In: Railways: Types, Design and Safety Issues ISBN:978-1-62417-139-0
Editors: C. Reinhardt and K. Shroeder (¢) 2013 Nova Science Publishers, Inc.

No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially
in any form or by any means. The publisher has taken reasonable care in the preparation of this digital
document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any
errors or omissions. No liability is assumed for incidental or consequential damages in connection with or
arising out of information contained herein. This digital document is sold with the clear understanding that
the publisher is not engaged in rendering legal, medical or any other professional services.

Chapter 5

EFFICIENT DEVELOPMENT
AND VERIFICATION
OF SAFE RAILWAY CONTROL SOFTWARE

Anne E. Haxthausen'* and Jan Peleska®'
'DTU Informatics, Technical University of Denmark,
Kongens Lyngby, Denmark
’Department of Mathematics and Computer Science,
Universitidt Bremen, Germany

Abstract

This chapter describes some approaches and emerging trends to ensure
traffic safety at railways. The focus is on railway control systems whose
role it is to ensure safe train movements through the railway network.
Such systems are clearly safety-critical as failures may endanger human
lives, and therefore they are subject to various standards (like the CEN-
ELEC standards used in Europe) to ensure a certain level of safety in-
tegrity. There are many challenges in developing railway control systems.
One is to ensure safety. The chapter describes a trend of using mathemat-
ically well-founded models in the railway system development process
making it possible to formally analyse the systems before they are built,
just like models are used in other engineering disciplines. Another chal-
lenge is the demand for shorter time-to-market periods and higher compe-
tition among suppliers. In this chapter we suggest how to help this using

*E-mail address: ah@imm.dtu.dk
TE-mail address:jp @informatik.uni-bremen.de

128 Anne E. Haxthausen and Jan Peleska

a higher degree of automation in the development, verification, validation
and test processes.

Keywords: railway control systems, formal methods, verification, testing

1. Introduction

This chapter of the book describes and recommends some research-based
ideas and emerging trends for the development, verification and testing of rail-
way control software.

These and coming years many countries are installing new, modern
computer-based railway control systems'. These systems become more and
more advanced, and thereby also more and more complex. Consequently, there
are many challenges in developing such systems. Central parts of the modern
systems consist of safety-critical software. As it is well-known that software is
often full of bugs, a major challenge is to develop the software in a way that
minimises the risk of errors. Another challenge is how this can be done effi-
ciently to keep the costs down and to achieve a shorter time-to-market period.
This chapter suggests how to help these two challenges using re-configurable
software, domain-specific languages, formal methods, and a higher degree of
automation in the development process.

Paper overview. First, in sections 2-3, it is described how railway control
systems are conventionally developed, and problems of the conventional process
are identified. Then, in sections 4—6, ideas and recommendations for how the
development process can become more effective and efficient using a domain-
specific language, formal methods and automation are given. In Section 7 these
ideas are put together to provide a complete method for automated, model-based
development of a product line of railway control systems. Section 7 also gives
references to two case studies to which the method has successfully been ap-
plied. Finally, a conclusion is drawn in Section 8.

'In this chapter we use the term railway control system as a common term for all software
systems used for safe control of railways. This includes e.g. interlocking systems and train control
and protection systems.

Efficient Development and Verification... 129

2. Re-configurable Systems

A characteristic feature of railway control systems is the need for making an
individual system for each installation. The reason for this lies in the fact that the
requirements to each control system typically depend on individual parameters
such as —in case of an interlocking system — the railway network to be controlled
and allowed train routes through that network. Also train control computers
are configured, for example, with the track atlas for the routes it is supposed
to travel on. However, it is usually possible (and also a common practice) to
design the software such that it consists of (1) a generic part that can be re-used
for many systems and (2) data that is individual for each system. The latter is
called the application data or configuration data, and the whole system is said
to be re-configurable. This idea is illustrated in Figure 1.

control system

[configuration data}

[generic part }

Figure 1. A re-configurable control system consisting of configuration data and
a generic part.

Recommendation 1 It is recommended to use re-configurable software sys-

tems as this allows for re-using generic software?.

