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The FBG time response for the two fibre paths is shown in Fig. P5.28. As
expected, both paths show the same type of response, however the magnitudes are
lower for the path-2. Due to its proximity with the crack, the gratings in the path-1
measure larger variation of the reflected peak width. However, the path-2 can also
detect cracks successful, minimizing the risk of damaging the sensor.
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Figure P5.28: FBG time response plot: path-1 and path-2 comparison.
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Abstract

During the curing process, an epoxy resin system undergoes a change in its chem-
ical structure causing it to shrink. If this shrinkage happens in a liquid state, this
will result in a volumetric dimension change without any mechanical/structural con-
sequence; if it occurs in a non-liquid state, a permanent change in its structure is
created, called residual strain, which can have an impact on the materials perfor-
mance. Based on this, the article was divided in two parts to study the effect of
the cure-induced residual strain on the fatigue and static performance of epoxy and
FRP materials. In the first part of this article, it is demonstrated that the curing
temperature have an impact on the total amount of residual strain; and in the second
part, it is shown that the curing temperature have an impact on the materials fatigue
performance. FBG sensors were used to measure the evolution of the residual strain
during the curing process, and three different curing temperatures, 40oC, 75oC and
110oC, were analysed.

P6.1 Introduction
The load carrying materials in modern wind turbine rotor blades are based on unidi-
rectional glass fibre reinforced polymers (FRP) with fibres oriented along the main
loading direction of the wind turbine rotor blade. As the FRP can be tailored to
match the structure stress requirements, a high stiffness to weight ratio is obtained.
The most common manufacturing procedure of large turbine rotor blades is based
on vacuum assisted resin transfer moulding infusion technique, where the resin is in-
fused in non-crimp unidirectional fabric containing a small amount of off-axis oriented
fibres.

The fatigue performance and material stiffness are the key requirement, from a ma-
terials perspective, used to design large wind turbine rotor blades [1]. Even though,
the unidirectional fibre bundles dominate the load carrying laminates, the off-axis
oriented fibres bundles (backing bundles) are suspected to trigger the fatigue fail-
ure mechanism [2, 3], which can be intensified by the presence of residual stress. The
residual stress or process-induced stress can be described as that stress present within
a material in the absence of external loading or thermal gradients; and, in a thermoset
polymer, the residual stress can be caused by a variety of reasons, but is generally con-
nected with the manufacturing stage [4]. At this stage, the residual stress is caused
by the chemical shrinkage of the polymer [5–7]. When the thermoset components are
mixed, each molecule occupies a certain volume defined by their physical interactions
and atomic motion; then, during the curing process these molecules will form covalent
bonds resulting in a closer packing of the molecules, thereby decreasing the occupied
volume by the so called curing shrinkage [6]. When the compliant matrix material
shrinks between the stiff fibres, residual stresses are building up into the laminate.
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Interaction between the residual stresses and the mechanical performance of FRP
has been studied by a number of authors. Nakamura, et al. [8] show that the thermal
residual stress have an effect on the matrix yielding and Huang, et al. [9] demonstrate
that the ultimate strength of a fibre reinforced polymer material decreases as the
residual stress increases. Devè [10] and Gascoigne [11] discuss in their work the
phenomenon of matrix cracking induced by residual stress. Thus, the residual stress
is a critical factor that should be taken into consideration during design of FRP
structures, as it can influence the material mechanical performance.

Therefore, a full understanding of how the residual stress develops during the
manufacturing process is becoming an emergent research topic. However, a direct
link between the cure-induced residual stresses and its impact on the FRP fatigue
performance is still missing. However, there is some evidences in literature showing
that the residual stress can influence the materials properties; Warnet [12] observed
a relation between transverse cracking and the level of residual stresses, and Asp,
et al. [13] observed that the presence of residual stress creates a hydrostatic stress
state around the fibres, which induces a more brittle crack growth. In this work, it
is analysed a non-crimp unidirectional glass fibre fabric and an epoxy matrix, which
represents a typical material system used in the wind turbine rotor blade industry.
The focus is to study the influence of different curing cycles on the shrinkage of the
matrix, and consequently its effect on the fatigue performance. The neat resin shrink-
age is measured by two methods: a simple density measurement; and, by measuring
the residual strain using a fibre Bragg grating. By combining these two measurement
methods, it is possible to evaluate the shrinkage before the gel time, in a liquid state,
and the shrinkage after the gel point, in a solid state. Then, following the same
curing cycle profiles, specimens made of neat resin and FRP are tested in tensile and
constant load fatigue.

P6.2 Experimental Procedure
P6.2.1 Residual Strain Measurement
During the curing process two different stages can be distinguished: shrinkage be-
fore the gel time, in a liquid state; and shrinkage after the gel point, in a non-liquid
state. Before the gel point, the epoxy is in a liquid state, meaning that the reacting
material can move freely and no permanent strain is created. However, after the gel
point the material builds up permanent deformation, where its magnitude is defined
by the material chemical shrinkage. Based on this, the total chemical shrinkage of
an epoxy system can be quantified by performing volumetric variation measurements,
before and after the cure; and, the amount of shrinkage that takes place after the gel
point can be determined by performing residual strain measurements during the cure
process.
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Volumetric variation measurements

A variety of techniques have been applied to measure the volumetric change of a
cross-linking resin. In mercury-based dilatometers [14–16], the resin specimen is cured
submerged in an immiscible fluid and when the resin shrinks the fluid level change;
in gas based pychometers the Boyle’s law is used to measure the epoxy volumetric
variation during the cure process [17]; or more recently, the rheometer technique [6, 17,
18] was used to measure real-time chemical shrinkage, by curing the resin between two
rotating plates and measuring the gap variation between them. Real-time and in-situ
measurements are the main advantage of these techniques, however these methods
require expensive test equipments and skill operators.

ρ = m

V
(P6.1)

By considering that during the curing process any mass loss is so small that can be
neglected and the conventional density formula given by Eq. (P6.1), then the density
variation is inversely proportional to the volumetric variation. Thus, measuring the
epoxy density before and after the curing process is the simplest and fastest method
to obtain the total amount of chemical shrinkage [19, 20]. Although, it is not possible
to evaluate the volumetric variation along the curing process (real-time measurement)
with this method.

Density measurement procedure

The volumetric variation (∆V = Vfinal/Vinitial) can be calculated, as shown in Eq.
(P6.2), by measuring the epoxy density before (ρinitial) and after the cure (ρfinal).

∆V = ρinitial

ρfinal
(P6.2)

The initial density of the liquid epoxy can be calculated from the density of its
constituents (the base and its hardener), by using the rule of mixture:

ρinitial = ρbaseνbase + ρhardener(1 − νbase) (P6.3)

where ρbase = 1.142 g/cm3, ρhardener = 0.9345 g/cm3, and the volume fraction νbase

is given by Eq. P6.4.

