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Fast and Reliable Primary Frequency Reserves From
Refrigerators with Decentralized Stochastic Control

Evangelos Vrettos, Student Member, IEEE, Charalampos Ziras, Student Member, IEEE,
and Göran Andersson, Fellow, IEEE

Abstract—Due to increasing shares of renewable energy
sources, more frequency reserves are required to maintain power
system stability. In this paper, we present a decentralized control
scheme that allows a large aggregation of refrigerators to provide
Primary Frequency Control (PFC) reserves to the grid based on
local frequency measurements and without communication.

The control is based on stochastic switching of refrigerators
depending on the frequency deviation. We develop methods to
account for typical lockout constraints of compressors and in-
creased power consumption during the startup phase. In addition,
we propose a procedure to dynamically reset the thermostat
temperature limits in order to provide reliable PFC reserves, as
well as a corrective temperature feedback loop to build robustness
to biased frequency deviations. Furthermore, we introduce an
additional randomization layer in the controller to account for
thermostat resolution limitations, and finally, we modify the
control design to account for refrigerator door openings.

Extensive simulations with actual frequency signal data and
with different aggregation sizes, load characteristics, and control
parameters, demonstrate that the proposed controller outper-
forms a relevant state-of-the-art controller.

Index Terms—ancillary services; primary frequency control;
demand response; thermostatically controlled loads.

NOMENCLATURE

C Refrigerator thermal capacitance
Da Actual duty cycle (with PFC)
Dn Nominal duty cycle (without PFC)
Dd Desired duty cycle (with PFC)
Dr PFC reserve capacity in terms of duty cycle
Foff Cumulative Distribution Function (CDF) of the

lock-off time in the aggregation
Fon CDF of the lock-on time in the aggregation
Kc Corrective temperature gain
Kr,t Resetting factor for the thermostat limits
Lst

off Steady-state fraction of refrigerators locked-off
Lst

on Steady-state fraction of refrigerators locked-on
Ltr

off,t Transient fraction of refrigerators locked-off
Ltr

on,t Transient fraction of refrigerators locked-on
Nev Duration of a step frequency deviation event
Non Maximum lock-on time within the aggregation
Noff Maximum lock-off time within the aggregation
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Nr Size of refrigerator aggregation
Nrec Recovery period after a step frequency deviation
Ns Duration of startup dynamics
Pagg Actual aggregate electric power
Pb Uncontrolled aggregate electric power
Pd Desired aggregate electric power (with PFC)
Pres Reserve capacity of the aggregation
Pn Nominal refrigerator electric power
R Refrigerator’s thermal resistance with closed door
Rop Refrigerator’s thermal resistance with open door
Su Profile of refrigerator startup dynamics
T Refrigerator temperature
Ta Ambient temperature
Tmax Higher deadband limit of thermostat
Tmin Lower deadband limit of thermostat
T̄nom Nominal mean temperature (without PFC)
Tset Thermostat setpoint
Ṫd Average temperature decrease rate
Ṫi Average temperature increase rate
toff Duration of refrigerator’s off cycle
tloff Refrigerator lock-off time
ton Duration of refrigerator’s on cycle
tlon Refrigerator lock-on time
u Peak power factor for startup dynamics
w Noise term for refrigerator’s disturbances
x Fraction of switched loads under startup dynamics
α Thermal parameter of continuous-time model
β Thermal parameter of continuous-time model
γ Auxiliary variable for PFC
∆D Duty cycle change
∆f Frequency deviation
∆T Width of thermostat’s deadband
∆Tb Bound for deviation of refrigerator’s thermostat

limits
∆Tlim Change in refrigerator’s thermostat limits
∆Tres Minimum resolution of refrigerator’s thermostat
∆t Discretization time step
δ Magnitude of frequency deviation event
ε Temperature tolerance during a frequency event
ε Temperature tolerance after a frequency event
η Coefficient of performance
λ Auxiliary variable equal to 1−Kc
µd Mean duration of a door opening event
µop Average number of door openings per day
ξ Increase in energy consumption due to door open-

ings
ρ Switching probability for on/off control actions
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% Switching probability for thermostat limit changes
σd Standard deviation of the duration of door open-

ings
σop Standard deviation of the number of door openings
E Expected value of a random variable
N Normal probability distribution
U Uniform probability distribution
Var Variance of a random variable
i Refrigerator index within the aggregation
min/max Minimum/maximum value of a variable
k, t Time indexes
(̄·) Average value of a variable

I. INTRODUCTION

A. Motivation and Related Work

It is expected that the increasing shares of intermittent
Renewable Energy Sources (RES) will increase the need for
ancillary services in power systems [1]. Since RES displace
conventional power plants, there is a growing interest in
exploiting the flexibility of demand-side resources to provide
ancillary services, namely frequency and voltage control [2].
Thermostatically Controlled Loads (TCLs) with thermal in-
ertia such as space and water heaters, air conditioners and
refrigerators are well suited for provision of ancillary services,
because their consumption can be shifted in time without user
discomfort.

The idea of controlling loads to provide ancillary services is
not new. In 1980, [3] proposed a simple frequency-responsive
controller to adjust the temperature limits of TCLs based on
frequency measurements to provide a governor-type action.
Much of the early work focused on modeling populations
of TCLs based on first principles [4]–[6]. For example, [5]
proposed a well-known model consisting of a set of Fokker-
Planck equations that describe the Probability Distribution
Function (PDF) of temperature in a TCL aggregation.

The first line of research on load control has focused on
centralized control of TCL aggregations to provide load fol-
lowing or frequency regulation. References [7]–[9] developed
controllers to provide such services via thermostat setpoint
manipulation, and showed that linear models are sufficient
to describe the aggregate transient dynamics of TCLs under
thermostat setpoint control.

Other researchers developed control strategies based on
probabilistic switching, where a fraction of the devices
switches stochastically to provide the desired service. Refer-
ence [10] showed how bi-directional control can be achieved
via broadcasting a signal that only switches off devices.
Broadcast controllers were proposed in [11] and [12] to allow
the aggregate power of a population of air conditioners and
refrigerators to track a power reference signal. Reference [13]
proposed a hierarchical load control framework, where the
upper layer is centralized and computes optimal control gains
for loads at different buses, and the lower layer is decentralized
with switching probabilities that depend on the control gains.

The above works as well as other relevant approaches that
rely either on probabilistic switching or rule-based controllers
(e.g., [14]–[16]) assume access to TCL state measurements

(temperatures and on/off states). More recent works have
proposed state estimation methods to reduce the needs for real-
time communication. For example, [17] used a Kalman Filter
to estimate the state of a Markov model for a TCL aggregation,
whereas [18] used a similar modeling approach and a Moving
Horizon State Estimator (MHSE). Reference [19] developed a
particle filter, whereas [20] proposed a state estimator based
on partial differential equations. The authors of [21] developed
an MHSE to reconstruct the states of individual TCLs using
aggregate power measurements from substations and low-
frequency TCL state measurements from smart meters.

The second line of research investigated how TCLs can pro-
vide frequency support in a decentralized way based on local
frequency measurements. References [22] and [23] developed
deterministic approaches that rely on a frequency-dependent
temperature deadband to provide Primary Frequency Control
(PFC). Reference [24] introduced a more generic approach
that is based not only on frequency deviation measurements,
but also on their evolution over time. A simple rule-based
controller with delays was used in [25] in an experimental
demonstration to provide PFC with residential appliances.

Such deterministic approaches provide an effective initial
response and reduce the frequency excursions after a sudden
disturbance. Despite their simplicity, these approaches have
an important limitation: they cause rebound effects and tend
to synchronize the on/off cycles of individual devices, which
might introduce non-decreasing oscillations in frequency [26],
[27].

In order to de-synchronize the responses of TCLs while
providing PFC, a few randomized approaches have been
proposed in the literature. For example, a control approach
with random on/off frequency thresholds and turn-on delay
times was used in an experimental demonstration in [28].
Reference [29] proposed a randomized load control scheme
where each load monitors the frequency over random time
instances and responds according to a simple control policy
based on frequency thresholds.

Reference [26] proposed an interesting stochastic approach
to control a population of refrigerators. Each device is modeled
as a Markov-jump linear system with transition probabilities
between the on state and off state that depend indirectly
on the frequency deviation. The authors derived closed form
expressions for the mean value and the variance of the
average temperature within the population, and proved that
the closed-loop system is asymptotically stable. However, the
control adjusts the properties of the steady state temperature
distribution, and therefore results in slow responses that are
unacceptable for PFC.

Another relevant decentralized stochastic controller was
developed in [30]. The main innovation of this work is that
the average heating rate of the population is used as a control
variable. The formulations of [30] result in control laws
for individual appliances, namely temperature limit changes
and switching rates, and allow an aggregator to estimate the
available flexibility from the aggregation. However, the control
approach of [30] is able to respond to demand reduction
requests but not demand increase requests, and thus it is not
appropriate for PFC.
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More related to our work is [31] where a decentralized
stochastic controller based on probabilistic switching is pro-
posed for refrigerators to provide PFC. This controller results
in fast responses that are suitable for PFC, but it has a number
of limitations that will be discussed in Section I-B.

Some papers, for example [32]–[35], proposed methods to
provide PFC at minimum cost or maximum social welfare.
Note that we do not address this topic and, therefore, the
proposed controller is complementary to the work presented in
[32]–[35]. Reference [32] proposed an optimization problem
formulation to allocate trigger frequencies to on/off devices
such that they collectively provide PFC reserves at minimum
cost. However, [32] used a simplified model for on/off devices,
which does not model TCLs in full detail. Reference [33] pro-
posed a frequency support method for residential loads based
on utility functions to maximize social welfare. The authors of
[34], [35] formulated a load control optimization problem and
developed synchronous and asynchronous algorithms to solve
it in a decentralized way. References [34], [35] used simplified
aggregate load models for each bus of the transmission system,
but did not propose methods to coordinate a population of
on/off devices.

