Characterization of fine particles using optomagnetic measurements

Fock, Jeppe; Hansen, Mikkel Fougt

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):
Characterization of fine particles using optomagnetic measurement

Jeppe Fock, Mikkel Fougt Hansen
Department of Micro- and Nanotechnology, DTU Nanotech, Bldg. 345 East, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. E-mails: jepf@nanotech.dtu.dk, Mikkel.hansen@nanotech.dtu.dk

The rotational dynamic of magnetic nanoparticle (MNP) suspensions in magnetic fields are important for a number of biomedical application ranging from hyperthermia, magnetic resonance imaging (MRI), to bio-detection assays. Recently, optomagnetic measurements have been used to study the change of MNP dynamics in biomedical agglomeration assays [1]. The technique relies on synchronized measurements of the complex 2nd harmonic modulation of light transmission through a suspension of MNPs, \(V_2 = V_2' + iV_2'' \) in response to an oscillating applied magnetic field, \(B(t) = B_0 \sin(2\pi ft) \).

Here, we present measurements of \(V_2 / V_0 \), where \(V_0 \) is the average transmitted light intensity, vs. the frequency \(f \) and amplitude \(B_0 \) of the magnetic field on a suspension of MNPs with a remnant magnetic moment and a nominal diameter of 80 nm (#10-00-801, Micromod, DE). Figs. 1a-b show \(V_2' \) and \(V_2'' \) vs. \(f \) for the indicated values of \(B_0 \). We first show that the Brownian relaxation frequency of the MNPs can be extracted as the frequency where \(V_2'' \) crosses zero. Next, we demonstrate for the first time that the distribution of MNP remnant magnetic moments can be extracted from the field-dependence of the low-frequency signal magnitude \(|V_2| \) (Fig. 1c). The line in Fig. 1c is a fit to a model assuming equilibrium dynamics and the distribution of magnetic moments shown in the inset. The value of the Brownian relaxation frequency corresponds well to that obtained from AC susceptibility measurements and the remnant magnetic moment corresponds well to that estimated from magnetic hysteresis measurements.

The method provides a simple method to characterize MNPs with a narrow size distribution and a remnant magnetic moment in a matter of a few minutes and is thus an interesting alternative to AC susceptibility measurements.

Fig 1. Optomagnetic measurements on a suspension of 80 nm MNPs performed at the indicated values of \(f \) and \(B_0 \). Panels (a) and (b) show the in-phase and out-of-phase signals \(V_2' \) and \(V_2'' \), respectively, for \(B_0 \) ranging from 0.35 mT (red) to 8.49 mT (blue). Panel (c) shows the low-frequency signal magnitude \(|V_2| \) vs. \(B_0 \). The line is a fit to a model that assumes equilibrium behavior with the magnetic moment distribution given in the inset.

This work was supported by EU FP7 Grant No. 604448-NanoMag.