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Abstract. An Active Tuned Mass Damper (ATMD) is employed for damping of tower vibra-
tions of fixed offshore wind turbines, where the additional actuator force is controlled using
feedback from the tower displacement and the relative velocity of the damper mass. An opti-
mum tuning procedure equivalent to the tuning procedure of the passive Tuned Mass Damper
(TMD) combined with a simple procedure for minimizing the control force is employed for deter-
mination of optimum damper parameters and feedback gain values. By time domain simulations
conducted in an aeroelastic code it is demonstrated that the ATMD can be used to further re-
duce the structural response of the wind turbine compared to the passive TMD, and this without
an increase in damper mass. A limiting factor of the design of the ATMD is the displacement
of the damper mass, which for the ATMD increases to compensate for the reduction in mass.

1. Introduction

The monopile support is currently the most used support structure for offshore wind turbines,

primarily due to its simple design. The design is relatively cost-effective compared to for example

a jacket structure, though also quite sensitive to wave loading. Dimensioning of the monopiles are

usually dictated by the fatigue loads, caused by wind and waves exciting primarily a combination

of the two lowest tower modes, the fore-aft mode in the rotor direction and the side-side mode

lateral to the rotor direction. Waves acting with an angle to the wind can therefore cause large

fatigue damage due to the absence of the aerodynamic damping in the direction lateral to the

wind [1, 2, 3]. The future will see an increasing number of larger and more slender wind turbines

positioned at deeper water depths [4]. For these structures the natural frequencies of the critical

tower modes will be lower than for present day wind turbine structures, which will cause fatigue

damage due to resonant wave loading to increase significantly. One way to reduce fatigue damage

due to wave loading, and thereby increase the feasibility of the monopile support, would be to

install external dampers.

So far research on the use of external dampers for fixed offshore wind turbines has focused mainly

on passive concepts, with most focus on Dynamic Vibration Absorber (DVA) concepts, such as a

Tuned Liquid Column Damper (TCLD) or a Tuned Mass Damper (TMD). Some of the pioneering

work concerning applications in wind turbines includes the article by Colwell and Basu [5] in

which the damping effect of a TLCD installed in an offshore wind turbine has been investigated

by assuming correlated wind and wave load conditions, whereas the potential of using a pair of

TMDs simultaneously targeting the dominant fore-aft and side-side modes has been demonstrated
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by Lackner and Rotea [6]. More recently, attention has focused on how to address the absence

of aerodynamic damping in the side-side direction, when significant wind-wave misalignment is

present, e.g. in the work by Stewart and Lackner [7] where the beneficial effect of a TMD in

reducing the tower base moment is demonstrated through numerical simulations, and where in

particular a significant reduction in the side-side moment has been reported.

In order for a DVA to be effective it needs to be installed where the amplitude of the critical tower

mode is largest, which for the wind turbine is at the top of the tower or inside the nacelle. Effective

damping by a DVA is furthermore associated with large damper mass, which constitutes a major

limitation, since additional mass is highly undesirable at the top of the wind turbine. The Active

Tuned Mass Damper (ATMD) is a hybrid device consisting of a passive TMD supplemented by an

actuator parallel to the spring and damper. It is a well known concept in structural control, espe-

cially for mitigation of excessive dynamic response of high-rise buildings subjected to strong wind

and earthquake loads, where the ATMD has been proven to yield enhanced damping performance

compared to the passive TMD [8, 9]. The concept has also been implemented in a number of high-

rise buildings in Japan [10]. For optimal feedback control of the ATMD, different strategies have

been proposed. Chang and Soong [11] proposed a state feedback scheme combined with a Linear

Quadratic Regulator (LQR) determined by minimizing both the primary structural response and

the control effort, Chang and Yang [12] assumed a white noise excitation and used a complete

feedback scheme in which the optimum gain parameters are determined from a minimization of

the response variance, while Nishimura [13] proposed a pure acceleration feedback control law, in

which the optimum gain is determined by a dynamic amplification analysis similar to that of the

passive TMD. As demonstrated in [13], for a single degree of freedom (DOF) system, this accel-

eration feedback scheme provides a reduction of the dynamic amplification of the primary mass

compared to the TMD, but for the same damper mass and without any increase in the maximum

dynamic amplification of the damper mass. However, for a flexible structure with a sufficiently

large number of DOFs this scheme contains an inherent instability as the mass matrix becomes

indefinite in the high-frequency limit, which makes it unfeasible for practical implementation.