3. Conventional Development of Re-configurable
Systems

Typically the development of re-configurable systems proceeds in the fol-
lowing steps:

YIndeed, according to the authors’ knowledge about train control systems built by European
manufacturers, this recommendation is already considered as a “best practice” today.

130 Anne E. Haxthausen and Jan Peleska

e Specification and design of a generic control system which can be instan-
tiated with configuration data for concrete domains under control.

e Manual software development of the generic system in programming lan-
guages like C, C++, and Step7 or domain-specific languages like Sternol.

e [nformal, manual verification and validation (V&V) of the generic system
for the purpose of type certification®.

e For each installation (i.e. for each concrete domain under control):

— Manual instantiation of the generic system by means of configura-
tion data.

— Informal, manual verification of the configuration data.
— Generation of executable code using validated compilers.

— Testing of the resulting concrete system (hardware and integrated
software).

Analysing this process it is notable that there are many manual tasks in-
volving considerable effort. The manual construction of configuration data also
requires some understanding of the software implementation, and may therefore
be a potential source of errors. Furthermore, as the verification activities are in-
formal and manual (typically using inspection techniques and manually selected
configuration test cases) some errors might be overseen. In the best case these
errors are found in the later testing stages, but this cannot be guaranteed. One
reason for this is the fact that testing is not exhaustive because the testing of
the generic system can only be performed for a limited number of configuration
data, due to the unmanageable number of possible configurations. Furthermore,
often the testing of an instantiated, concrete system is done manually (without
using an automated testing tool). As manual tests are very monotonous, it is
very easy to lose the concentration and oversee some errors. Hence, experience
shows that it happens that errors are not found, despite the fact that much efforts
have been put into the testing.

To make the development faster and catching more errors as early in the
development cycle as possible, this motivates the use of tools for

*In the railway domain the certification acknowledges a novel fype of interlocking system,
track element or train to be “generally fit for purpose”. This implies that the system can be
used in all different contexts which are based on the admissible configurations specified without
requiring a re-certification.

Efficient Development and Verification... 131

e automated construction and verification of configuration data,
e automated, formal verification of each instantiated system,

e automated test case generation and test execution for the integrated
HW/SW system.

The next sections describe a development approach using such tools.

4. Automated Construction from Domain-Specific
Descriptions

In recent years, domain-specific, generative methods* for software develop-
ment have gained wide interest. One of the main objectives addressed by these
methods is the possibility for a given domain to re-use various artifacts (e.g.
code) when developing software.

The re-use of software for a product line (family) of similar systems can
be obtained by developing re-configurable systems as suggested in section 2.
Domain-specific methods typically use domain-specific languages and applica-
tion generators for the construction of re-configurable applications. An appli-
cation generator is a tool that takes a specification of an application as input
and returns an application as output. It yields this application by instantiat-
ing the generic part of the application with configuration data that it derives
from the specification. The specifications are formulated in a domain-specific
language (DSL). In contrast to general-purpose specification and programming
languages, a domain-specific language is a language dedicated to a specific ap-
plication domain by using the terminology of that domain. Hence, it can be used
by domain experts who are not specialists in the field of information technology.
Typically the applications are software source code written in a high-level pro-
gramming language, but they can also be design specifications or models written
in a high-level design specification or modelling language for which there is a
code generator or a compiler into machine code.

We suggest to use these ideas for the development of railway control sys-
tems. This means that for the construction of a product line/family of similar
control systems one should provide a development framework consisting of

*For a good text book on this subject, see [5].

132 Anne E. Haxthausen and Jan Peleska

control system:

odel / source code
Ld'tor[specification in DSL generator conf|gurat|on data}

eneric part }

compiler

control system:
executable (object code)

Figure 2. Generating a control system from a specification in a domain-specific
language.

e a domain-specific language (DSL) for specifying application-specific pa-
rameters using terms and concepts from the railway domain (that could
for instance be track layouts and interlocking tables)

e an editor to support the editing of specifications in the domain-specific
language

e a control system generator tool that takes DSL specifications as input,
generates configuration data and combines this with a generic part com-
mon for all systems of the considered product line/family

Hence, for each control system to be developed, the railway specialists should

(1) use the editor to specify the application-specific parameters in the
domain-specific language,

(2) apply the generator to the specification to automatically generate a high-
level description (source code or model) of the software, and then

(3) apply a compiler to this in order to produce executable code ready to be
integrated on the control system’s target hardware.

