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a b s t r a c t

When there is a high penetration of renewables in the energy system, it requires proactive control of
large numbers of distributed demand response resources to maintain the system’s reliability and improve
its operational economics. This paper presents the Economic Model Predictive Control (EMPC) strategy
for energy management in smart buildings, which can act as active users interacting with smart energy
systems. The challenges encountered during the implementation of EMPC for active demand side man-
agement are investigated in detail in this paper. A pilot testing study shows energy savings and load shift-
ing can be achieved by applying EMPC with weather forecast and dynamic power price signals.

� 2016 Published by Elsevier Ltd.
1. Introduction

In Denmark as well as in many other countries, fluctuating
renewable energy sources (RESs) account for an increasing share
of power generation. As a leading wind power country, Denmark
has achieved a record of 42% penetration of wind power in 2015,
and the nation is well on its way to hitting its 2020 energy
goals-50% of traditional electricity supply must come from wind
power [1]. According to Danish government’s energy policy, oil
burners and coal must be phased out of power plants in Denmark
no later than 2030. By 2050, the entire supply of energy and trans-
portation sectors will be provided by RESs [2]. In order to ensure
that the transition to a greener economy is a good investment, RESs
must be intelligently integrated into the energy system.
A smart energy system is a cost-effective, sustainable and
secure energy system in which renewable energy production,
infrastructures and consumption are integrated and coordinated
through energy services, active users and enabling technologies
[3]. This integration requires more flexibility in the entire energy
system, and it will challenge the existing energy (electricity, heat,
transportation and gas) infrastructure and its control systems with
more complicated dynamics and uncertain problems. One of the
important flexibilities is distributed energy resources (DERs)
located at the demand side, and these DERs need better control
and management to get their values maximized.

Buildings are the largest energy consuming sector in the world,
and account for over one-third of total final energy consumption
and an equally important source of CO2 emissions [4]. In the Nordic
countries, buildings account for up to 40% of society’s energy
demand, and the energy is mainly used for heating, lighting, and
electrical appliances. The thermal mass of buildings is ‘‘for free”
g with
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and can provide a very large possibility for flexibility. Therefore,
buildings play a key role in the green transition, and smart build-
ings can extend beyond the buildings themselves when they act
as flexible components in a diverse energy system [5]. The projects
presented in [6–8] are examples of buildings that hold the poten-
tial needed for energy efficiency and flexibility to be integrated
in the smart energy system of tomorrow.

Model Predictive Control (MPC) is a control algorithm that opti-
mizes a sequence of manipulated variable adjustments over a pre-
diction horizon by utilizing a process model to optimize forecasts
of process behaviour based on a linear or quadratic objective,
which is subjected to equality or inequality constraints [9]. In
MPC, the optimization is performed repeatedly on-line. This is
the meaning of receding horizon, and the intrinsic difference
between MPC and the traditional optimal control. The receding
horizon optimization can effectively incorporate the uncertainties
incurred by model-plant mismatch, time-varying behaviour and
disturbances [10]. MPC is now recognized as a powerful approach
with well-established theoretical foundations and proven capabil-
ity to handle a large number of industrial control problems [11].

Recently, MPC has drawn the attention of the energy system
community, because it is based on future behaviour of the system
and predictions, which is appealing for systems significantly
dependent on forecasting of energy demand and RES generation;
moreover, it provides a feedback mechanism, whichmakes the sys-
tem more robust against uncertainty [12–14]. The MPC strategies,
that employ an economic-related objective function for real-time
control, have lately proved a numerically efficient approach to
managing the portfolio of energy usage with provable stability
properties [15,16]. It is designated as an economic MPC (EMPC),
which always copes with dynamically changing energy prices.
Unlike the traditional MPC, EMPC optimizes the process operations
in a time-varying manner, rather than maintain the process vari-
ables around a few desired steady states or tracking the reference.
The process may thus totally operate in the transient state with
EMPC [17]. EMPC for building temperature control has been inves-
tigated in several papers [18–22] that mainly with the purpose of
increasing the energy efficiency in the buildings. Most of the
results of the aforementioned literatures are based on the simula-
tion study; however, the application of EMPC requires extensive
knowledge in the areas of data processing, modelling, hardware
and communication, state estimation, controller architecture
design and optimization, which are highlighted and discussed in
detail in this paper.

