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Interfaces between normal and topological insulators are bound to host metallic states that are protected by
time-reversal symmetry and are therefore robust against disorder and interface reconstruction. Two-dimensional
topological insulators (quantum spin Hall insulators) offer a unique opportunity to change the local topology by
adsorption of atoms or molecules and thus comprise an ideal platform for designing topological heterostructures.
Here we apply first-principles calculations to show that the quantum spin Hall insulator 1T′-MoS2 exhibits a phase
transition to a trivial insulator upon adsorption of various atoms. It is then demonstrated that one-dimensional
metallic states indeed arise at the boundary of regions with and without adsorbed oxygen and that these boundary
states generically constitute simple linear connections between valence and conduction bands in reciprocal space.
This is in sharp contrast to topological edge states, which typically exhibit strong dispersion that are sensitive
to a particular edge termination. The heterostructure is also suggestive of a simple design of one-dimensional
metallic networks in sheets of 1T′-MoS2.

DOI: 10.1103/PhysRevB.94.235106

I. INTRODUCTION

The topological classification of insulators implies that
nontrivial physics may arise at the interface of two materials
exhibiting different band topology [1]. Specifically, if the
topology is protected by a certain symmetry and the interface
respects that symmetry, the interface will host a metallic
state, since this is the only means by which the topology
can change across the interface. Regarding vacuum as a
special case of a trivial insulator, it follows that metallic states
may be hosted at the edges and surfaces of two-dimensional
(2D) and three-dimensional (3D) topological insulators, re-
spectively. In particular, topological insulators protected by
time-reversal symmetry [2–4] are guaranteed to host metallic
states at any nonmagnetic edge or surface; irrespective of
the details of surface termination. Several 3D materials have
now been demonstrated to exhibit a nontrivial band topology
protected by time-reversal symmetry [5] (simply referred to
as topological insulators in the following) and the associated
surface states have been studied theoretically [6,7] as well as
experimentally [8–10]. The topological surface states are pro-
tected from impurity scattering by time-reversal symmetry and
topological insulators thus constitute a promising candidate for
dissipationless electronics applications.

In a different line of development, the past decade has
witnessed a rapidly increasing interest in 2D materials.
Starting with graphene [11], the focus rapidly broadened
to include several graphene derivatives as well as transition
metal dichalcogenides (TMDs) and hexagonal boron nitride
(hBN) [12]. These materials have a large number of properties
that significantly deviate from their 3D counterparts. For
example, the electronic screening in 2D is much less efficient
than in 3D [13] and gives rise to qualitatively different plasmon
dispersion for 2D metals [14] and large exciton binding
energies in 2D semiconductors [15–18]. Another interesting
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property is the coupling between valley indices and angular
momentum in the TMDs [19], which allows for optical control
of the valley degrees of freedom [20–22] as well as a realization
of the valley Hall effect [23,24]. However, the most intriguing
property of the 2D materials is the possibility of tuning specific
properties such as the band gap. This can be accomplished
either by constructing stacks of different 2D layers [25–27] or
by simply adsorbing various atoms or molecules on the face of
a single layer. In the present work it will be demonstrated that
the latter approach can also be applied to change the topology
of 2D materials.

Graphene can rightfully be regarded as the parent material
for the host of known 2D materials today, but it is interesting to
note that graphene also played a prominent role in the theoret-
ical development of topological band theory. Initially Haldane
showed that it is possible to obtain a quantum anomalous Hall
insulator from a model of graphene with a time-reversal break-
ing second-nearest neighbor interaction [28]. Subsequently,
Kane and Mele predicted that spin-orbit interaction opens
a topological gap in graphene, which thus comprises the
first prediction of a quantum spin Hall insulator (QSHI) [3].
However, due to the weak spin-orbit interaction in graphene,
the gap is too small to be measured and the prediction has
not been verified experimentally. Likewise, first-principles
calculations have shown that silicene, germanene, and stanene
are QSHIs. In these systems, the spin-orbit coupling and
the topological gap is much larger (25–75 meV) than in
the case of graphene, but experimental verification of the
quantum spin Hall insulating phase is hindered by the fact
that synthesis of the materials requires growth on a substrate,
which significantly alters the electronic properties. Recently,
Qian et al. [29] showed that the class of TMDs MX2 (M =
Mo, W and X = S, Se) in the 1T′ structure are all QSHIs with
gaps in the range 50–100 meV and subsequently a different
family of TMDs, known as haeckelites, were also shown to
be QSHIs with gaps on the order of 10–50 meV [30]. It has
recently been shown that sheets of 1T′-MoS2 nanosheets can
be chemically exfoliated [31–33] and this novel 2D material
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thus comprises a promising candidate for a metastable QSHI
that can be studied experimentally.