νbase =
(

1 + ρbase

ρhardener

(
1

wbase

))−1

(P6.4)

Then, by considering a weight ratio wbase = 100/34, it is obtained an initial
density of 1.081 g/cm3. The final density (ρfinal) was measured using the Balance
Mettler Toledo XS400 in buoyancy-mode.
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Residual strain in non-liquid state

Different measurement techniques have been used to measure the evolution of the
cure-induced residual strain during the curing process. In the X-ray diffraction tech-
nique [21], small metallic particles are added to the FRP specimen and the stress in
these particles are measured by applying X-ray diffraction; in Raman spectroscopy
[22], scattered light is used to measure the vibrational energy level of the chemical
bonds; in the photo-elasticity method [23], the residual stress components are calcu-
lated by means of the stress-optic Brewster’s Law; and in the acoustic wave method
[24, 25], the residual stress is measured by evaluating the variation on the acoustic
wave polarization and propagation speed. However, these methods have some limi-
tations, for instance low measurement precision, expensive test equipment, or simply
that they cannot be applied to real-time residual strain measurements.

Measurement systems based on optical fibre technology are a promising technique
to evaluate the residual strain evolution during the curing process [26, 27]. Due to
its small diameter, 125 µm, the sensor can be embedded in the resin without com-
promising its mechanical behaviour, and as the measured information is encoded as
a light resonance wavelength the system have immunity to optical/power fluctuation,
isolation and immunity to electromagnetic fields [28, 29]. Additionally, an embedded
sensor can detect different phenomena occurring during the curing process, for exam-
ple: the gel point, by evaluating the moment when the stress starts to build up; the
vitrification point, when the sensor stops registering residual strain variations; and,
the epoxy thermal contraction coefficient, by evaluating the cool-down stage [7].

An improved method to measure the residual strain using fibre Bragg grating
sensors is presented in appendix-A of this article, where a new measurement method-
ology allows to decouple the temperature-strain cross sensitivity and to determine
the gel point and residual strain with a high precision.

P6.2.2 Material System
The composite material investigated is based on the following 6 ply layup [±45/(b/0)2]s,
where the b indicates the position of the backing layer. The following high modulus
Ahistrom glass fibre fabric is used

• (b/±45): 600 g/m2 non-crimp ±45º direction 600 tex rowing stitched on a 100
g/m2 random oriented chopped backing;

• (b/0): 1150 g/m2 non-crimp 0º direction 2400 tex rowing stitched on a 100
g/m2 ±45º backing;

The plates were made by hand lay-up of dry fibre fabric, followed by vacuum
infusion of an epoxy impregnation. The epoxy is composed by Aralide LY 1564SP
and the hardener XB3486 from Huntsman mixed 100:34 parts by weight, followed by
degassing under vacuum. The resulting thickness of the laminate is approximately
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4.5 mm. In addition to the laminate, neat resin samples were manufactured based on
the epoxy mixture, both in the shape of plates for mechanical testing and as tubes
for residual strain and density measurements.

Three different curing cycles were performed, as shown in Fig. P6.1, which will
be referred throughout the article as:

• Cure A 40oC - Two-stage curing at 40oC for min. 18 hours followed by a post-
cure cycle at 75oC min. 5 hours;

• Cure B 75oC - Single-stage curing at 75oC for minimum 3 1/3 hour;

• Cure C 110oC - Single-stage curing at 110oC for minimum 3 1/3 hour;
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Figure P6.1: Epoxy curing profiles: temperature settings. The dashed line repre-
sents the cure profile A, the solid black line the cure profile B, and
the grey line is the cure profile A.
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P6.2.3 Curing of Neat Epoxy: Residual Strain
The experimental set-up used to measure the cure-induced residual strain is shown in
Fig P6.2. Silicone shaped tubes, made of Elastosil M 4670 A/B from Wacker silicones,
were used to hold the epoxy resin during the curing process. It was selected silicone
due to its ability to follow the expansion/contraction of the epoxy, minimizing any
displacement constrains.

a: FBG sensor
b: Thermocouple

a ab b

2

13.3 mm 16.2 mm

Figure P6.2: Experimental set-up for cure-induced residual strain measurement.
Two sets of 3 silicon tubes with 13.3 mm and 16.2 mm of diameter; a-
Silicon tube with embedded FBG sensor; b- Silicon tube with embed-
ded thermocouple; 2- Thermocouple to monitor the furnace tempera-
ture.

Two sets of 3 silicon tubes, with a diameter of 13.3 mm and 16.2 mm, were used
per curing cycle analysed. By increasing the tube diameter, and consequently the
amount of resin, this will result in a more intense curing reaction with more heat
being generated; thus, different exothermic peak magnitudes are obtained for the
same cure temperature, allowing to study its effect on the residual strain. For each
set of three tubes, one was instrumented with a thermocouple to measure the resin
temperature, and other tube was instrumented with a FBG sensor. Both FBG sensor
and thermocouple were aligned in the centre of the tube, and the temperature between
tubes with the same diameter was considered similar, as the geometry, the resin
quantities, and the sensor position were the same. In the third tube, no sensors were
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installed (pure resin only), which later was used for the density measurements. The
temperature in the furnace was measured at two different locations, by thermocouples,
to ensure that the heat was distributed homogeneously. Uncoated single mode FBG
sensors with a grating length of 10 mm were used to perform the measurements.
Each sensor was cut to an appropriate length, cleaned and seized to increase the
adhesion to the resin. The FBG sensor signal was acquired at a rate of 1HZ using a
FS2200-Industrial BraggMeter supplied by HBM-FiberSensingT M . The optical fibre
parameters used in the measurements are shown in table P6.1.

Table P6.1: Fibre Bragg Grating: optic and mechanical parameters.

Fibre Bragg Grating Parameters
Photo-elastic coefficient (pe) [30] 0.22
Thermo-optic coefficient (ξ) [30] 8.3E-6
Thermal expansion coefficient (αf ) [30] 0.55× 10−6 ε/K
Wavelength peak (λ) 1517.20; 1532.20; 1548.05; 1562.38 (nm)

P6.2.4 Specimens Configuration
Neat Resin Specimens: for Static Test

Neat resin specimens for static test were produced using the same epoxy system,
Aralide LY 1564SP/ XB3486 Huntsman epoxy system, and cut following the inter-
national standard ISO 527-2 (standard 1993), as shown in Fig. P6.3. For each cure
profile, 5 (five) specimens were produced and tested.

150 (mm)

t
1020

60

110

Figure P6.3: Neat resin specimen geometry, based on the international standard
ISO 527-2.
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Fibre Reinforced Epoxy Specimens: for Static and Fatigue Test

The fibre reinforced polymer (FRP) specimens were cut from the laminate plate
into butterfly shaped specimens, as shown in Fig. P6.4. This geometry was developed
by DTU Wind Energy [2] and it is optimised for testing UD composite materials, as
standard plane specimen geometries tend to fail outside the gauge area. A total
number of 12 specimens were manufacture for each cure profile, where 3 were used
for the tensile testing and 9 for the fatigue testing.

60 (mm)

410
60

Circular arch with radius 900mm

t

Long tapered tabs
Claping section

225

Figure P6.4: Fibre reinforced polymer specimen geometry.

P6.2.5 Tensile and Fatigue Test Procedure
The tensile (quasi-static) and fatigue test procedure are based on the standardized
method ISO 527, and its different testing parameters are summarised in table P6.2.