The remaining of this paper is organized as follows: in Section 2,
the detailed EMPC strategy for smart buildings active interaction
with the smart energy system is described, followed by a summary
of the challenges encountered when we implement EMPC in prac-
tice. Section 3 presents how to implement EMPC in a residential
building for a pilot testing. The testing results and analysis of run-
ning the EMPC controller on a test platform are discussed in Sec-
tion 4. Finally, Section 5 concludes the paper and discusses the
future research.
2. EMPC for active smart buildings

2.1. EMPC strategy

The EMPC is a variant of the classical MPC. It performs a
dynamic economic optimization of the process with the objective
of minimizing the costs [23]. In traditional tracking control, the
objective is to minimize the error between a reference trajectory
and the measured output. EMPC enables to define temperature
bands or comfort zones realized by output constraints. The same
as classical MPC, at each step, a look-ahead finite-horizon optimal
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
control problem in EMPC is solved, but only the first step of control
sequences is implemented. In addition, the hard constraints can be
changed to the soft constraints to ensure feasibility in the linear
optimization by adding a term to the cost function that penalizes
constraint violation to obtain better controller performance. It
was also proved that any stabilizable system can be asymptotically
stabilized with soft constraints and state feedback [24]. The EMPC
problem with soft constraints (grey coloured) can be expressed as
linear program in the following form:

min
fuk;Vkþ1gN�1

k¼0

/ ¼
XN�1

k¼0

c0kuk þ
XN

k¼1

qVk ð1aÞ

subject to : xkþ1 ¼ Axk þ Buk þ Exk k ¼ 0;1; . . . ; ðN� 1Þ ð1bÞ

yk ¼ Cxk þ mk k ¼ 1;2; . . . ;N ð1cÞ

umin 6 uk 6 umax k ¼ 0;1; . . . ; ðN� 1Þ ð1dÞ

Dumin 6 Duk 6 Dumax k ¼ 0;1; . . . ; ðN� 1Þ ð1eÞ

zmin
k 6 yk 6 zmax

k k ¼ 1;2; . . . ;N ð1fÞ

smin
k 6 yk � vk 6 smax

k k ¼ 1;2; . . . ;N ð1gÞ

vk P 0 k ¼ 1;2; . . . ;N ð1hÞ
where xk is the state vector; uk is the manipulated input vector; wk

is the process noise; yk is the measurement vector; q is the cost of
breaking the constraints and vk is the vector of slack variables.

2.2. Challenges of EMPC implementation for active smart buildings

According to the authors’ experience on the implementation of
EMPC, it presents considerable challenges in data analysis, mod-
elling, hardware and communication, optimization technique and
state estimation, etc. The investigations on these challenges are
summarized in the following sub-sections.

2.2.1. Data availability and analytics
EMPC requires not only an appropriate model, but also a wealth

of input data during operation. Active buildings installed with
smart meters and advanced building systems generate significant
real-time or near-real-time data on energy usage and occupancy.
The expansion of data including forecast data (weather, load, and
energy price) presents great opportunities to improve building
energy management practices, but the data collected is valuable
only if it is analysed consistently and communicated effectively
to both building decision-makers and distribution system opera-
tors (DSOs). For example, currently, the available time interval of
the day-ahead Elspot electricity price signals from Nordpool mar-
ket [25] is hourly-based; while the available weather forecast data
are in 10–15 min interval.

For the building data management, it is important to focus on
the data worth collecting, the analysis worth sharing, and analyti-
cal tools for the coordination control on DERs. This is a time-
consume and important preparation for the modelling and EMPC
controller design.

2.2.2. Modelling
When large measurement data sets are available, a purely sta-

tistical approach for creation of a building model is preferred.
EMPC inherently requires an appropriate model of the controlled
plant, which is then used for the computation of the optimal con-
trol inputs. The relevant dynamic behaviour of the buildings for the
active demand side management (ADSM) control tasks can be
economic model predictive control strategy for buildings interacting with
plthermaleng.2016.11.141
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divided into the thermal dynamics (room temperatures, thermal
capacities, heat inputs and losses) as well as the relevant building
resources to provide corresponding services, such as heating, cool-
ing, lighting, ventilation, photovoltaic (PV) systems or storage (bat-
teries and electric vehicles). The model for active buildings must be
sufficiently precise, in order to yield valid predictions of the rele-
vant variables (e.g. room temperatures), but at the same time,
the model must be as simple as possible for the optimization task
to be computationally tractable and numerically stable.

To ensure adaptive autonomous operation on the building
EMPC controller, the building thermal models should have the abil-
ity to be adjusted at least with the season’s change. According to
the application needs, models with different fidelity and mathe-
matical properties will be used, based on a combination of
physics-based approaches and data-driven approaches.

Normally, it is much more suitable to use Linear Time Invariant
(LTI) models for the MPC controller design. This results in a convex
optimization problem that in general can be well solved by state-
of-the-art optimization software. Obtaining an appropriate LTI
model of the controlled building is, however, a delicate and labori-
ous task even for experienced and knowledgeable engineers. The
following three approaches are in principle available [26]:

(a) Black-box modelling

A black box modelling considers the system as a box with
inputs and outputs, its basis is the experimental data without hav-
ing any prior knowledge of the system. More specifically, the phys-
ical description of the procedure is not available. The black-box
approach is conceptually simple but technically tricky, and it
depends crucially on the availability of appropriate input data sets.