Efficient Development and Verification... 133

This three-step construction process is illustrated in Figure 2. Verification and
testing of the three steps are discussed in the next two sections.

An advantage of using an application generator lies in the fact that it is
much simpler to specify the parameters of a system in the domain-specific lan-
guage and then apply a generator to produce the configuration data, than it is
to program the configuration data directly. This speeds up the production time
and reduces the risk of errors; furthermore, it can be done by domain experts
without requiring the assistance of programming specialists.

Recommendation 2 It is recommended to provide a domain-specific language
to specify the application-specific parameters of re-configurable control systems
and an application generator to automatically construct configuration data from
such specifications.

Numerous suggestions for domain-specific languages in the railway domain
have been given in recent years; we mention [15] for DSLs applicable to inter-
locking system development and [16] to a DSL applicable to European Train
Control System (ETCS) on-board computer software generation.

To facilitate later formal verification (see Section 5.2) of the output of the
application generator in the second step, it is recommended to let this output be a
formal, verifiable model encoded in a high-level language such as SystemC [10]
allowing it to be formally verified by a model checker tool as well as being
compiled into executable code. (In this way model and source code coincide.)

5. Automated Verification

For each of the three development steps considered above, verification of
the produced artefacts (specifications in DSL, control system models/code in a
high-level modelling/programming language and executable control systems in
an assembly or machine language, respectively) has to be performed.

For the highest safety integrity level, the European CENELEC standard
EN50128 [6] for railway applications strongly recommends to use formal ver-
ification methods> for this purpose. This is motivated by the fact that formal
methods are very strong in catching errors: instead of testing the correctness

3See [11] for an introduction to formal methods, and [7] for the role of formal methods in
software development of railway applications.

134 Anne E. Haxthausen and Jan Peleska

of artefacts for some samples, say program states, formal methods aim at prov-
ing that the desired properties hold everywhere, for example, in every reachable
state of a program. One of the most famous examples of this, is the formal verifi-
cation of some safety-critical parts of the software for metro line 14 in Paris [2].
In this case many errors were found during the formal verification, and as a re-
sult of that no errors were found in the verified parts during the testing or while
the line has been in operation.

Below is suggested how to automate the formal verification of each of the
three steps (mentioned at the beginning of this section) by providing new veri-
fication tools as well as using existing verification tools.

5.1. Specification Checking

First (after completion of Step (1) above), when an application specifica-
tion in a domain-specific language has been created, this has to be checked with
respect to syntactic correctness and well-formedness. For instance, if the spec-
ification consists of a track layout, one of the well-formedness checks verifies
that each point in the track layout is connected to three other track sections.

Recommendation 3 To formalise and automate this verification activity, it is
suggested to provide a specification checker that automatically checks the syn-
tax and all well-formedness requirements. This specification checker should be
integrated with the editor.

5.2. Model Checking

Second, (in Step (2)), when a high-level description (in our case, high-level
code and configuration data) of the control system has been generated from
the domain-specific specification, this has to be verified to satisfy the required
safety properties (as, for example, the requirement that trains never meet on a
track section).

5.2.1. Formalising the Verification Task

A common practice to perform such a verification task in a mathematically
formal, comprehensive, and at the same time fully automated way, is to use a
model checker tool®. Such a tool needs as input:

8See [11] for a description of the notions of model checking and model checkers.

Efficient Development and Verification... 135

e a controller model, i.e. a model of the behaviour of the control system,

e a physical model, i.e. a model of the behaviour of the physical environ-
ment’ of the control system, and

o aformal specification of the safety properties to be fulfilled by the system.

The models are represented by state transition systems describing how the state
of the system and its environment (when operating together) can evolve over
time®. The safety properties consist of constraints on how the state is allowed
to evolve over time, so that the avoidance of hazards is ensured. To be more
precise, the models contain descriptions of

e the state space (i.e. all states that can be obtained by combination of con-
troller states and the states of objects in its environment),

e the initial state(s),
e the possible state transitions.

A graphical illustration of a state transition system is given in Figure 3.