Table P6.2: Tensile and Fatigue Test Procedure based on the standardized method
ISO 527.

Tensile (Quasi-static) Test Fatigue Test
Specimen tested Neat resin & FRP FRP
Test machine Servo hydraulic Instron Servo hydraulic Instron
Load cell 5 kN 100 kN
Monitoring Extensometers 50/±2.5 mm Extensometers 50/±2.5 mm
Control mode Stress Stress
Speed Rate 2 mm/s -
Frequency - 5 Hz
Stress waveform - Sinusoidal
Stress ratio R - 0.1
Max. initial strain - Varying
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P6.3 Experimental Results
P6.3.1 Density Measurements
The density of the cured specimens (ρfinal) measured by the buoyancy method are
shown in table P6.3. All the curing cases show similar density values, leading to a
total volume variation ratio of 0.94 (Vfinal/Vinitial), as shown in Eq. (P6.5). Thus,
it can be concluded that the variation of density and consequently the total variation
of volume (total shrinkage) are not affected by the curing temperature.

Vfinal

Vinitial
= ρinitial

ρfinal
= 1.08 g/cm3

1.15 g/cm3 = 0.94 (P6.5)

Table P6.3: Density measurements for the 3 curing cycles.

Curing Cycle Tube Diameter Density g/cm3 Deviation g/cm3

A: 40o C 13.3 mm 1.149 0.001
16.2 mm 1.150 0.001

B: 75o C 13.3 mm 1.150 0.001
16.2 mm 1.150 0.001

C: 110o C 13.3 mm 1.149 0.001
16.2 mm 1.150 0.001

P6.3.2 Residual Strain (non-liquid state)
The strain and temperature evolution during the curing process for the profile A
and B are presented in Fig. P6.5. The strain was calculated by applying the Eq.
(P6.14) and (P6.15) (presented in appendix A) to the wavelength shift measured by
the embedded FBG sensor and the temperature from the embedded thermocouple.
The solid line represents the temperature measured by the thermocouple embedded
in the resin, and the dashed line the temperature in the furnace.

To describe and quantify the strain and temperature evolution in all the tested
cases, key parameters (a, b, c, d and e) were identified from the measurements, as
shown in Fig. P6.5. The parameter a is the gel point time (in min); b is the final
residual strain (ε in %); c is the chemical shrinkage (ε in %), i.e., the residual strain
that is formed at a constant furnace temperature; d is the thermal contraction strain
(ε in %), caused by the cooling of the material after the curing process; e is the
exothermic peak (in oC) measured inside the resin.
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Cure profile C: 75oC Cure profile B: 40-75oC
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Figure P6.5: Strain and temperature measurements during the curing process:
Cure profile B (75oC) and cure profile B (40-75oC). a- gel point; b-
final residual strain; c- chemical shrinkage as strain; d- thermal con-
traction as strain; e- exothermic peak, maximum temperature measure
in the resin.

The residual strain and temperature key parameters measured during the three
curing cycles are presented in table P6.4.

Table P6.4: Residual strain and temperature measurements during curing process:
Cure cycle A, B and C.

Curing
cycle

Tube
Diameter

a:
Gel point
(min)

b:
Residual
strain
ε(%)

c:
Chemical
Shrink-
age ε(%)

d:
Thermal
contrac-
tion ε(%)

e:
Exoth.
peak
(oC)

A: 40°C 13.3 mm 496.9 0.44 0.11 0.33 44.0
16.2 mm 457.2 0.44 0.12 0.32 45.4

B: 75°C 13.3 mm 31.5 1.31 0.89 0.42 192.3
16.2 mm 31.9 1.44 1.04 0.40 200.9

C: 110°C13.3 mm 19.6 1.24 0.518 0.722 251.3
16.2 mm 19.4 0.82 0.215 0.605 264.7
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P6.3.3 Quasi-static Tensile Test
The tensile properties of the neat resin specimens, presented in Fig. P6.6 and table
P6.5, show similar Young’s modulus for all the curing temperatures and rather similar
maximum stress. Thus, no relation between the curing temperature and the static
properties was found.
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Figure P6.6: Experimental tensile test stress-strain curve of neat resin specimens
produced by the cure profile A, B and C. The grey curves represent the
stress-strain until failure and the symbols the stress-strain curve until
the maximum stress. The large symbols represent the mean value of
the maximum stress obtain in each set.

Table P6.5: Static test properties: Neat resin and FRP specimens..

Neat Resin Specimens FRP Specimens
Curing
cycle

Young’s
modulus (GPa)

Max.
Stress (MPa)

Young’s
modulus (GPa)

Max.
Stress (MPa)

A: 40°C 2.76 (S=0.1) 58.1 (S=0.5) 37.5 (S=0.2) 1009 (S=7)
B: 75°C 2.71 (S=0.1) 61.4 (S=1.2) 38.4 (S=0.6) 987 (S=26)
C: 110°C 2.79 (S=0.1) 60.5 (S=0.4) 36.5 (S=0.34) 968 (S=11)
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The FRP specimen tensile test results are shown in Fig. P6.7 and summarised in
table P6.5. It can be observed a small variation on the Young’s modulus and maxi-
mum stress, when compared with the neat resin specimen. Yet, this can be justified
by small variations on the fibre fraction ratio caused by manufacturing uncertainties,
as the Young’s modulus and maximum stress properties of a FRP specimen are driven
by the fibre/reinforcement properties.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 c u r v e s  u n t i l  f a i l u r e
C u r e  p r o f i l e  A  ( 4 0 o C ) :

 s t r e s s - s t r a i n
 m e a n  m a x i m u m  s t r e s s

C u r e  p r o f i l e  B  ( 7 5 o C ) :
 s t r e s s - s t r a i n
 m e a n  m a x i m u m  s t r e s s

C u r e  p r o f i l e  C  ( 1 1 0 o C ) :
 s t r e s s - s t r a i n
 m e a n  m a x i m u m  s t r e s s

Str
ess

 (M
Pa)

S t r a i n  ( % )

Figure P6.7: Experimental tensile test stress-strain curve of neat resin specimens
produced by the cure profile A, B and C. The grey curves represent the
stress-strain until failure and the symbols the stress-strain curve until
the maximum stress. The large symbols represent the mean value of
the maximum stress obtain in each set.
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P6.3.4 Fatigue Test
The Wöhler curves (fatigue SN curves) of the FRP specimens produced by the cure
profile A, B and C are shown in Fig. P6.8, where the points represent the number
of cycles that the specimen experienced before failing. Each curve series was fitted
with the Basquin Eq. (P6.6), obtained by following the guidelines provided in ASTM
E739-10.

ε(N) = aN (1/m) (P6.6)

The parameter N is the number of cycles, ε represents the maximum initial strain
in the first undamaged fatigue cycle, a and m are the Basquin constants. The fatigue
results, presented in Fig. P6.8 and table P6.6, show that the fatigue performance of
FRP decreases for specimens produced with higher curing temperature. This suggests
that the fatigue performance of a structure produced by an epoxy system strongly
depends on the amount of cure-induced residual stress.
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Figure P6.8: Experimental Wöhler curves of the FRP specimens manufacture with
different curing temperatures. The symbols represent the number of
cycles that the specimen experienced before failure for a certain level
of strain; the lines represent the Basquin fitting curve.
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Table P6.6: Normalised Basquin constants for the FRP fatigue test.