Compared to their 3D topological counterparts, the 2D
QSHIs are particularly interesting because they support one-
dimensional (1D) metallic edge states. It is well known that
any amount of disorder leads to Anderson localization in
1D [34], which effectively implies that strictly 1D metals
cannot be realized in real materials. However, the edges of
quantum spin Hall insulators provide a loophole, since the
states are protected from impurity scattering by time-reversal
symmetry and the QSHI thus constitutes a unique possibility to
study conductivity in 1D. For the purpose of gaining optimal
control over the edge states it is desirable to have a single
pair of metallic states at a particular edge that each cross
the Fermi level once [1]. This is the minimal requirement by
the topology, but the presence of additional nontopological
edge state may obscure the picture and the number of such
states will generically be highly sensitive to the details of
surface termination, which is difficult to control at the atomic
level. Moreover, the topological edge states will often originate
from dangling bonds and have a strongly dispersive behavior
with several Fermi level crossings [30]. In contrast, the
nontopological edge states and multiple Fermi level crossings
are likely to be eliminated if one considers a heterostructure
of a trivial 2D insulator and a QSHI. In that case there will
be no dangling bonds and the topological boundary states will
typically exhibit simple linear dispersion. Furthermore, if the
design of such heterostructures could be controlled in detail
it would be possible to construct electronic circuits like the
one shown in Fig. 1, which is solely based one 1D topological
boundary state. We note that a similar construction has been
proposed, in which a mesh of metallic graphene ribbons are
embedded into an insulating sheet of hBN [35], but that will
only result in quasi-1D metallic channels that may still be
subject to Anderson localization.

In the present work we will apply density functional theory
(DFT) to show that the topology of 2D materials can be
changed by adsorbing atoms onto known QSHIs. This suggests
a simple route to the design of heterostructures; namely by
adding adsorbates on local regions in an intrinsic QSHI. In
Sec. II we will apply this construction and show that oxygen
atoms provides a simple and effective means to change the
topology of 1T′-MoS2. We then study the topological boundary
states in heterostructures resulting from a local adsorption of
oxygen and show that the 1D metallic states are indeed well

QSHI

NINI

FIG. 1. In-plane heterostructure of a quantum spin Hall insulator
(QSHI) and a normal insulator (NI). The boundary regions host
one-dimensional spin-polarized metallic states. In addition to the
boundary state shown here there will be a counterpropagating state
of opposite spin.

behaved and do not exhibit multiple Fermi level crossings. In
the Appendixes we document the implementation of spin-orbit
coupling in the electronic structure code GPAW [36], the
implementation of an interface to the Wannier90 package [37],
and summarize the equations used for the iterative Green’s
function approach used to obtain the spectral function of the
heterostructures.

II. RESULTS

All DFT calculations in the present section were obtained
with the electronic structure code GPAW [36], which is based
on the projector augmented wave methodology [38]. The
calculations were performed with the PBE functional [39]
using a plane wave basis and a 600 eV cutoff. We used an
8 × 8 k-point mesh for the simple unit cell of 1T′-MoS2 and
corresponding k-point densities for calculations of larger struc-
tures. Spin-orbit coupling was added as a non-self-consistent
correction to the band structures and eigenstates. We refer to
Appendix A for details on the implementation in GPAW.