B. Contribution and Organization of this Paper

In this paper, we develop a new decentralized stochastic
method to provide accurate and reliable PFC reserves from
an aggregation of refrigerators.1 In contrast to the centralized
approaches of [10]–[14], [16], the proposed controller relies
on switching probabilities that are computed based on local
frequency measurements, and therefore there is no need for
real-time communication. Our work is similar to [26], [29],
[30] in that it randomizes the reaction of individual loads to
avoid synchronization. The main advantage of probabilistic
switching is a much faster PFC response compared with
[29] where the time instance of the reaction of each load is
randomized, and [26], [30] where the devices’ switching rates
depend on the desired evolution of mean temperature.

A similar probabilistic switching approach for PFC with
refrigerators was proposed in [31]. This approach relies on four
main assumptions: (i) each refrigerator consumes a constant
amount of power at the on state; (ii) each refrigerator can
cycle on and off arbitrarily often; (iii) the frequency deviation
signal is zero-mean; and (iv) the refrigerators are not exposed
to door openings. Assumptions (i), (ii) and (iv) were also made
in [30].

In practice, the power consumption of a refrigerator is typ-
ically higher at the beginning of each on cycle (the so-called
startup dynamics), its compressor has lockout constraints and
cannot turn on and off arbitrarily often, and its temperature
is affected by door openings. Furthermore, the frequency
deviation might be significantly biased to the positive or

1Although we consider residential refrigerators, the proposed approach can
be applied to other TCLs with compressors and similar dynamics. The main
advantage of residential refrigerators over other TCLs is that they continuously
cycle on and off and that their power consumption has very little seasonality
(due to regulated room temperature). Therefore, the potential for PFC reserve
is relatively constant all year round. Refrigerators are more well-suited for
PFC than secondary and tertiary control, due to their limited energy capacity.

negative direction for a few hours. Since these assumptions do
not hold in practice, the method of [31] might fail to provide
accurate PFC reserves in a realistic environment, and thus its
applicability is questionable.

Our main contribution is a new controller that works in
a realistic environment without the limiting assumptions (i) -
(iv).2 Apart from the basic probabilistic switching formulation
which is similar to that of [31], the proposed controller
consists of several novel components that allow us to drop
assumptions (i) - (iv). Furthermore, we show that combining
the probabilistic switching with deterministic control of ther-
mostat temperature limits improves the control performance.
Nevertheless, if the frequency deviation signal is biased, the
controller’s performance will deteriorate because the mean
temperature of the population will deviate significantly from
the nominal value. For this purpose, we develop an additional
control loop to regulate the mean temperature of the popula-
tion, and derive analytical upper and lower bounds for the
control gain. In addition, we introduce another randomiza-
tion layer in the controller to compensate for the typically
limited thermostat resolution. We analytically show that the
side-effect is an increased variance of the thermostat limit
changes which, nevertheless, can be bounded. In comparison
with the controller of [31], the proposed controller achieves
a significant improvement in the continuous operation of a
refrigerator aggregation under PFC provision, as well as a
small improvement in dynamic response.

The remainder of this paper is organized as follows. Sec-
tion II introduces the refrigerator model and probabilistic
switching control approach. In Section III, we extend the
probabilistic switching to account for startup dynamics and
lockout constraints. Section IV discusses the advantages and
implications of controlling the thermostat temperature limits,
whereas in Section V we integrate refrigerator door open-
ings in the control scheme. In Section VI, we introduce the
model parameters and performance metrics, which are used
in the simulations and sensitivity analysis of Section VII. In
Section VIII, we show the controller’s robustness to biased
frequency deviations, limited thermostat resolution, and door
openings. Implementation issues are discussed in Section IX,
whereas Section X concludes.

II. MODELING AND PROBABILISTIC SWITCHING

A. Refrigerator Model

Consider a refrigerator i without freezer controlled by an
on/off hysteresis controller. We use a standard first order
differential equation to model the lumped temperature Ti(t) of
the refrigerator including the air and solid mass (refrigerator
compartment and content) [6], [26]

Ṫi(t) = αi
[
Ta,i − Ti(t)

]
+ wi(t) when OFF (1)

Ṫi(t) = αi
[
Ta,i − Ti(t)

]
− βiPn,i + wi(t) when ON, (2)

where α = 1/RC, β = η/C, C is the thermal capacitance,
R is the thermal resistance, Ta is the room temperature, η is

2This paper extends, improves and formalizes the methods presented in our
preliminary work [36].
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the Coefficient of Performance (COP), and Pn is the nominal
power. The noise term w(t) aggregates the effect of external
disturbances, e.g., door openings, changes in food content, and
variations of Ta. In Section V, we model the effect of door
openings that are the dominant disturbances.

The model is discretized with a discretization time step
∆t = 1 sec. Let Tmin,i, Tmax,i denote the deadband limits of
the thermostat’s hysteresis controller and mi,t ∈ {0, 1} denote
the compressor’s on/off state. Using the discrete time model
we can derive the duration of the on and off cycles (ton and
toff)

ton,i = RiCi ln

[
Tmax,i − Ta,i + ηiRiPn,i

Tmin,i − Ta,i + ηiRiPn,i

]
(3)

toff,i = RiCi ln

[
Tmin,i − Ta,i

Tmax,i − Ta,i

]
, (4)

and the device’s duty cycle Di = ton,i/(ton,i + toff,i).

B. Aggregation Model

Consider a population of Nr refrigerators providing PFC.
For control purposes we are interested in the aggregate power
of the population Pagg,t, which depends on the aggregate duty
cycle Dt, i.e., the fraction of loads that are at the on state. If
Nr is sufficiently large, Dt and Pagg,t are given by

Dt = (1/Nr) ·
∑

i
mi,t , Pagg,t ≈ NrDtP̄n , (5)

where i ∈ [1, Nr] is the refrigerator index and ·̄ denotes the
mean value of a parameter in the aggregation. Without PFC
and if wi(t) = 0 ∀i, the duty cycle will be approximately con-
stant and equal to a nominal value Dn, whereas the aggregate
power will be approximately equal to Pagg,t ≈ NrD

nP̄n.

C. Primary Frequency Control with Probabilistic Switching

PFC reserves can be provided by perturbing the population’s
duty cycle around Dn proportionally to the frequency deviation
∆ft with a gain Dr, which corresponds to the PFC reserve
capacity (the reserve capacity increases with the value of Dr).
Therefore, in order to respond to a frequency deviation ∆ft
the duty cycle should be controlled to the desired value

Dd
t = Dn +Dr · ∆ft

∆fmax
, (6)

where ∆fmax is the frequency deviation for full PFC reserve
activation, e.g., 0.2 Hz in continental Europe.

Let us denote by ∆Dt = Dd
t −Dd

t−1 the change in desired
duty cycle between two consecutive time steps. Note that ∆Dt

depends on ∆ft and ∆ft−1, which can be measured locally
by each refrigerator, and so the duty cycle change can be
achieved in a decentralized way with probabilistic switching.
Each device calculates the switching probability

qt =


∆Dt

1−Dd
t−1

, if ∆Dt ≥ 0 (switch on)

− ∆Dt

Dd
t−1

, if ∆Dt < 0 (switch off) ,
(7)

and generates a random number uniformly distributed in [0, 1].
If the number is smaller than qt, the device will switch to
contribute to PFC. The first line of (7) is the probability for

devices that are off to switch on; thus, the desired duty cycle
change ∆Dt is normalized by the portion of devices that
are currently off (1 − Dd

t−1). The second line of (7) is the
probability for devices that are on to switch off, and ∆Dt

is normalized by the portion of devices that are currently on
(Dd

t−1).
If each refrigerator responds to the switching probability

(7), the fraction of switched devices will be very close to ∆Dt

due to the law of large numbers. Therefore, the population will
collectively provide the required reserve without any real-time
communication between the loads.

D. Offline Communication and Coordination

Although no real-time communication is required to provide
PFC, the refrigerators need some offline coordination. The
main reason for this is to fix the value of Dr that reflects
the PFC reserve capacity, which is typically determined in
a reserve market on a weekly or daily basis.3 Furthermore,
as discussed in the following sections, the control design
relies on mean values of several parameters in the population
(for example, P̄n). Therefore, if the statistical properties of
the population change over time, the respective controller
parameters should be updated. A communication channel with
low data transfer can be used to (infrequently) coordinate
the refrigerators by communicating the updated controller
parameters and Dr values.

III. STARTUP DYNAMICS AND LOCKOUT CONSTRAINTS

A. Refrigerator Startup Dynamics

Typically, a refrigerator’s compressor consumes more power
during the startup phase due to a smaller COP, higher evap-
orator temperature, and higher motor current [37]. Since this
additional power is up to 25% of the nominal power Pn, it is
important to consider it in PFC to avoid overshoots and large
reserve errors.

We model the startup dynamics of refrigerator i using a
peak power factor ui > 0 and the duration of the startup
phase Ns,i. We assume that the power becomes immediately
equal to (1 + ui)Pn,i when the refrigerator switches on, and
then it linearly decreases until it becomes equal to Pn,i after
Ns,i seconds. Thus, the refrigerator power evolves in time
according to

Pi,t = Pn,i
[
1 + Su,i(t)

]
= Pn,i

[
1 + ui

[
1− t

Ns,i

]
+

]
, (8)

where Su,i is the startup power profile and [·]+ caps its
argument to positive values, i.e., Su,i(t) = 0 for t ≥ Ns,i.

If the power consumption of each refrigerator was constant
over time, ∆Dt in (7) would be the fraction of loads that
need to switch, and it would depend only on ∆ft and ∆ft−1.
Since the startup dynamics affect the future aggregate power,
the fraction of loads that need to switch at the current time
step depends additionally on the number of loads that switched

3A refrigerator aggregation can provide PFC in parallel to other reserve
providers (e.g., generators or demand-side resources) without any coordination
with them other than the market-based determination of reserve capacities.