FRP Specimens
Curing cycle Basquin fitting parameters
A: 40°C a=293 311; m=8.29
B: 75°C a=40 535; m=5.27
C: 110°C a=21 441; m=6.70

P6.4 Discussion and Conclusions
The epoxy volumetric variation before and after the curing (density measurment) cor-
responds to the material total shrinkage that occurs in the liquid and non-liquid state.
To compare the total shrinkage with the residual strain, the volumetric variation was
converted to a one dimension strain (εT S) using Eq. (P6.7).

Vfinal = Vinitial(1 + εT S)3 (P6.7)

A total shrinkage εT S of 2.04% was obtained for all tested cases (see Eq. P6.8),
meaning that the epoxy contracts 2.04% in each direction independently of the curing
temperature. This value of total shrinkage represents the maximum magnitude that
the residual strain (non-liquid) can reach.

εT S = 3

√
Vfinal

Vinitial
− 1 = −2.04 % (P6.8)

By analysing the residual strain measured by the FBG sensors, as presented in
table P6.4, it can be concluded that the final residual strain (b) increases as the curing
temperature increase, which is caused by the increase on the chemical shrinkage and
thermal contraction.

However, for the cure profile C: 110oC, the final residual strain decreased compar-
atively with the cure profile B: 75oC. This was caused by the fact that the epoxy was
cured with a temperature higher than the glass transition temperature (TG ≈ 85oC)
as suggested by the manufacturer. In Fig. P6.9, it is shown the residual strain and
temperature measured during the cure profile C: 110oC, where it can be observed
jumps on the residual strain value during the exothermic peak. At high temperatures
the epoxy starts to change its behaviour and even degraded, which leads to a not
perfect strain transfer to the FBG sensor, creating this behaviour.

The chemical shrinkage (c) strongly depends on the magnitude of the exothermic
peak temperature, but the thermal contraction (d), resulting from the cooling process,
is only affected by the curing temperature. Thus, the amount of heat generated by
the curing process directly influences the chemical shrinkage and consequently the
residual strain.

On the other hand, the exothermic peak increases with the rate of the curing
reaction (catalyse), i.e., more thermal energy is generated per time increment, when
the curing temperature is higher and/or the quantity of reactants is higher. These
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Figure P6.9: Strain and temperature measurments during the curing process: Cure
profile C-110oC.

results show that different components can present different residual strains, even if
they were produced with the same curing temperature; and, in order to reduce the
final residual strain the curing temperature should be as low as possible, and the
overshoot of the exothermic peak has to be minimized.

The quasi-static tensile tests performed show that the curing temperature, and
consequently the residual strain, does not influence the neat resin or the FRP speci-
mens performance. Although, the fatigue tests show that the FRP failure performance
is decreased as the curing temperature increases, suggesting that there is a direct link
between the fatigue performance and the cure-induced residual strain.
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Summary of conclusion:

• The total volumetric variation that an epoxy can undergoes is defined by its
chemical structure, and it is not influenced by the curing temperature;

• The total volumetric variation (total shrinkage εT S) can be evaluated by per-
forming density measurements before and after the cure;

• The total shrinkage represents the maximum magnitude that the residual strain
can reach;

• The residual strain (εresidual) strongly depends on the curing temperature and
the exothermic peak;

• Different components produced with the same curing temperature can experi-
ence different exothermic peaks (especially if the quantity of epoxy is different),
which will result in different values of residual strain (εresidual);

• The curing temperature does not have any impact on the tensile performance
of epoxy and FRP specimens;

• The FRP fatigue performance is decreased when the curing temperature in-
creases;
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P6 Appendix-A: Cure-induced residual strain measured by
embedded Fibre Bragg Grating
A fibre Bragg grating (FBG) is a periodic modulation of the refractive index along a
section of an optical fibre, that when illuminated by a broadband light source reflects
a narrow band of light. The grating is created by exposing the optical fibre core to an
intense ultraviolet light interference pattern, which increases the photo-sensitivity of
the silica [31]. The spectral response of a homogeneous FBG is a single peak centred
at the wavelength λb, described by the Bragg condition,

λb = 2neff Λ (P6.9)

where the parameter neff is the effective refractive index at the location of the
grating, and Λ is the constant nominal period of the refractive index modulation [32].
Any external load or temperature variation affecting the grating region will change its
refractive index and its period of modulation, which causes a shift in the wavelength
of the reflected peak (∆λb) [33], as shown in Fig. P6.10.

In a free FBG sensor the wavelength shift ∆λb caused by deformation (εx) or
temperature change (∆T ) is describe by Eq. (P6.10).

∆λb

λb
= (1 − pe)εx[(1 − pe)αf + ξ]∆T (P6.10)

The parameter pe is the optical fibre photo-elastic coefficient, αf is the thermal
expansion coefficients of the optical fibre, and ξ is the thermo-optic coefficient [30,
34–36]. Based on this, the FBG sensor response during the curing process can be
divided in two parts:

• The FBG response before the gel point. At this stage, the epoxy is in a liquid
state that makes it unable to transfer strain to the FBG sensor; consequently,
the sensor only experiences temperature variation caused by the heating of the
furnace and/or the heat generated by the exothermic cure reaction. Thus, the
FBG wavelength shift is governed by the optical fibre thermal expansion (αf )
and the thermo-optic coefficient (ξ), as described in Eq. (P6.11).

∆λb

λb
= [(1 − pe)αf + ξ]∆T (P6.11)

• The FBG response after the gel point. When reaching gelation (or gel point), the
physical bond between the FBG and the epoxy gets strong enough to transfer
strain. Then, the effect of the optical fibre thermal expansion in the overall
thermal expansion can be neglected, as the FBG cross section is much smaller
than the specimen cross section. This makes the FBG wavelength shift governed
by the epoxy thermal expansion (αepoxy) and by the chemical shrinkage (εch)
that occurs in this non-liquid state, as described by Eq. (P6.12).
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Figure P6.10: Fibre Bragg Grating working principle: spectral response of a homo-
geneous FBG. The parameter λb is the wavelength of the reflected
peak, and Λ is the constant nominal period of the refractive index
modulation.

∆λb

λb
= (1 − pe)εch[(1 − pe)αepoxy + ξ]∆T (P6.12)

Then, the epoxy residual strain (εresidual) is obtained by adding the thermal
expansion strain (αepoxy∆T ) to the chemical shrinkage (εch), as described in Eq.
(P6.13). Note that it is easier to analyse the residual strain as a single compo-
nent (εresidual), as the epoxy thermal expansion varies along the curing process,
which makes the thermal expansion-chemical shrinkage decoupling impossible.