Surface and boundary spectral functions were obtained
using an iterative Green’s function scheme [40,41]. To ac-
complish this the Hamiltonian was first transformed to a local
basis of Wannier functions using the Wannier90 software
package [37]. We refer to Appendix B for details on the
implementation of the GPAW-Wannier90 interface.

A. Pristine 1T′-MoS2

The 1T′ structure of MoS2 has been shown to comprise a
metastable alternative to the more stable 2H-MoS2 structure
found in nature [31–33]. The 1T structure of TMDs is
constructed by forming a 2D hexagonal array of transition
metal atoms and placing a hexagonal layer of chalcogen atoms
in one hollow site on the top face and another hexagonal
layer in another hollow site at the bottom face. For MoS2 this
structure is unstable and the 1T structure distorts to the 1T′
structure where chains of transition metal atoms are formed in
the Y direction. Both the 1T and 1T′ structures are inversion
symmetric and, whereas the 1T structure is metallic, the 1T′
structure is a quantum spin Hall insulator with a Kohn-Sham
gap of ∼50 meV [29]. The band structure and geometry of
1T′-MoS2 is shown in Fig. 2.
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FIG. 2. Left: Band structure of pristine 1T′-MoS2. Right: Top
and side view of the 1T′-MoS2 structure. Unit cell indicated by black
dashed lines and different edge terminations indicated by the three
cuts.
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FIG. 3. Spectral functions of 1T′-MoS2 projected onto a single edge. The three different figures corresponds to the three edge terminations
indicated in Fig. 2.

Using Eq. (A6), it is straightforward to verify that the
1T′-MoS2 structure has a nontrivial Z2 index. Since we will
be calculating topological boundary states in heterostructure
configurations below, it is instructive to calculate the spectrum
of a few bare 1T′-MoS2 edges for later reference. We thus
consider the three edges obtained by the cuts indicated in Fig. 2.
Note that we consider two different parallel edges (2 and 3) that
differ in the type of atom constituting the edge. For the present
purpose we have not relaxed either the geometry or density at
the edge, but simply take the bulk Hamiltonian in a local basis
and remove all hopping matrix elements crossing the edges.
The spectral functions at an edge can then be obtained by
iterating the retarded Green’s function including all hopping
matrix elements within a range of two lattice vectors in the
direction perpendicular to the edge [41]. The results for the
three edges are displayed in Fig. 3, which clearly shows two
distinct edge states in half the edge Brillouin zone. Due to
time-reversal symmetry, the pair becomes degenerate at the
boundary of the Brillouin zone, but splits up and connects with
the conduction and valence bands near �—thus reflecting the
nontrivial bulk band topology.

The strongly dispersive bands in edges 2 and 3 breaks the
ideal picture of a single conducting channel and are likely to
complicate the interpretation of edge states in an experimental
setting where edges are typically disordered and contain contri-
butions from several different terminations. In particular, edges
2 and 3 display three Fermi level crossings in half the Brillouin
zone, however, local surface reconstruction can easily modify
the dispersion and the edge can acquire any odd number of con-
ducting channels. For the purpose of studying the 1D metallic
states it is thus desirable to stabilize the topological edge bands
such that only a single band contributes to the conductivity in
half the Brillouin zone. We will demonstrate below that one
way of accomplishing this is to replace the edge states of
QSHIs by boundary states in topological heterostructures. We
also note that while edge 1 appears to exhibit a well-behaved
single crossing point of the edge bands, the detail of the edge
states will be sensitive to perturbations and edge disorder and
impurities may easily give rise to a much more complicated
dispersion with multiple Fermi level crossings.

