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Timing of the compensation of winter respiratory carbon losses provides 

explanatory power for net ecosystem productivity of forests 
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Key Points (max 100 characters per item): 

 Compensation day (cDOY) is the day of year when net C losses during winter are 

compensated by net C uptake in spring 

 cDOY largely explains annual net ecosystem productivity NEPc of forests when the 

site has a distinct winter respiratory loss period 

 cDOY and its explanatory power depends on the integration method for annual NEPc 

and on the forest type 

 The findings highlight the importance of carry-over effects and winter time processes 

to understand NEPc  
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Abstract 

Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential 

for climate change decisions and requirements in the context of national forest growth and 

greenhouse gas inventories. However, drivers and underlying mechanisms determining NEPc 

(e.g. climate, nutrients) are not entirely understood yet, particularly when considering the 

influence of past periods.  

Here we explored the explanatory power of the compensation day (cDOY) —defined as the 

day of year when winter net carbon losses are compensated by spring assimilation—for 

NEPc in 26 forests in Europe, North America, and Australia, using different NEPc integration 

methods. 

We found cDOY to be a particularly powerful predictor for NEPc of temperate evergreen 

needle-leaf forests (R
2
 = 0.58) and deciduous broadleaf forests (R

2
 = 0.68). In general, the 

latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on 

the integration method for NEPc, forest type, and whether the site had a distinct winter net 

respiratory carbon loss or not. The integration methods starting in autumn led to better 

predictions of NEPc from cDOY then the classical calendar method starting at January 1. 

Limited explanatory power of cDOY for NEPc was found for warmer sites with no distinct 

winter respiratory loss period. 

Our findings highlight the importance of the influence of winter processes and the delayed 

responses of previous seasons’ climatic conditions on current year’s NEPc. Such carry-over 

effects may contain information from climatic conditions, carbon storage levels and hydraulic 

traits of several years back in time.  

Number of Words: 246  
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1 Introduction 

Accurate predictions of carbon dioxide (CO2) exchange by forest ecosystems are essential for 

understanding, e.g., the role of the forest mitigation in the context of the National Determined 

Contribution under the Paris Agreement, as well as for the required estimates of annual 

carbon (C) budgets to be provided at national or international level. Research in the past 

decades focused on improving these predictions on both annual and longer (decadal) time 

scales, e.g. in relation to extreme events (e.g. D Baldocchi and Wilson [2001]; Ciais et al. 

[2005]; Richardson et al. [2009]; Rodrigues et al. [2011]; Wolf et al. [2013]; C Wu et al. 

[2013]), and in relation to the length of the growing seasons or the number of carbon uptake 

days (e.g. Churkina et al. [2005]). Our study builds on the current understanding that some 

critical periods within the current or the past year (e.g. winter frost, spring drought) may 

explain the inter-annual variability of C uptake of forests better than average conditions over 

the current year only [Le Maire et al., 2010]. The effect of climatic conditions from previous 

seasonal periods on current year´s annual net ecosystem productivity (NEPc) are called carry-

over effects and were quantified e.g. by Shao et al. [2016]; Thomas et al. [2009]; Zielis et al. 

[2014]. Such carry-over effects support the influence of specific periods in the past on current 

year´s NEPc, and their influence have been demonstrated a long time ago by tree-ring 

analyses, e.g., for Danish forests [Holmsgaard, 1955]. Here, we use positive NEP is defined 

as net C uptake, while negative NEP is a net C release to the atmosphere (NEE is defined 

with the opposite sign in Aubinet et al. [2012]). Further, NEPc is defined as the cumulative 

sum of NEP fluxes throughout the annual cycle – not necessarily a calendar year – yielding 

net C flux between the atmosphere and the forest. To account for the temporal integration of 

the average NEPc over an annual cycle, values are expressed in g C m
-2

 yr
-1

, whereas half-

hourly NEP measurements are given in g C m
-2

 s
-1

 (as calculated from µmol m
-2

 s
-1

).  

1.1 The concept of cDOY 

Following the concept of previous year’s weather conditions influencing current year NEPc, 

we explored the information content of cDOY, defined as the day of year when the net 

carbon losses accumulated during the wintertime are compensated by net assimilation in 

spring. The timing of cDOY is assumed to change with climatic conditions of previous 

periods (of unknown length) and may have a direct impact on the current year NEPc [Zielis et 
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al., 2014]. Similar approaches were described in literature, e.g. the ‘zero-crossing time’, 

wherein net ecosystem exchange is used to define the time when the forest ecosystem turns 

from a C-source in winter into a C-sink in spring [Gonsamo et al., 2012a; Gonsamo et al., 

2012b]. Another approach quantifies the so-called ‘start of the carbon uptake period’ (CUP) 

which is determined by a sharp increase in gross primary production (GPP) [Delpierre et al., 

2009]. However, these approaches rely on instant net ecosystem exchange rates only, and do 

not accumulate carbon loss over an entire wintertime, as it is the case of in the cDOY 

approach.  

1.2 Integration methods for NEPc 

Traditionally, NEPc is integrated annually over a time period of the Gregorian calendar year 

(classical integration as shown in Fig. 1). This is more a practical choice, but it neither 

reflects any particular connection to underlying carbon cycle processes, nor does it take into 

account potential carry-over effects on NEPc. As an example, trees prepare their buds in 

autumn and thus the predisposition for growth (and thus NEPc) during the following season is 

determined in autumn already. Thus, it is important to consider the start and end of the 

accumulation period of NEPc. In line with these thoughts, Urbanski et al. [2007] introduced a 

method integrating NEPc at Harvard Forest from October 28 to October 27 of the following 

year (Urbanski integration in Fig. 1), trying to come closer to a more reasonable biological 

time reference of the annual NEP cycle. This integration period is similar to the hydrological 

year as starting on November 1 in the northern hemisphere. Thomas et al. [2009] found that 

inter-annual and seasonal variations in carbon and water processes were best explained when 

seasonality was defined functionally within hydrological years.  

More recently, a dynamic integration approach was introduced by Zweifel et al. [2010] in 

order to relate continuous stem diameter fluctuations to NEPc. The frequently occurring stem 

shrinkages induced by winter frost [Zweifel and Hasler, 2000] made the classical integration 

approach from 1
st
 of January to 31

st
 of December inapplicable for an unbiased analysis of 

annual stem growth increments (bark and wood) in relation to NEPc. An integration over a 

variable period was therefore proposed (Fig. 1), starting with the day when NEPc of the 

previous calendar year reached its maximum and ending with the day in the current year 

when maximum NEPc was achieved (dynamic integration in Fig. 1). Thus, the dynamic year 
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corresponds more closely to the actual biological cycle, which does not exactly count 365.25 

days per year. This dynamic integration method is appropriate to time series of stem 

increments and NEPc data from eddy covariance flux measurements. It was concluded that 

the application of this approach reduces distortion effects on annual sums, due to apparent 

inter-annual variations in carbon losses and stem shrinkages during wintertime [Zweifel et al., 

2010], i.e., shifts in uptake and loss periods that arbitrarily affect the sums calculated over a 

fixed calendar period. We use the terms ‘year’ and ‘annual’ in combination with all three 

integration methods, for the sake of readability, being aware that the terms usually are 

implicitly used for periods of Gregorian calendar years from 1
st
 of January to 31

st
 of 

December.  