∆λb

λb
= (1 − pe)εresidual + ξ∆T (P6.13)

The measurement methodology developed to determine the gel point and the resid-
ual strain variation during the curing process is schematically shown in Fig. P6.11.
The ∆λb is the wavelength shift measured by the embedded FBG sensor, and the ∆T
is the temperature measured by the embedded thermocouple, which is used to decou-
ple the FBG thermal-optical cross sensitivity (ξ∆T ). As no strain is transferred from
the epoxy to the FBG sensor before the gel point, the Equation/condition (P6.14)
can be used to describe this stage.

εresidual =

[
∆λb

λb
− [(1 − pe)αf + ξ]∆T

]
(1 − pe)

= 0 + tolerance (P6.14)
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The point (in min) when the Equation/condition (P6.14) fails determines the gel
point. Then, the evolution of the cure-induced residual strain is described by the
Equation (P6.15).

εresidual =

[
∆λb

λb
− ξ∆T

]
(1 − pe)

(P6.15)
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Figure P6.11: Cure-induced residual strain measurement methodology, using a
FBG sensor and a thermocouple. The parameter ∆λb is the wave-
length shift measured by the FBG sensor, and ∆T is the temperature
measured by the thermocouple inside the epoxy.
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Abstract
An analytical equation that describes the fracture process zone length in function

of the double cantilever beam specimen geometry, the loading mixed mode (moments
ratio), and the material cohesive-law parameters, is presented in this article. This
equation is used to tune the specimen length to the fracture test procedure, and to
analyse how a change in one testing/specimen parameter can influence the fracture
process zone length. Scaling relations that describe how the fracture process zone
length scales with the beams height, cohesive-law parameters, and side-groove ge-
ometry are derived from the analytical equations, and validated by a finite element
method model. It is found that the fracture process zone length is strongly influenced
by the ductility of the cohesive-law, and the ratio of the crack front width/specimen
width.

Notation
DCB double cantilever beam;
H beam height (mm);
w beam width (mm);
b crack front width (mm);
lfpz fracture process zone length (mm);
M moment applied to the beam elastic center (N.mm);
N axial force applied to the beam elastic center (N);
E Young’s modulus (MPa);
I bending moment inertia (mm4);
A cross section area (mm2);
index1 DCB top beam;
index2 DCB bottom beam;
index3 undamaged DCB;
σc critical traction stress (MPa);
δc critical opening (mm);
δ1,2 opening in the global coordinate system (mm);
δt,n opening in the local coordinate system (mm);
θ1,2 beams rotation (rad);
na1,2 elastic center position (mm);
cshape parameter that describes the shape of the cohesive-law;
ξ moments ratio (M2/M1);
gH side-groove height (mm);
α, C1, C2 auxiliary variables;
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P7.1 Introduction
Structures made of fibre reinforced materials can fail along weak interfaces; however,
one complication of interface fracture is that the fracture energy depends on the ratio
between shear and normal stress, also called mode mixity [1, 2]. Thus, it is necessary
to develop experimental methods that can measure the crack-growth resistance of
these materials for all the different fracture modes. Several test configurations have
been developed by several authors, such as the asymmetric DCB-specimen [3], end-
notched-flexure [4], cracked lap shear [5], and mixed mode bending [6]. And more
recently, Sørensen, et al. [7] developed a double cantilever beam with uneven bend-
ing moments (DCB-UBM) test procedure, which can measure the material’s energy
release rate from pure mode-I to pure mode-II, with the same specimen geometry and
a stable crack growth.

However, in some cases, if the material is too stiff or have a high fracture toughness
the machine loading limit is reached, becoming impossible to perform a valid fracture
test. A possible solution to overcome this is by testing the DCB specimens with
side-grooves, as shown in Fig.P7.1, where the energy, and consequently the loading
required to growth the crack, decreases as the ratio side-groove width/specimen width
(b/w) decreases.

The conventional J-integral [8, 9] is limited to symmetric DCB specimen cases,
without side-grooves, and it requires that the crack plane is located at the specimen
middle (symmetric) plane. Thus, Toftegaard, et al. [10] developed a general 3D
J-integral that can be applied to any DCB configuration, allowing the experimental
measurement of the material fracture energy release rate, and consequently the in-
terface cohesive-law. Additionally, this general 3D J-integral can be applied to DCB
specimens with side-grooves, cracks running in a non-symmetric plane, and it can
even handle material variation, as a DCB with each beam composed of a different
material.

b

ww
H

Figure P7.1: Schematic representation of double cantilever beam with and with-
out side-grooves; H is the beam height, w is the beam width, and b
represents the crack front width.
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Figure P7.2: J-integral developed by Toftegaard, et al. [10] evaluated around a
notch; M is the bending moment applied to the elastic center, the
index’s 1,2 represent the top and bottom beam before the crack tip
and the index 3 the undamaged beam (after the crack tip), A is the
cross section area, I is the bending moment of inertia, and E represents
the material Young’s modulus.

The general 3D J-integral integrated around a notch in a DCB-like specimen (see
Fig. P7.2), is described by:

J = M2
1

2b(EI)1
+ M2

2
2b(EI)2

− M2
3

2b(EI)3
(P7.1)

where, M is the moments applied to the elastic center, the index’s 1,2 represent the
top and bottom beam before the crack tip and the index 3 represents the undamaged
beam (after the crack tip), b is the crack tip width, A is the cross section area, I is
the bending moment of inertia, and E represents the material Young’s modulus. For
a DCB specimen loaded with moments (as in the fracture test apparatus developed
by Sørensen [7]), the general 3D J-integral can be simplified as:

J = M2
1

2b(EI)1
+ M2

2
2b(EI)2

− (M1 +M2)2

2b(EI)3
(P7.2)

where M1 and M2 represent the moments applied to the top and bottom beam,
respectively.

Numerical models demonstrated that the general 3D J-integral is consistent with
the previous theories, and it can be applied to any DCB geometry, material config-
uration, or side-groove dimension; however, it was also observed that the fracture
process zone is strongly influenced by the specimen geometry and by the material
fracture properties, as also described by some authors [11–13]. More specifically in
DCB specimens, Bao [14] and Suo [15] observed that the fracture process zone length
(lfpz) scales with the specimen geometry, lfpz ∝ H3/4, and the material cohesive-law
parameters, lfpz ∝ σ

−1/4
c and lfpz ∝ δ

1/4
c .
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The fracture process zone is defined as the zone near a crack tip where the material
developed damage. In a DCB specimen, where the delamination is followed by fibre
bridging (see Fig. P7.3), the fracture process zone length is defined as the distance
between the position where there is no physical connection among the crack faces,
and the position where the stress reaches the material cohesive stress (σc).

The lfpz dependency on geometry and fracture properties can have implications on
the fracture test procedure, and lead to errors in the experimental results. In other
words, to obtain a valid energy release rate measurement, by using the J-integral
method, it is required that a steady state crack growth (fully developed fracture
process zone) developed within the specimen length; thus, lfpz < DCB length is a
fracture test requirement.

X

Y

Lfpz

Crack Tip 
Singularity

X

σ22

σc

δc

Figure P7.3: Schematic representation of the fracture process zone; lfpz is the frac-
ture process zone length, δc represents the critical opening, and σc is
the critical traction stress.
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Figure P7.4: Finite element method model of the fracture process zone length (lfpz)
in a DCB with different side-grooves dimensions, loaded in mode-I.
Interface cohesive-law: σc = 1.1 (MPa); δc = 1.1 (mm).