(b) White-box modelling

A white-box model allows defining a complete description of
the system, which means that the prior knowledge of the physics
is essential for the model. In building case, it requires availability
and processing of a large amount of building-specific information.
For example, a number of specified equations are needed to formu-
late the deterministic physical model based on a good understand-
ing of the heat dynamics in the building.

In general, the white-box models require very detailed data and
these models will be much complicate due to the complex nature
of many systems and processes. Many physical systems can only
be described by complex sets of equations, which make this
approach not so efficient.

(c) Grey-box modelling

Grey-box modelling is an approach between a black-box and
white-box modelling. A grey-box model consists in differential
stochastic equations building upon the prior knowledge of the
physical dynamics of the system. The purpose of this approach is
to provide a way of combining the advantages of both model types
by allowing prior physical knowledge to be incorporated and sta-
tistical methods for parameter estimation to be applied. The infor-
mation from the data can be used for the unknown parameter
estimation by creating a discrete measurement equation. The data
has to be ‘‘informative”, which means that the measured signals
must vary enough due to variation on the input signals. A com-
monly used input signal is a pseudo random binary (PRBS) signal
[27]. In a word, grey-box models are not only physically inter-
pretable but they also use real time data, which make it easier to
implement for short and long- term predictions.

Refs. [27–29] show that using grey-box modelling, together
with resistance capacitance (RC) networks based on the principle
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
of thermal dynamics, to build control-oriented models, is an effec-
tive approach for the modelling of the thermal dynamics of the
buildings. RC networks (see the example in Section 3.1) use
lumped capacitance and resistance in an analogy electric circuit
to represent the thermal elements of a building. The resultant
models can be transformed into state-space forms, which are avail-
able for the implementation of an EMPC.

However, when implemented for real-world buildings, such
approaches face application problems, mainly because the thermal
dynamics of a real building is nonlinear in characteristic and con-
tains several uncertainties [30,31]. These result in non-convex
optimization problems, which are hard to solve. Even they are
solved but the computation is demanded, which is not suitable
for the real-time operation. Ref. [32] proposed an neural network
feedback linearization-based MPC to achieve energy-saving for a
commercial building, which can convert the nonlinear control
problem into a linear control problem.

2.2.3. Hardware and communication
At present, to implement EMPC in active smart buildings, the

common practice is to connect an external MPC computational
core with the building’s automation system (BAS). This requires
specification on what signals to be communicated, a communica-
tion protocol, and the implementation of mechanisms to handle
communication and optimization problems (e.g. infeasibility or
too long computation time). The other potential solution is to
‘‘Bring EMPC to Chips”, for example, integration of EMPC into the
Programmable Logic Controller (PLC) [33,34]or Field- Pro-
grammable Gate Array (FPGA) [35,36], which has been widely
investigated in BAS as field controllers.

In addition, the sensors, actuators, smart meters and communi-
cation devices in the EMPC system should be able to proactively
detect and to handle communication and other failures. Moreover,
to reduce the hardware investment on implementation of EMPC for
ADSM, it is necessary to optimize the installation allocation of the
smart meters and sensors.

2.2.4. Objective function & multi-objective optimization
Optimization is an indispensable part of EMPC functionality,

wherein it is applied towards the economic optimization and con-
straint handling objectives. The objective function of EMPC for
ADSM is always needed to consider trade-offs among multiple
objectives, including economic operation based on time-of-use
pricing and feed-in tariff, maximization of wind and PV production,
maximization of user comfort, etc. In EMPC, it is common to choose
the structure of the objective function such that the optimal objec-
tive forms a Lyapunov function for the closed loop system, and
hence will guarantee stability [37]. In practice, this requirement
is generally relaxed for stable systems with slow dynamics, such
as active buildings for ADSM.

In addition, the objective function is applicable only when the
solution exists within limits. The original optimization objectives,
however, needs to be redefined, if a solution does not exist within
the predefined limits, and in such cases the optimizer should have
the means (e.g. soft constraints) to recover online from the infeasi-
bility. The existing recovery techniques are based on the priorities
of the constrained and controlled variables [38,39].

2.2.5. State estimation
In EMPC for ADSM, besides potentially modelling errors and dis-

turbances as occupation, open windows or high wind speed affect
the thermal dynamics of the buildings. In order to achieve offset
free control for the EMPC a proper disturbance model is needed.
Ref. [40] found that a number of integrating disturbances equal
to the number of measured states are sufficient to reach offset free
control. In addition, all future (control) predictions begin from an
economic model predictive control strategy for buildings interacting with
plthermaleng.2016.11.141
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Table 1
Model parameters of PowerFlexHouse3.