The way of splitting time series into annual integration periods also changes the potential 

contribution of winter carbon losses for the total annual C uptake and the cDOY timing in the 

following year (Fig. 1). Indeed, the classical integration period splits the net carbon loss of a 

winter period in two parts, assigning them to two different NEPc years, whilst the dynamic 

(and Urbanski) integration method assigns net carbon loss for all the winter period entirely to 

the NEPc of the biological year that will last until the onset of the next winter period. 

Accordingly, cDOY changes with the respective integration method (Fig. 1) and might have a 

different explanatory power for NEPc.  

In this study, we used in total 26 eddy covariance forest sites with 25 sites throughout 

Europe, and North America (Fig. 2), and additionally one site from Australia, thus covering a 

wide range of climatic conditions (Table 1) to investigate the meaning of cDOY for NEPc and 

its underlying drivers. We used the cDOY timing as the key measure associated with the net 

carbon loss period and related it to climatic conditions and NEPc. We addressed the following 

specific objectives: (1) application of three different NEPc integration methods (classical, 

Urbanski, and dynamic) in order to calculate and compare the respective cDOYs; (2) 

identification of climatic and biological drivers for cDOY across sites and across different 

years; (3) evaluation of different cDOY as a predictor for its associated NEPc; and (4) the 

weight of winter net respiratory losses on current year’s NEPc.  
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2 Materials and Methods 

2.1 Study sites  

The study is based on carbon dioxide (CO2) flux data from 347 site-years from 26 eddy 

covariance (EC) forest sites ('managed forest not affected by major disturbances like fire or 

wind throw) within Europe, North America, and Australia (Table 1, Fig. 2). The selected sites 

fulfilled the following criteria: (1) at least four years of continuous EC data; (2) availability 

of Level 4 (L4) data quality according to the European Fluxes Database [European Fluxes 

Database Cluster, 2014] or available from the FluxNet2015 dataset 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/); and (3) available meteorological and 

forest characteristics data. The forest vegetation at the sites was classified as deciduous 

broad-leaf forests (DBF, n=7), mixed forest (MF, n=3), evergreen needle-leaf forests (ENF, 

n=13), and evergreen broad-leaved forest (EBF, n=3). 

2.2 CO2 flux measurements 

Half-hourly or hourly CO2 flux data (net ecosystem exchange rates summed up to net 

ecosystem productivity, NEP), derived from both open- and closed-path gas analyzers were 

downloaded from the FluxNet2015 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/) or in L4 quality from the European Fluxes Database (http://www.europe-

fluxdata.eu/home). These data were already filtered and gap-filled (Table 1). For three sites 

(CH-DAV, CH-LAE, PL-TUC, all open-path gas analyzers) our own site-specific processing 

was conducted: data were filtered for unfavorable atmospheric conditions such as snow, 

heavy rain and/or dust which increased window dirtiness of the infra-red gas analyzer > 70%. 

For these three individual sites, the threshold for insufficient nocturnal turbulent mixing of 

the atmosphere (determined via the friction velocity u* for mechanical turbulence) was 

determined with the online EC gap-filling and flux partitioning tool (Markus Reichstein, Olaf 

Menzer, http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/) [Reichstein et al., 2013; 

Reichstein et al., 2005] and was found to be 0.2 m s
-1

. 
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2.3 CO2 flux integration 

Annual NEPc was integrated with three different methods (Fig. 1): classical method: NEPc is 

integrated from January 1 to December 31; Urbanski method: NEPc is integrated from 

October 28 to October 27 one year later [Urbanski et al., 2007]; dynamic method: integration 

of NEPc from the DOY with the maximum seasonal peak of the previous year (typically in 

fall; MAXNEPc) to the DOY with MAXNEPc of the current year (Fig. 1). The dynamic 

integration method led to ‘annual cycles’ ranging from 7 to 16 months depending on year and 

site; the overall average was 364 days (Supplement Fig. S2). For the Southern hemisphere 

site AU-Tum, the year has been shifted half a year forward, i.e. the classical year started with 

July 1 and the dynamic ‘integration period’ started with the maximum peak (MAXNEPc) 

before July 1. The Urbanski integration method was not applied for this site. 

2.4 Statistical analyses 

Statistical analyses were performed using the statistical software R, version 3.3.1 [R 

Development Core Team, 2013]. All multiple regression models were based on linear 

relationships. Adjusted R
2
 (adjR

2
) was used for the quantification of goodness of fit. 

Analyzed potential drivers for cDOY are listed in Table 1. Their respective impacts on cDOY 

were analyzed with multiple regression models based on the inclusion of explaining variables 

in a stepwise way. The so-called standardized regression coefficients (β-coefficients) were 

used to determine the relative importance of variables (var) within the models, ranging 

between –1 as the highest negative and +1 as the highest positive correlative importance 

[Quinn and Keough, 2002]. A β-coefficient close to zero indicates that the variable does not 

add to the quality of the model.  
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3 Results 

3.1 Compensation of net carbon loss after wintertime 

The day of year when respiratory carbon losses from the previous winter were compensated 

(cDOY) differed strongly across sites (Table 2, Fig. 3). cDOY varied from January 3 (AU-

TUM/July 3) to July 25 (CA-QFO), with a mean of May 3 (obtained by averaging all three 

integration methods, Fig. 3). Some sites showed no or irregular cDOY timings, meaning that 

they observed no distinct respiratory carbon loss period every year (Table 2). Evergreen 

forests (3xEBF, 13xENF) in general had an earlier cDOY (April 18) then deciduous forests 

(7xDBF, June 28). Only nine out of the 26 sites compensated on average their net carbon 

losses in the climatologically defined spring calendar months (Mar–May) (Table 2). Six sites 

compensated before spring, while eleven compensated after May. The yearly standard 

deviation of cDOY for individual sites ranged from six days (DE-HAI) to more than 50 days 

(PT-ESP) (Table 2).  

Further, cDOY strongly depended on the integration method. In general, the classical 

integration method led to a cDOY almost three weeks earlier than those obtained with the 

dynamic method (classical: April 16, dynamic: May 10). The average cDOY obtained from 

the Urbanski integration method (May 5) was almost the same as that from the dynamic 

method (data now shown). Much less affected were the mean differences (Urbanski vs. 

classical: -54 g C m
-2

 yr
-1

, dynamic vs. classical: -91 g C m
-2

 yr
-1

) and the standard deviations 

(Urbanski vs. classical: -7 g C m
-2

 yr
-1

, dynamic vs. classical: -10 g C m
-2

 yr
-1

) of NEPc 

between the different integration methods (see also Supplementary Figs for each site). 

3.2 Drivers of cDOY 

Average cDOY was substantially correlated with mean annual air temperature (R
2
 between 

0.4 and 0.45). The relationship was largely independent of the integration method used (Table 

3) and the later cDOYs corresponded to the cooler sites (Fig. 3a). Other site characteristics 

considered (latitude, longitude, altitude, tree age, nitrogen deposition, tree height, and mean 

annual precipitation) showed weak (or no) linear relationship to cDOY and did not improve 

the stepwise multiple linear regression models to explain cDOY (Table 3). 
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The meaning of mean annual site temperature (MAT) for cDOY was markedly increased 

when the pooled data over all sites were grouped into the four forest types (Fig. 3a): 

evergreen needle-leaf forest (ENF, all included), evergreen broad-leaf forest (EBF), mixed 

forest (MF) showed R
2
 between 0.64 and 0.99. No significant correlation was found between 

MAT and cDOY for the deciduous broad-leaf forests (DBF; R
2 

= 0.07, p > 0.05). 