The formal specification of the required safety properties is given by a log-
ical expression that can be used to determine which states are safe (shown by
white dots in Figure 3) and which are unsafe (shown by black dots in Figure 3).

The verification task is then to check that the unsafe states can never be
reached from the initial state by a sequence of state transitions (following the
arrows in Figure 3). In other words, it has to be verified that no unsafe state is
within the set of reachable states. The process of making this checking is called
model checking.

Model checking can be fully automated, but may lead to state space explo-
sions, with the consequence that the model checking tool runs out of memory
while unfolding the state space for railway control systems of realistic size. To
avoid that problem several techniques have been proposed [4]. A particularly
promising method for the railway domain consists of bounded model check-
ing with inductive reasoning: instead of unfolding the complete state space and

"For interlocking systems, the environment consists of track elements (points, signals, axle
counters etc.) and of trains moving through the controlled network and interacting with the
interlocking system.

8Note, for concurrent, reactive systems, like railway control systems, there are usually many
different ways in which the state can evolve over time.

136 Anne E. Haxthausen and Jan Peleska

state space

reachable states

> _

- /

O :safe states ® :unsafe states

Figure 3. A state transition system consisting of (1) a state space of all possible
combinations of states for individual objects (shown as black and white dots)
and (2) possible state transitions from one state to another (shown as arrows).
The state that only has an incoming arrow is an initial state. Only some of the
states are reachable from the initial state. All reachable states must be safe.

risking state explosions, only subsets of state configurations reachable within a
limited number n of steps from the current configuration are investigated at a
time. Inductive reasoning is then applied to show that if the system remains safe
for at least n steps from any member of a given subset of configurations, it has
to be safe in every reachable state. The details of this technique are described
in [13].

Recommendation 4 It is recommended to use bounded model checking and
inductive reasoning to verify the safety of the controller in a formal and at the
same time fully automated way.

5.2.2. Generating Input to a Model Checker

The question is now: How should the models and safety properties be cre-
ated?

The answer to this question is: The controller model should simply be the
output generated in development Step (2), cf. the discussion in the end of Sec-
tion 4. The physical model and safety properties should also be derivable from
the application specification in DSL. It only has to be ensured that DSL specifi-
cations provide enough information for this purpose.

Efficient Development and Verification... 137

Recommendation 5 It is recommended to provide generator tools taking DSL
specifications as input and transforming them into formal models and safety
conditions (the inputs to the model checker) in an automated way.

5.3. Object Code Verification

Finally (in Step (3)), when the control system model/code has been com-
piled into object code, it should be verified that the object code correctly im-
plements the control system/model. According to the CENELEC EN58128
standard it is sufficient to use a validated/certified compiler. However, if an
un-certified compiler is used or it is desirable to be more confident about the
correctness, formal verification can be used for that.

The conventional approach for this is compiler validation: it is validated
“once-and-for-all” that for any syntactically valid input the compiler produces
object code which is a correct implementation of that input. However, such an
approach is very time-consuming, especially if it should be done formally (see
e.g. [9] for a description of formal compiler validation techniques). Further-
more, the process has to be repeated whenever modifications of the compiler
have been performed. An alternative to compiler validation is object code veri-
fication: each time object code is generated (by an arbitrary compiler), the gen-
erated object code is verified to be a correct implementation of the high-level
software model/code from which it was generated. Object code verification has
the advantage over compiler verification that it is independent of changes in the
compiler and can be automated in principle. The automation of object code ver-
ification is an ongoing research topic for which ideas have been given in [18].

Recommendation 6 It is recommended to use object code verification for un-
certified compilers and in cases where a very high level of confidence is needed.
To automate object code verification, it is suggested to provide an object code
verifier that automatically performs the object code verification.

6. Test Automation

In the sections above we have sketched how a considerable amount of the
development artefacts produced in a DSL-based transformational approach to
railway control system development can be verified in an automated way, using
model checkers and object code verifiers. It remains to be discussed whether

138 Anne E. Haxthausen and Jan Peleska

there are any testing activities left to be performed and — if any — how these
should be executed in a way allowing for a maximum degree of automation.