The present paper applies the ATMD concept for damping of wind turbine tower vibrations in

order to overcome the limitations of the passive TMD, for which effective damping is associated

with large damper mass. The application and potential of ATMDs in (off-shore) wind turbines

has been demonstrated by Fitzgerald et al. for damping of blade vibrations [14] as well as the

global vibrations with emphasis on structure-soil interaction [15]. In [14, 15] effective vibration

mitigation is reported for active forces derived on the basis of optimal LQR control, which requires

some type of observer to estimate the dynamic state of the structure in real time. In the analysis

by Lackner and Rotea [16] the proportional gain associated with modern optimal control is instead

derived by solving an H∞ problem, which is conditionally stable and provides effective damping

performance when properly tuned. The performance and comparison of TMD and ATMD for

damping of floating off-shore wind turbines has furthermore been investigated by Namik et al.

[17]. A recent review paper by Rahman et al. [18] provides a discussion of the performance of
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Figure 1. (a) Fixed offshore wind turbine with (b) ATMD.

passive and active tuned mass damper systems installed in wind turbines. This shows that the

optimal control based on LQR or H∞ optimization is a seemingly preferred approach for the

development of active control laws used in mass damper systems.

A simple feedback control equation that provides guaranteed feedback stability also for a flex-

ible structure with multiple DOFs is proposed in Section 2. It is composed of a proportional

feedback term to mitigated the structural vibration amplitude and a collocated velocity feedback

term to reduce the active control force at the targeted resonance frequency. By assuming a modal

representation for the critical tower mode as in Section 2.1 the tuning procedure can be carried

out for a reduced 2-DOF system. Applying a dynamic amplification tuning procedure similar

to that of the TMD combined with a tuning strategy for reduction of the active control energy,

optimal parameters are determined that both give an increased damping performance compared

to the passive TMD, but for the same damper mass, and also reduces the required active control

forces, as demonstrated in Sections 2.2-2.4. In Section 3 the performance of the proposed ATMD

is investigated for damping of wind turbine tower vibrations by the use of comprehensive time

domain simulations of a 5 MW offshore reference turbine conducted in the advanced aeroelastic

code HAWC2, see [19]. In order to compute the optimum damper parameters the critical tower

modes are determined from the free decay response in Section 3.1. Next in Sections 3.2-3.3 it is

demonstrated through both a frequency and a time transient response analysis that compared to

the passive TMD the present ATMD can further mitigate the response of the wind turbine, with-

out increasing damper mass. Thus, the proposed ATMD comprises guaranteed stability, explicit

calibration formulae based on the desired level of dynamic amplification and adjustable control

force amplitude. Furthermore, the simple control equation requires the nacelle displacement and

the relative damper mass velocity as sensor input, whereby the full state observer associated with

optimal LQR control is not needed.
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2. Modeling of Active Tuned Mass Damper

A fixed offshore wind turbine structure with an Active Tuned Mass Damper (ATMD) is illustrated

in figure 1(a). The ATMD is positioned at the top of the wind turbine, where the amplitude of

the critical tower modes are expected to be largest. In the initial design process, the wind turbine

structure is assumed to be undamped and described by a linear discrete model with mass matrix

M and stiffness matrix K. This is a fairly valid assumption since the critical tower modes are

nearly unaffected by the rotations of the blades and since the modes have very low damping. With

reference to figure 1(b) the ATMD exerts a resulting force on the tower

f = cau̇a + kaua − fa (1)

where ua is the relative displacement of the damper mass, fa is the force from the active actuator,

while ca and ka are the viscous parameter and stiffness of the ATMD, respectively. Hereby the

equation of motion (EOM) for the structural DOFs of the wind turbine in u can be written as

Mü+Ku = f +w(cau̇a + kaua − fa). (2)

In this equation the vector f represents external loading, while the connectivity vector w defines

the connection of the ATMD to the tower. The connectivity vector w will contain zeros except

for the unit value at the DOF, at which the ATMD is attached. The displacement of the tower at

the location of the ATMD is therefore given by wTu, whereby the EOM for the ATMD is given

as

maüa + cau̇a + kaua = −maw
T ü+ fa. (3)

Inserting (3) into (2) gives the more convenient representation of the structural EOM

(M +Ma)ü+Ku = f −mawüa, (4)

where M+Ma = M+wwTma is the original mass matrix plus the additional mass of the ATMD.

The equation system in (4) together with equation (3) constitutes the EOMs for the wind turbine

with an ATMD. By observing the two equations the closed-loop characteristics are described by

−maw
T ü as an input term in (3) and by −mawüa as a corresponding output term acting as a

force on the wind turbine structure in (4). The active element of the ATMD with control force fa

can be used to increase the input force to the external damper system, whereby the output force

to the wind turbine is increased as well, so that the overall damping performance can be improved.