0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2016.2630601, IEEE
Transactions on Power Systems

5

during the previous reserve activations. Therefore, the fraction
of loads to be switched – denoted by xt – is in general different
from ∆Dt.

For control design we assume to know only the average
values P̄n = E

[
Pn,i
]
, ū = E [ui] and N̄s = E

[
Ns,i

]
in the

population4, and define the average startup duty cycle profile

S̄u(t) = ū ·
[
1− t

N̄s

]
+

, (9)

which we use to recursively calculate xt with

xt =
1

1 + νt

[
Dd
t −Da

t−1 −
t−1∑

i=t−Ns+1

xiS̄u(t− i)
]

(10)

Da
t = Da

t−1 + xt . (11)

The variable Da
t is the actual duty cycle of the population,

whereas S̄u(t) models the startup dynamics as the triangle
shown in the left plot of Fig. 1. For t = 0, S̄u(0) corresponds
to the normalized overshoot in power consumption ū. For
example, if the maximum power consumption of refrigerators
at the startup phase is 25% higher than the nominal power,
then S̄u(0) = 0.25. For 0 < t ≤ Ns, the variable S̄u(t) models
the decay of the originally higher power to the nominal power.

The term 1/(1+νt) in (10) reduces the fraction of switched
loads xt as much as the expected overshoot due to the current
startup dynamics. Note that νt = S̄u(0) if the right hand side
of (10) is non-negative, whereas νt = 0 if it is negative. This
differentiation is necessary since there exist no dynamics at
shutdown. On the other hand, the summation term of (10)
recursively accounts for the anticipated power overshoot due
to the past startup dynamics associated with recent switching
actions up to time step t− 1.

Using (10) and (11) in the controller, we estimate the effect
of refrigerators’ startup dynamics on the aggregate power and
the fraction of switched loads. Since (10) and (11) rely only
on the mean values P̄n, ū and N̄s, the control will not be
perfect. However, it is possible to characterize its performance
analytically as shown by Proposition 1.

Proposition 1. Let us denote by Ns,min and Ns,max the minimum
and maximum startup duration in the population of refrig-
erators. The estimated aggregate power due to refrigerator
startup dynamics obtained using the average values P̄n, ū, N̄s

and (9) is an upper bound of the actual aggregate power up
to Ns,min seconds after the reserve activation, irrespective of
the probability distribution of Ns,i.

Furthermore, if Ns,i follows the uniform distribution
Ns,i∼[Ns,min, Ns,max], then the estimated aggregate power is an
upper bound for up to tlim seconds after the reserve activation,
whereas it is a lower bound afterwards, where tlim is given by

tlim =
Ns,max (Ns,min +Ns,max)

3Ns,max −Ns,min
. (12)

Proof. The proof is given in the appendix. �

Another effect of startup dynamics is an increase in the
average power of the refrigerator aggregation, both with and

4The average values can be computed from available statistics on domestic
refrigerators. Typical values are given in Table I.
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Fig. 1. Left: Effect of startup dynamics on refrigerator power. Right: Evolution
of refrigerator temperature during an on/off cycle.

without PFC. It is straightforward to express the increased
aggregate power as a function of the average values of the
parameters of startup dynamics (P̄n, ū, and N̄s), which is then
used as a baseline for PFC evaluation purposes.

B. Compressor Lockout Constraints

Lockout times are usually employed to avoid compressor’s
frequent switching that decreases efficiency and possibly the
lifetime [11]. Let us denote by tlon the lock-on time, i.e., the
minimum duration the device must operate after switching on,
and by tloff the lock-off time, i.e., the minimum duration the
device must remain off after switching off. When a compressor
is locked it cannot react to frequency deviations, and so it
is important to dynamically estimate the fraction of locked
devices to avoid performance degradation or even loss of
controllability. In the following, we present a decentralized
method to do so.5

1) Steady-state Lockout due to Thermostatic Control Ac-
tions: Even without PFC, i.e., at steady state, at any time
step t a fraction Lst

on of refrigerators is locked at the on
state and a fraction Lst

off is locked at the off state due to
thermostatic control actions. Considering the cycle of an
individual refrigerator in Fig. 1, the lock event at the off state
loff can be modeled as the Bernoulli probability distribution

f loff(loff) =


tloff

ton+toff
, if loff = 1

1− tloff
ton+toff

, if loff = 0 .
(13)

The fraction of refrigerators that is locked at the off state is
defined and calculated using the properties of the Bernoulli
PDF

Lst
off :=

1

Nr
·
∑Nr

i=1
loff,i = E [loff] =

tloff

ton + toff
. (14)

Since tloff, ton and toff are random variables, Lst
off is also a

random variable with a so-called ratio distribution. Without
knowledge of the PDF of tloff, ton, toff, the expectation of Lst

off
can be approximated with a first order Taylor expansion [39]

E
[
Lst

off

]
= E

[
tloff

ton + toff

]
≈

E
[
tloff

]
E [ton] + E [toff]

. (15)

5The effect of lockout constraints on the refrigerators’ aggregate response
resembles a dead-band effect. However, a crucial difference is that the lockout
effect is not memoryless, but it evolves in time depending on the statistics
of lockout times. For this reason, the standard methods in control theory to
handle the deadband effect cannot be used to model the effect of lockout
constraints [38].
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Using a similar procedure, one can get the approximation for
steady-state lockout at the on state

E
[
Lst

on

]
≈

E
[
tlon

]
E [ton] + E [toff]

. (16)

2) Transient Lockout due to Primary Frequency Control:
When providing PFC the refrigerators are exposed to addi-
tional switching actions that increase the fraction of locked de-
vices. Let us denote by Ltr

on,t, L
tr
off,t the time-varying fractions

of devices that lock at the on and off states due to PFC. Since
Ltr

on,t and Ltr
off,t depend on the past reserve activations, they can

be estimated recursively given sufficient statistical information.
We assume that the Cumulative Distribution Functions (CDFs)
of the lockout times are known, and we denote them by
Fon(tlon) for lock-on time and Foff(t

l
off) for lock-off time. We

further define Non = max
[
tlon

]
and Noff = max

[
tloff

]
. Then,

Ltr
on,t and Ltr

off,t can be computed as

Ltr
on,t =

∑t−1

k=0
ckxkSon(t− k), ck =

1, if xk ≥ 0

0, if xk < 0
(17)

Ltr
off,t =

∑t−1

k=0
dkxkSoff(t− k), dk =

0, if xk ≥ 0

1, if xk < 0
(18)

where Son = 1 − Fon and Soff = 1 − Foff are the survival
functions of the CDFs, Son(t − k) = 0 for t − k > Non, and
Soff(t− k) = 0 for t− k > Noff.

The total fraction of locked devices is simply obtained by
adding the steady-state and transient contributions

Lon,t = E
[
Lst

on

]
+ Ltr

on,t, Loff,t = E
[
Lst

off

]
+ Ltr

off,t . (19)

C. Improved Probabilistic Switching

In Sections III-A and III-B we presented methods to account
for the startup dynamics and lockout constraints when pro-
viding PFC with an aggregation of refrigerators. To integrate
these methods in the probabilistic switching approach of
Section II-C, it suffices to apply the switching probability

ρt =


xt

1−Da
t−1−Loff,t−1

, if xt ≥ 0 (switch on)

− xt

Da
t−1−Lon,t−1

, if xt < 0 (switch off) ,
(20)

instead of (7). Observe that the total fraction of loads that
need to switch (xt) is normalized by the fraction of loads
that are available to respond. If xt > 0, the loads that can
respond are those that are at the off state and unlocked, i.e., the
normalization factor is 1−Da

t−1−Loff,t−1. On the other hand,
if xt < 0, the available loads are those that are at the on state
and unlocked, i.e., the normalization factor is Da

t−1−Lon,t−1.
In order to further reduce the compressor cycling, the

switching probability can be defined as a function of the time
elapsed since the latest switching action of each device. How-
ever, we do not use a time-dependent probability calculation in
our controller, because it tends to synchronize the load cycles
and introduce long-term oscillations in aggregate power.

IV. CONTROL OF THERMOSTAT TEMPERATURE LIMITS

A. Resetting of Thermostat Limits

The probabilistic switching of Section III-C provides ac-
curate PFC reserves immediately after a frequency deviation.
However, if the frequency deviation remains, the accuracy of
reserve provision will deteriorate because the refrigerators’
aggregate power will decay towards the pre-disturbance value.
This is straightforward to verify if the startup dynamics and
lockout constraints are neglected.

Let soff,t and son,t denote the rates at which refrigerators
switch off and on at time step t, which we approximate with

soff,t ≈ Dd
t · Ṫd(T̄ ), son,t ≈ (1−Dd

t ) · Ṫi(T̄ ) , (21)

where Ṫd(T̄ ) and Ṫi(T̄ ) are the temperature decrease and
increase rates evaluated at the mean temperature, respectively.
Ṫd(T̄ ) can be obtained from (2) and Ṫi(T̄ ) from (1), and for
the average values of the parameters used in this paper we get
Ṫd(T̄ ) = −0.0026◦C/s and Ṫi(T̄ ) = 0.0009◦C/s. Combining
(21) and (6), the net switching rate can be expressed as

snet,t = soff,t + son,t

≈ DnṪd(T̄ ) + (1−Dn)Ṫi(T̄ ) +Dr ∆ft
∆fmax

[
Ṫd(T̄ )− Ṫi(T̄ )

]
= Dr · (∆ft/∆fmax) ·

[
Ṫd(T̄ )− Ṫi(T̄ )

]
. (22)

In (22) soff = Dn · Ṫd(T̄ ) and son = (1−Dn) · Ṫi(T̄ ) are the
switching rates at steady state and soff +son = 0 holds because
the aggregate baseline power is approximately constant.