6.1. Why Testing?

The foremost answer to this question is “Because it is required by the stan-
dards to be observed in the railway domain!”: just as results from theoretical
physics have to be validated by experiments, even a formally verified control
system has to be validated by testing. There are no indications whatsoever that
future versions of applicable standards might drop the requirement to test the
outcome of a development, even if comprehensive formal correctness proofs
were available. In-depth analysis of this question provides a more detailed line
of reasoning why testing is an inevitable part of the whole V&V process.

Different verification perspectives. Assurance for safety-critical develop-
ments is achieved by applying different verification perspectives: The formal
verification perspective focuses on the logical correctness of development arte-
facts under certain hypotheses. Applying our 3-step development approach to
interlocking systems, for example, model checking relies on the hypothesis that
the railway network has been described completely and without any errors in
the DSL specification, and that the track elements involved will be installed
as specified. Testing is a way of validating these hypotheses. Exercising each
pre-planned route through the network during acceptance testing, for example,
will make sure that the network has been built properly and with the intended
elements. More subtle hypotheses, such as, for example, timing constraints to
be met by the control system and its connected track elements, can only be
validated by means of system integration testing®.

Correctness of hardware/software integration. Even in presence of com-
plete and correct software code, tests are required to verify that the generated
machine code operates correctly on the target hardware: logically correct calcu-
lations may fail due to insufficient register word size, verified algorithms may
produce errors on the target hardware because certain timing constraints be-
tween CPU, memory and interface busses and peripheral hardware are not met,

There exist formal approaches to worst case execution time analysis, but these are still limited
to local controller hardware and cannot be extended to complete systems involving networks of
controllers, trains and hardware peripherals.

Efficient Development and Verification... 139

and computer networks could fail to operate correctly due to incompatible pro-
tocol implementations.

Main focus of testing. In the light of these considerations we conclude that
testing is an inevitable activity among the V&V processes of the product life
cycle. For the automated V&V approach advocated in this chapter, however, its
focus is shifted from checking logical correctness of algorithms and software
component integration to hardware/software and system integration.

6.2. Model-Based Testing

In model-based testing (MBT) test strategies, testing environments and the
desired behaviour of the system under test (SUT) are expressed by models, al-
lowing for a systematic (and even automated) derivation of concrete test proce-
dures [1]. In its most powerful form, test cases, concrete test data and test pro-
cedures executing the test cases and checking SUT reactions against expected
results are automatically generated from an SUT model and an optional environ-
ment model restricting the possible interactions of the SUT with its operational
environment. Though still considered a “leading edge technology” today, auto-
mated MBT has established itself as a novel approach to testing that can effi-
ciently handle industrial size problems [19], and performance data are available
for application in the railway domain [14].

DSL specification as test model. The utilisation of MBT suggests itself for
the V&V strategy described here, because models are already available on dif-
ferent levels of abstraction: the DSL specification of the control system to be
developed is the most abstract model, and the concrete high-level code and as-
sociated configuration data is a more concrete variant. We select the DSL spec-
ification model as the input for MBT, because this also allows us to test against
the generator transforming the DSL specification into the high-level description
of control system and configuration data according to Step (2) described in Sec-
tion 4: if the generator applied in Step (2) would “forget” to transform a portion
of the DSL specification into configuration data, this can be uncovered during
the MBT phase. Since the translation of the DSL specification into an internal
representation suitable for test case and test data generation uses a transforma-
tion which does not share any algorithms or code with the generator of Step (2)

140 Anne E. Haxthausen and Jan Peleska

it is unlikely that both generator and MBT tool would simultaneously fail to
process the same portion of the DSL specification correctly.

Requirements tracing. Systematic testing includes requirements tracing:
each requirement is associated with one or more test cases suitable for check-
ing its realisation by the SUT. The relation between requirements and test cases
is usually n : m, because one requirement may need several test cases for its
verification, and one test case may contribute to the verification of several re-
quirements. Test cases are associated with test procedures executing them in a
specific order. Each test procedure is linked to the test execution results pro-
duced during its execution. This results in a complete collection of links'?, so
that each requirement can be traced to all the test results obtained for its verifi-
cation.