Returning to the use of side-grooves in DCB specimens, Fig. P7.4 shows that the
lfpz increases as the side-groove/specimen width ratio (b/w) decreases, which makes
this fracture process zone dependency a relevant issue within the fracture testing field.
Thus, the main objective of this article is to developed tool/equation to describe the
lfpz, which can be used to tune the fracture test procedure and the DCB specimen
dimensions.

P7.2 Fracture Process Zone Length: Analytical Equation

The general equation that describe lfpz in function of the DCB specimen geome-
try, mixed-mode ratio, and the material cohesive-law parameters, is presented in
Appendix A. This equation is based on the general 3D J-integral developed by Tofte-
gaard [10], and the beam displacement equations presented in Sørensen work [8]
(Appendix-A). This equation can describe the lfpz for any 3D DCB specimen con-
figuration, and for a crack developing in the specimen middle plane (symmetric) or
outside (non-symmetric).

However, this Eq. (P7.31) is too long, making it not practical to study the influ-
ence of each parameter in the lfpz. Thus, in the following sections only pure mode-I
and mode-II are addressed, as it correspond to the extreme cases and the lfpz for any
mixed-mode combination will lay between this two behaviours.
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P7.2.1 DCB Without Side-Grooves and Symmetric Crack-Plane
For a DCB specimen with both beams composed by the same material, without side-
grooves (see Fig. P7.13), and where the crack develops in the specimen middle plane
(symmetric), the following simplifications can be made:

• the bending neutral axis is equal to the geometric neutral axis, i.e. na1,2 =
H1,2/2;

• the crack front width is equal to the beam width, (w = b);

• symmetric crack-plane and beams composed by the same material:

– EI1 = EI2 = E(bH3
1,2)/12;

– EI3 = E(2bH3
1,2)/12;

For a pure mode-I fracture, ξ=-1, the parameter α described by Eq. (P7.23) can
be rewritten as:

α = 24
EbH3 (P7.3)

and, the fracture process zone length for mode-I lfpz(I) is defined by:

lfpz(I) = 1
12

arccos

6H
√
cshapeσcδc

EH3 + 6δc

√
cshapeσcδc

EH3 −
√

12

6H
√
cshapeσcδc

EH3 −
√

12

 √
12

√
cshapeσcδc

EH3

(P7.4)

The parameter σc is the critical stress, δc the critical opening, and cshape describes
the shape of the cohesive law (see Appendix-A). For a pure mode-II fracture, ξ=1,
the parameter α described by Eq. (P7.23) can be rewritten as:

α = 18
EbH3 (P7.5)

and, the fracture process zone length for mode-II lfpz(II) is defined by:

lfpz(II) = 1
4

arccos
(

1
2

2H2 − δ2
c

H2

)
√
cshapeσcδc

EH3

(P7.6)
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Fracture Process Zone Length Scaling: Parametric Analysis
The knowledge of how the lfpz scales with the different parameters can be used as a
tool to analyse and design the best specimen configuration/dimension. Some authors
already demonstrated that the lfpz of a DCB specimen loaded in mode-I scales with
the specimen geometry and the cohesive-law parameters. Suo, et al. [15] observed
experientially that lfpz have a strong thickness dependence, scaled as lfpz ∝ H3/4;
and, Bao, et al. [14] expanded this study to the cohesive-law parameters, where they
observed lfpz ∝ σ

−1/4
c and lfpz ∝ δ

1/4
c . However, to the author’s knowledge, no

research papers dealt with this scaling in mode-II or with the effect of side-grooves.
Thus, the different lfpz scaling relations were calculated from Eq. (P7.4) using

Taylor series, and for mode-I loading are described as:

lfpz(I) ∝ H3/4

∝ σc
−1/4

∝ δc
1/4 (P7.7)

and for mode-II loading:

lfpz(II) ∝ H1/2

∝ σc
−1/2

∝ δc
1/2 for δc < H/2 (P7.8)

These lfpz scaling relations agree with the values described by Suo and Bao. A
comparison between the analytical equation and the different lfpz scaling, obtained
by varying one parameter and maintaining the remaining constant, is shown in Fig.
P7.5 and P7.6. The default parameters used in this comparison are: E = 44.33 GPa;
δc = 1.1mm; σ = 1.1 MPa; H = 9.5mm; w = 50mm; cshape = 1/2;

It is observed that the lfpz scaling follows the same trend in both fracture modes,
however it is much more pronounced in mode-II loading. An increase in the specimen
height, H, leads to an increase in lfpz; however, for standard specimen height values,
it does not have a big contribution to the increase of the fracture process zone. In
terms of cohesive-law parameters, lfpz increases as the critical opening (δc) increase
and/or the critical stress (σc) decreases. This means that a ductile interface creates
a larger fracture process zone, specially in mode-II fracture. Thus, even if the DCB
length is long enough to hold the fracture process zone in mode-I fracture, it may not
be long enough for a mode-II fracture.
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Figure P7.5: Fracture process zone length scaling: Mode-I.
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Figure P7.6: Fracture process zone length scaling: Mode-II.

P7.2.2 Crack Front Width Effect
Another parameter analysed is the effect of the crack front width in the lfpz, as vary-
ing the crack front width can be considered a zero height side-groove. This is relevant,
as the moment required to propagate a crack can be reduced by decreasing the crack
front width, as shown in Eq. (P7.22). I.e., for the same energy release rate, J, a
decrease in the crack front width, b, represents a decrease in the moment by M ∝

√
b.

A smaller crack front width can be achieved by placing slip foils at the crack plane.
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The lfpz of a DCB specimen with a varying crack front width, for mode-I and
mode-II, are described by:

lfpz(I) = 1
12

arccos

6H
√
cshapeσcδcb
EH3w + 6δc

√
cshapeσcδcb
EH3w −

√
12

6H
√
cshapeσcδcb
EH3w −

√
12

 √
12

√
cshapeσcδcb
EH3w

(P7.9)

lfpz(II) = 1
4

arccos
(

1
2

2H2 − δ2
c

H2

)
√
cshapeσcδcb
EH3w

(P7.10)

The ratio between the DCB width and the crack front width, defined by b/w, have
a big impact on the lfpz, as it can be observed in the lfpz scaling equations:

lfpz(I) ∝
(
b

w

)−1/4

for ModeI (P7.11)

lfpz(II) ∝
(
b

w

)−1/2

for ModeII (P7.12)

The comparison between the analytical equation and the lfpz scaling to different
b/w ratios is shown in Fig. P7.7 (the same default parameters were used to per-
form the comparison). These results show that the ratio between the crack front
width/specimen width have a big impact on the lfpz, specially in mode-II loading;
and, that the minimum DCB specimen length increases as the ratio b/w decreases.
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Figure P7.7: Effect of the ratio between the DCB width and the crack front width,
b/w, on the fracture process zone length.

P7.2.3 Side-Groove Geometry Effect
As previously observed, a zero height side-groove have a big impact on the lfpz. Thus,
following this, the effect of the side-groove height is analysed in this section.