In Fig. 3b, those sites without a distinct winter respiratory loss period, and thus with no 

consistent cDOY timing (Table 2) were removed (all EBF and more than 50% of the ENF 

sites). All of these sites are evergreen, with a majority having MAT over 8-10°C, hence, in 

winter, these sites likely photosynthesize. The remaining six ENF sites (CA-QFO, CH-DAV, 

FI-HYY, RU-FYO, SE-NOR, US-NR1) with a distinct winter respiratory loss and a latter 

cDOY, increases to an adjR
2
 of 0.90 for the linear relationship between MAT and cDOY 

(Fig. 3b). 

3.3 Relationship between cDOY and NEPc  

The 26 sites analyzed in this study included C sink and C source sites (Table 2). The largest 

net annual respiratory loss was at RU-FYO with a consistent average C output of 137 g C m
-2

 

yr
-1

. The largest net C uptake was at AU-Tum with 1007 g C m
-2

 yr
-1

.  

Stepwise multivariate analysis showed that cDOY, among the site characteristic variables 

available, explained most of NEPc for all integration methods (Table 4). Sites with distinct 

winter respiratory loss, explained significantly more of NEPc than all other sites. cDOY 

obtained from the two integration approaches that initiated the NEPc-year in autumn 

(Urbanski and dynamic) explained NEPc significantly better (adjR
2
 = 0.35 and 0.47) than 

cDOY from the classical integration approach (adjR
2
 = 0.23). When the ENF (Table 4d) and 

DBF (Table 4e) sites were analyzed separately (using the dynamic integration), the R
2 

of the 

linear regressions was further improved (R
2
 of 0.58 and 0.68, respectively).  
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Mean annual temperature (MAT) was the secondary determinant variable of NEPc in 

stepwise multiple linear regression models (Table 4). The ranking of site factors, with minor 

contributions, such as leaf area index (LAI), mean annual precipitation (MAP) and stand age 

followed next, however the ranking depended on the integration method. An exception was 

the DBF sites (Table 4e): MAT had no explanatory weight for NEPc at these sites, in line 

with the finding that cDOY of these forests were not determined by MAT (Fig. 3).   

When analyzing individual sites instead of pooled data, the site-specific relationships 

between cDOY and NEPc showed a high variability and ranged from not existing to excellent 

(annual resolution, Tab. 1, Fig. 4, Fig. 5). There appeared clear clusters of points (in the 

scatterplot of cDOY vs. NEPc, according to the forest types in Fig. 4): evergreen forests (ENF 

and EBF) had the lowest cDOY with the highest NEPc. Deciduous broad-leaf forest (DBF) 

had the highest cDOYs with on average lower NEPc. Mixed forest (MF) had average cDOYs 

with relatively high NEPc.  

The site-specific quality of the relationships between cDOY and NEPc was largely explicable 

by grouping the pooled data according to sites with and without a distinct net respiratory 

carbon loss over wintertime (Table 2). The separation criterion for the two groups was a net 

respiration loss of 10% of the annual NEPc (Table 2). Sites with distinct winter respiration 

loss had on average a stronger correlation between cDOY and NEPc (R
2 

0.53 vs. 0.37; 

dynamic method), and were on average 4°C cooler than sites with no distinct winter 

respiration loss (Tables 1 and 2).  

3.4 Quality of NEPc predictions from cDOY  

The quality of NEPc predictions from cDOY were tested by comparing measured and 

modelled NEPc per site and year with a leave-one-year-out cross-evaluation (Fig. 5). There 

were two very clear results: (i) the Urbanski and the dynamic integration methods led to 

distinctly better NEPc prediction then the classical integration method over the 

Gregorian/orbital calendar year. And; (ii) NEPc predictions from cDOY were stronger for 

sites with a distinct respiratory carbon loss over wintertime. Thereby, sites where the forest 

did not become a C-source for a distinct period, and thus did not lose at least 10% of annual 

NEPc every year, failed to show a strong prediction of NEPc from cDOY.  
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4 Discussion 

There is increasing evidence that a considerable proportion of the inter-annual variability of 

NEPc cannot be explained by the current year’s climatic variability alone, but needs 

considering previous periods’ weather factors. Predisposition of growth by the determination 

of buds in autumn of the past year [Thomas et al., 2009; Zweifel et al., 2006], carry-over 

effects on physiology in years following climate extremes [Law et al., 2002; Thomas et al., 

2009; J Wu et al., 2012; Zielis et al., 2014], C-storage pools accumulated over several years 

[Campioli et al., 2009; Hoch et al., 2003], sapwood related hydraulic traits [Zweifel et al., 

2006], and winter chilling effects (vernalization) [B I Cook et al., 2012] are examples of 

potential causalities between conditions back in time and the current-year NEPc. In order to 

better understand the intra-annual variability of NEPc and its drivers, we introduced the day 

of compensation (cDOY), i.e., the day of the current year (typically in spring) when net 

carbon losses during wintertime are compensated by carbon assimilation in spring or early 

summer (Fig. 1). cDOY reflects the complete winter conditions and the related accumulated 

CO2 losses, in combination with the onset and rate of CO2 assimilation in spring (Table 2). 

Therefore, cDOY is not directly comparable with studies focusing on the onset of GPP or the 

change in NEP/NEE from a C-source to a sink in spring [Delpierre et al., 2009; Gonsamo et 

al., 2012a; Gonsamo et al., 2012b] since these approaches do not account for the amount of 

accumulated respiratory C losses over wintertime. In the following we discuss the meaning of 

cDOY and its impact on the interpretation of NEPc. 

4.1 Mean annual site temperature determining cDOY 

The loss of C during wintertime and the respective cDOY was found to be statistically highly 

independent of most of the site characteristics like mean annual precipitation, nitrogen 

deposition, leaf area index, age, or tree height (Table 3). Only MAT was significantly related 

to cDOY (R
2
 about 0.4, pooled data for all sites, Table 3) particularly when the sites were 

grouped according to their forest types (R
2
 up to 0.99, Fig. 3, with one exception, see below).  

The importance of air and soil temperatures for the recovery of trees from the inactive 

physiological winter dormancy back into a physiologically active status is well documented 

[D D Baldocchi et al., 2005] and covers issues such as rehydration of tissues [Koike, 1990; 

Lundmark et al., 1988; Suni et al., 2003; Zweifel et al., 2000]), bud burst [Basler and Körner, 
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2014], assimilation [Monson et al., 2011a], flowering [B I Cook et al., 2012], length of the 

vegetation/growth period [Aurela et al., 2004; D Baldocchi and Wilson, 2001; Churkina et 

al., 2005; Monson et al., 2011a], growth [Zweifel et al., 2010], and probably many more. All 

these processes are, finally, determining cDOY with different weights, since they are 

influencing quantities and timing of ecosystem respiration and assimilation, explaining the 

influence of MAT on cDOY well. 