B. 1T′-MoS2 with adsorbates

The small band gap of 1T′-MoS2 makes it very easy to
destroy the nontrivial topological phase by external perturba-

tions. For the purpose of designing topological heterostruc-
tures like the one shown in Fig. 1, the main challenge is there-
fore to prevent the perturbed material from becoming metallic.
A particularly simple way of changing the electronic structure
in 2D materials is by means of adsorbates. The stability of 2D
materials, such as 1T′-MoS2, is a consequence of the faces
being rather chemically inert and they are not expected to bind
adsorbates strongly [42]. Indeed, first-principles calculations
show that the faces of MoS2 cannot bind molecules such as
N2, CO, and CO2, whereas the halogens Cl2, F2, and O2 bind
very weakly. However, most of these molecules may undergo
dissociative adsorption at finite temperatures and we find that
most single atoms can be bound quite strongly. For example,
nudged elastic band calculations reveal that O2 may adsorb
dissociatively with a barrier of 1.3 eV. In Table I we display
the adsorption energies per atom of O, F, and Cl relative to
the pristine slab and half a dimer molecule. For Cl2 and F2 the
binding energy is for the entire molecule. In the case of F and
Cl we only consider adsorption of atoms in the unit cell since
adsorption of a single atom naturally leads to a metallic state
due to the odd number of electrons in these atoms. We also state
the band gap in cases where the adsorbate structures is a normal
insulator (none of these are quantum spin Hall insulators). In
all cases we have found the minimum energy adsorbate site by
relaxing the adsorbate structure from several different initial
configurations. We also considered adsorption of N and H
atoms (two atoms per unit cell), but did not find any configura-
tions that are stable with respect to the dissociated molecules.
In general atoms tend to adsorb on S top sites, with the S atoms
residing between Mo chains being the most reactive.

Of the different adsorbates considered we found that the
strongest binding energy (0.74 eV per atom) is obtained with
a single O atom per unit cell. This structure has a band gap
of 0.26 eV and is a normal insulator. Since the system does
not have an inversion center Eq. (A6) cannot be used to deter-
mine the topological index. However, no band crossings are

TABLE I. Adsorption energies EB and band gaps � of various
adsorbates on 1T′-MoS2. The metallic structures are tagged with an
M instead of a band gap.

O 2O 2F F2 Cl2

EB 0.74 0.45 1.04 0.54 0.18
� 0.26 0.002 M M M
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FIG. 4. Left: Band structure at different snapshots along the configuration path where a single O atom adsorbs on the face of 1T′-MoS2.
Here d denotes the distance in Å to the equilibrium adsorption position. Right: Charge centers of hybrid Wannier functions localized along
the x direction as a function of the orthogonal crystal momentum ky . The red color indicates oxygen character of the bands and the blue color
indicates 1T′-MoS2 character.
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observed while the spin-orbit coupling is adiabatically turned
off, which implies that the system is a trivial insulator. We will
investigate this adsorbate structure further in the following.

1. Transition from nontrivial to trivial topology upon adsorption

It is instructive to follow the transition from a topological
insulator to a trivial insulator as an oxygen atom is approaching
the layer. The isolated oxygen atom at half coverage is weakly
interacting with their nearest neighbors and the oxygen array
itself thus comprises a weakly dispersive metallic system.
Initially, when the O atom is far away, the system can then
be viewed as a metal superimposed on the 2D topological
insulator. It is the six O p bands that participate in hybridization
near the Fermi level and four of the bands thus have to enter the
valence manifold and two bands have to enter the conduction
manifold if the adsorbate structure is to end up as an insulator.

In Fig. 4 we follow the electronic structure of the combined
system as an O atom is moved towards the equilibrium
adsorption point. Strictly speaking, the system becomes spin
polarized when the O atom is moved far from the slab and the
system thus exhibits a transition from being spin polarized to
spin paired at a point along the adsorption path. However, for
simplicity we have only considered a spin-paired desorption
path here. In the left column of Fig. 4 we display the band struc-
ture of the combined system: when the O atom is approaching
the surface, the O p states start to hybridize weakly with the
1T′-MoS2 bands. At that point the entire system is metallic
and we can no longer regard it as a metallic array of O atoms
superimposed on a topological insulator. However, since band
crossings are generically absent in two-dimensional systems,
we can consider the lowest nv bands (where nv is the number
of electrons in the system) as an isolated manifold even if the
system is not metallic and associate a topological index with
the gap. Since the combined system no longer has inversion
symmetry we can no longer use the formula Eq. (A6). Instead
we construct a hybrid Wannier function of the valence man-
ifold and consider the evolution of charge centers as a single
Bloch parameter is cycled through the Brillouin zone [43].
If the charge centers cross an arbitrary horizontal line an odd
number of times in half the Brillouin zone, the system has a Z2