If ∆ft > 0, some refrigerators will switch on to provide
PFC and snet,t will become negative because Ṫd(T̄ )− Ṫi(T̄ ) <
0. This means that some refrigerators will start switching off
and therefore the aggregate power will start decreasing towards
the baseline. Similarly, if ∆ft < 0 the initially lower aggregate
power will start increasing towards the baseline. Thus, the
reserve accuracy will deteriorate over time.

A solution to this problem is to dynamically modify the
devices’ thermostat limits in order to keep snet,t close to zero.
For this purpose, we apply the temperature resetting factor

Kr,t [◦C] = snet,t ·∆t = −Dr∆tβ̄P̄n ·
∆ft

∆fmax
, (23)

where Ṫd(T̄ )−Ṫi(T̄ ) = −β̄P̄n from (1) and (2). If ∆ft > 0 the
resetting factor is negative, which means that both thermostat
limits will decrease with a rate equal to Kr,t such that the
population reaches an equilibrium at an aggregate power
higher than the baseline. Similarly, if ∆ft < 0 both thermostat
limits increase at a rate equal to Kr,t.

To account for startup dynamics and lockout constraints a
few modifications are needed in (23). The first modification
is to substitute the term Dr · (∆ft/∆fmax) with xt to account
for startup dynamics – see (11). The second modification is
to incorporate the sequential unlocking of refrigerators after a
frequency deviation event based on the CDFs of lockout times
Fon(tlon) and Foff(t

l
off).

Consider a positive ∆ft starting at time step t = 0 that
will induce a positive xt. Instantaneously, some refrigerators
will switch on to provide PFC and will lock at the on state.
Therefore, at t = 0 fewer devices will be at the off state, son,t
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will start decreasing, and an instantaneous resetting factor of
−xtṪi(T̄ ) is needed to keep snet,t close to zero. However,
as time elapses, some of the refrigerators that switched on
will unlock based on Fon(tlon), and larger changes in the
temperature deadband limits are required to maintain the same
aggregate power. Therefore, for ∆ft > 0 the resetting factor
is determined by xt[Ṫd(T̄ )Fon(t)− Ṫi(T̄ )]∆t and for ∆ft < 0
by xt[Ṫd(T̄ )− Ṫi(T̄ )Foff(t)]∆t.

To generalize for multiple events, the resetting factor at time
step t should accumulate all contributions from the previous
time steps. Therefore, we compute the resetting factor with

Kr,t = rt ·∆t ·
∑t−1

k=0
xk ·

[
ck · [Ṫd(T̄ ) · Fon(t− k)− Ṫi(T̄ )]

+ dk · [Ṫd(T̄ )− Ṫi(T̄ ) · Foff(t− k)]
]
, (24)

where ck and dk are defined in (17) and (18). Recall that
Fon, Foff are CDFs, and so Fon(t − k) = 1 for t − k > Non
and Foff(t − k) = 1 for t − k > Noff in (24). Note that
the temperature resetting is applied only to the unlocked
refrigerators, because only those affect the net switching rate.
This is accounted for in (24) with the normalization factor

rt =
1− E

[
Lst

on

]
− E

[
Lst

off

]
1− Lon,t − Loff,t

. (25)

Observe that rt > 1 as long as Ltr
on,t 6= 0 or Ltr

off,t 6= 0, whereas
rt = 1 if Ltr

on,t = Ltr
off,t = 0, i.e., at steady state.

By modifying the thermostat limits using (24) we effectively
transform the electric energy surplus or deficit due to the PFC
reserve into thermal energy. In this way, we avoid the decay
of aggregate power to the pre-disturbance value and achieve
constant reserve provision.

B. Corrective Temperature Control

If the frequency deviation ∆ft is approximately zero-mean,
the population’s mean temperature does not change signifi-
cantly and the duty cycle Dt remains close to the nominal
value Dn. However, in case of biased frequency deviations the
resetting factor Kr,t results in prolonged reduction or increase
of the thermostat limits, which is undesirable for two main
reasons. First, it negatively affects the user utility due to very
high or very low temperatures. Second, the population’s mean
temperature changes substantially, which results in steady-state
baseline deviations that affect the generation-demand balance
on the system level. A simple solution to this problem would
be to filter the frequency deviation signal in order to eliminate
the bias [31]. However, the disadvantage of this approach is
that the bias needs to be absorbed by other available PFC
resources or transferred to secondary frequency control.

We propose a different approach that allows us to handle
biased frequency deviations without relying on additional
resources. An opposite control action is imposed on the
thermostat limits such that they return to the nominal values
in the long run. This “corrective temperature control” is a
proportional feedback controller on the average temperature
across the population using a gain Kc. Thus, the temperature

limits of refrigerator i evolve in time according to

Tmin,i,t = Tmin,i,t−1 +Kr,t −Kc · (T̄t−1 − T̄nom) (26)
Tmax,i,t = Tmax,i,t−1 +Kr,t −Kc · (T̄t−1 − T̄nom) , (27)

where T̄t−1 is an estimate of the population’s average tem-
perature, and T̄nom is the nominal mean temperature without
PFC.

1) Estimation of Mean Temperature and Duty Cycle: The
mean temperature T̄t depends on the past temperature resetting
and corrective control actions according to

T̄t =T̄t−1+

[Kr,t −Kc(T̄t−1 − T̄nom)] · (1− Lon,t − Loff,t) . (28)

The term
(
1− Lon,t − Loff,t

)
in (28) is needed because the

temperature resetting and corrective control are applied only
to the unlocked devices. With reference to (15) and (16), the
fractions of loads that are locked at steady-state depend on
the duration of the on and off cycles. However, as the mean
temperature changes, the expected values of the on and off
cycles also change and are approximated with

E
[
ton,t

]
≈ R̄C̄ · ln

[
T̄max,t−1 − T̄a + η̄R̄P̄n

T̄min,t−1 − T̄a + η̄R̄P̄n

]
(29)

E
[
toff,t

]
≈ R̄C̄ · ln

[
T̄a − T̄min,t−1

T̄a − T̄max,t−1

]
, (30)

where T̄min,t−1 = T̄t−1−0.5·∆T , T̄max,t−1 = T̄t−1 +0.5·∆T ,
and ∆T is the deadband width.

Using T̄t it is also possible to keep track of the population’s
baseline duty cycle (without PFC) with the approximation

D̄n
t ≈

E
[
ton,t

]
E
[
ton,t

]
+ E

[
toff,t

] . (31)

The actual duty cycle while providing PFC is given by

Da
t = Da

t−1 + xt + (D̄n
t − D̄n

t−1) , (32)

where xt is the fraction of loads activated for PFC, and
D̄n
t − D̄n

t−1 is the change in the baseline duty cycle due to
deviation of the mean temperature from its nominal value.

Although the average temperature can be estimated in a
decentralized way using (28), the estimates could be reset
to the actual values periodically based on measurements of
refrigerator temperatures transmitted via a low data transfer
communication link (see Section II-D). Apart from providing
an initial temperature estimate when the aggregation starts pro-
viding PFC reserves, a communication link will also enhance
the controller’s robustness to estimation error.

2) Analytical Tuning of the Corrective Temperature Gain:
From a user point of view, high Kc values are preferable to
keep the temperature deviations low. However, from a power
system point of view, there is a tradeoff to consider when
tuning Kc. If the gain is very small, prolonged temperature
deviations will change the aggregation’s baseline and introduce
steady-state reserve errors. On the other hand, a very large gain
might introduce oscillations in the aggregate power and thus
increased reserve errors. In fact, upper and lower bounds on
Kc can be computed analytically.
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The correction of mean temperature with a gain Kc can
be thought as temperature resetting with the Kr,t defined in
(24), but for an opposite frequency deviation signal. Assuming
that the application of the temperature resetting factor Kr,t
does not create oscillations in aggregate power, and if the
opposite temperature change due to Kc is in absolute terms
smaller than the average K̄r,t, then no oscillations in aggregate
power should occur. Therefore, an upper bound on Kc can be
obtained from∣∣Kc · (T̄t − T̄nom)

∣∣ ≤ ∣∣K̄r,t
∣∣ ⇔

Kc · |T̄t − T̄nom| ≤ ∆tβ̄P̄n

∣∣∣∣Dr∆̄f t
∆fmax

∣∣∣∣ = ∆tβ̄P̄n · |D̄n
t −Dn|.

(33)

From (31) we can see that D̄n
t is a function of the mean

temperature T̄t. Therefore, the upper bound on Kc from (33)
is in general a function of T̄t itself. However, a temperature-
independent bound can be obtained by a first order Taylor
expansion of (31) that gives

D̄n
t (T̄ ) ≈ D̄n

t

(
T̄nom

)
+
dD̄n

t

(
T̄
)

dT̄

∣∣∣
T̄nom

·
(
T̄ − T̄nom

)
⇔

D̄n
t −Dn = D̄n

t (T̄ )−D̄n
t (T̄nom) ≈

dD̄n
t

(
T̄
)

dT̄

∣∣∣
T̄nom

· (T̄ − T̄nom). (34)

Substituting now (34) in (33) gives us the upper bound

Kc ≤
∣∣∣∣∆tβ̄P̄n ·

dD̄n
t

(
T̄
)

dT̄

∣∣∣
T̄nom

∣∣∣∣ . (35)

A lower bound on Kc can be obtained based on the
minimum/maximum acceptable mean temperature and the
maximum acceptable settling time, i.e., the time needed to
restore T̄t close enough to T̄nom after the biased frequency
deviation event is over. Neglecting lockout constraints (28)
can be written as

T̄t = λ · T̄t−1 − γ ·∆ft + (1− λ) · T̄nom , (36)

where λ = 1−Kc and γ = Dr∆tβ̄P̄n/∆fmax. With an initial
condition T̄0, (36) has the solution

T̄t = λtT̄0 − γ
∑t−1

k=0
λk∆ft−k−1 + (1− λt)T̄nom . (37)

Assume that T̄0 = T̄nom and that the refrigerator aggregation
faces the step frequency deviation

∆ft =

{
δ, if 0 ≤ t ≤ Nev

0, if t > Nev
, (38)

which represents a frequency deviation signal with a bias equal
to δ over a period Nev. Let ε denote the tolerance in terms of
mean temperature during the frequency deviation event, i.e.,
T̄t must satisfy T̄nom − ε ≤ T̄t ≤ T̄nom + ε ∀t. Furthermore,
let Nrec denote the maximum acceptable settling time after the
frequency deviation event, i.e, T̄nom−ε ≤ T̄t ≤ T̄nom+ε should
hold for t ≥ Nev +Nrec, where ε < ε is another tolerance. A
lower bound on Kc can be computed using Proposition 2.