4.1.1 One exception: the deciduous broad-leaf forests 

There was one exception from the generally close relationship between MAT and cDOY: 

MAT had no impact on cDOY for deciduous broad-leaf forests (DBF, n=7) (Fig. 3) but 

cDOY had a high explanatory power for NEPc, particularly with the dynamic integration 

method (Table 4e). This finding was unchanged when considering DBF filtering for those 

sites with a distinct winter respiratory carbon loss of more than 10% of the annual NEPc (Fig. 

3b, negative sign = respiratory loss/positive NEPc). Overall, this means that cDOY is strongly 

forest-type specific and that cDOY includes information not covered by the site 

characteristics investigated and thus offers a new dimension in interpreting NEPc. This seems 

to be particularly true for the DBF sites. The seven DBF forests included in this study (IT-

COL, US-MMS, DE-HAI, US-HA1, US-WCR, DK-SOR, US-UMB) consisted of beech 

(Fagus sylvatica), maple (Acer spp.), oak (Quercus spp.), ash (Fraxinus spp.), basswood 

(Tilia americana) and sourwood trees (Oxydendrum arboreum). We suggest two potential 

explanations why the cDOY of these forests does not depend on MAT. First, (i) the group of 

DBF sites might still be too heterogeneous in terms of their species composition to show a 

concise MAT-cDOY relationship. The limited number of replications (n=7) for this group 

does, however, not allow for further differentiations. And second, (ii) cDOY reflects 

processes which are indeed independent of MAT for this forest type, e.g., due to biological 

predispositions of water and carbon storage which have their origin before the time period 

investigated [Keenan et al., 2012; Urbanski et al., 2007; Zielis et al., 2014; Zweifel et al., 

2010], or due to genetic predispositions which determine the regulation of physiological 

activity independently of temperature [Basler and Körner, 2014], or in a way that positive 

and negative temperature effects level each other off. A convincing chain of arguments for 

the second explanation was recently brought up by B I Cook et al. [2012]. They showed that 

increasing temperatures during winter and spring induce opposite effects in certain species. 
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Warmer winter conditions can lead to an insufficient vernalization, i.e., chilling requirements 

that must be met before a plant is able to respond to spring warming, which in turn leads to a 

delayed initiation of phenological processes in spring despite the positive effect of increased 

spring temperatures. Further, for beech trees [Basler and Körner, 2014] recently reported a 

co-determination of beech bud burst by the photoperiod, and, therefore, a partial decoupling 

from temperature. Such a partial decoupling from temperature in terms of physiological 

processes could be, in terms of physiological processes, a species-specific explanation for a 

predisposition disturbing the generally valid relationship between MAT and cDOY. The 

effect of climate change on the relationship between cDOY and NEP might thus also depend 

on species-specific physiological responses and acclimation potentials. It is however difficult 

to understand how heterotrophic respiration (RH) in the soil is triggered by the mentioned tree 

physiological processes. Apart from temperature, RH might be stimulated by rhizosphere 

processes such as root exudates and mycorrhiza, which in turn might be more closely coupled 

to the tree physiological status in DBF. Further field studies are needed to test this 

hypothesis. 

4.3 Timing of cDOY 

In general, evergreen forests (EBF and ENF) had earlier cDOYs than the deciduous forests, 

and mixed forests with evergreen and deciduous species were in between (Fig. 4). 

Photosynthesis of evergreens during winter varies with climatic region, but can be 

substantial. Thus, the early cDOYs of the evergreens may be explained by the ability of 

evergreen trees to start earlier in the season with assimilation [Richardson et al., 2010] or 

even maintain it during mild winters [Pallardy, 2010]. Photosynthetic capacity can be 

attained after just a few days of sufficient environmental conditions [Ottander et al., 1995; 

Ottander and Oquist, 1991; Suni et al., 2003]. 

Forest types, excepting DBF, and cDOY are both found to be linked to MAT (Fig. 3, Table 

3). Evergreen broad-leaf forest (EBF), for instance, grow at relatively warm sites, and do not 

have a consistently occurring winter respiratory carbon loss period and thus show no 

consistently cDOY timings in each year (Fig. 3). Typical examples are the eucalypt sites in 

Australia and Portugal (Table 2, Supplementary Fig. S AU-TUM and S PT-ESP). These sites 

show an almost full year growth period or at least do not turn into C-sources once every year, 
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and the cDOYs, which can hardly occur, happen thus hardly any year. At the other end of the 

biological scale appear the deciduous broad-leaf tree sites (DBF) with the latest cDOYs (Fig. 

4) at the generally cooler sites (Fig. 3). The existence of a cold season is the main reason for 

forming a deciduous canopy. Deciduous forests need more time in spring for bud burst and 

leaf flushing, for the development of the photosynthetic apparatus, and the onset of 

photosynthetic activity [Basler and Körner, 2014; Epron et al., 1996; Jurik, 1986; Koike, 

1990; Reich et al., 1991]. The evergreen needle-leaf forests (ENF) have the widest temporal 

range for cDOY (Fig. 4), again in line with the widest range of occurring MAT (Fig. 3a).  

4.4 Strengths and limitations of cDOY to predict NEPc 

The explanatory power of cDOY as a predictor of NEPc was strongly depending on whether 

the site had a net carbon respiratory loss higher than 10% of the annual NEPc or not (Figs. 4 

and 5). For sites with a distinct net carbon loss over wintertime (Fig. 5a) the estimated annual 

NEPc from cDOY reached accuracies of ±75 g C m
-2

 yr
-1

 which are comparable to some of 

the most successful (but much more complex) NEP models [Keenan et al., 2012]. For the 

other sites without a distinct winter respiratory loss, the standard deviation between modeled 

and measured NEPc was a factor 2 to 3 higher (Fig. 5b), which leads to the conclusion that 

cDOY is of limited explanatory power in these cases. This could be explained partly by the 

large variation in winter photosynthesis in temperate evergreens, and by the fact that 

evergreen needle-leaf species grow in some of the harshest conditions, such as the western 

US where summer drought is the norm [Law and Waring, 2015]. 

Besides the importance of the winter net respiratory C loss, the forest type had a strong 

influence on the predictive power of cDOY on NEPc. Pooled data reached an R
2
 of 0.47 

(dynamic integration) for the linear regression between cDOY and NEPc (Table 4), whereas 

the grouped data for ENF (R
2
 = 0.58, dynamic integration, Table 4e) and DBF (R

2
 = 0.68, 

dynamic integration, Table 4d) were much higher. This again indicates that the information 

content of cDOY, i.e., the net effect of winter and spring processes, depends on the forest 

type and the respective species composition (Fig. 4). Both winter respiratory loss and 

vegetation type are related to temperature and therefore linked to each other (Fig. 3). It is 

therefore not surprising that besides cDOY as the variable with the highest explanatory power 

for NEPc, mean annual temperature appeared as the second best driver in our stepwise 
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multiple regression analyses (Table 4). The addition of other site factors, namely 

precipitation, age or LAI improved the multiple regressions further. Generally, the goodness 

of fit between cDOY and NEPc increased with the timing of later cDOYs, and with 

decreasing air temperatures (Table 4).  