Symbols Physical meaning Estimation
value

Tf1, Tf2, Tb Temperature in floor 1, floor 2 and basement –
Te1, Te2,

Teb

Envelope temperature in floor 1, floor 2 and
basement

–
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initial state. The system model should be initialized to the mea-
sured/estimated current state of the building. Depending on what
the state of the building is described, it might be impossible to
measure everything directly. In the above two cases, a Kalman fil-
ter is the solution to the central state estimation problem in EMPC,
which can be used to estimate the current state of the building and
the estimation is used as initial/current state for control [14,41].
Tearth, Ta Earth and ambient temperature –
pH1, pH2,

Phb

Radiator power in floors (kW) –

PS Solar irradiation (kW/m2) –
ui Control inputs –
Awb Effective window area in basement (m2) 0.2110
Aw1 Effective window area in floor 1 (m2) 0.8915
Aw2 Effective window area in floor 2 (m2) 0.1526
Cf1 Heat capacity in floor 1 (kJ/kg K) 1.0466 � 104

Cf2 Heat capacity in floor 2 (kJ/kg K) 3.5417 � 103

Cb Heat capacity in basement (kJ/kg K) 3.6410 � 103

Ce1 Heat capacity in floor 1 building envelope
(kJ/kg K)

2.0929 � 104

Ce2 Heat capacity in floor 2 building envelope
(kJ/kg K)

1.6307 � 104

Ceb Heat capacity in basement building envelope
(kJ/kg K)

2.0860 � 104

Rff Thermal resistance between floor 1 and 2 (K/kW) 4.249
Rfb Thermal resistance between floor 1 and basement

(K/kW)
3.7129

Re1a Thermal resistance between floor 1 envelope and
ambient (K/kW)

13.934

Re2a Thermal resistance between floor 2 envelope and
ambient (K/kW)

24.562

Rebe Thermal resistance between basement envelope
and earth (K/kW)

15.546

Rf1e1 Thermal resistance between floor 1 and its
envelope (K/kW)

0.65327

Rf2e2 Thermal resistance between floor 2 and its
envelope (K/kW)

3.6202

Rbeb Thermal resistance between basement and its
envelope (K/kW)

3.0275
3. Pilot testing

The EMPC strategy for an active smart building was applied to a
residential building-PowerFlexHouse3 (see Fig. 1). The PowerFlex-
House3 facilities at the Technical University of Denmark (DTU),
Risø campus have been equipped with sensors and controllable
loads and heating equipment. They are interconnected in a config-
urable 400 V microgrid and communication platform [42]. The
PowerFlexHouse3 is a 150 m2 3-floor house built in 1954 [43].
The outer walls of the house are brick constructed with a layer of
insulation between them and the roof is tile. All sensors (tempera-
ture, motion and contacts, etc.) in PowerFlexHouse3 support KNX
standard communication. There are four types of water-based
heating radiators in the building [44]. In the basement there are
three radiators of 2.708 kW total power; in the first floor there
are 6 radiators of 6.138 kW total power and in the second floor
there are 2 radiators of 2.198 kW total power. The total power con-
sumption of the heating radiators is around 11 kW and they can be
remotely controlled via electro-valves. According to the national
statistics, due to cold climates in the Nordic countries, space heat-
ing accounts for more than 60% of all energy use in buildings. The
main objective of the developed EMPC controller is to realize the
load shifting by using heating radiators in the PowerFlexhouse3.
That is to say, to decrease peak load, reduce energy costs, and
improve building thermal comfort, the other impactors, such as
the windows area, solar irradiation, building envelope and heat
capacity in different floors, which have strong influence on the
interior thermal behaviour, are also considered in Section 3.1.
The detailed parameters are listed in Table 1.

3.1. Modelling

The heat flow in PowerFlexHouse3 is modelled by a grey-box
approach, using physical knowledge about heat transfer together
with statistical methods of real measurement data to estimate
model parameters. To reduce the complexity, in PowerFlexHouse3,
each floor is considered as a single roomwhere all the radiators are
grouped as one input for each floor. The building’s entrance is in a
mid-way position between the first floor and the basement. It was
decided to group it in the first floor. Heat transfer due to conduc-
tion, convection and ventilation is assumed to be linear with
the temperature difference on each side of the medium. When
(a) Back facade   (b) Front facade

Fig. 1. A residential building-PowerFlexHouse3.

Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
assuming these properties, the heat model can be formulated as
an equivalent electric circuit with resistors and capacitors (RC-
network). In such an RC-network, the resistors can be regarded
as resistance to transfer heat and the capacitors as heat storage.
The RC-network for the heat dynamic model for PowerFlexHouse3
is shown in Fig. 2. The heat transfer model takes measured distur-
bances namely the solar irradiance Ps (kW/m2), the ambient tem-
perature Ta (�C) and the earth temperature Tearth (�C) into
consideration. Ventilation does not directly cause heat transfer,
but due to mass transfer heat is transferred. It is considered the
wind speeds up to 5 m/s in the thermal resistance of the building
walls as shown in [27] and high wind speeds are considered as a
noise term. This approximation is invalid for higher wind speeds
where it becomes non-linear [30]. The heat flux (uiPhi) coming from
the heaters in each floor is the controlled input in the model. The
solar irradiation goes through the effective windows surface
directly into the rooms and is described in the model as (AwiPs).

The first-order heat dynamics for the PowerFlexHouse3 are rep-
resented by the stochastic differential equations (SDEs) (2a)–(2c)
for the floors, and equations (2d) and (2f) for the building envel-
opes, respectively, where t is the time. The term ri dxi/dt repre-
sents the process noise; where xi are standard Wiener processes
with the variances ri. Table 1 presents the relevant parameters
and variables, regarding the characteristics of the building illus-
trated by Fig. 2 and Eqs. (2a)–(2f).

dTf1

dt
¼ 1

Rff Cf1
ðTf2 � Tf1Þ þ 1

RfbCf1
ðTb � Tf1Þ þ 1

Rf1e1Cf1
ðTe1 � Tf1Þ

þ Ph1u1

Cf1
þ Aw1Ps

Cf1
þ rf1

dw1

dt
ð2aÞ
economic model predictive control strategy for buildings interacting with
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Table 2
Comparison of developed statistical models with physically estimated values.

Time sample (min) Physical estimation Model

Ti Ti TiTe TiTe
30 60 30 60

Floor 2 Ctotal (kJ/K) 18,125 7639 8588 18,400 19,800
Floor 1 Ctotal (kJ/K) 32,936 23,706 23,283 30,152 31,000
Basement Ctotal (kJ/K) 32,936 12,456 13,718 28,125 24,500
Floor 2 Rtotal (K/kW) 37.6 11.9 12.13 21.7 28.2
Floor 1 Rtotal (K/kW) 27.3 11.9 12.13 13.4 14.6
Basement Rtotal (K/kW) 39.4 14.3 13.7 14 18.6

Fig. 2. Heat dynamics RC-network of the PowerFlexHouse3.
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dTf2