index of ν = 1. In the right panel of Fig. 4 we show the charge
center evolution at different points along the adsorption path:
when the oxygen is far from the surface, the nontrivial topology
of the 1T′-MoS2 layer is evident and it is superimposed by
oxygen charge centers that diverge due to the metallic nature
of the bands at this point. When the O atom is allowed to
hybridize weakly with the slab, the combined valence manifold
becomes well isolated and the previously divergent oxygen
charge centers now comprises highly dispersive regions in the
charge center evolution of the combined system. In this way,
the system is seen to acquire a trivial topology upon adsorption
and the remaining part of the adsorption path merely serves to
flatten the charge center dispersion.

Although the insulating nature of the system is not restored
until the O atom reaches its equilibrium position, the figures
hints at the mechanism leading to a change in topology. In
the region of d = 1.0–0.0 Å an additional conduction band
emerges which has 1T′-MoS2 character at �. Since this
originated from the original frontier valence orbitals, the band

FIG. 5. Oxygen diffusion used for the nudged elastic band
calculation. The transition barrier for the hopping is 2 eV.

inversion that led to a nontrivial topology in the pristine
system has been transferred to the conduction band. We note
the strong similarity between the band structure of pristine
1T′-MoS2 shown in Fig. 2 and the trivial insulating band
structure obtained with adsorbed oxygen (d = 0).

2. Stability of heterostructure

Although atomic oxygen binds quite strongly to the
1T′-MoS2 sheets, it is not a priori clear if an interface of
pristine 1T′-MoS2 and 1T′-MoS2O will be stable, since oxygen
may diffuse from the adsorbate region to the pristine region.
This is illustrated in Fig. 5 where a hopping event between
two nearest neighbor adsorption sites is indicated. In order to
calculate the barrier for such an event we invoke the climbing
nudged elastic band method [44] to obtain the transition state.
We find a diffusion barrier of 2.2 eV indicating that the
interface is highly stable.

3. Boundary states of heterostructures

In Fig. 6 we show the spectral functions of three different
boundary regions of MoS2 heterostructures with semi-infinite
adsorbate layers of O. In each case the boundary region is
indicated by the inset and the orientation of the boundaries
match the three corresponding cuts shown in Fig. 3. In order
to obtain a fully relaxed boundary, we have considered systems
that are comprised of eight repetitions of the unit cell in the
direction orthogonal to the boundary and half of the unit cells
contain adsorbed oxygen. We then performed a full relaxation
of the interface region consisting of two pristine unit cells and
two unit cells with adsorbates. Finally, the hopping parameters
connecting the boundary with the bulk were obtained from
this structure and the bare bulk hopping parameters were
obtained from calculations of pristine 1T′-MoS2 with and
without adsorbates. We refer to Appendix C for details.

All the structures exhibit very well-behaved topological
boundary states with a single Fermi level crossing in half
the Brillouin zone. In particular, the strongly dispersive
edge states originating from cuts 2 and 3 in Fig. 3 have
disappeared and are replaced by minimalistic connections
between valence and conduction band continua. We thus
expect such topological boundary states to be very stable
towards boundary reconstruction and disorder, which strongly
facilitates experimental control of these 1D metallic states.
This is in sharp contrast to the case of topological edge states,
which are highly sensitive to the details of edge termination.
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FIG. 6. Left: Spectral function of 1T′-MoS2 heterostructures with a semi-infinite adsorbate layer of oxygen. The three different figures
have different terminations of the adsorbate layer and correspond roughly to the three figures in Fig. 3.