We conclude that lower mean annual temperatures lead to generally more pronounced winter 

net respiratory losses and it appears plausible that this is linked to later cDOYs. This is also in 

line with studies analyzing the onset of forests as a C-sink in relation to winter and spring 

temperatures [D D Baldocchi et al., 2005; B I Cook et al., 2012; Delpierre et al., 2009; 

Monson et al., 2011b]. Or the other way around, the warmer the site the less distinct the 

carbon loss period may be the earlier cDOY happens and the less likely the influence of 

cDOY  on annual carbon uptake. Furthermore, we conclude that latter cDOYs are linked to 

lower annual NEPc and, thus, the influence of cDOY on the annual NEPc increases with its 

timing.  

cDOYs of deciduous broad-leaf forests (DBF) showed the highest prediction quality for 

NEPc (Table 4e) despite the fact that the respective cDOY did not correlate with mean annual 

temperature (Fig. 3) nor other site variables like for other forests types (Table 4d) or the 

pooled data (Table 4 a,b,c). Sites at higher altitudes (e.g. US-NR1, US-Me2) experience large 

inter-annual variation in the physiological active period, for example, 45 days at US-Me2 

[Thomas et al. 2009] and studies in the mountains of the western US have shown declining 

snowpack for decades and its correlation with warm temperature anomalies. Further at US-

NR1, longer growing seasons were correlated with low snow water equivalent and resulted in 

less annual net carbon uptake [Hu et al., 2010]. Overall, such processes may confound an 

explanatory power of MAT for cDOY and NEPc in certain cases, however we found no 

generally convincing explanation for the relationship between cDOY (its not found drivers) 

and NEPc. Even when not understanding why DBF sites appear as a special case, we 

conclude that cDOY timing must in general depend on variables (eventually beyond the ones 

we analysed) containing information about the site and its past (climatic) history, including 

genetic predispositions leading to this high predictive power for NEPc. 
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In summary, there are many indications for winter effects on NEPc of forests and related to it 

on the cDOY timing. The compensation day (cDOY) is suggested to capture air temperature 

and intrinsic forest type-dependent differences, leading to a specific date in the first part of 

the calendar year, with a high explanatory power for the upcoming annual NEPc values of the 

entire year for forest sites under distinct respiratory net carbon losses during wintertime.  

4.5 Starting the NEPc year in autumn 

Three different ways of integrating NEP over a year were applied: the static ‘classical’ 

calendar-year method (January 1 to December 31), the static ‘Urbanski’ method (October 28 

to October 27) and the more process-oriented ‘dynamic’ method, defining the ‘biological’ 

year as the period between two annual NEPc peaks. There appeared distinctly better fits 

between cDOY and NEPc for the two methods starting the NEPc-year in autumn (Table 4). 

The classical method performed generally worse for all types of analyses (Tables 3, 4; Fig. 

5). The additional gain of predictive quality for the dynamic method over the static Urbanski 

method was relatively small. This means that it is important to include the complete autumn 

and winter period before the actual C-sink period for interpreting NEPc, but doing so with a 

static approach captures more or less the same information as when doing so with the site- 

and year-specific dynamic method (which can be more labor-intensive to deal with).  

4.6 Conclusions 

The compensation day cDOY reflects processes, which take place before the net C-sink 

period begins in forests in spring and early summer. The fact that cDOY explains more of 

NEPc when starting the NEPc-year in autumn shows that the (autumn-winter) period already 

before January 1
st
 plays an important role for the following NEPc performance. cDOY 

analysis takes seasonal and inter-annual variations of the carbon cycle dynamics into account, 

and is therefore suggested to take up carry-over effects of climate and carbon storage in 

temperate forests [Keenan et al., 2012; Urbanski et al., 2007; Zielis et al., 2014; Zweifel et 

al., 2010]. Such carry-over effects seem to be less important in forests with no distinct winter 

net respiratory loss of C (C-loss less than 10% of annual NEPc). This is in line with the 

finding that cDOY gains explanatory power for NEPc at sites with distinct winter respiratory 

C losses. The fact that biological processes, occurring before the annual net assimilation 

period begins, are able to explain more than 50% of the annual NEPc, should change our view 
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on the drivers of NEPc. Weather conditions during the main assimilation period of a forest 

seem to tell only half the story of the annual NEPc. Thus, an accurate NEPc interpretation 

additionally needs to include the conditions that affected a forest before this period.  
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Table 1. Selected characteristics of the study sites (see also Fig. 2). Site names are abbreviated with the FLUXNET codes. Forest types are abbreviated as: DBF = deciduous broad-leaf forests, ENF = evergreen needle-leaf 

forests, MF = mixed forests, and EBF = evergreen broad-leaf forests. Further terms in the header have the following meaning: Lat. = Latitude (degrees, WGS84); Long = longitude (degrees, WGS84) of the site. Years used = 

data of the indicated years used in this study. MAP = mean annual sum of precipitation (mm). MAT = mean annual air temperature (°C) at the top of the eddy towers; Altitude = meter above sea level (m asl); Age = average 

age of the mature trees in the stand (years); Height = maximum tree height (m); LAI = leaf area index (m m
-2

); N = mean annual nitrogen deposition (kg ha
-1

 yr
-1

), most data and where stated from Flechard et al. [2011]; Data 

access: NEPc data were obtained from European Database Cluster in Level 4 quality, from the FluxNet2015 dataset, or from the respective PIs incl. own sites (see Material and Method). Site characteristics were obtained 

from https://fluxnet.ornl.gov, from the *FluxNet2015 Metadata excel sheet, from http://www.bgc-jena.mpg.de/public/carboeur/sites/SITE.html or from *personal communication (pc). Not available data are indicated with ―–

―. 

Code Name Forest Type Lat. Long. 
Years 
Used MAP MAT Altitude Age Height LAI N Data access Data in this table from… 

AU-TUM Tumbarumba EBF -35.66 148.15 2002-2013 1924 9.6 1249 100 40 2.5 -- FluxNet2015 Beringer et al., 2016; FluxNet2015 meta*; pc* 

BE-VIE Vielsalm MF 50.31 6 1997-2014 1062 7.8 493 95 35 4.6 10.2 FluxNet2015 Flechard et al., 2011; FluxNet2015 meta; pc 

CA-GRO 

Ontario, Groundhog River, Boreal Mixedwood 
Forest MF 48.22 -82.16 2004-2013 831 1.3 340 84 32 -- -- FluxNet2015 

McCaughey et al., 2006; Gökkaya et al., 2014; Gökkaya et al., 2015; 
FluxNet2015 meta; pc 

CA-QFO Quebec, Eastern Boreal, Mature Black Spruce ENF 49.69 -74.34 2004-2010 962 -0.36 382 105 13.8 3.7 -- FluxNet2015 Coursolle et al., 2012; FluxNet2015 meta; pc 

CH-DAV Davos ENF 46.81 9.86 1997-2011 1046 3.5 1662 240 25 3.9 1.5 own site own site; FluxNet2015 meta 

CH-LAE Lägeren MF 47.48 8.37 2004-2011 1211 8.7 682 140 31 3.6 14.3 own site own site; Flechard et al., 2011; FluxNet2015 meta 

CZ-BK1 Bily Kriz ENF 49.5 18.54 2001-2010 1316 6.7 875 30 10 7.5 10.5 download, L4 Flechard et al., 2011; pc 

DE-HAI Hainich DBF 51.08 10.45 2000-2012 720 8.3 430 125 33 6 12.6 FluxNet2015 

Knohl et al., 2003; Mund et al., 2010; Flechard et al., 2011; Herbst et al., 
2015; FluxNet2015 meta; pc 