In the present article the absolute displacement wTu of the tower and the relative velocity u̇a of

the damper mass are used as sensor signals in the feedback control. Hereby the actuator force is

given by

fa = −Gkw
Tu− gccau̇a, (5)

where Gk is the gain associated with the absolute displacement of the tower, while gc is the

non-dimensional gain associated with feedback of the relative velocity of the damper mass. The

introduction of the auxiliary mass of the ATMD provides an additional point of fixture that

enables control forces proportional to absolute motion. In (5) the first term acts on the absolute

displacement and thus governs the reduction of the structural vibration amplitude via the feedback
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gain Gk. Although this term is of the same proportional type as in optimal LQR control [14, 15]

it only requires the top tower displacement (wTu) as input and not the entire dynamic state of

the structure. Furthermore, the introduction of pure proportional feedback may result in large

actuator forces. Therefore, the second direct velocity feedback term in the control equation (5)

represents additional viscous damping with gain gc, which introduces a phase-shift in fa that

reduces the required actuator force.

The displacement wTu of the tower might be derived from high-precision GPS measurements as in

[20, 21], while the relative velocity of the damper mass u̇a could be derived from the corresponding

relative displacement and acceleration signals using a so-called kinematic Kalman filter [22, 23].

Inserting (5) into equations (4) and (3) provides the closed-loop system of equations for the wind

turbine and ATMD as
[

M+Ma wma

maw
T ma

][

ü

üa

]

+

[

00T 0

0T (1 + gc)ca

][

u̇

u̇a

]

+

[

K 0

Gkw
T ka

] [

u

ua

]

=

[

f

0

]

, (6)

where 0 is the zero vector. From (6) it is seen that the stiffness matrix is positive definite for any

value of Gk, while for gc > −1 the damping matrix is positive semi-definite. Thus, for gc > −1 all

the eigenfrequencies will have positive imaginary part, and therefore the system will be stable.

2.1. Modal representation of wind turbine structure. An ATMD is usually targeted at

one specific mode, which suggests the use of a modal representation for the wind turbine. The

displacement of the wind turbine with respect to mode j is described in terms of the mode-shape

vector uj as

u = ujrj , (7)

where rj is the modal coordinate, whereby the modal mass and stiffness associated with mode j

are given by

mj = uT
j Muj , kj = uT

j Kuj . (8)

It is convenient to scale the mode shape vector uj to unity at the location of the damper, so that

wTuj = 1. Introducing the modal representation (7) with this scaling into (6) the two EOMs for

the modal coordinate rj and the relative displacement ua of the ATMD can be written as
[

(1 + µj) µj

1 1

][

r̈j

üa

]

+

[

0 0

0 (1 + gc)2ζaωa

][

ṙj

u̇a

]

+

[

ω2

j 0

gkω
2

j /µj ω2

a

][

rj

ua

]

=

[

fj/mj

0

]

, (9)

where fj = uT
j f is the modal load. The equations are characterized by the modal mass ratio µj , the

natural frequency ωj associated with mode j, the frequency ωa of the ATMD, the damping ratio

ζa of the ATMD, the non-dimensional modal feedback gain gk associated with the displacement

of the tower and the non-dimensional gain parameter gc,

µj =
ma

mj

, ω2

j =
kj
mj

, ω2

a =
ka
ma

, 2ζa =
ca√
maka

, gk =
Gk

kj
. (10)

Thus, the new displacement proportional gain gk is non-dimensional. Assuming harmonic solutions

for the equations in (9) on the form

rj = r̄j exp(iωt), ua = ūa exp(iωt), fj = f̄j exp(iωt), (11)
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with modal amplitudes denoted by a bar and with ω > 0 as the forcing frequency, the frequency

response of the modal coordinate rj is given by

r̄j
rj,sta

=
ω2

j

[

ω2

a − ω2 + 2i(1 + gc)ζaωωa

]

ω4 −
[

ω2

j (1 − gk) + ω2
a(1 + µj)

]

ω2 + ω2
aω

2

j + 2i(1 + gc)ζaωωa[ω2

j − ω2(1 + µj)]
, (12)

where rj,sta = f̄j/kj is the static displacement of mode j. The frequency response of the damper

mass is given by

ūa

rj,sta
=

ω2

j

[

ω2 − gkω
2

jµ
−1

j

]

ω4 −
[

ω2

j (1 − gk) + ω2
a(1 + µj)

]

ω2 + ω2
aω

2

j + 2i(1 + gc)ζaωωa[ω2

j − ω2(1 + µj)]
. (13)

2.2. Optimum frequency tuning. The optimum frequency tuning of the ATMD is now deter-

mined with respect to mode j. Figure (2) shows a plot of the dynamic amplification of mode j as

given by (12) for different values of the modified damping ratio (1 + gc)ζa. Similar to the passive