III. CONCLUSION

In conclusion, we have demonstrated that first-principles
simulations provide an easy means to design topological
heterostructures with one-dimensional boundary states. While
it is straightforward to study 1T′-MoS2 heterostructures by
means of computer simulations, it might be a completely
different matter to do so experimentally. Although 1T′-MoS2

has been isolated and characterized experimentally [31–33],
the material is metastable and will eventually decay to the
2H structure. Moreover, it is by no means clear that local
adsorbate regions can be obtained by standard techniques
and the construction of the boundary regions considered in
the present work could be nontrivial. Nevertheless, even if
it turns out to be impractical to work with the 1T′-MoS2-O
system experimentally, there are several other QSHI-adsorbate
structures that could be proposed and it is highly likely
that new and more stable QSHIs will be discovered in the
near future. In addition, the example of 1T′-MoS2 explicitly
demonstrates two aspects of QSHI heterostructures that we
expect to be rather generic. First, the nontrivial topology
of QSHIs is easily changed upon adsorption of atoms and
molecules, which suggests that topological heterostructures
can easily be constructed using a pristine QSHI with local
areas of adsorbates. Second, the boundary states in these
heterostructures do not show the strong dispersion and multiple
Fermi level crossings characteristic of QSHI edge states and
thus provide a much better platform for studying topologically
protected conductivity in 1D.
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APPENDIX A: IMPLEMENTATION OF SPIN-ORBIT
COUPLING IN GPAW

In this Appendix we will provide details on the spin-orbit
implementation in the electronic structure code GPAW. The
implementation is based on a non-self-consistent diagonaliza-
tion of the Kohn-Sham Hamiltonian including the spin-orbit
interaction. We thus consider the full Hamiltonian in a basis
of scalar-relativistic Kohn-Sham eigenstates:

Hn1n2σ1σ2 = εn1σ1δn1n2δσ1σ2 + 〈
ψn1σ1

∣∣ĤSO

∣∣ψn2σ2

〉
, (A1)

where the spin-orbit Hamiltonian is given by

HSO(r) = �σ · p × ∇vKS(r)

4m2c2
, (A2)

vKS is the spin-independent part of the Kohn-Sham potential,
and εnσ are the self-consistent eigenvalues of the scalar-
relativistic Kohn-Sham Hamiltonian. Due to the derivative
of the Kohn-Sham potential, the spin-orbit correction is
completely dominated by the regions close to the nuclei
in atomic systems. In the projector-augmented wave (PAW)
formalism, we can thus restrict the evaluation of the correction
to regions inside the PAW spheres [36,38]. In these regions the
all-electron orbitals can be expanded as

|ψnσ 〉 =
∑

i

〈
p̃a

iσ

∣∣ψ̃nσ 〉∣∣φa
iσ

〉
, (A3)

where |φa
iσ 〉 are the all-electron partial waves, |p̃a

iσ 〉 are their
dual projectors, and |ψ̃a

nσ 〉 are the smooth pseudowave func-
tions. Here a is an index denoting a particular augmentation
sphere. We can thus write

〈
ψn1σ1

∣∣ĤSO

∣∣ψn2σ2

〉

=
∑

ai1i2

〈
ψ̃n1σ1

∣∣p̃a
i1σ1

〉〈
φa

i1σ1

∣∣ĤSO

∣∣φa
i2σ2

〉〈
p̃a

i2σ2

∣∣ψ̃n2σ2

〉
, (A4)

where we neglected cross contributions from different aug-
mentation spheres. The projector overlaps 〈p̃a

iσ |ψ̃nσ 〉 are
calculated during any standard Kohn-Sham calculation and
are readily available. We are therefore left with a calculation
of the partial wave contributions 〈φa

iσ |ĤSO|φa
iσ 〉.