DE-THA Tharandt ENF 50.96 13.57 1997-2014 820 7.7 385 125 26.5 7.6 12.5 FluxNet2015 

Grünwald and Bernhofer, 2007; Flechard et al., 2011; FluxNet2015 meta; 
pc 

DK-SOR Soroe DBF 55.49 11.65 1997-2014 660 8.2 40 100 35 4.8 14.6 FluxNet2015 Pilegaard et al., 2011; FluxNet2015 meta; pc 

ES-ES1 El Saler ENF 39.35 -0.32 2000-2007 551 17.9 1 100 10 3.5 16.9 download, L4 FluxNet2015 meta; pc 

FI-HYY Hyytiälä ENF 61.85 24.3 1997-2014 709 3.8 181 40 14 2.5 3.5 download, L4 Flechard et al., 2011; FluxNet2015 meta; pc 

FR-PUE Puechabon EBF 43.74 3.6 2000-2014 883 13.5 270 73 5.5 2.9 -- FluxNet2015 Flechard et al., 2011; FluxNet2015 meta; pc 

IT-COL Collelongo DBF 41.85 13.59 1997-2011 1180 6.3 1645 105 25 5 5.3 download, L4 Scartazza et al., 2016; Flechard et al., 2011; FluxNet2015 meta; pc 

IT-LAV Lavarone ENF 45.96 11.28 2003-2014 1291 7.8 1353 100 28 8.1 15.4 FluxNet2015 FluxNet2015 meta; pc 

IT-REN Renon ENF 46.59 11.43 1999-2013 809 4.7 1730 200 31 5.1 4.8 FluxNet2015 Flechard et al., 2011; FluxNet2015 meta; pc 

NL-LOO Loobos ENF 52.17 5.74 1997-2013 966 10 25 90 18 1.9 32.4 FluxNet2015 Flechard et al., 2011; FluxNet2015 meta; pc 

PL-TUC Tuczno ENF 53.21 16.1 2008-2011 625 7.8 105 54 20 1.1 8.5 STSM, direct FluxNet2015 meta; pc 

PT-ESP Espirra EBF 38.64 -8.6 2002-2008 665 15.4 85 12 20 3.1 7.2 download, L4 Pita et al., 2013; Rodrigues et al., 2011; Flechard et al., 2011; pc 

RU-FYO Fyodorovskoye ENF 56.46 32.92 1998-2014 711 3.9 265 196 25.7 3.5 8.3 FluxNet2015 Flechard et al., 2011; FluxNet2015 meta; pc 

SE-NOR Norunda ENF 60.09 16.22 1996-2011 527 5.5 45 100 25 5 3.4 STSM, direct Lagergren et al., 2008; Flechard et al., 2011; pc 

US-HA1 Harvard Forest EMS Tower (HFR1) DBF 42.54 -72.15 1992-2012 1071 6.62 340 80 18 3.7 6.4 FluxNet2015 Munger et al., 1996; Munger et al., 1998; FluxNet2015 meta, pc 

US-ME2 Metolius-intermediate aged ponderosa pine ENF 44.45 -121.55 2002-2014 523 6.28 1253 90 14 3.2 1 FluxNet2015 Schwarz et al., 2004; Thomas et al., 2009; FluxNet2015 meta; pc 

US-MMS Morgan Monroe State Forest DBF 39.92 -86.41 1999-2014 1032 10.9 275 90 27 4.7 6 FluxNet2015 

Schmid et al., 2000; Dragoni et al., 2011; Brzostek et al., 2014; Roman et 
al., 2015; FluxNet2015 meta; pc 

US-NR1 Niwot Ridge Forest (LTER NWT1) ENF 40.03 -105.55 1999-2014 800 1.5 3050 115 13 4 6 FluxNet2015 Sievering et al., 2001; FluxNet2015 meta; pc 

US-UMB Univ. of Mich. Biological Station DBF 45.56 -84.71 2000-2014 803 5.38 234 93 22 3.5 7.5 FluxNet2015 

Gough et al., 2008; Nave et al., 2009; C M Gough et al., 2013; FluxNet2015 
meta; pc 

US-WCR Willow Creek DBF 45.8 -90.08 1999-2014 787 4.02 520 70 24.2 5.36 -- FluxNet2015 B D Cook et al., 2004; FluxNet2015 meta; pc 
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References in Tab 1.: [Beringer et al., 2016; Brzostek et al., 2014; B D Cook et al., 2004; Coursolle et al., 2012; Dragoni et al., 2011; Flechard et al., 2011; Gökkaya et al., 2014; Gökkaya et al., 2015; C Gough et al., 2008; C 

M Gough et al., 2013; Grünwald and Bernhofer, 2007; Herbst et al., 2015; Keith et al., 2012; Knohl et al., 2003; Lagergren et al., 2008; McCaughey et al., 2006; Mund et al., 2010; Munger et al., 1998; Munger et al., 1996; 

Nave et al., 2009; Pilegaard et al., 2011; Pita et al., 2013; Rodrigues et al., 2011; Roman et al., 2015; Scartazza et al., 2016; Schmid et al., 2000; Schwarz et al., 2004; Sievering et al., 2001; Thomas et al., 2009]  
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Table 2. NEPc averages, cDOY averages, and relationships between compensation days (cDOY = day of year when winter respiratory losses were compensated) and integrated net ecosystem productivity (NEPc) for each site 

and integration method (classical, Urbanski, dynamic). Mean NEPc = mean annual net ecosystem productivity and standard deviation (g m
-2

 yr
-1

), averaged over all three integration methods (classical, Urbanski, dynamic); n 

cDOYs = how many cDOYs could be calculated for each of the integration methods; Mean cDOY = mean NEPc compensation day of the years investigated incl. standard deviations. Average SD NEP = standard deviation of 

NEPc averaged over all three integration methods; % winter respiratory loss = average percentage of winter respiratory loss from average NEPc; Classification into whether the site is a site with or without distinct winter 

respiratory loss (threshold is <10%). 

Site Mean NEPc n cDOY cla. n cDOY Urb. n cDOY dyn. cDOY R2 cla.R2 cla. p cla. R2 Urb.R2 Urb. p Urb. R2 dynR2 dyn p dyn. Average SD NEPc % winter resp. Loss Classification 

AU-TUM 1006.7 ±273.4 12 -- 12 Jul 03 ±6 0.05 0.48 -- -- 0.05 0.51 159.9 5.4% without 

BE-VIE 461.9 ±155.6 18 18 18 Apr 29 ±28 0.62 0.00 0.73 0.00 0.74 0.00 173.3 -19.8% with 

CA-GRO 120.6 ±47.3 10 10 10 Jun 27 ±15 0.40 0.05 0.52 0.02 0.70 0.00 52.8 -143.6% with 

CA-QFO 2.8 ±14.5 7 7 3 Jul 23 ±23 0.08 0.54 0.24 0.26 0.01 0.93 14.7 -420.3% with 

CH-DAV 134.1 ±70.8 15 15 15 Mai 28 ±34 0.74 0.00 0.88 0.00 0.87 0.00 74.0 -80.8% with 

CH-LAE 579.7 ±124.5 8 7 8 Mai 10 ±14 0.76 0.00 0.72 0.02 0.68 0.01 122.2 -16.1% with 