Considering the geometry of a DCB specimen with square side-grooves as pre-
sented in Fig. P7.8, for a fix groove height (gH), a decrease on the crack front width
(b) have a big impact on the bending inertia (EI) and on the neutral axis position
(na).

Bonded/Crack face

H1

H2

w

(EI)3

gH

b

na1

na2

(EI)2

(EI)1

Neutral axis

Figure P7.8: Cross-section of a DCB specimen with square side-grooves.
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Effect of side-groove height
Effect of side-groove height

eight

Figure P7.9: Effect of the side-groove height (gH) in the fracture process zone
length and in the b/w effect.

This EI/na and gH cross-dependency makes impossible to simplified the expres-
sion that describes the lfpz, Eq. (P7.31), leading to an analytical solution that is too
long to be presented in this article. Nevertheless, the effect of the side-groove height
in the lfpz is graphically represented in Fig. P7.9. The same default parameters were
used, and the total DCB height was hold constant, 19 mm. (as the gH increases the
H1,2 have to decrease). It is observed that an increase on the grove height causes
a decrease on scaling effect, lfpz(I) ∝ (b/w)−1/4 (mode-I) and lfpz(II) ∝ (b/w)−1/2

(mode-II), as observed in the zero height side-groove case.

P7.3 Numerical Validation
A numerical model of a 3D DCB specimen was developed to validate the equation that
describes lfpz in function of the different geometric, fracture mode, and cohesive-law
parameters. It was used the same cross-section geometry (H = 9.5mm; w = 50mm),
however, the specimen length was set to 2000 mm, in order to hold the fracture
process zone within the specimen length limits. The beams were modelled using 8-
node linear elements with incompatible modes, and the delamination/fibre bridging
was modelled using 8-node linear cohesive elements along the delamination plane [16,
17]. The cohesive elements express the cohesive law (traction-separation), meaning
a progressive loss of the cohesion between the two crack faces with the local crack
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opening δc. In an undamaged state, the cohesive elements follow a linear-elastic
behaviour, defined as the penalty stiffness K, which relates the nominal stress to
the nominal opening. The penalty stiffness K was set to 1000 (MPa), meaning a
stiff linear-elastic behaviour. The damage initiation was calculated using a Maximum
Stress criterion, as described by Eq. (P7.13) [18].

f = Max

{
σn

Nmax
; σt

Tmax
; σs

Smax

}
= 1 (P7.13)

The parameter f is the damage criterion, and it is fulfilled when it reaches the
value f = 1. The parameters σn,s,t are the nominal stress in the normal, first shear
and second shear directions, respectively, and Nmax, Smax, and Tmax are cohesive-law
parameters; the parameters δ∗

0 and δ∗
c are the crack opening displacement to the local

crack plane for damage initiation and critical damage. When the initiation criterion is
full-filled, a damage evolution law describes the material stiffness degradation, and in
this DCB model it was used a linear softening displacement criterion, defined by the
opening at damage initiation (δ∗

0) and the opening at failure (δ∗
c ). The mixed-mode

behaviour was set as mode-independent, meaning that no fracture coupling behaviour
is modelled. The material properties and cohesive-law parameters used are described
in table P7.1.

Table P7.1: DCB material properties and cohesive-law parameters.

UD mechanical properties
Young’s modulus in Fiber direction E1 44.33 GPa
Young’s modulus transv. Fiber dir. E2 12.94 GPa
Shear modulus G12 4.39 GPa
Poisson’s ratio ν12 0.23
Shear modulus G13 = G23 4.39 GPa

Interface damage properties
Mode I Mode II

Traction-separation law
σ̂n 1.1 (MPa) σ̂t 1.1 (MPa)
δ0

n(mm) 1.1 (mm) δ0
t (mm) 1.1 (mm)

Energy Release Rate (steady state)
Jss

n 0.605 kJ/m2 Jss
t 0.605 kJ/m2
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Some authors suggest a minimum of 10 cohesive elements within the fracture
process zone to represent accurately the fracture process [19, 20]; however, a mesh size
of 1 mm was used to modelled the delamination/crack, which gives a minimum of 70
elements within the fracture process zone and increases the measurement resolution
of the lfpz. The lfpz was obtained by evaluating the maximum distance between
the first element where the damage criterion (Eq. (P7.13)) is fulfilled, and the first
element where the damage propagation is over.

The comparison between the lfpz prediction by the numerical models and the
analytical equations, Eq. (P7.9) and (P7.10), is shown in Fig. P7.10. It is observed
that the analytical equations underestimate the lfpz values. This is due the fact that
the analytical equations were developed based on Kirchoffs assumptions, where only
deformation duo to bending moments are accounted, and in the reality/numerical
model, the traction force due to the fibre bridging creates an opposite moment, re-
ducing the beam curvature and opening, as shown in Fig. P7.11. The parameter τ
represents the fibre bridging contribution to the opposite moment.

However, the scaling behaviour observed in the numerical models is the same as
the one predicted by the analytical equations. Thus, it is possible to predict the lfpz

by only performing one numerical model, and then scaling it by using the lfpz scaling
equations, as shown in Fig. P7.12.

MODE II

l fp
z 

(m
m

)

ratio (b/w)

l fp
z 

(m
m

)

ratio (b/w)

MODE I

Figure P7.10: lfpz prediction in function of b/w ratio: numerical model and ana-
lytical equation comparison.
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Neutral axis
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na2

lfpz
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M2-τ.b.lfpz

Figure P7.11: Fibre bridging contribution to the moments applied to the DCB.

The lfpz is predicted accurately by the scaling equations, Eq. (P7.11) and (P7.12),
using as reference the lfpz given by the numerical model without side-grooves. The
side-groove height effect on decreasing the (b/w) scaling, lfpz(I) ∝ (b/w)−1/4 (mode-I)
and lfpz(II) ∝ (b/w)−1/2 (mode-II), is also visible in the numerical simulation.

MODE I
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l fp
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)
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Effect of side-groove height

Scaling equation: Mode-I

l fp
z 

(m
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)

Numerical simulation point used in the scaling
Numerical simulations: gH = 0 mm gH = 3 mm gH = 6 mm

Scaling equation: Mode-II

Figure P7.12: lfpz prediction in function of b/w ratio and side-groove height: nu-
merical model and scaling equation comparison.
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P7.4 Discussion and Conclusion
An analytical equation that describes the fracture process zone length, lfpz, in func-
tion of the DCB geometry, moments ratio, and cohesive-law parameters, was devel-
oped in this article. To obtain a valid energy release rate measurement, using the
J-integral method applied to a DCB specimen, it is required that a steady state
growth (fully developed damage) develops within the specimen length. Thus, this
equation can be used to tune the specimen to the fracture testing, and to analyse
how a change in one parameter can influence the fracture process zone and conse-
quently the experimental results.

Two ”short” equations describing the lfpz for the pure mode-I and mode-II were
deducted from the analytical equation, which allow a direct prediction of the lfpz

without the need of a dedicate software to solve the large analytical equation. Even
more direct, scaling relations that describe how lfpz scales with the beams height,
cohesive-law parameters, and side-groove geometry, were derived from the analytical
equation using Taylor series.