TMD the ATMD gives rise to two neutral frequencies, denoted as ωA and ωB, which are located

on both sides of the structural frequency ωj and at which the magnitude of the frequency response

is independent of the damping parameter. The optimum frequency tuning of the ATMD is deter-

mined by setting the magnitude at these two neutral frequencies equal to each other, equivalent

to the optimum frequency tuning of the passive TMD, credited to Den Hartog [24]. The following

derivations follow the analysis of Krenk in [25]. First the neutral frequencies ωA and ωB are de-

termined by setting the magnitude of (12) equal at the limits (1 + gc)ζa = 0 and (1+ gc)ζa → ∞,

which leads to

[

ω2

a − ω2
] [

ωaω(ω
2

j − ω2(1 + µj))
]

= ±ωaω
[

ω4 −
(

ω2

j (1 − gk) + ω2

a(1 + µj)
)

ω2 + ω2

aω
2

j

]

. (14)

Use of the plus sign leads to the roots ω2 = 0 and ω2 = −ω2

jgk/µj, while use of the minus sign

gives the following quadratic equation in ω2

(2 + µj)
ω2

ω2

j

ω2

ω2
a

− 2

[

ω2

ω2
a

(1 − gk/2) +
ω2

ω2

j

(1 + µj)

]

+ 2 = 0. (15)
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Figure 2. Dynamic amplification for µ = −gk = 0.02, ωa = ωj and ζa(1+ gc) =
0.0 (· ·), 0.1 (–), 0.2 (– · –), ∞ (– –)
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The roots of this equation are ω2

A and ω2

B. The roots are however only needed in the form of their

sum, which can be determined via the ratio of the coefficients to the linear and quadratic terms,
(

ωA

ω0

)2

+

(

ωB

ω0

)2

=
2

2 + µj

[

(1 − gk/2) +
ω2

ω2
a

(1 + µj)

]

. (16)

Next the magnitude at the two neutral frequencies are set equal to each other. Evaluating (12) at

the limit (1 − gc)ζa → ∞ then gives the magnitude at the neutral frequencies

r̄j
r̄j,sta

=
1

1− (1 + µj)
ω2

ω2

j

. (17)

At the lower frequency ωA the response of mode j is in phase with the external load, while at the

higher frequency ωB the response is in opposite phase. As demonstrated in [25] equal magnitude

of the response at the two frequencies results in
(

ωA

ω0

)2

+

(

ωB

ω0

)2

= − 2

1 + µj

, (18)

and combining equation (16) and equation (18) then gives the optimum frequency tuning of the

ATMD as
ωa

ω0

=
1√
2

√
2 + gk + gkµ

1 + µj

. (19)

The optimum frequency tuning is seen to depend both on the mass ratio µj and the gain parameter

gk. Furthermore, gk = −2/(1 + µj) is seen to correspond to a design limit, since it leads to the

frequency tuning ωa = 0. For gk = 0 the optimum tuning of the passive TMD is recovered.

By substitution of the the frequency tuning (19) into the quadratic equation in (15) the roots are

determined as

(1 + µ)
ω2

A,B

ω2

0

= 1±
√

µ− gk − gkµ

2 + µ
. (20)

The equal dynamic amplification at the two neutral frequencies ωA,B is denoted as Amax. It is

determined by substituting (20) into (17), which gives

Amax =

√

2 + µ

µ− gk − gkµ
. (21)

When compared to the dynamic amplification of the passive TMD it is seen that the ATMD offers

further reduction in the dynamic amplification by an appropriate choice of gk < 0, while in the

limit gk = 0 the dynamic amplification of the mechanical TMD is recovered. The design limit

gk = −2/(1 + µj) from (19) is seen to correspond to Amax = 1, i.e. no dynamic amplification.

2.3. Optimum damper tuning. With the optimum frequency tuning in (19) the dynamic am-

plification at the two neutral frequencies is equal, and damping of the ATMD should therefore be

scaled, so that a flat plateau between the two neutral frequencies is obtained. In [25] the optimum

damper tuning of the passive TMD is determined by selecting a suitable frequency in between

the two neutral frequencies and setting the dynamic amplification equal at the three frequencies,

whereby a fairly flat plateau is obtained. The same approach is applied in the present case for the

ATMD. The dynamic amplification at the frequency ω∞ =
√

kj/(mj +ma), which corresponds to

the natural frequency of the structure when locking the damper, is thus equated to the dynamic
7



amplification at the two neutral frequencies ωA,B. The frequency response at ω∞ follows from

(12) as

[

r̄j
rj,sta

]