To proceed, we note that the dominant contribution to the
potential entering the spin-orbit correction originates from the
bare nuclei and frozen electronic core, which gives rise to
spherically symmetric potentials. We thus assume a spherically
symmetric form of the spin-orbit Hamiltonian. Decomposing
the partial wave as a spherical harmonic |Y a

i 〉, a radial function
|f a

i 〉, and a spinor |σ 〉 we obtain
〈
φa

i1σ1

∣∣ĤSO

∣∣φa
i2σ2

〉

= − 1

2m2c2

〈
Y a

i1
σ1

∣∣Ŝ · L̂
∣∣Y a

i2
σ2

〉〈
f a

i1

∣∣1

r

dv̂KS

dr

∣∣f a
i2

〉
. (A5)

The first matrix element is straightforward to evaluate ana-
lytically, since the angular momentum operator L̂ is easily
expressed in a basis of spherical harmonics and the spin
operator Ŝ is easily applied to the spinors once a quantization
axis for the spins is supplied. The second matrix element is
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FIG. 7. Band structure of 2H-MoS2. The colors indicate the spin
character Snk = 〈nk|σz|nk〉, with blue being spin down (Snk = −1)
and red being spin up (Snk = 1), The bands without spin-orbit
coupling are indicated by dashed gray lines.

evaluated numerically on a radial nonuniform grid with the
nucleus at the origin. We note that in addition to the spin-orbit
eigenvalues, the diagonalization of (A1) will yield the spinorial
eigenstates in a basis of scalar-relativistic states, from which
the spinorial wave functions can be constructed in real space.

As a first test of the implementation we calculate the
band structure of 2H-MoS2 which is a trivial insulator. The
2H structure does not have inversion symmetry and as a
consequence the Kramers degeneracy at individual k points
is lifted. The band structure is shown in Fig. 7 and we observe
a 0.1497 eV splitting of the valence bands at K . This in
very good agreement with previous calculations [24,45,46]
and experiments [47]. Replacing the full Kohn-Sham potential
with the bare core yield a spin-orbit splitting of 0.1940 meV at
K . If we add the spherically symmetric electronic core density
we obtain 0.1490 eV, which is very close to the value obtained
from the full Kohn-Sham potential. The spin-orbit coupling is
thus dominated by the contribution from the bare nucleus and
nearly completely captured if we include the core electrons.
This indicates that the evaluation the spin-orbit coupling inside
the augmentation spheres and the restriction to the spherical
components of the valence density comprises a highly accurate
approach.

As a second example, we consider the inversion symmetric
strong topological insulator Bi2Se3. The band structure is
shown in Fig. 8 with and without spin-orbit coupling and
is in very good agreement with previous calculations [7]. In
order to demonstrate that we obtain the correct nontrivial band
topology, we calculate the Z2 index ν using the expression for
parity invariant systems [48]

(−1)ν =
∏

a

∏

m

ξm(�a), (A6)

where m runs over occupied Kramers pairs at each of the
time-reversal invariant momenta �a . We find that the product
of parity eigenvalues changes from −1 to 1 at � upon inclusion
of spin-orbit coupling and the Z2 index changes from ν = 0 to

Γ Z F Γ L

−1.5
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−0.5

0.0

0.5

1.0

1.5

ε n
(k

)
[e

V
]

FIG. 8. Band structure of Bi2Se3 with (blue lines) and without
(dashed gray lines) spin-orbit coupling.

ν = 1 accordingly. One can follow the topological transition
by replacing the spin-orbit interaction HSO by λHSO and
adiabatically tuning λ from 0 to 1. We observe a transition
through a metallic state at λ = 0.35, which marks the transition
between two insulating states of different topology.

APPENDIX B: GPAW-WANNIER90 INTERFACE

The construction of maximally localized Wannier functions
makes use of the Bloch function overlaps [37]

Mk,b
mn = 〈umk|unk+b〉 = 〈ψmk|e−ib·r̂|ψnk+b〉, (B1)

where b are a set of vectors that connects k to the nearest
neighbor k points. Within the PAW formalism these can be
evaluated as

Mk,b
mn = 〈ψ̃mk|e−ib·r̂|ψ̃nk+b〉 +

∑

a,i,j

e−ib·ra
〈
ψ̃mk

∣∣p̃a
i

〉

× (〈
φa

i

∣∣φa
j

〉 − 〈
φ̃a

i

∣∣φ̃a
j

〉)〈
p̃a

j

∣∣ψ̃nk+b
〉
, (B2)

where we have neglected overlap contributions from neigh-
boring PAW spheres and approximated