The lfpz scaling follows the same trend in both fracture modes, however it is
much more pronounced in mode-II. Thus, the reader should be aware that the mini-
mum specimen length required for a valid fracture test can change with the different
moments ratio. Globally, the lfpz gets larger as the critical opening (δc) increases
and/or the critical stress (σc) decrease, which means that a more ductile interface
creates larger fracture process zone. In terms of side-grooves, the ratio between the
crack front width/specimen width (b/w) have a big impact on the lfpz, increasing it
rapidly as the ratio b/w decreases. However, this behaviour can be softened by using
side-grooves with larger heights; i.e., for the same total DCB heigh, an increase on
the side-groove height (gH) decreases the b/w scaling effect.

Finite element method simulations of the DCB specimen show that the analytical
equation underestimates the lfpz, as the traction force due to fibre bridging is not
accounted in the analytical equation. However, the lfpz values obtained from the
analytical equation can still be used as an estimative, as the error obtain is less than
20%. Also, the numerical simulations showed that the lfpz is predicted accurately by
the scaling equations, when using as reference the lfpz given by the numerical model
of a DCB without side-grooves. This numerical model can be developed in 2D, as
no 3D features (side-grooves) are required, making this approach fast. (Also, values
from experiments can be used as reference for the scaling analysis)
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P7 Appendix-A: Fracture Process Zone Length - General
Analytical Equation
A general equation that describes lfpz in function of the DCB specimen geometry,
fracture modes, and the material cohesive-law is presented in this appendix. This
equation is based on the general 3D J-integral developed by Toftegaard, et al. [10],
and the beam displacement equations presented in Appendix A of Sørensen work [8],
which were modified to represented a 3D specimen.

The displacement and rotation of the beams, due to the loading by moments,
are calculated using Kirchoffs assumptions; thus, only deformation due to bending
moments are accounted, and the traction in the beams from the fibre bridging phe-
nomena is neglected.

Beams Displacement and Rotation
For a DCB specimen with a crack growing in a non-symmetric plane and loaded with
moments at the beams ends, as shown in Fig. P7.13, the displacement between the
two end point of the cohesive zone in the global coordinate system (x1, x2) is given
by [8]:

δ1 =
(
EI2

M2
+ na2

)
sin(θ2) −

(
EI1

M1
− na1

)
sin(θ1) (P7.14)

δ2 =
(
EI2

M2
+ na2

)
(1 − cos(θ2)) −

(
EI1

M1
− na1

)
(1 − cos(θ2)) (P7.15)

where δ represents the opening in the global reference, E is the Young’s modulus, I
is the bending moment of inertia, θ is the rotation of the beam (see figure P7.14), M
represents the moments applied, and na the bending neutral axis.

(EI)1

(EI)2

(EI)3

Neutral axis Bonded/Crack face

H1

H2

w

b

na1

na2

Figure P7.13: DCB cross-section geometry: specimen without side-groves.
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The index 1 and 2 represent the top and bottom beam, respectively. (Note: For
a DCB specimen where the crack grows in the middle plane, symmetric case, the
neutral axis, na1 and na2, are equal to half of the beam height, 1

2H)
The rotation angles θ1,2 at the end of the fracture process zone, as presented in

Fig. P7.14, are described by:

θ1 = M1lfpz

EI1
(P7.16)

θ2 = M2lfpz

EI2
(P7.17)

The parameter lfpz is fracture process zone length along the neutral axis, measured
from the crack tip to the point where the end-openings are determined.

M1

M2

x1

x2Neutral axis

na1

na2

lfpz

θ2

θ1

tn
θ3

Figure P7.14: DCB specimen loaded with moments: beam rotation angles (θi),
fracture process zone (lfpz), and coordinate systems.

Critical Opening: Local and Global Coordinate System
To describe correctly the traction-opening cohesive-law, the end opening needs to
be represented in the local coordinate system (n, t). Thus, the local openings δ1,2
as function of the beam rotation angle and global openings δ1,2 (global coordinates
x1;x2), are given by:

δt = δ1 cos(θ3) + δ2 sin(θ3) (P7.18)

δn = −δ1 sin(θ3) + δ2 cos(θ3) (P7.19)

θ3 = θ1 + θ2

2
(P7.20)
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Then, the total opening δc (critical opening) can be calculated by the law of
Pythagoras, as described by Eq. (P7.21).

δc =
√
δ2

t + δ2
n (P7.21)

P7.4.1 Cohesive-Law: General 3D J-Integral
The general 3D J-Integral (described by Eq. (P7.2)) was used to link the moments
applied to the DCB, and consequently the lfpz, to the material’s cohesive-law. The
general 3D J-integral was re-written as:

J = 1
2
M2

1α

b
(P7.22)

α = 1
EI1

+ ξ

EI2
− (1 + ξ)2

EI3
(P7.23)

where the parameter ξ represents the mixed mode ratio, as described by Eq. (P7.24).

ξ = M2

M1
(P7.24)

The material energy release rate (J) is the area under the traction-separation
curve, as shown in figure P7.15, and it can present different shapes. Thus, to represent
this different shapes, the energy release rate J is defined as:

J = cshapeσcδc (P7.25)

where σc is the critical stress, δc the critical opening, and cshape is a parameter that
describes the shape of the cohesive-law, which can vary 0 < cshape ≤ 1.

σc σc σc

δc δc δc

J J J

a) b) c)
Figure P7.15: Representation of the different shapes that the cohesive-law can

present.
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The bending moment defined in Eq. (P7.22) can be re-written in function of the
cohesive-law parameters as:

M1 = ±
√

2αcshapeσcδcb

α
(P7.26)

lfpz Represented in the Global Coordinate System (x1; x2)
The opening in the global coordinate system (δ1; δ2) as function of the cohesive-law
parameters, DCB geometry, and lfpz, is obtained by combining Eq. (P7.14), (P7.15),
(P7.16), (P7.17), and (P7.26):

δ1 =
(√

2
2
C2 + na2

)
sin

(√
2 lfpz

C2

)
−

(√
2

2
C1 − na1

)
sin

(√
2 lfpz

C1

)
(P7.27)

δ2 =
(√

2
2
C2 + na2

) (
1 − cos

(√
2 lfpz

C2

))
−

(√
2

2
C1 − na1

) (
1 − cos

(√
2 lfpz

C1

))
(P7.28)

The coefficients C1 and C2 are defined as:

C1 = EI1

ξ
√
αcshapeσcδcb

(P7.29)

C2 = EI2

ξ
√
αcshapeσcδcb

(P7.30)

Note that δ1 and δ2 do not represent the cohesive-law parameter, critical opening
δc. To obtained an equation that represents the lfpz exclusively in function of the
DCB geometry, mixed-mode ratio, and the cohesive-law parameters, the opening have
to be represented in the local coordinate system, δc.
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lfpz Represented in the Local Coordinate System (x1; x2)
The general equation that describes the lfpz in function of the DCB geometry, mixed-
mode ratio, and the cohesive-law parameters is obtained by combining Eq. (P7.18),
(P7.19), (P7.20), (P7.21), (P7.27), and (P7.28):
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(√
2
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