Identifying requirements in the model — general case. In general the identi-
fication of requirements in a model is a manual process. It is performed by asso-
ciating certain model elements or — in the most complex case — logical formula
specifying certain traces!! through the model with requirements. For example,
the requirement “the train shall never exceed the admissible maximum velocity
specified in the track atlas” would be linked to model elements responsible for
determining the current position (odometer), for determining the current veloc-
ity (speedometer), for accessing the track atlas and for triggering the emergency
brake in case of speed limit violations. All traces through the model leading to
a speed violation and causing the emergency brake to be triggered are witnesses
for the requirement. Test cases stimulating such witness traces in the SUT are
suitable for testing the requirement. Some modelling formalisms support ex-
plicit representation of the links between requirements and model elements or
model traces; the most prominent example is the System Modelling Language
SysML [21].

Identifying requirements in the model — special case of automated railway
control system developments. For railway control systems, at least the ma-
jority of safety-related requirements and a certain amount of user requirements

"%This collection is usually called the traceability matrix. Observe, however, that more than
one matrix is needed: one for the n : m relation ‘requirements < test cases’, one for ‘test cases
« test procedures’ (also n : m) and one for ‘test procedures « test results’ (1:1 relation).

A trace is a finite sequence of model states which can occur during a simulation of the model.

Efficient Development and Verification... 141

can be automatically identified in the DSL specification model, because they
stem from generic requirements that can be instantiated for the concrete control
system to be developed. Consider, for example, an interlocking system whose
DSL specification consists of the railway network to be controlled and inter-
locking tables describing the required routes through the network, their required
point positions and mutual exclusion requirements for conflicting routes whose
simultaneous allocation to trains would lead to collisions. Consider the follow-
ing examples of generic requirements (a detailed presentation of this example is
given in [17]).

o It shall be possible to allocate each specified route.
e Non-conflicting routes may be allocated in a concurrent way.
e No pair of conflicting routes shall be simultaneously allocated.

e Allocation to a train is only granted after the points are locked in the
positions required for the requested route.

e De-allocation of a route is only performed when it is empty and entering
the route has been blocked.

e If a point fails, every route visiting this point shall be blocked.

For the concrete railway network to be controlled each requirement is in-
stantiated for the concrete routes to be provided through the network, for each
subset of pairwise non-conflicting routes, for each pair of conflicting routes, and
for each point, respectively.

Automated model-based testing. The automated identification of require-
ments also enables automated test case elaboration directly from the DSL speci-
fication model, by constructing witnesses for every concrete requirements. This
process has been comprehensively described in [15]. We illustrate the technique
using the requirements listed above in a HW/SW integration test scenario shown
in Figure 4.

The SUT consists of one or more computers receiving route requests from
trains and location information about trains obtained from sensors (e. g., axle
counters). On reception of a non-conflicting request the SUT sends switch-
ing commands to the points on the route under consideration. It collects feed
back information about the point status. Signals guarding conflicting routes are

142 Anne E. Haxthausen and Jan Peleska

switched into the "halt’ state. If all points could be locked in the requested posi-
tion and the feed back from the signals indicates that entry to conflicting routes
is blocked, the signal guarding the entry into the requested route is switched into
the *go’ state. Feed back from points and signals is continuously monitored, so
that failures lead immediately to blocking the routes affected by these failures.

Route Requests

Sensor Information

Signal Status

Point Status

Test Equipment SUT

Signal Commands

Point Commands

Route Allocation Response

Figure 4. HW/SW integration test configuration for interlocking system con-
troller.

The automated MBT generator reads the DSL specification and first creates
symbolic test cases which are not yet associated with concrete test data. For
every route r, for example, a symbolic test case specifies “request while no
conflicting routes have been allocated”, another test case requires to “let train
travel along the allocated route r until its end”, so that route de-allocation can
be checked. Further symbolic test cases deal with concurrent allocation of non-
conflicting routes, request rejection for conflicting routes and point or signal
failures.

Symbolic test cases are automatically transformed into concrete ones by
means of libraries simulating concrete behaviours of trains when requesting and
traveling on routes. Other library functions simulate the feed back behaviour
of points and signals. Determining the parameters of these library calls may
require a constraint solver calculating concrete data solving logical conditions:
if a test case requires, for example, that route r should be de-allocated before

Efficient Development and Verification... 143

another route 7/, the solver determines admissible speed values for trains on r
and 7/, so that the train leaves r while 7’ is still occupied. The library calls
are compiled into test procedures which can be automatically executed on the
test equipment. In a HW/SW integration test setting, all inputs to the SUT are
generated by the test equipment consisting of one or more computers interact-
ing with the SUT via its system interfaces. With the help of the library, the
test equipment is capable of simulating route requests, sensor information and
feed back from track elements as required by the test cases under consideration.
Moreover, it receives SUT responses and checks them according to the expected
results specifications associated with the test cases.