dt
¼ 1

Rff Cf2
ðTf1 � Tf2Þ þ 1

Rf2e2Cf2
ðTe2 � Tf2Þ þ Ph2u2

Cf2

þ Aw2Ps

Cf2
þ rf2

dw2

dt
ð2bÞ

dTb

dt
¼ 1

RfbCfb
ðTf1 � TbÞ þ 1

RbebCfb
ðTeb � TbÞ

þ Phbub

Cfb
þ AwbPs

Cfb
þ rb

dwb

dt
ð2cÞ

dTe1

dt
¼ 1

Re1aCe1
ðTa � Te1Þ þ 1

Rf1e1Ce1
ðTf1 � Te1Þ þ re1

dw1

dt
ð2dÞ

dTe2

dt
¼ 1

Re2aCe2
ðTa � Te2Þ þ 1

Rf2e2Ce2
ðTf2 � Te2Þ þ re2

dw2

dt
ð2eÞ

dTeb

dt
¼ 1

RebeCeb
ðTearth � TebÞ þ 1

RbebCeb
ðTb � TebÞ þ reb

dwb

dt
ð2fÞ

The parameters of the SDEs were estimated using a PRBS which
provides the flexibility to extend the model up to several states as
stated in [45]. PRBS is a deterministic random signal with white
noise characteristics sent to the controllable inputs of the plant,
namely the heaters in each floor. Measurement data of the ambient
temperature, solar irradiation, floor temperatures, wind speed and
direction were taken in a 3-week experimental set in spring 2013
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
[46]. All inner doors were assumed to be opened while all windows
and doors to the outside were considered to be closed. The param-
eter estimation, whose values are presented in Table 1, was real-
ized using maximum likelihood estimation with CTSM-R [47], a
software tool for estimating embedded parameters in a continuous
time stochastic state space model, developed at DTU Department
of Applied Mathematics and Computer Science. From this process
the estimated values, the corresponding standard error, the value
of the t-statistic and associated probabilities for testing the valida-
tion of the parameters are calculated to assure the accuracy and
reliability of the parameters’ evaluation. Actually, a simple model
that only includes one state variable-the indoor temperature Ti
[Tf1 Tf2 Tb] of different floors with different sample time, was also
built and validated [48]. As shown in Eqs. (2a)–(2f), the model pro-
vides a more detailed knowledge of the dynamics of the building
by augmenting the state space with the introduction of the envel-
ope temperature Te [Te1 Te2 Teb]. Adding the external envelope of
the building, a heat capacity [Ce1 Ce2 Ceb] is also formed giving
increased inertia to the heat dynamics of the building. Comparing
the total heat capacity and total thermal resistance of the building
physical estimation with the developed statistical models, the TiTe
[Tf1 Tf2 Tb Te1 Te2 Teb] model with the sample time of 60 min shown
in Eqs. (2a)–(2f) can describe the heat dynamics of the building
much better and much closer to reality, although some parameters’
values (which have very small standard errors but with unrealistic
physical meaning), such as the values of thermal resistance
between floor envelope and ambient are bigger than the value of
economic model predictive control strategy for buildings interacting with
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Fig. 4. Comparison of discrete thermal model temperatures and temperature measurem
shows the heating power in the 1st floor (Pmax = 6.138 kW). (For interpretation of the refe
article.)

(a) Forecast ambient temperature ( blue) 

(b) Forecast solar irradiation (blue) 

and actual measuring ambient temperature (black) 

and actual measuring acutal measuring solar irradiation (black)

Fig. 3. Comparison between the weather forecast data and actual measuring
weather data.
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the general physical evaluation. This TiTe model still can provide a
relative detailed knowledge of the building’s heat dynamics for the
EMPC controller design. The detailed description of building’s
models and the models’ validation for PowerFlexHouse3 can be
found in Ref. [48] (see Table 2).
3.2. EMPC formulation

In the pilot testing study, the objective function was formulated
as (1a), where c0 is a vector with the price signals broadcasted by an
aggregator, central controller or a power provider, uk is the opti-
mized power consumed by the radiators in order to heat the
PowerFlexHouse3 and N is the length of the prediction horizon
(for example 12 h). The index k stands for the iteration in the pre-
diction horizon.

Concerning the bound constraints, the radiators are only able to
give off a certain amount of heat, therefore the solution is subject
to (1d); an output (inside temperature) constraint is required,

which is defined by (1f); The output constraints Zmin
k and Zmax

k rep-
resent the predefined limits of the comfort temperature bands in
the zones and can be set independently for each zone. For example,
the residential building PowerFlexHouse3 has requirements on the
inside temperature from 21 �C to 23 �C during 8:00–19:00. Accord-
ing to [49] based on ISO 7730 a bandwidth of operative tempera-
ture in regular buildings from 21 �C to 23 �C reach 90%
acceptability from the inhabitants in winter, whereas a tempera-
ture band from 19 �C to 25 �C is for 70% acceptance. It is assumed
that the average temperature and in the same way the comfort
zone can be softly lowered during the night by 1 �C. (See the
low/high temperature reference curves in Figs. 7, 9 and 11.)

The model formulated in Eqs. (2a)–(2f) and the parameters esti-
mated and presented in Table 1 were used as the constraints pre-
sented in Eqs. (1b) and (1c).
3.3. Input data and State Estimation

The proposed EMPC controller considers electricity prices,
ambient temperature and solar irradiation data for the predictions.
The input data were taken from 17.01.2014 until 26.01.2014 a total
of 10 days. The dynamic price signals were obtained from the Nord
Pool spot DK1 market [25]. The local forecast data of the ambient
ents from PowerFlexHouse3 with respect to the heater in the 1st floor. The red line
rences to color in this figure legend, the reader is referred to the web version of this
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Fig. 5. Comparison of discrete thermal model temperatures with stationary Kalman filter and temperature measurements from PowerFlexHouse3 with respect to the heater
in the first floor. The red line shows the heating power in the 1st floor (Pmax = 6.138 kW). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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(outdoor) temperature Ta and the solar irradiation Ps are updated
twice a day for the next 48 h, which are provided by the meteorol-
ogy group in Wind Energy Division at DTU Risø campus. The mete-
orological data comes from a mesoscale reanalysis system using
the method described in Refs. [50,51]. The maximum relative error
between the actual measurement and the forecast data of the wind
and solar irradiation are 8.7% and 7.9% respectively during the
10 days’ test period (see Fig. 3). Therefore, we concluded that
the local weather forecast data are available to be integrated into
the EMPC control strategy. Otherwise, to overcome a bigger
weather forecast error, the weather actual measuring data (ambi-
ent temperature and solar irradiation, etc.) could be integrated
with the prediction model for the building indoor air temperature,
and verifies the predictive values. Then we could use the process’s
real-time output (the actual measuring inside air temperature) and
model’s (previous) predictive output to structure one model output
feedback correction.