ω∞

=
(µj − gk − gkµj)− 2iζa

√

1 + gk/2 + gk/2µj

√

1 + µj(1 + gc)

µj − gk − gkµj

, (22)

whereby the magnitude is determined as the square root of
∣

∣

∣

∣

r̄j
rj,sta

∣

∣

∣

∣

2

ω∞

=
(µj − gk − gkµj)

2 + 4ζ2a(1 + gk/2 + gk/2µj)(1 + µj)(1 + gc)
2

(µj − gk − gkµj)2
. (23)

When equating the square of the dynamic amplification at the three frequencies ω∞ and ωA,B the

following relation is obtained

2 + µ

µ− gk − gkµ
=

(µj − gk − gkµj)
2 + 4ζ2a(1 + gk/2 + gk/2µj)(1 + µj)(1 + gc)

2

(µj − gk − gkµj)2
, (24)

which determines the optimum damping ratio as

(1 + gc)ζa =

√

1

2

µj − gk (1 + µj) (1 + gk/8 (1 + µj))

1 + µj + gk/2(1 + µj)2
. (25)

For most feasible designs with µj << 1 and |gk| << 1 this expression for the optimum damper

tuning can be readily approximated to give

(1 + gc)ζa ≃
√

1

2

µj − gk
1 + µj + gk/2

. (26)

Together with the expression in (19) the expression above in (26) gives the optimum frequency and

damper tuning for the ATMD, while for gk = gc = 0 the optimum frequency and damper tuning

of the passive TMD is recovered [25]. Comparison of the performance of the ATMD with that of

the passive TMD in figure 3 shows that with active control the response of mode j can be reduced

without increasing the damper mass, while the maximum damper mass amplification is only

slightly increased. The displacement ua is however increased significantly for frequencies below

the structural frequency. Thus, the ATMD can provide further amplitude reduction compared to

the passive TMD, at the expense of a larger damper mass displacement.

0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

ω/ωj

|r j
/
r0 j
|

(a)
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a
/
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Figure 3. Dynamic amplification of mode j (a) and the damper mass (b) for
µ = 0.01 and Amax = 14.17 (gk = 0) (–), Amax = 10 (– · –) and Amax = 6 (– –)
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Figure 4. Magnitude of the the normalized control force, for gc = 0 (–), gc =
goptc /2 (– · –), gc = goptc (– –) and gc → ∞ (· ·), and for µ = 0.02 and Amax = 6.

2.4. Tuning for reduction of control force. Proper tuning of the gain parameter gc is deter-

mined by studying the active control force of the ATMD as given by equation (5). The active

control force has two terms, the first which is proportional to Gk = gkkj , and the second which is

proportional to gc. Close to the structural frequency ωj the second term in (5) proportional to gc

can be calibrated to compensate for the additional contribution to the control force fa from the

displacement proportional first term with gain gk. By assuming harmonic solutions as in (11) the

frequency response of the control force is determined as
[

f̄a

f̄j

]

= −
gkω

2

j

[

ω2

a − ω2
]

+ 2iζaωaωω
2

j

[

gk + gcω
2

a/ω
2

jµj

]

ω4 −
[

ω2

j (1 − gk) + ω2
a(1 + µj)

]

ω2 + ω2
aω

2

j + 2iζaωωa(1 + gc)[ω2

j − ω2(1 + µj)]
. (27)

When closely studying the frequency response in (27) it is found that by choosing gc according to

gc = − gk
µa

ω2

0

ω2
, (28)

the control force amplitude is completely canceled at the frequency ω = ωa. Figure (4) shows

the magnitude of the frequency response of the control force for different values of gc. The curve

(– –) with the tuning according to (28) is seen to have a minimum at the frequency ωa, where

the control force is zero. Compared to the case gc = 0 (–), this gives a significant reduction in

the control force around ωj, while for ω → 0 and ω → ∞ the difference for different values for

gc becomes insignificant. Therefore, the tuning in (28) is in the following chosen as the optimum

tuning of gc, since it effectively reduces the control effort around the resonance frequency.