Recommendation 7 We recommend to perform automated model-based test-
ing for ensuring the correctness of HW/SW integration and for validating the
completeness of the automated generation of control software and configura-
tion data.

7. The Complete Development Process

Combining all the suggestions and recommendations given above this gives a
complete model-driven development and verification approach for railway con-
trol systems. According to this approach, in order to develop software for a
product line of similar railway control systems one should provide a framework
(see Figure 5) consisting of:

1. A domain-specific language (DSL).
2. A collection of development tools, including

(a) a DSL specification editor and well-formedness checker,

(b) generators producing models of the control system and its physical
environment as well as safety conditions,

(c¢) amodel checker,
(d) acompiler,
(e) an object code verifier, and

(f) an automated model-based test generator.

144 Anne E. Haxthausen and Jan Peleska

Editor

| Specification checker

DSL specification | Checking result

_Gen_wl

Physical Controller

model model Model .
h Checking result

conditions

Object code
verifier

Test generator

Compiler Checking result

Simulation library Object code

HWI/SWV integration

SUT Integrated
HWI/SW system

Test result

Test Equipment

Figure 5. Development and verification steps.

For each control system to be generated, users should apply the editor to specify
the application-specific parameters in the domain-specific language and check
the description by means of the specification checker. Next, the generators pro-
duce models of the control system and its physical environment from this spec-
ification, together with the safety requirements which are automatically verified
using the model checker. Next — since the formal controller model can be di-
rectly compiled — object code is generated by a conventional compiler, and it is
checked by the object code verifier that the object code is behaviourally equiv-
alent to the control system model. In this way it is ensured that the safety prop-
erties established for the control system model also hold for the object code.
Finally, HW/SW integration testing and — for larger distributed control systems
— system integration testing ensures the correct cooperation of hardware and
software, and validates the completeness of the generated control system code
and configuration data.

Efficient Development and Verification... 145

Case studies have been performed applying the presented method to a
tramway control system [13, 15] in Germany and a relay interlocking system
in Denmark [12]. In these case studies, first prototypes of domain-specific lan-
guages and development tools were developed, and then these prototypes were
successfully applied to construct and verify the systems. The model-based test-
ing approach is currently applied in industrial testing campaigns for railway
control systems [14].

Conclusion

In this chapter we have given a number recommendations for how the con-
ventional development, verification and testing of railway control systems can
be improved by using domain-specific languages, formal methods and automa-
tion. We suggested to use formal methods to achieve a high safety integrity
level, automation to make the development, verification and testing processes
more efficient, and railway domain-specific languages to provide more railway
friendly user interfaces. Our recommendations have been successfully applied
to several case studies, and the automated testing approach is already applied in
industrial projects.

We plan in the future to apply and refine these ideas for the new ERTMS
based railway control systems that are going to be implemented in Denmark
over the next decade.

For complementary and competing approaches for the development, verifi-
cation and testing of railway control systems the reader is referred to the contri-
butions in proceedings like [20] and books like [8]. For a survey of recent trends
and the role of formal methods in software development of railway applications,
the reader is referred to [7, 3].

Acknowledgments

A part of this chapter is based on a delivery made to Rail Net Denmark
(Banedanmark) as a part of the Public Sector Consultancy service offered by
the Technical University of Denmark.

We would like to thank Kirsten Mark Hansen, Lloyd’s Register EMEA, for
reviewing the chapter and giving valuable feedback on that.

146

Anne E. Haxthausen and Jan Peleska

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, 1. Schieferdecker, and
C. Williams. Model Driven Testing — Using the UML Testing Profile.
Springer, Berlin, Heidelberg, New York, 2008.