CZ-BK1 798.9 ±132.8 10 10 10 Apr 04 ±8 0.07 0.45 0.00 0.94 0.00 0.95 128.9 -6.6% without 

DE-HAI 579.2 ±73.2 13 13 13 Jun 21 ±6 0.12 0.25 0.12 0.25 0.06 0.42 68.0 -51.4% with 

DE-THA 617.9 ±81.1 18 18 18 Apr 01 ±18 0.16 0.10 0.18 0.08 0.20 0.07 81.7 -7.5% without 

DK-SOR 176 ±139.4 18 18 16 Jun 26 ±18 0.66 0.00 0.84 0.00 0.82 0.00 151.7 -88.6% with 

ES-ES1 415.5 ±154.9 8 6 8 Jan 27 ±27 0.06 0.57 0.01 0.85 0.47 0.06 164.9 -3.6% without 

FI-HYY 244.9 ±50.5 16 16 16 Mai 26 ±10 0.19 0.10 0.53 0.00 0.59 0.00 53.3 -41.6% with 

FR-PUE 230.5 ±89.2 14 12 14 Feb 01 ±22 0.01 0.72 0.19 0.16 0.06 0.41 88.1 -8.6% without 

IT-COL 622 ±179 13 13 13 Jun 09 ±10 0.45 0.01 0.53 0.00 0.53 0.00 179.8 -28.2% with 

IT-REN 248 ±96.7 12 12 12 Mai 10 ±28 0.11 0.29 0.04 0.52 0.03 0.61 85.9 -7.4% without 

NL-LOO 427.5 ±144.6 17 16 17 Mrz 22 ±41 0.52 0.00 0.60 0.00 0.70 0.00 160.7 -9.7% without 

PL-TUC 667.5 ±76.1 4 1 4 Jan 28 ±30 0.53 0.28 0.00 -- 0.70 0.16 82.9 0.1% without 

PT-ESP 459.7 ±356.6 6 2 6 Feb 02 ±50 0.48 0.13 1.00 -- 0.51 0.11 363.0 -6.5% without 

RU-FYO -136.7 ±128.2 11 8 2 Jun 13 ±26 0.33 0.07 0.19 0.29 1.00 -- 145.4 104.7% with 

SE-NOR 52.8 ±33.8 15 15 12 Apr 15 ±31 0.67 0.00 0.86 0.00 0.51 0.01 37.1 -52.0% with 

US-HA1 211.2 ±188 21 19 19 Jul 24 ±22 0.54 0.00 0.75 0.00 0.78 0.00 102.5 -401.0% with 

US-ME2 588 ±291.2 13 5 13 Feb 08 ±40 0.59 0.00 0.76 0.05 0.67 0.00 316.6 -0.9% without 

US-MMS 428.6 ±75.8 16 16 16 Jun 20 ±9 0.15 0.14 0.19 0.09 0.24 0.05 39.3 -60.9% with 

US-NR1 170.7 ±30.1 16 16 16 Jun 02 ±9 0.01 0.71 0.09 0.25 0.12 0.19 31.8 -48.3% with 

US-UMB 268.9 ±65.8 15 15 15 Jul 04 ±10 0.19 0.10 0.27 0.05 0.34 0.02 31.4 -80.5% with 

US-WCR 271.9 ±153.6 12 12 11 Jun 29 ±41 0.35 0.04 0.55 0.01 0.67 0.00 164.6 -89.7% with 
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Table 3. Stepwise multiple linear regression models to determine the drivers of the day of 

compensation cDOY for the a) classical, b) Urbanski and c) dynamic integration method. The 

variables were included one-by-one in the models (MAT = mean annual air temperature at 

the top of the eddy towers; LAI = leaf area index; Age = average age of the mature trees in 

the stand; Height = maximum tree height; N = mean annual nitrogen deposition; MAP = 

mean annual sum of precipitation). The β-coefficients (var) indicate the relative importance 

of the variable, ranging from -1 (highest importance, negative correlation) to +1 (highest 

importance, positive correlation). The first column gives the R
2
 for individual site 

characteristics (see Table 1). *: p<0.05, **: p<0.01, ***: p<0.001.  

a) classical integration method 

Drivers of cDOY R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 

MAT 0.4*** -0.63 -0.58 -0.57 -0.58 -0.53 -0.55 -0.48 

LAI 0.11 -- 0.25 0.25 0.23 0.13 0.14 0.03 

Age 0.06 -- -- 0.03 -0.02 -0.06 -0.03 0.06 

Height 0.05 -- -- -- 0.1 0.29 0.27 0.23 

N 0.03 -- -- -- -- 0.08 0.07 -0.05 

Altitude 0.01 -- -- -- -- -- -0.07 -0.19 

MAP 0 -- -- -- -- -- -- 0.37 

Total adjR2 -- 0.4*** 0.39*** 0.36** 0.34** 0.17* 0.12* 0.21* 

         b) Urbanski integration method 

Drivers of cDOY R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 

MAT 0.45*** -0.67 -0.61 -0.58 -0.59 -0.61 -0.43 -0.5 

Height 0.17* -- 0.29 0.29 0.31 0.34 0.35 0.27 

MAP 0.1 -- -- 0.21 0.21 0.21 0.28 0.33 

Age 0.07 -- -- -- -0.06 -0.09 -0.04 0.06 

LAI 0.06 -- -- -- -- -0.01 -0.03 -0.01 

N 0.05 -- -- -- -- -- -0.06 -0.12 

Altitude 0.01 -- -- -- -- -- -- -0.24 

Total adjR2 -- 0.45*** 0.48*** 0.51*** 0.49*** 0.45*** 0.23* 0.21* 

         c) dynamic integration method 

Drivers of cDOY R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 

MAT 0.4*** -0.63 -0.57 -0.57 -0.57 -0.5 -0.43 -0.52 

LAI 0.1 -- 0.23 0.23 0.22 0.1 0.01 0.04 

Age 0.06 -- -- 0.03 0 -0.06 -0.03 0.1 

Height 0.03 -- -- -- 0.06 0.36 0.36 0.24 

N 0.03 -- -- -- -- 0.04 -0.02 -0.09 

MAP 0.01 -- -- -- -- -- 0.23 0.3 

Altitude 0 -- -- -- -- -- -- -0.33 

Total adjR2 -- 0.4*** 0.37** 0.34** 0.31** 0.2* 0.2* 0.22* 
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Table 4. Stepwise multiple linear regression models to determine the drivers of net 

ecosystem productivity NEPc for the a) classical (all sites), b) Urbanski (all sites) and c) 

dynamic integration method (all sites). d) shows the analysis for the dynamic integration for 

evergreen needle-leaf forests (ENF) only, and e) shows the analysis for the dynamic 

integration for deciduous broad-leaf forests (DBF) only. Other forest types had too low 

replications (n=3) for a separate analysis. The variables were included one-by-one in the 

models (cDOY = compensation day; MAT = mean annual air temperature at the top of the 

eddy towers; LAI = leaf area index; Age = average age of the mature trees in the stand; 

Height = maximum tree height; N = mean annual nitrogen deposition; MAP = mean annual 

sum of precipitation). The β-coefficients (var) indicate the relative importance of the variable, 

ranging from -1 (highest importance, negative correlation) to +1 (highest importance, positive 

correlation). The first column gives the R
2
 for individual site characteristics (see Table 1). *: 

p<0.05, **: p<0.01, ***: p<0.001. 