3. Damping of offshore wind turbine tower vibrations

The performance of the ATMD with respect to damping of offshore wind turbine tower vibrations

is now investigated by use of time simulations in HAWC2 [19]. The aeroelastic code HAWC2 (Horzontal

Axis Wind Turbine simulation Code 2nd generation) has been developed at DTU Wind Energy

(Technical University of Denmark) for realistic time simulations of wind turbines and it is used

in connection with research projects as well as industrial applications. The code includes a multi

body formulation for modeling of nonlinear structural dynamics, a Stig Øye model for aerodynamic
9



Table 1. Structural properties of the OC3 reference wind turbine

Description Value

Hub height [m] 90

Tower-top height above MSL [m] 87.6

Tower-base height above MSL [m] 10

Water depth from MSL [m] 20

Penetration depth of monopile [m] 36

Tower mass [ton] 237

Mass of Nacelle+Rotor+Blades [ton] 351

Overall integrated mass [ton] 1216

modeling of the blades, a hydrodynamic model for modeling of wave loading and added mass, and

a nonlinear spring model for modeling of stiffness and damping of the flexible foundation provided

by the soil. The wind turbine model used for the simulations is from the OC3 (Offshore Code

Comparison Collaboration) project Phase 2 [26], and the numerical model has been downloaded

from www.hawc2.dk. The wind turbine is a slightly modified version of the 5 MW NREL reference

wind turbine [27], which is installed on a monopile with a flexible soil foundation at 20 m of water

depth. The tower is approximately 78 m tall and tapered from bottom to top, while the monopile

has a constant thickness and diameter. Some of the main structural characteristics of the wind

turbine are summarized in table 1. In order to reduce vibrations of the two lowest critical tower

modes, one ATMD is installed in the rotor direction and one ATMD is installed in the sideways

direction. Implementation of the external damper systems into HAWC2 is done using an external

dynamic link library (dll), as described in more detail for an advanced dynamic gear model in

[28]. The ATMDs are connected to the first node of the tower top at 87.6 m above Mean Sea

Level (MSL), where the modal amplitude of the two tower modes is expected to be large.

3.1. Modal properties of critical tower modes. Optimum tuning of the ATMDs according

to the expressions in (19), (21), (25) and (28) requires information about the critical modes of

the wind turbine, including information about the natural frequency, modal mass and modal

stiffness. In order to assess the modal properties, two simple decay analyzes are conducted. In

the decay analysis the wind turbine without ATMD is assumed at standstill, and the shaft and

pitch bearings are thus restrained. The influence of the wind is omitted and the wave height is

set to zero, whereby aerodynamic damping is excluded, while the contribution from added mass

Table 2. Modal properties of two lowest tower modes

ω0/(2π) [Hz] ζ [%] mj [ton] kj [kN/m]

Side-to-side 0.2379 1.14 450 1006

Fore-aft 0.2390 1.15 440 990

Average 0.2385 1.15 445 999
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(a) (b)

Figure 5. Illustration of the (a) side-side mode and (b) fore-aft mode

is maintained. Instead of the load from wind and waves the turbine is loaded by a single-step load

at the top of the tower, and the natural frequency, damping ratio and mode shape is estimated

from the free vibrations of the wind turbine. The damping ratio of the two modes is found to be

approximately ζ = 0.0020 with soil damping representing approximately one fifth (0.0004), while

the remaining amount (0.0016) comes from proportional damping in the numerical model. In order

to increase this to a more realistic value soil damping is simply calibrated to get a total damping

ratio in both modes slightly larger than 0.01, which corresponds to experimentally predicted values

in the literature [2, 29, 30]. The resulting values for the natural frequencies and damping ratios are

presented in table 2. The mode shapes of the two tower modes are estimated by taking the fourier

transform of the decay signal for each node, and comparing amplitudes of the peaks at the tower

frequency. The mode shapes are depicted in figure 5. In order to also estimate the modal mass

and stiffness of the two modes, the mass matrix of the wind turbine is reproduced by lumping the

mass of each element in the tower and monopile and the mass and inertia of the nacelle, generator,

hub and blades. The modal mass is subsequently computed by using the mode shape determined

from the decay analysis, and next the modal stiffness is determined from the modal mass and the

natural frequency. The estimated values for the modal mass and modal stiffness are also given in

table 2. As seen from the table the modal properties of the two tower modes are almost the same

and it therefore seems reasonable for the two ATMDs acting in the rotor direction and lateral

to the rotor direction to be tuned according to the average modal parameters as given in table

2. The optimum ATMD parameter values computed from these average modal properties for a

mass ratio of µ = 0.01 are summarized in table 3. These ATMD parameter values are used in the

simulations in the following sections.