P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A Success-
ful Application of B in a Large Project. In J. M. Wing, J. Woodcock,
and J. Davies, editors, Proceedings of FM’99: World Congress on Formal
Methods, Lecture Notes in Computer Science, pages 369-387. Springer-
Verlag, 1999.

D. Bjgrner. New Results and Current Trends in Formal Techniques for
the Development of Software for Transportation Systems. In Proceedings
of the Symposium on Formal Methods for Railway Operation and Control
Systems (FORMS’2003), Budapest/Hungary. L' Harmattan Hongrie, May
15-16 2003.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

U. W. Eisenecker and K. Czarnecki. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

European Committee for Electrotechnical Standardization. EN 50128 —
Railway applications — Communications, signalling and processing sys-
tems — Software for railway control and protection systems. CENELEC,
Brussels, 2001.

A. Fantechi. The Role of Formal Methods in Software Development for
Railway Applications. In Railway Safety, Reliability and Security: Tech-
nologies and System Engineering, pages 282-297. 1GI Global, 2012.

F Flammini, editor. Railway Safety, Reliability and Security: Technologies
and System Engineering. 1GI Global, 2012.

G. Goos and W. Zimmermann. Verification of compilers. In Correct Sys-
tem Design, pages 201-230. Springer, 1999.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

Efficient Development and Verification... 147

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. E. Haxthausen. An Introduction to Formal Methods for the Develop-
ment of Safety-critical Applications. Technical report, DTU Informatics,
Technical University of Denmark, August 2010.

A. E. Haxthausen. Towards a Framework for Modelling and Verification
of Relay Interlocking Systems. In 16th Monterey Workshop: Modelling,
Development and Verification of Adaptive Systems: the Grand Challenge
for Robust Software, number 6662 in Lecture Notes in Computer Science,
pages 176-192. Springer, 2011. Invited paper.

A. E. Haxthausen, J. Peleska, and S. Kinder. A Formal Approach for
the Construction and Verification of Railway Control Systems. Formal
Aspects of Computing, 23(2):191-219, 2011. Electronic version: DOI:
10.1007/s00165-009-0143-6.

H. Loding and J. Peleska. Timed moore automata: Test data generation
and model checking. In International Conference on Software Testing, Ver-
ification, and Validation, ICST2008, pages 449—-458, Los Alamitos, CA,
USA, 2010. IEEE Computer Society.

K. Mewes. Domain-specific Modelling of Railway Control Systems with
Integrated Verification and Validation. Verlag Dr. Hut, Miinchen, 2010.

J. Peleska, J. Feuser, and A. E. Haxthausen. The Model-Driven openETCS
Paradigm for Secure, Safe and Certifiable Train Control Systems, pages
22-52. IGI Global, June 2012.

J. Peleska, D. GroB3e, A. E. Haxthausen, and R. Drechsler. Automated ver-
ification for train control systems. In E. Schnieder and G. Tarnai, editors,
Proceedings of the FORMS/FORMAT 2004 - Formal Methods for Automa-
tion and Safety in Railway and Automotive Systems, pages 252—-265. Tech-
nical University of Braunschweig, December 2004. ISBN 3-9803363-8-7.

J. Peleska and A. E. Haxthausen. Object Code Verification for Safety-
Critical Railway Control Systems. In Proceedings of Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2007), Braunschweig, Germany. GZVB e.V., 2007.
ISBN 13:978-3-937655-09-3.

148 Anne E. Haxthausen and Jan Peleska

[19] J. Peleska, A. Honisch, FE. Lapschies, H. Léding, H. Schmid, P. Smuda,
E. Vorobev, and C. Zahlten. A real-world benchmark model for test-
ing concurrent real-time systems in the automotive domain. In B. Wolff
and F. Zaidi, editors, Testing Software and Systems. Proceedings of the
23rd IFIP WG 6.1 International Conference, ICTSS 2011, volume 7019 of
LNCS, pages 146-161, Heidelberg Dordrecht London New York, Novem-
ber 2011. IFIP WG 6.1, Springer.

[20] E. Schnieder and G. Tarnai, editors. Proceedings of Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2010), Braunschweig, Germany. Springer, 2011.

[21] OMG Systems Modeling Language (OMG SysMLTM) Tech-
nical Report Version 1.2, SysML Modelling team, June 2010.
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf.