In addition, because of the model’s uncertainty and distur-
bances such as building occupation, open windows or high wind
speed, as shown in Fig. 4, the developed model without any obser-
ver implementation is not capable to precisely predict the future
behaviour of the residential building. There were big errors
between the actual temperature measurement and model’s calcu-
lation for the first floor’s temperature in Fig. 4. Moreover, not all
states of the control model can be measured (for example the
envelop temperature of the building), and state estimation is a
required step in MPC scheme. The state estimation problem boils
down to examining the past monitoring data and reconciling these
measurements with the model to determine the most likely value
of the state at the current time. To diminish their impacts and
increase the model’s accuracy, for linear models, the optimal state
estimation problem has an offline well known solution, one sta-
tionary Kalman filter can be introduced and its impact can be
observed in Fig. 5 [41].
Fig. 6. EMPC with prediction horizon N = 5 h: the optimized predictive power
consumption on the first floor of PowerFlexHouse3 (the black curve is the
corresponding varying electricity price).
4. Results analysis and discussion

Figs. 7, 9 and 11 demonstrate the good performance of the
inside temperature of three different floors in PowerFlexHouse3
during the test period. The inside temperatures are controlled in
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
the reference band following the comfort pattern with the predic-
tive occupancy. Figs. 6, 8 and 10 show the preheating strategy of
EMPC - from the midnight to the early morning, the electricity
price is much lower and there is higher power consumption
(because the much lower power spot price always happened dur-
ing 22:00–6:00 in Denmark [25]) and the temperature of the first
floor (mainly a living room and a kitchen) is always approaching
to the higher reference during this period (see Fig. 7) to preheat
the building for the usage in morning, while the temperature on
the second floor (mainly bedrooms) and basement always fol-
low the lower reference (see Figs. 9 and 11) satisfied with user’s
different behaviour requirements meanwhile saving energy cost.
The radiators in PowerFlexHouse3 as shown in Figs. 6, 8 and 10,
even if work during the daytime, they all occurred when there is
a lower price during the daytime. All these results further illustrate
that EMPC control strategy can achieve energy savings by shifting
load from on-peak to off-peak period andmeet the end-users’ com-
fort and their behaviour requirements.
economic model predictive control strategy for buildings interacting with
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Fig. 7. EMPC with prediction horizon N = 5 h: the first floor inside temperature of PowerFlexHouse3 related to the optimized the power consumption shown in Fig. 6.

Fig. 9. EMPC with prediction horizon N = 5 h: the second floor inside temperature of Po

Fig. 8. EMPC with prediction horizon N = 5 h: the optimized predictive power
consumption on the second floor of PowerFlexHouse3 (the black curve is the
corresponding varying electricity price).
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In addition, it can be observed in Figs. 6 and 7 that the electrical
heater on the first floor is much more ‘‘active” than the heaters on
the other floors, resulting in the temperature of the first floor is
more variable than the other floors’ temperature. On the one hand,
there are six radiators on first floor which can be operated; on the
other hand, the first floor has a strong thermal interaction among
the basement and the second floor. To some large scale applica-
tions, the thermal interactions between neighbouring zones/build-
ing blocks cannot be negligible, such that we need to use the
decentralized MPC or distributed MPC. At the same time, for large
multi-zone buildings, even simple mathematical models describ-
ing the building’s thermal dynamics can result in a long computa-
tion time for the optimal control inputs, in particular when a
centralized MPC approach is considered. An alternative consists
in using a distributed MPC [52]. By using distributed MPC, the
overall computation time can be significantly reduced; meanwhile,
the robustness of the whole control system can be increased. How-
ever, this solution completely depending on the communication
support and how good the sub-optimal performance is.
werFlexHouse3 related to the optimized the power consumption shown in Fig. 8.
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Fig. 10. EMPC with prediction horizon N = 5 h: the optimized predictive power consumption in the basement of PowerFlexHouse3 (the black curve is the corresponding
varying electricity price).

Table 3
Electricity costs and energy consumption for 10 days in January 2014.

Electricity costs in EUR (for 10 days) Energy consumption in kW h Relative costs in EUR cent/kW h

PID low 23.15 684.1 3.38
PID average 25.35 742.4 3.41
EMPC with prediction horizon N= 1 23.61 687.4 3.43

2 23.24 689.1 3.37
3 22.83 691.6 3.30
4 22.53 699.5 3.22
5 22.49 706.7 3.18
6 22.72 710.5 3.20
7 23.13 713.7 3.24
. . . . . . . . . . . .