3.2. Frequency response. In order to estimate the frequency response of the wind turbine a

series of time responses are computed. As for the estimation of the modal properties the wind

turbine is again assumed to be at stand still, the wind loading is removed and the wave height

is set to zero. In each time simulation the wind turbine is instead loaded at MSL by a time
11



varying harmonic force, either in the sideways direction or in the direction normal to the rotor

plane. The frequency of the harmonic loading is increased slightly for each simulation, and after

the initial transient response the corresponding amplitude of the steady state harmonic response

is determined. The estimated dynamic amplification for the wind turbine tower top and damper

displacement in the two (sideways and rotor) directions are shown in figure 6. As expected the

tower top response curves is seen to be almost identical for the two directions. Assuming that

the wind turbine is vibrating primarily at resonance in a single vibration mode the dynamic

amplification is inversely proportional to the damping ratio via the factor 1/(2ζ). In the case

without a mass damper the amplitude at resonance is approximately 44.6, which corresponds

to a damping ratio of ζ = 0.0115, as also estimated by the modal damping ratio determined

in Section 3.1. When comparing the response of the full wind turbine with the corresponding

frequency response curves for the idealized single-DOF system in figure 3, the response of the

wind turbine top in figure 6 is seen to have a slightly different shape and thereby frequency

dependence. This discrepancy is mainly due to the modal approximation of the wind turbine

leading to the single-DOF system and because of the small off-tuning of the damper parameters

caused by using the average modal properties for the two tower modes. The amplitude of the

response is also seen to be even smaller than predicted for the single-DOF system. This is due to

the inherent damping ζ = 0.0115 in the wind turbine model, which is not included in the results

for the single-DOF structure. In [25] it has been demonstrated that for the passive TMD the

tuning in (19) corresponds to dividing the added damping by the mass damper equally between

the two vibration modes associated with the targeted vibration form of the structure. Assuming

that the tower top response at the two neutral frequencies is approximately given by the amplitude

factor 1/(2ζ) the corresponding damping ratio for the passive case is estimated to be ζ = 0.0467,

which corresponds well with the sum of half of the added damping 0.0352 from table 3 and the

inherent damping 0.0115. Following the same line of analysis the damping ratio for the case with

Amax = 10 is estimated to ζ = 0.0613, while for Amax = 6 the estimation gives ζ = 0.0948.

This again corresponds well with the inhenrent damping of 0.0115 plus half of the added damping

0.0499 and 0.0837, respectively. Thus, structural damping and damping from the ATMD appear

to be additive during steady-state harmonic motion. Also the relative displacement of the damper

mass decreases compared to the single-DOF case, although this reduction is more pronounced for

the passive tuned mass damper than for the ATMD.

Table 3. ATMD properties for µ = 0.01

Amax ωa/(2π) [Hz] ζa(1 + gc) [%] ma [kg] ka [N/m] ca [N-s/m] gk gc

14.18 0.2361 7.04 4450 9796 929 0.000 0.00

10 0.2355 9.98 4450 9747 649 -0.010 1.03

6 0.2334 16.75 4450 9572 381 -0.045 4.74
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Figure 6. Dynamic amplification of tower top for (a) sideways - and (b) rotor
direction and of damper for (c) sideways - and (d) rotor direction for µ = 0 (· ·)
and for µ = 0.01 and Amax = 14.17 (gk = gc = 0) (–), Amax = 10 (– · –)) and
Amax = 6 (– –)

3.3. Time domain simulation. As demonstrated in the previous section the ATMD is very

effective in reducing the steady state response of the wind turbine around resonance. To investigate

the the ability of the ATMD to mitigate the transient vibrations following the impact of large

waves, the wind turbine with the ATMDs installed is now analyzed through time domain response

simulations. The wind turbine is loaded by a mean wind speed of 8 m/s, with zero turbulence

intensity and a constant shear profile with a power law exponent of 0.14 according to [19]. The

aerodynamic drag on the tower and nacelle is also included. In addition to the wind load the wind

turbine is also loaded by a wave train in a direction of 45o relative to the rotor direction. Hereby

both the fore-aft mode (rotor direction) and side-side mode (sideways direction) are excited by

the misaligned wave loading. The wave train is introduced as three consecutive sine waves at

MSL with 10 s wave period. After the wave train has passed the wave loading is set to zero.

Furthermore, the wave load is applied sufficiently long time after simulation startup, so that the

initial transients from the wind loading can be neglected.

Figure 7 shows the response of the tower top. As expected the vibrations in the rotor direction

(fore-aft mode) has a larger decay rate than the vibrations in the sideways direction (side-side

mode). This is due to the large additional aerodynamic damping introduced in the rotor direction.

The vibrations in the rotor direction also have a non-zero mean, due to the corresponding mean

wind pressure, applying a constant load on the wind turbine. The damping in the two directions
13



(modes) is estimated by an exponential fit to the vibration peaks of the free response of the wind

turbine. A close-up of the free vibration part of the dynamic response is shown in figure 7(c,d).