Proposition 2. If T̄0 = T̄nom and ∆ft is given by (38), then
T̄nom − ε ≤ T̄t ≤ T̄nom + ε ∀t and T̄nom − ε ≤ T̄t ≤ T̄nom +
ε, for t ≥ Nev +Nrec, hold if the corrective temperature gain
is computed as Kc = 1− λ, where λ satisfies

γδ · (1− λNev) ≤ ε · (1− λ) (39)

γδ · λNrec · (1− λNev) ≤ ε · (1− λ) . (40)

Proof. The proof is given in the appendix. �

Remark 1. Although (39), (40) cannot be solved analytically,
a lower bound on Kc is obtained numerically starting with
λ = 1 and gradually reducing it until (39), (40) are satisfied.

Equation (35), Proposition 2, and Remark 1 provide theo-
retical lower and upper bounds on Kc that can serve as an
initial range when determining the final value of the gain via
simulations with realistic ∆ft signals, and in the presence of
startup dynamics and lockout constraints.

C. Addressing Limited Thermostat Resolution

Typically, the change in the thermostat’s temperature limits
from (26) and (27) is very small, for example, 10−4 ◦C/s.
Nevertheless, the measurement accuracy in a refrigerator can
be as low as ±0.2◦C [40]. Therefore, the temperature limits of
some refrigerators might not change, and thus the aggregate
power might decay towards its pre-disturbance value.

We address this practical issue by allowing the temperature
limits to change according to a sufficiently large fixed rate
∆Tres

◦C per second. Specifically, instead of distributing the
temperature change over the whole population and requesting
a small change from every device, we impose a larger change
on the temperature limits of fewer devices.

1) Probabilistic Implementation: The required change in
temperature limits is

∆Tlim,t = Kr,t −Kc · (T̄t−1 − T̄nom) . (41)

If the temperature limits of an individual device change only
by ∆Tres, we can get the same total change in temperature by
applying ∆Tres to a fraction of the population equal to

%t = |∆Tlim,t|/∆Tres . (42)

The implementation of this approach is straightforward: each
refrigerator draws a random number uniformly distributed
between 0 and 1 and if it is smaller than %t and the refrig-
erator is unlocked, then it modifies its temperature limits by
∆Tres, otherwise it does not. The limits increase by ∆Tres if
∆Tlim,t > 0 and decrease by ∆Tres if ∆Tlim,t < 0.

Although simple, this approach introduces two sources of
inaccuracy in the control. First, as ∆Tres increases, fewer
devices change their thermostat limits and therefore the control
is exposed to inaccuracies from random number generation.
Second, large ∆Tres values might synchronize the population.
Without the fixed rate ∆Tres, the temperature limits change in a
continuous way, the devices switch when they are close to the
thermostat limits and this avoids synchronization. In contrast,
if a large ∆Tres value is used, some devices might switch at a
temperature considerably different than the thermostat limits.
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2) Effect on Temperature Limits and Countermeasure: If
a fixed rate ∆Tres is used, the change in temperature limits
∆Tlim,i,t is different for each refrigerator i. A disadvantage of
this approach is that the variance of ∆Tlim,i,t monotonically
increases, as shown by Proposition 3 and Remark 2.

Proposition 3. If the refrigerators’ temperature limits change
probabilistically according to (42), then the mean and vari-
ance of ∆Tlim,i,t are given by

E
[
∆Tlim,i,t

]
=
∑t−1

k=0
∆Tlim,k (43)

Var
[
∆Tlim,i,t

]
=
∑t−1

k=0
|∆Tlim,k| ·

(
∆Tres − |∆Tlim,k|

)
.

(44)

Proof. The proof is given in the appendix. �

Remark 2. If no fixed rate ∆Tres is applied, all refrigerators
change their temperature limits by

∑t−1
k=0 ∆Tlim,k, so the

mean value is
∑t−1
k=0 ∆Tlim,k and the variance is zero. In

practice, the mean value will be slightly different and the
variance non-zero but small because some devices are always
locked at steady-state and do not change their temperature
limits. According to (43), ∆Tres does not affect the mean
value of temperature limit change. In contrast, the variance
monotonically increases in time (linearly with ∆Tres) because
∆Tres − |∆Tlim,k| ≥ 0.

Due to the monotonic increase in variance, some devices
will likely sustain larger and prolonged deviations from the
nominal temperature limits, which is undesirable. The variance
can be bounded by imposing a bound ∆Tb on the maximum
deviation from the mean temperature of the population. To
implement this, we require each unlocked device i that drew
a random number smaller than %t at time step t to change its
limits only if

T̄t−1 −∆Tb ≤ ∆Tlim,i,t−1 + ζi∆Tres ≤ T̄t−1 + ∆Tb , (45)

where ζi is equal to 1 or −1 depending on the sign of ∆Tlim,t.

V. REFRIGERATOR DOOR OPENINGS

The analysis so far neglected the door openings that signifi-
cantly affect the aggregate power of a population of refrigera-
tors. Since the PFC performance is evaluated with respect to a
baseline, neglecting the effect of door openings will introduce
large control errors. In this section, we present a method to
account for door openings in PFC design.

A. Stochastic Model for Door Opening Events

There exist only a few papers that consider door openings
in power system studies with refrigerators, e.g., [10], [27].
We assume that the number of door openings per day follows
a normal distribution with mean value µop and standard
deviation σop. Furthermore, we assume that the duration of
a door opening event follows a normal distribution with mean
value µd and standard deviation σd. Based on [41] we select
µop = 40, whereas we fix σop = 5, µd = 20 s and σd = 3 s
according to [27].

B. Modeling the Effect of Door Openings

The door openings increase the refrigerator’s energy con-
sumption by ξ · 100% (we assume ξ = 0.22 [41]). The effect
of door openings on refrigerator temperature is modeled by
reducing the thermal resistance of the model (1), (2) during
each door opening event, i.e., by increasing the thermal losses
to the ambient. An upper bound to the new thermal resistance
is given by Proposition 4.

Proposition 4. Denote by N d = 86, 400 s the duration of a
day. An upper bound to the estimate of the thermal resistance
Rop during a door opening event can be obtained from

Rop ≤ R ·
1

1 + N d

µop·µd
· ξ

. (46)

Proof. The proof is given in the appendix. �

Remark 3. Evaluating (46) as equality gives us an initial
estimate of Rop. For the assumed parameters, (46) gives
Rop ≤ R/24.76, and therefore we set Rop = R/25 in our
simulations.

C. Modifications in Primary Frequency Control Design

The proposed controller can be easily extended to account
for door openings. Even without PFC, the aggregation’s duty
cycle and baseline power are not constant any more, but they
depend on the distribution of door openings within the day.
The duty cycle without PFC can be expressed as

Dn
t = Dn + ∆Dop

t , (47)

where ∆Dop
t ≥ 0 is the additional duty cycle due to door

openings. A smoothed version of ∆Dop
t can be obtained

comparing historical data of aggregate power consumption
with and without door openings.

Instead of (31), the duty cycle is now estimated using

D̄n
t ≈

E
[
ton,t

]
E
[
ton,t

]
+ E

[
toff,t

] + ∆Dop
t . (48)

The necessary information about door openings is passed to
the switching probability calculation (20) through (32), and
no other modification in the control design is needed. In
particular, note that each refrigerator responds to frequency
deviations irrespective of whether the door is closed or open.

VI. PARAMETERS AND PERFORMANCE METRICS

The proposed controller (consisting of all components pre-
sented in the previous sections) is graphically shown in Fig. 2
and is easy to implement at the device level. The required
hardware includes a frequency meter and a micro-controller to
control the switch of the compressor and the temperature limits
of the thermostat. The micro-controller consists of a random
number generator and a floating-point unit able to perform
elementary mathematical operations (additions, subtractions,
multiplications and divisions).

In this section, we present the refrigerator parameters in
Table I, and introduce the metrics and benchmarks that we use
to quantify the controller’s performance. Note that β and tloff
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Fig. 2. The proposed decentralized stochastic controller. Red arrows indicate the controller’s input/output signals, green arrows indicate input from stored
parameter values in the controller’s memory, and black arrows indicate internal control and feedback signals.

TABLE I
REFRIGERATION AGGREGATION PARAMETERS

Parameter Value Parameter Value
Ta (◦C) U[20, 24] α (s−1) U[4, 6] · 10−5

∆T (◦C) U[1.7, 2.3] β (◦C/kJ) (µ, σ) = (4.4, 0.7) · 10−5

Tset (◦C) U[4.5, 5.5] Pn (W) U[70, 90]

u (-) N[0.25, 0.025] tlon (s) N[60, 5]

Ns (s) N[30, 3] tloff (s) (µ, σ) = (189, 31.5)

have the mean value and standard deviation shown in Table I,
but they do not follow a standard PDF because they are post-
calculated based on the imposed PDFs on other variables [36].