12 23.91 727.1 3.23
. . . . . . . . . . . ..
24 24.03 729.4 3.29
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In order to compare the controller performance in terms of
energy costs, a scenario is implemented where the investigated
building is equipped with traditional set point based thermostatic
controllers namely Proportional-Integral-Differential (PID) con-
troller. Due to the fact that the EMPC normally does not trace a
fixed reference temperature trajectory, two reference scenarios
are proposed. In the so called PID low temperature scenario the
lower band temperature is continuously traced for all zones. In
the PID average temperature scenario the controllers reference
temperature is the average comfort zone temperature. Both sce-
narios fulfil the temperature specification but they differ in terms
of provided heat. For these two reference scenarios, the simula-
tions were conducted under the same conditions as EMPC running.
In other words, for each control strategy listed in Table 3, PID
low/average controllers were simulated in the same test period
of EMPC controller, with the same weather and energy prices input
data. In Table 3, the results of the scenarios’ analysis are presented
by electricity costs in EUR for the designed controllers (i.e. PID
low/average and EMPC controllers), the corresponding energy con-
sumption can be expressed in kW h and the relative energy costs,
which is the ratio between the electricity costs and the energy con-
sumption. It is obviously that the electricity cost and energy con-
sumption of the PID low controller are much lower than those of
the PID average controller because of its lower set points for the
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
reference temperature. Comparing with the two reference scenar-
ios (PID low/average), EMPC controller demonstrates that its
energy consumption (and the provided heat) increases with the
EMPC prediction horizon. Both the costs of electricity and the rel-
ative cost of EMPC controller firstly decrease with the prediction
horizon increases and reach the minimum with the prediction
horizon N = 5 h. The results also illustrate that the importance on
how to tune the prediction horizon, which will play a great influ-
ence on the EMPC controller performance.

Although the electricity cost of EMPC controller are not much
significant when compared them with the PID solutions, the main
achievement of EMPC controller is to demonstrate that buildings
can provide ‘‘flexibility” services to the energy systems. Flexibility
is considered as the ability of a system to respond to variability and
uncertainty at different time scales and different locations. For
energy system operation and dispatch planning, flexibility is of
importance and has a significant commercial value. The demand
side flexibility provided by the buildings considering the tempera-
ture comfort and the cost of energy, can be a great benefit for con-
sumers and for DSM enabling integration of fluctuating
renewables, such as wind and solar, to smooth out the peak
demand which will have major impact on system reliability and
generation cost. As illustrated in Figs. 6, 8 and 10, it is notable that
the energy consumptions occur mainly at the low energy prices
economic model predictive control strategy for buildings interacting with
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Fig. 11. EMPC with prediction horizon N = 5 h: the basement inside temperature of PowerFlexHouse3 related to the optimized the power consumption shown in Fig. 10.

Fig. 12. Hourly electricity spot price and wind power penetration during the test
period for DK-East.
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periods, characterizing a high share of renewables (wind) in the
grid, for example, according to the data provided by Energinet.dk
[53] and Nordpool DK East market, the correlation between wind
power penetration and a day-ahead electricity spot price is shown
in Fig. 12. It is obviously that, for DK-East market where the test
site-DTU Risø campus is located, the higher the wind power pene-
tration, the lower the day-ahead hourly electricity spot price dur-
ing the test period from January 17, 2014 to January 26, 2014. In
one word, the proactive feature of EMPC is a must for the future
smart energy systems.
5. Conclusion

In summary, to harness the full potential of the increased share
of renewables, energy must be used more efficiently, effectively,
and intelligently. Flexible consumption and smart energy systems
must be developed with correlative dependence and interplay to
meet the challenge of integrated fluctuating RESs. Buildings play
a crucial role in this process, especially for buildings with large
thermal storage capacity.
Please cite this article in press as: Y. Zong et al., Challenges of implementing
smart energy systems, Appl. Therm. Eng. (2016), http://dx.doi.org/10.1016/j.ap
The pilot testing study demonstrated that EMPC implementa-
tion for active buildings is effective and attractive; but there are
still some challenges, especially the forecast data; the compromise
between the simplification and complication of the building ther-
mal dynamic modelling for the predictive control to maximize its
potential flexibility value; for the multi-objective optimization
problems, how to guarantee a feasible optimal solution to meet
the operation requirements of the multi-carrier energy system;
etc., which need to be effectively handled in practice.

The future work will focus on adaptive and distributed MPC for
buildings integrated into smart energy systems, including the
adaptive models and comfort bands for the different seasons and
user behaviour. In addition, the impact of models’ accuracy and
forecast data’s precision on EMPC controller’s performance will
be further studied. Finally, how to best achieve the coordination
between the widely used low-level control loops (switch/PID con-
troller) and the top-level MPC-based energy management systems
should also be considered.
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