a) classical integration method (all sites) 

Drivers of NEPc R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 8 vars 

cDOY 0.23* -0.48 -0.48 -0.39 -0.44 -0.38 -0.36 -0.59 -0.6 

MAP 0.22* -- 0.47 0.47 0.41 0.33 0.26 0.45 0.38 

MAT 0.14 -- -- 0.14 0.14 0.27 0.25 0.14 0.1 

Height 0.05 -- -- -- 0.21 0.24 0.36 0.39 0.33 

Altitude 0.04 -- -- -- -- 0.24 0.38 0.38 0.35 

Age 0.04 -- -- -- -- -- -0.31 -0.39 -0.38 

N 0.02 -- -- -- -- -- -- 0.04 0.07 

LAI 0.02 -- -- -- -- -- -- -- 0.21 

Total adjR2 -- 0.23* 0.45** 0.47** 0.51** 0.55** 0.61** 0.54 0.57 

          
b) Urbanksi integration method (all sites) 

Drivers of NEPc R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 8 vars 

cDOY 0.35** -0.59 -0.7 -0.74 -0.67 -0.64 -0.83 -0.85 -0.85 

MAP 0.23* -- 0.38 0.38 0.33 0.31 0.34 0.42 0.37 

MAT 0.15 -- -- -0.06 0.06 0.06 0 0.01 -0.01 

Altitude 0.05 -- -- -- 0.18 0.24 0.34 0.31 0.29 

Age 0.04 -- -- -- -- -0.14 -0.33 -0.33 -0.33 

Height 0.03 -- -- -- -- -- 0.45 0.38 0.34 

N 0.02 -- -- -- -- -- -- -0.03 -0.01 

LAI 0 -- -- -- -- -- -- -- 0.14 

Total adjR2 -- 0.35** 0.47** 0.48** 0.5** 0.51** 0.65*** 0.69** 0.71** 

          
c) dynamic integration method (all sites) 

Drivers of NEPc R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 8 vars 

cDOY 0.47*** -0.68 0.39 -0.66 -0.6 -0.58 -0.6 -0.84 -0.86 

MAP 0.22* -- -0.64 0.39 0.35 0.34 0.23 0.45 0.39 

MAT 0.14 -- -- -0.04 0.06 0.05 0.06 0 -0.04 

Altitude 0.06 -- -- -- 0.15 0.2 0.29 0.27 0.24 

Age 0.04 -- -- -- -- -0.13 -0.25 -0.31 -0.3 



Confidential manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

© 2016 American Geophysical Union. All rights reserved. 

Height 0.02 -- -- -- -- -- 0.29 0.38 0.33 

N 0.02 -- -- -- -- -- -- 0.01 0.03 

LAI 0.01 -- -- -- -- -- -- -- 0.18 

Total adjR2 -- 0.47*** 0.62** 0.62*** 0.63*** 0.65*** 0.7*** 0.72** 0.74** 

          
d) dynamic integration method (ENF only) 

Drivers of NEPc R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 8 vars 

cDOY 0.58** -0.76 -0.4 -1.03 -1.08 -1.16 -1.09 -1.04 -0.71 

MAT 0.17 -- -1.07 -0.4 -0.42 -0.38 -0.36 -0.22 0.43 

Age 0.13 -- -- -0.09 -0.11 -0.06 -0.04 -0.2 -0.72 

LAI 0.06 -- -- -- 0.35 0.2 0.23 0.15 -0.04 

MAP 0.04 -- -- -- -- 0.36 0.36 0.46 0.56 

N 0.03 -- -- -- -- -- 0 -0.1 -0.25 

Height 0.01 -- -- -- -- -- -- 0.22 0.71 

Altitude 0.01 -- -- -- -- -- -- -- 0.53 

Total adjR2 -- 0.58** 0.65 0.66** 0.78** 0.87*** 0.87** 0.88* 0.94* 

          
e) dynamic integration method (DBF only) 

Drivers of NEPc R2 alone 1 var 2 vars 3 vars 4 vars 5 vars 6 vars 7 vars 8 vars 

cDOY 0.68* -0.83 0.37 -0.44 -0.4 -0.37 -- -- -- 

Altitude 0.53 -- -0.61 0.43 0.44 0.16 -- -- -- 

Age 0.33 -- -- 0.23 0.22 0.29 -- -- -- 

LAI 0.27 -- -- -- 0.07 0.24 -- -- -- 

MAP 0.17 -- -- -- -- 0.38 -- -- -- 

N 0.11 -- -- -- -- -- -- -- -- 

MAT 0.03 -- -- -- -- -- -- -- -- 

Height 0.02 -- -- -- -- -- -- -- -- 

Total adjR2 -- 0.68* 0.78* 0.81* 0.81 0.86 -- -- -- 
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Figure 1. Three different methods of integrating net ecosystem productivity (NEPc) over time 

(real data shown: Hyytiälä, years 2010 to 2012): ‘Classical’ integration runs from Jan 1 to 

Dec 31 of each calendar year, ‘current’ is year 2; ‘Urbanski’ integration from Oct 28 of the 

previous year to the end of Oct 27 of the current year; ‘Dynamic’ integration runs 

dynamically for every site and for every year from the day of the previous year’s cumulated 

NEPc maximum (MAXNEPc) to the current year’s cumulated NEPc maximum (MAXNEPc 

(+1)). Net carbon losses occur between MAXNEPc and the minimum of NEPc of the current 

year (MINNEPc). The day of compensation (cDOY) is defined as the day of the year when 

MAXNEPc (of the previous year) is crossed by NEPc in the current year. Accordingly, cDOY 

depends on the integration method. For the Southern hemisphere, i.e. for the Australian site 

AU-Tum, the same cuts were made, one half year later. The corresponding year started on 

July 1 and ended on June 30.  
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Figure 2. Spatial distribution of 25 sites across North America and Europe and one 

Australian site (not shown). Site abbreviations are listed in Table 1. ENF = evergreen needle-

leaf forests, DBF = deciduous broad-leaf forests, MF = mixed forests, and EBF = evergreen 

broad-leaf forests.   
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Figure 3. Relationship between cDOY (integrated dynamically) and mean annual 

temperature (MAT) grouped for the four forest types. a) all sites included (n = 26) and b) 

Sites with distinct winter respiratory losses only, i.e., where winter net respiration loss 

accounts for more than 10% of the annual net ecosystem productivity and n was > 2 for all 

integration methods.   
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Figure 4. Linear regressions between compensation days (cDOY) and annual sums of net 

ecosystem productivity (NEPc) (Table 1) for each site and integration method (a) classical, b) 

Urbanski and c) dynamic). Solid regression lines are shown for R
2
≥0.4, broken lines for the 

rest. The frequency columns at the bottom of each panel indicate the number of site years 

occurring at a specific cDOY (color-coded for the four forest types).
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Figure 5. Differences between modelled annual net ecosystem productivity (NEPc), as a 

linear function of cDOY and measured NEPc for each site in a leave-one-year-out cross-

evaluation for each integration method: a) classical, b) Urbanski and c) dynamic. The results 

are grouped for sites with and without distinct winter net respiratory losses. The Urbanski 

method was left out for AU-Tum, there, the ‘year’ begins on July 1 and goes to June 30 one 

year later. 