For a fixed Dr the PFC reserve capacity is given by

Pres = NrP̄nD
r . (49)

The desired aggregate power at time step t with PFC is

Pd,t = P̄b,t + Pres · (∆ft/∆fmax) , (50)

where P̄b,t is the population’s baseline power, i.e., a smoothed
version of historical measurements of aggregate power Pb,t
without PFC. If wi(t) = 0 ∀i, the baseline is constant and
equal to P̄b = NrP̄nD

n.
The reserve Mean Absolute Percentage Error (MAPE)

er,mape and the tracking MAPE et,mape are used as control
performance metrics. Note that in the definition of tracking
MAPE the normalized error is computed by dividing the
absolute error with the desired power, whereas in the reserve
MAPE definition the normalization is performed using the
reserve capacity. In addition, we use the baseline MAPE
eb,mape as a metric of the natural oscillations in an uncontrolled
refrigerator aggregation. The metrics are defined as (Nsim is
the simulation period)

er,mape = (100/Nsim) ·
∑Nsim−1

t=0

∣∣(Pd,t − Pagg,t)/Pres
∣∣ (51)

et,mape = (100/Nsim) ·
∑Nsim−1

i=0

∣∣(Pd,t − Pagg,t)/Pd,t
∣∣ (52)

eb,mape = (100/Nsim) ·
∑Nsim−1

t=0

∣∣(P̄b,t − Pb,t)/Pres
∣∣ . (53)

The “proposed controller” is benchmarked against a “sim-
ple controller 1” that neglects the startup dynamics and

lockout constraints, and is similar to the approach of [31]. The
only difference is that the temperature resetting factor Kr,t is
computed analytically from (24) and not chosen heuristically
as in [31]. We also consider a “simple controller 2” that apart
from neglecting the startup dynamics and lockouts, it does not
reset the thermostat limits as well.

The controllers’ comparison is performed via detailed simu-
lations using actual frequency deviation data from Switzerland
in 2009 and in 2011. We assume that the refrigerators partici-
pate with a small share in PFC, and therefore have a negligible
effect on system frequency. For this reason, it is sufficient to
model the frequency as a time series in our simulations in
order to evaluate the controller’s performance. Of course, a
dynamic frequency model incorporating also the generator’s
power response is needed for high shares of refrigerators in
PFC, because their effect on frequency cannot be neglected
anymore. In [42] we present results from dynamic frequency
studies to show the contribution of refrigerators in reducing
under-frequency after sudden loss of generation.

VII. SENSITIVITY TO DESIGN AND LOAD PARAMETERS

A. Sensitivity to Aggregation Size

The control is expected to perform better for large refrig-
erator aggregations for three main reasons. First, the larger
the aggregation the closer the fraction of switched loads to
the desired switching probability. Second, the controller is
designed based on average refrigerator parameters. And third,
the assumption of a smooth uncontrolled duty cycle Dn

t is
reasonable only for sufficiently large aggregations, where the
oscillations from individual load cycles cancel out.

We investigate the dependence of controller performance
on aggregation size by running simulations using 30 zero-
mean, 5-hour samples of frequency deviation (Dr = 0.15
is used). Figure 3 shows the reserve MAPE (er,mape) for
the proposed and the simple controller 1, which decrease
with the square root of the aggregation size. A population
of 1, 000 refrigerators results in a large reserve error, which
drastically decreases when the size increases to 10, 000. After
this point, the reserve error decreases asymptotically and it
practically saturates at an aggregation size of 70, 000. The
proposed controller outperforms the simple controller 1 for
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Fig. 3. Dependence of control performance and baseline error on the size of
refrigerator aggregation for the proposed controller and simple controller 1.

all aggregation sizes apart from an aggregation of 2, 000
refrigerators. For populations of 70, 000 loads or more, the
proposed controller reduces the reserve error by 15%.

Simple controller 1 might perform better than the proposed
controller for small aggregations, due to the dominant effect
of the baseline MAPE (eb,mape) for aggregations up to 15, 000
loads, as shown in Fig. 3. In other words, the PFC response of
small aggregations is covered by the large natural oscillations
of the uncontrolled baseline. Therefore, the improvement of
the proposed controller over simple controller 1 is guaranteed
for sufficiently large aggregations, but not for small ones.
Interestingly, the baseline error comprises a significant part
of the control error even for large aggregations (for example,
approximately 62% of the total error for 100, 000 loads).

B. Sensitivity to Reserve Capacity

We investigate the controller’s sensitivity to reserve capacity
Dr for an aggregation of 70, 000 refrigerators (according to the
results of Fig. 3). We ran simulations for 10 days with different
values of Dr using as base case scenario the parameters
of Table I. The frequency deviation is approximately zero-
mean during the first 5 days of the data set, whereas it has
a significant bias during the remaining 5 days. The same
frequency data are used for the all analyses of the rest of
Section VII.

Figure 4 shows the sensitivity analysis results for the
frequency deviations with small bias, whereas Fig. 5 is for
the frequency deviations with large bias (Kc = 0.5 · 10−4 is
used based on the controller tuning results of Section VIII-A).
In both figures, the left plot shows the reserve MAPE and the
right plot the tracking MAPE.

The reserve capacity that minimizes the control error de-
pends on the definition of the error metric. Specifically, as
Dr increases the tracking MAPE increases but the reserve
MAPE decreases. Therefore, although increasing the reserve
capacity generally results in a higher control error, the error
becomes smaller in relative terms (i.e., in comparison with
the reserve capacity that is offered). The proposed controller
consistently reduces the errors compared with simple con-
troller 1. In addition, simple controller 1 performs better than
simple controller 2, which illustrates the need for resetting of
thermostat temperature limits.

Observe that the difference between the proposed con-
troller and simple controller 1 is more pronounced for biased
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frequency deviations. This shows the effectiveness of the
corrective temperature control of Section IV-B. In fact, there
is only a small difference between the simple controller 1 and
simple controller 2 for biased frequency deviations, because
in both cases most of the reserve error is due to steady-state
baseline errors.

C. Sensitivity to Peak Power of Startup Dynamics

The dependence of reserve MAPE on the peak power factor
(u) during the startup phase is presented in Fig. 6. The error of
the proposed controller is not sensitive to u, whereas the error
of the simple controller 1 clearly increases as u increases.
This is expected because larger u values result in larger
overshoots in aggregate power consumption, if the effect of
startup dynamics is not considered in the control design.

D. Sensitivity to Lockout Times

Figure 7 shows the dependence of reserve error to the lock-
on time tlon. The error of the proposed controller steadily
increases as tlon increases, which indicates that the estimates of
the number of locked devices – obtained by (19) – deteriorate.
The error of simple controller 1 is significantly higher than that
of the proposed controller, but is practically unaffected by tlon.
This happens because simple controller 1 neglects both the
lockouts and startup dynamics. With reference to (20), simple
controller 1 activates fewer loads for PFC than actually needed,
because it neglects the lockouts. However, each of the activated
loads consumes more power than assumed by the controller
due to startup dynamics, which counteracts the error in the
number of activated loads.
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E. Effect of PFC Activation Deadband

In practice, a frequency deadband is used to prevent PFC
activation to the wrong direction due to frequency measure-
ment error. To investigate the effect of frequency deadband
on the performance of the proposed controller, we repeated
the simulations for our base case scenario with the deadband
±10 mHz of the ENTSO-E system [43].

Even with a deadband, the proposed controller significantly
reduces the reserve error compared with simple controller
1; however, the difference between the controllers is smaller
because the PFC is active only for approximately 60% of the
time. Figure 8 shows the desired and activated reserve for
the two controllers with a PFC deadband for small and large
frequency deviation bias. The proposed controller follows the
desired droop characteristic of PFC much closer than simple
controller 1, in particular for biased frequency deviations
where the error is reduced from 4.3% to 1.2%.

F. Evaluation

Table II summarizes the average values of reserve MAPE
computed across all simulation sets. The reduction in control
error achieved by the proposed controller (in comparison with
the simple controllers) depends strongly on the frequency
deviation bias. If the frequency deviation is zero-mean, the
error reduces by approximately 15%. For small frequency
deviation bias, the proposed controller reduces the error by
approximately 56% compared with simple controller 1 and
74% compared with simple controller 2. For large frequency
deviation bias, the error reduction is approximately 78%
compared with simple controller 1 and 82% compared with
simple controller 2.
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Fig. 8. Droop characteristic with a PFC activation deadband. Left: Small
frequency deviation bias. Right: Large frequency deviation bias.

TABLE II
AVERAGE RESERVE MAPE (%) FOR DIFFERENT FREQUENCY BIASES

Controller Zero-mean Small bias Large bias
A. Simple controller 2 1.34 4.21 6.76
B. Simple controller 1 1.30 2.48 5.55
C. Proposed controller 1.11 1.08 1.24

Improvement (%) B → C 14.62 56.45 77.66
Improvement (%) A → C 17.16 74.35 81.66

The reserve MAPE of simple controller 1 is already quite
low in absolute terms, if the frequency deviation bias is small.
Even in this case, however, the improvement achieved by
the proposed controller is valuable in order to pass the pre-
qualification tests that many system operators apply for reserve
providers. In addition, the proposed controller will increase the
profits from offering high-quality PFC reserves in a reserve
market with performance-based payments.

Figure 9 presents time-domain simulation results to compare
the proposed controller against simple controller 1. Specif-
ically, we present the time series of frequency deviation,
refrigerator aggregation’s power response, and aggregation’s
mean temperature. As shown in Figs. 9b and 9d, there are
notable offsets (long-term accumulated errors) in the response
of simple controller 1, but not in that of the proposed con-
troller. This significant improvement in “continuous operation”
of PFC with refrigerators is due to our contributions in
control design. On the other hand, as shown in Fig. 9e, the
instantaneous “dynamic response” of the proposed controller
is only marginally better than that of simple controller 1.
Moreover, the proposed controller improves user utility by
maintaining the aggregation’s mean temperature close to the
nominal value of 5◦C (see Fig. 9c). This is very important in
practice to ensure the participants’ commitment to the demand
response program.