The solid curves represent the case without mass damper (µ = 0), while the dash-dotted and

dashed curves represent the ATMD with µ = 0.01 and Amax = 14.17 (TMD) and 6 (ATMD),

respectively. For the case without mass damper (solid curves) the critical damping ratio of the

vibrations in the rotor direction (fore-aft) is estimated to ζfa = 0.1113, which is significantly larger

compared to standstill because of the aerodynamic damping. By the same procedure the damping

ratio of the sideways vibrations (side-side mode) is estimated to ζss = 0.0124, which is slightly

higher than at standstill. This small increase, compared to 0.0115 at standstill, is mainly due to

modal interaction between the vibrations in the rotor (fore-aft) and sideways (side-side) directions

and the small aerodynamic damping also present in the sideways direction.

When including a TMD (dash-dotted curves) or an ATMD (dashed curves) it is seen in figure

7(c,d) that the decay rate for the free tower vibrations increases. However, the free vibration

decay is no longer described by an exponential function. Instead a clear beating phenomenon

is observed, where the amplitude of the regular vibrations are modulated by a slower vibrational

behavior. This illustrates the interaction between the structure and mass damper, which obviously

complicates the estimation of the damping ratio by an exponential fit procedure. However, by a

suitable mean value through the decay curves the damping ratios for the TMD are estimated as

ζTMD
ss = 0.0476 (sideways direction) and ζTMD

fa = 0.1465 (rotor direction), while for the ATMD

the corresponding damping ratios increase to ζATMD
ss = 0.0961 and ζATMD

fa = 0.1950. Again this

corresponds well with the inherent damping ζss = 0.0124 (sideways direction) and ζfa = 0.1113

(rotor direction) plus half the added damping according to table 3.

In figure 8 the relative displacement of the damper mass and the force exerted by the damper on

the tower are shown for the TMD and ATMD. As expected the vibrations of the ATMD are larger

than the vibrations of the passive TMD. However, this happens primarily during the initial part

when the three waves pass the turbine. Therefore, it might partly be explained by the reported

increase in vibrational amplitude in figure 6(c,d) and partly by the contribution from the tower

top displacement utop = wTu in figure 7(a,b), which is amplified by Gk in the control equation

(5). To avoid the latter, a high-pass filter could be used to filter the tower displacement signal

before it is fed back to the actuator via (5). During the beginning of the free decay in figure 8 the

amplitude of the ATMD response is still larger compared to the TMD response. However, after

only a few periods the magnitude of the ATMD response is smaller than the response of the TMD,

mainly because the vibrations of the tower are mitigated more by the ATMD. In figure 8(c,d) for

total damper force a similar trend is observed. During the initial loading period and the initial

phase of the free response the force is larger for the ATMD than for the TMD, while after only a

few periods of the free response the force exerted by the ATMD is reduced below the force of the

TMD.
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Figure 7. Time response of tower top for (a) and (c) sideways - and (b) and (d)
rotor direction for µ = 0 (–) and for µ = 0.01 and Amax = 14.17 (gk = gc = 0)
(– · –) and Amax = 6 (– –)

4. Conclusion

Dynamic vibration absorber concepts traditionally used for damping of tower vibrations in fixed

offshore wind turbines is limited in effectiveness by the size of the damper mass. Since additional

mass at the top of the tower is highly undesirable, the present paper considers an Active Tuned

Mass Damper (ATMD) for damping of tower vibrations. Feedback of the tower top displacement

and of the relative velocity of the damper mass is introduced to control the active element of

the ATMD. By analogy to the optimum tuning of the passive TMD [25], a frequency tuning is

introduced for a simple one degree of freedom system that sets the amplitude at the two ”neutral

frequencies” equal to each other. Furthermore, a damper tuning is introduced that produces a flat

curve for the response amplitude around the tower resonance frequency in the frequency domain.

And furthermore it minimizes the control effort required to operate the ATMD. The ATMD is

found to provide a significant decrease in the frequency response amplitude compared to the passive

TMD without an increase in damper mass and the added damping is found to be almost additive

to the inherent damping from structural, soil and aerodynamic damping. A time response analysis

demonstrates that the ATMD is also superior in reducing the transient, when compared to the

passive TMD, and the damping ratio as predicted by the frequency response analysis seems to be

almost attainable. The reduced mass, however, comes at the compromise of an increased damper
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Figure 8. Relative displacement of damper mass for (a) sideways damper and
(b) rotor direction damper and force exerted by damper for (a) sideways damper
and (b) rotor direction damper for µ = 0.01 and Amax = 14.17 (gk = gc = 0) (–
· –) and Amax = 6 (– –)

mass displacement, which constitutes a limiting factor in the design and feasibility of the proposed

ATMD. Especially at frequencies below the tower frequency, the vibrations of the damper mass are

increased compared to the passive TMD. This should be compensated by for example introducing

a high pass filter to limit contributions from the tower top displacement at quasi-static frequencies

below the natural frequencies of the two tower modes.
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