〈
φa

i

∣∣e−ib·r̂∣∣φa
j

〉 ≈ 〈
φa

i

∣∣φa
j

〉
e−ib·ra . (B3)

The first term in Eq. (B2) is smooth and can be evaluated
on a real space grid, whereas all the factors entering the
second term are used during ordinary DFT calculations in
the PAW formalism and can be extracted without additional
computational cost.

The construction of Wannier functions also requires an
initial projection onto a set of localized states. In the PAW
formalism it is natural to use the set of partial waves φa

i

associated with each atom a. We then simply use

Ak
ain = 〈

φa
i

∣∣ψnk
〉 ≈ 〈

p̃a
i

∣∣ψ̃nk
〉
, (B4)

which is calculated during any Kohn-Sham iteration and can
be obtained without additional computational cost. By forming
the relevant linear combinations of the projector overlaps, it
becomes possible to project onto sp3 sp3d2 orbitals and so
forth.
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FIG. 9. Division of regions used for the iterative Green’s function
calculation of the interface spectral function.

APPENDIX C: ITERATIVE SCHEME FOR THE
BOUNDARY SPECTRAL FUNCTION

In Ref. [41] the authors presented a rapidly converging
scheme for obtaining surface Green’s functions in a localized
basis. Here we present a simple generalization of the approach
for a boundary region. The equations below are straightforward
to derive following the steps in Ref. [41].

The spectral function of the boundary is obtained as

AB(ω,k‖) = TrB[ImGR(ω,k‖)], (C1)

where GR is the retarded Green’s function, TrB denotes a trace
over the boundary region, and k‖ is the Bloch momentum
parallel to the interface. In order to perform the trace one needs
to express the Green’s function in a local basis. However, the
Green’s function in the boundary region cannot be obtained
from the boundary region alone, but can be calculated once the
coupling to repetitive bulk regions are known. Specifically, an
interface region may be divided into three regions (indicated
in Fig. 9) described by the local Hamiltonians Hab(k‖) and
iterate the following equations:

αi+1 = αiG
3
i βi, (C2)

α̃i+1 = β̃iG
3
i α̃i , (C3)

βi+1 = βiG
3
i βi, (C4)

β̃i+1 = β̃iG
3
i β̃i , (C5)

γi+1 = γiG
1
i δi , (C6)

γ̃i+1 = δ̃iG
1
i γ̃i , (C7)

δi+1 = δiG
1
i δi , (C8)

δ̃i+1 = δ̃iG
1
i δ̃i , (C9)

ε1
i+1 = ε1

i + δiG
1
i δ̃i + δ̃iG

1
i δi , (C10)

ε2
i+1 = ε2

i + αiG
3
i α̃i + γ̃iG

1
i γi, (C11)

ε3
i+1 = ε3

i + βiG
3
i β̃i + β̃iG

3
i βi, (C12)

where

Ga
i (ω) = (

ω − εa
i + iη

)−1
. (C13)

In the present work we have taken H01, H11, H33, and H34

from bulk calculations of the pristine systems present at the
two sides of the boundary, whereas H12, H22, and H23 are
calculated from boundary structure. The initial conditions for
the equations are then

α0 = H23, α̃0 = H
†
23, (C14)

β0 = H34, β̃0 = H
†
34, (C15)

γ0 = H12, γ̃0 = H
†
12, (C16)

δ0 = H01, δ̃0 = H
†
01, (C17)

and

ε1
0 = H11, ε2

0 = H22, ε3
0 = H33. (C18)

The boundary Green’s function then contains everything
needed for the trace in Eq. (C1) and can be obtained from

GB(ω) = G2
i→∞(ω). (C19)
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G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska,
T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen,
J. Phys. Condens. Matter 22, 253202 (2010).

[37] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).
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