VIII. ROBUSTNESS ANALYSIS

A. Performance with Biased Frequency

In this section we present results for the corrective tem-
perature control loop. Figure 10 compares the reserve error
er,t = 100 · (Pd,t−Pagg,t)/Pres and the temperature deviations
for three Kc values, as well as for a case without corrective
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Fig. 10. Time-domain simulation results of reserve error and mean temper-
ature deviation for four different values of the corrective temperature gain.

control. The results correspond to simulations with a frequency
deviation signal that is positively biased for the first 15 hours
(with an average bias of δ = 0.0192 Hz) and zero-mean for
the rest of the day. If Kc = 0, there is a steady-state error
in temperature, which has a serious impact on user utility.
At the same time, the temperature error affects the baseline
power of the population, which results in a large PFC error and
reduces the population’s ability to provide PFC. On the other
hand, all three non-zero gains bring the mean temperature
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Fig. 11. Reserve and temperature errors for 10 corrective temperature gains
(averaged over 10 simulations cases).

close to the nominal value of 5◦C and eliminate the steady-
state reserve error. As expected, higher Kc values allow a
faster temperature recovery but introduce oscillations in the
baseline power, which translate into increased reserve errors
at the beginning of the recovery period (hour 5 in Fig. 10).

Results from 10 day-long simulations for Kc values in the
range [0.1, 1]·10−4 are presented in Fig. 11. The frequency de-
viation is positively biased in 4 of the days, negatively biased
in another 4 of the days, and zero-mean in the remaining 2
days. The blue bars show the average values of reserve MAPE
and temperature Root Mean Square Error (RMSE), whereas
the red lines indicate the range spanned from the minimum
to the maximum value. As expected, the reserve MAPE is a
convex function of Kc. The gain Kc = 0.5 · 10−4 results in
the minimum reserve MAPE of 1.15%, which is very close
to the baseline MAPE of 0.85% due to the system’s natural
dynamics (shown with the green bar in Fig. 11).

The results of Fig. 10 are in agreement with Proposition 2.
With δ = 0.0192 Hz, Nev = 15 h, Nrec = 9 h, ε = 1◦C, ε =
0.2◦C, Dr = 0.15, P̄n = 80 W and β̄ = 4.4 · 10−5, the lower
bound on Kc is 0.4863 · 10−4. From Fig. 10 we can see that
Kc = 0.5 · 10−4 is consistent with the design criteria: (i) the
maximum temperature deviation is approximately ε = 1◦C;
and (ii) Nrec = 9 h after the frequency bias has disappeared,
the mean temperature is less than ε = 0.2◦C away from the
nominal value of 5◦C. In addition, the results of Fig. 11 are
in agreement with (35). For the considered values ∆T = 2◦C,
T̄a = 22◦C, η̄R̄P̄n = 70◦C and ∆t = 1 s, (35) provides us
with the upper bound Kc = 0.5004 · 10−4. Therefore, the
theoretical lower and upper bounds are very tight.

B. Effect of Limited Thermostat Resolution

To investigate the effect of minimum thermostat resolution
∆Tres on temperature deviations and control accuracy, we
performed 10 day-long simulations with 9 different ∆Tres
values and present the results in Fig. 12. The plot shows
the empirical PDFs of temperature deviations at the end of
the simulation, which match closely normal distributions. The
mean temperature deviation is independent of ∆Tres, whereas
the variance increases with ∆Tres, i.e., larger deviations are
possible for higher ∆Tres values. These simulation results are
in agreement with Proposition 3 and Remark 2.

Figure 13 compares the following cases: (i) ∆Tres = 0◦C,
(ii) ∆Tres = 0.1◦C and no bound ∆Tb, and (iii) ∆Tb = 0.1◦C
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with ∆Tb = 1◦C. The left plot shows the histogram of temper-
ature limit deviations at the end of a 5-day simulation, whereas
the right plot shows the evolution of the standard deviation
of temperature limit changes over time. If ∆Tres = 0◦C
(blue color), the histogram resembles a normal distribution
and the standard deviation slowly increases and settles to a
small value, as explained in Remark 2. If ∆Tres = 0.1◦C and
no ∆Tb is used (red color), the histogram resembles again a
normal distribution but the standard deviation monotonically
increases, as shown in Proposition 3. However, if a bound
∆Tb = 1◦C is used (green color), the standard deviation is
capped at a significantly lower value. Note that the bounding
results in a more uniform PDF of temperature deviations in
the population.

The effect of minimum thermostat resolution on control
accuracy is shown in Fig. 14. The blue bars are mean values
of reserve MAPE over 10 simulations, whereas the red lines
indicate the minimum and maximum values. The reserve
MAPE generally increases as ∆Tres increases but the increase
is rather small, i.e., thermostat resolution limitations only
slightly reduce control accuracy. In addition, we compared the
reserve MAPE for ∆Tres = 0.1◦C, with and without a bound
∆Tb = 1◦C, and no observable reduction in control accuracy
was found.

C. Performance with Door Openings
In this section, we investigate the effect of refrigerator door

openings on controller’s performance. The left plot of Fig. 15
shows the probability of door openings for each hour of the
day based on data from [41]. The right plot shows a time series
example of door opening events for a refrigerator, which is
generated using the probability profile of the left plot.

We performed simulations for the base case scenario with
and without door openings and compare the control per-
formance in Table III. Due to door openings, the reserve
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Fig. 14. The dependence of reserve MAPE on the thermostat resolution
(results averaged over 10 simulations cases).
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Fig. 15. Left: The histogram of door openings within a day. Right: Door
opening events for a refrigerator generated based on the histogram.

MAPE increases by 40% for small frequency deviation bias
and by 80% for large frequency deviation bias. However, in
both cases the error is still small and therefore the proposed
controller is applicable despite the random door openings.
The door openings smoothen the baseline power during load
ramps, especially around 3 pm and 7 pm, and as a result the
baseline MAPE decreases. To illustrate this, Fig. 16 shows the
baseline power with and without door openings, as well as the
aggregate power without PFC. Notice that there is less natural
fluctuation around the baseline with door openings.

Figure 17 shows the PFC activation (“desired power”)
around the baseline,, with and without door openings, for a
period of 1 hour. The baseline with door openings has an
increasing trend, but the PFC activation is very close to that
without door openings. Notice that the door openings do not
have a significant effect on the tracking of the desired power.
Therefore, if the door openings are considered in the control
design as shown in the paper, then their effect on the tracking
performance of the desired power will not be detrimental.

IX. IMPLEMENTATION ISSUES

A. Refrigerator Model

Our analysis is based on the commonly used first-order
freezer-less refrigerator model (1), (2). As shown in [40], using
separate states for the temperature of the refrigerator compart-
ment’s air, refrigerator’s content and evaporator, significantly
improves model performance. Modeling a refrigerator with a
freezer is possible following the approach of [10].

It is possible to integrate more detailed refrigerator models
in the control design by modifying (29), (30) and (31). More
importantly, the model of startup dynamics can be improved by
considering the dependence on evaporator temperature when
a refrigerator switches on. Since this temperature depends on
the time elapsed since the previous on cycle, which is not
constant when providing PFC, the profile of startup dynamics
will likely be time-varying in reality.
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TABLE III
BASELINE AND RESERVE MAPE WITH AND WITHOUT DOOR OPENINGS

Baseline
MAPE (%)

Reserve MAPE (%)
Small bias

Reserve MAPE (%)
Large bias

Without With Without With Without With
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Fig. 16. 24-hour baseline power with and without refrigerator door openings.
The minimum baseline power of 1.38 MW corresponds to a duty cycle of
0.25, whereas the maximum power of 2.24 MW to a duty cycle of 0.4.

B. Noisy Frequency Measurements

The authors of [44] performed a correlation analysis of
frequency measurements at the transmission level (230 kV)
and at the wall outlet level (120 V). The results were promising
for PFC and showed that the frequency measurements at
the two voltage levels are highly correlated. Although it is
important to investigate how measurement noise affects control
performance, a moving average filter can be used to reduce the
measurement noise in a practical implementation [23].

C. Cost and Economic Evaluation

If Dr = 0.2, our simulations show that 63, 500 refrigerators
are necessary to provide 1 MW of PFC reserves.6 Using a
reserve capacity price of 21.5 e/MW/h (average price from
January to September 2014 in Switzerland), the total revenue
from selling 1 MW of capacity is 188, 340 e/year, which
corresponds to a revenue per device as low as 3 e/year. Since
the average refrigerator lifetime is 14 years, providing PFC
reserves will be profitable only if the implementation cost is
below 42 e.

We expect the micro-controller’s cost to be a few e due
to its simplicity, whereas the frequency meter is the dominant
cost driver of the proposed scheme. Reference [23] reports a
cost of 20 e for a controller including the frequency meter,
but without mentioning the meter’s accuracy. According to our
market search, a typical selling price in 2016 for a frequency
meter with accuracy 10 mHz was approximately 40 e, whereas
the price explodes to approximately 600 e for an accuracy
of 1 mHz. Based on discussions with manufacturers of high-
accuracy frequency meters, the cost is expected to drop
to approximately 50 e, if the meters are standardized and
integrated in the refrigerators’ electronic circuits.

6Assuming a refrigerator power rating of 80 W and a duty cycle of 0.3,
the average power consumption of the aggregation of 63, 500 devices is
1.524 MW. Therefore, the aggregation provides 100 · (1/1.524) ≈ 65%
of the average power as reserve capacity.
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Fig. 17. PFC activation around the baseline without refrigerator door openings
(left) and with refrigerator door openings (right) for a period of 1 hour.

Nevertheless, even with a reduced frequency meter cost,
providing PFC with residential refrigerators will not be a
very profitable investment due to the required large number
of devices and the currently low reserve prices. In order to
make customer participation in such programs more attractive,
the refrigerator owners could enjoy electricity price rebates. In
addition, performance-based reserve payments could be used
in order to remunerate the refrigerators’ higher accuracy and
faster response in reserve provision. In fact, performance-
based payments are already used for secondary frequency
reserves in the PJM power market in the US.

The developed methods are also applicable to other cooling
devices, for example, commercial refrigerators and freez-
ers, refrigerated warehouses and air conditioners, with no
or minimal modifications. Due to the much higher power
rating of these devices, a significantly smaller aggregation will
be needed for the same amount of reserves. Therefore, we
expect the revenue for each participant to be notably higher,
which makes this application case financially more attractive
compared with residential refrigerators.

X. CONCLUDING REMARKS

In this paper, we presented a decentralized stochastic control
scheme to enable PFC reserve provision from aggregations of
refrigerators. The control is based on probabilistic switching
to avoid load synchronization, and it accounts for refrigerator
startup dynamics and lockout constraints. Reliable reserve
provision during persistent frequency deviations is achieved
by resetting the thermostat temperature limits. Furthermore,
the controller is robust to biased frequency deviations, limited
thermostat resolution and door openings. Extensive simulation
results show that the control scheme allows a refrigerator
aggregation to provide fast and reliable PFC without commu-
nication. In the future, we plan to investigate the controller’s
robustness to excessive compressor locking, and perform dy-
namic simulation studies in a two-area power system model.

APPENDIX: PROOF OF PROPOSITION 1

Proof. The estimated aggregate power at time step t after
reserve activation is

P̂agg,t = Nr,aP̄nS̄u(t) , (54)

where Nr,a is the number of activated devices. Assuming
independence of random variables Pn,i, ui and Ns,i, the
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expected actual aggregate power is computed as

P̄agg,t = E
[∑Nr,a

i=1
Pi,t

]
=
∑Nr,a

i=1
E
[
Pi,t
]

=

Nr,a∑
i=1

E

[
Pn,i

[
1 + ui

[
1− t

Ns,i

]
+

]]

=

Nr,a∑
i=1

P̄n

[
1 + ū · E

[
1− t

Ns,i

]
+

]
. (55)

Part 1: If t ≤ Ns,min, then [·]+ is redundant and (55) gives

P̄agg,t =
∑Nr,a

i=1
P̄n

[
1 + ū

[
1− E

[
t

Ns,i

]]]
≤
∑Nr,a

i=1
P̄n

[
1 + ū

(
1− t

N̄s

)]
= Nr,aP̄nS̄u(t) = P̂agg,t, (56)

where Jensen’s inequality φ(E[Ns,i]) ≤ E[φ(Ns,i)] is invoked
with φ(Ns,i) = t/Ns,i, which is a convex function since
t,Ns,i ≥ 0. Thus, P̄agg,t ≤ P̂agg,t holds for t ≤ Ns,min.

Part 2: For t ≥ N̄s, we obtain P̂agg,t = 0 from (9) and (54).
Since the expected aggregate power P̄agg,t is non-negative,
P̂agg,t is clearly a lower bound.

If Ns,i follows the uniform PDF Ns,i∼[Ns,min, Ns,max], then
for a given t ∈ (Ns,min, N̄s) the probability that a randomly se-
lected refrigerator contributes to the aggregate startup dynam-
ics is equal to P

(
Ns,i ≥ t

)
= (Ns,max − t) / (Ns,max −Ns,min).

Let us denote by Ñs,i the random startup duration that follows
the uniform PDF Ñs,i∼[t,Ns,max]. The expectation from the
last step of (55) can be written as

E
[
1− t

Ns,i

]
+

= E
[
1− t

Ñs,i

]
· Ns,max − t
Ns,max −Ns,min

(57a)

≤
(

1− t

E[Ñs,i]

)
· Ns,max − t
Ns,max −Ns,min

(57b)

=

[
1− t

0.5 · (t+Ns,max)

]
· Ns,max − t
Ns,max −Ns,min

(57c)

=
(Ns,max − t)2

(Ns,max −Ns,min) · (Ns,max + t)
. (57d)

We used Jensen’s inequality in (57b) and the fact that Ñs,i

follows the uniform distribution Ñs,i∼[t,Ns,max] in step (57c).
The inequality P̂agg,t ≥ P̄agg,t holds if and only if

1− t

N̄s
≥ E

[
1− t

Ns,i

]
+

⇔ (58)

Ns,max +Ns,min − 2t

Ns,max +Ns,min
≥ (Ns,max − t)2

(Ns,max−Ns,min)·(Ns,max +t)
, (59)

where we used the fact that N̄s = 0.5 · (Ns,max +Ns,min). With
some effort (59) can be equivalently written as

(Ns,min − 3Ns,max) · t2 + (N2
s,max + 4Ns,minNs,max −N2

s,min) · t
− (N2

s,minNs,max +Ns,minN
2
s,max) ≥ 0 . (60)

The quadratic form in (60) has two real solutions t1 and tlim.
The first one is t1 = Ns,min by inspection. For the second one,

we use Vieta’s formula t1 ·tlim = c/a with a = Ns,min−3Ns,max
and c = −(N2

s,minNs,max +Ns,minN
2
s,max) and find

tlim =
Ns,max (Ns,min +Ns,max)

3Ns,max −Ns,min
. (61)

The quadratic inequality (60) holds for t ∈ [t1, tlim]. Therefore,
if t > Ns,min the inequality P̂agg,t ≥ P̄agg,t holds for t ≤
tlim. �

APPENDIX: PROOF OF PROPOSITION 2

Proof. Part 1: For 0 ≤ t ≤ Nev +1 using T̄0 = T̄nom and (38),
equation (37) gives

T̄t = T̄nom − γδ ·
∑t−1

k=0
λk = T̄nom − γδ ·

1− λt−1

1− λ
, (62)

where a standard property of geometric series is invoked. The
minimum of (62) is obtained for t = Nev + 1 and thus if
T̄nom − ε ≤ T̄t ≤ T̄nom + ε holds for t = Nev + 1 then it holds
∀t. Assuming δ > 0 without loss of generality, it should hold

T̄t=Nev+1 ≥ T̄nom − ε ⇒ − γδ · 1− λNev

1− λ
≥ −ε . (63)

Part 2: For t ≥ Nev +1, ∆ft = 0 and the mean temperature
recovers towards T̄nom. We reset the time index such that t′ =
0 ⇔ t = Nev + 1. The new initial condition is T̄(t′=0) =
T̄(t=Nev+1) and is computed from (62). Equation (37) gives

T̄t′ = T̄nom − γδ ·
1− λNev

1− λ
· λt

′
. (64)

At time t′ = Nrec, T̄nom − ε ≤ T̄Nrec ≤ T̄nom + ε must hold.
Assuming δ > 0 without loss of generality, we get

T̄t′=Nrec ≥ T̄nom − ε⇒ −γδ · λNrec · 1− λNev

1− λ
≥ −ε . (65)

Equations (63) and (65) are equivalent to (39) and (40). �

APPENDIX: PROOF OF PROPOSITION 3

Proof. The change in temperature limits of a randomly se-
lected refrigerator i can be expressed as

∆Tlim,i,t =
∑t−1

k=0
∆Tres · ζk · zk , (66)

where ζk is equal to 1 or −1 depending on the sign of ∆Tlim,k,
and zk is the Bernoulli random variable

fz(zk) =

{
%k, if zk = 1

1− %k, if zk = 0
. (67)

Using the fact E [zk] = %k, the mean value is computed as

E
[
∆Tlim,i,t

]
=
∑t−1

k=0
∆TresζkE [zk] =

∑t−1

k=0
∆Tresζk%k

=
∑t−1

k=0
ζk
∣∣∆Tlim,k

∣∣ =
∑t−1

k=0
∆Tlim,k .

(68)
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The variance is computed as

Var
[
∆Tlim,i,t

]
= Var

[∑t−1

k=0
∆Tres · ζk · zk

]
(69a)

=
t−1∑
k=0

∆T 2
res · ζ2

k ·Var [zk] (69b)

=
t−1∑
k=0

∆T 2
res · %k · (1− %k) (69c)

=
∑t−1

k=0
∆T 2

res ·
|∆Tlim,k|

∆Tres
·
(

1− |∆Tlim,k|
∆Tres

)
(69d)

=
∑t−1

k=0
|∆Tlim,k| ·

(
∆Tres − |∆Tlim,k|

)
, (69e)

where the Bernoulli random variables zk and zj are assumed
to be uncorrelated ∀k 6= j in (69a), Var [zk] = %k · (1 − %k)
is used in (69c), and the definition of %k from (42) is used in
(69d). �

APPENDIX: PROOF OF PROPOSITION 4

Proof. Denote by Ed
op and Ed

cl the refrigerator’s daily energy
consumption with and without door openings, respectively.
Consider a refrigerator subject to door openings and denote
by T̄op and T̄cl the time-averaged temperature while the door
is open and closed, respectively. The refrigerator operates on
average µop · µd seconds with open door, and N d − µop · µd
seconds with closed door. The refrigerator’s time constant with
closed door is α = 1/(RC), whereas with open door it is
αop = 1/(RopC).

The refrigerator’s energy consumption is equal to the in-
tegral of instantaneous thermal losses over time because its
temperature is regulated. Assuming that T̄cl and T̄op are
constant, the daily energy consumption with and without door
openings can be approximated using (1), (2) as

Ed
cl ≈ (α/β) · (Ta − T̄cl) ·N d (70)

Ed
op ≈ (α/β) · (Ta − T̄cl) · (N d − µopµd)+ (71)

(αop/β) · (Ta − T̄op) · µopµd, (72)

whereas Ed
op and Ed

cl are related according to

Ed
op = (1 + ξ) · Ed

cl . (73)

Combining (70), (72) and (73), we get

(α/β)(Ta − T̄cl)(N
d − µopµd) + (αop/β)(Ta − T̄op)µopµd =

(1 + ξ) · (α/β) · (Ta − T̄cl) ·N d , (74)

which when solved for αop gives

αop = α · Ta − T̄cl

Ta − T̄op
·
(

1 +
N d

µop · µd
· ξ
)
⇒ (75)

αop ≥ α · [1 + (N d · ξ)/(µop · µd)] , (76)

because T̄cl ≤ T̄op. Inequality (46) now directly follows from
(76) using α = (1/RC) and αop = (1/RopC). �
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