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Preface 
This thesis was submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree 
(PhD) at the Technical University of Denmark (DTU). The presented research was conducted between 
June 2009 and June 2012, primarily at the National Institute of Aquatic Resources at the Technical 
University of Denmark (DTU Aqua) in Silkeborg under supervision of Professor Einar Eg Nielsen 
(main advisor) and Research Scientist Jakob Hemmer-Hansen (co-advisor). The PhD study also 
included a 1.5-month research visit at the Centre for Geogenetics at the Natural History Museum 
of Denmark and a 6-month research visit in the laboratory of Professor Stephen R. Palumbi at 
Hopkins Marine Stations, Stanford University, CA, USA.  

The PhD study was funded by DTU, DTU Aqua, and the PhD program SLIP. Additional research 
funds were provided by the European Commission, as part of the Specific Targeted Research 
Project Fisheries-induced Evolution (FinE, contract number SSP-2006-044276) and the Danish 
Agency for Science, Technology and Innovation as part of the Greenland Climate Research 
Centre. Foreign research visits were funded through an EliteForsk travel grant from Danish Agency 
for Science, Technology and Innovation, for which I am very grateful. 

The goal of the PhD research was to elucidate how natural populations of Atlantic cod (Gadus 
morhua) have reacted to natural and human-induced changes to their environment over the past 
century. We examined this through comparison of historical and contemporary DNA samples that 
provided a unique opportunity to retrospectively track genomic signatures of microevolution in 
recent time. The project has only been possible because of important contributions from many 
people. First and foremost, I would like to thank my primary advisor Einar Eg Nielsen for creating 
the opportunity to conduct this exciting research, for support and inspiration, insightful discussions, 
and for always helping to lift my focus from the details to the bigger picture. I continue to learn so 
much. Many thanks also to my co-advisor Jakob Hemmer-Hansen for all the support and for so 
generously sharing data and stimulating perspectives. Likewise, I am immensely grateful to Dorte 
Meldrup for teaching me everything I know about using pipettes, and for invaluable assistance and 
encouragement in the laboratory. The rest of the population genetics group in Silkeborg – Karen-
Lise, Noor, Morten, Kristian, Sara, Thomas, and Dorte - has also been extremely supportive and 
helpful – thanks very much for creating such an engaging and caring work environment. 

I would also like to express my sincere gratitude to Steve Palumbi at Stanford University and all 
the members of his research group for so warmly welcoming me for 6 very inspiring months in their 
company. The gratitude extends to the awesome Julie Stewart for hosting me and showing such 
incredible hospitality during my stay in California. Many thanks also to Tom Gilbert and Eske 
Willerslev at the Centre for GeoGenetics at the Natural History Museum in Copenhagen for 
generously providing access to their ancient DNA laboratories. Rob Ogden at Trace Network, as 
well as Richard Talbot and David Morrice at the Roslin Institute, have also been very helpful in 
assisting with SNP genotyping. 

I would like to thank all my collaborators and colleagues who have contributed important ideas and 
support for my research. In particular, I want to acknowledge the much appreciated help from 
Doug Swain, Joanne Morgan, Ed Trippel, Mary S. Wisz, Peter Grønkjær, Rasmus Hedeholm, Anja 
Retzel, and members of the EU-funded FinE project. I am also grateful to all my fellow students for 
sharing good times and exciting discussions. Very special thanks go to Morten T. Limborg for 
always being there as my close companion during these past years of research- and life 
exploration, and for – together with his wonderful wife Maria – becoming my Silkeborg family. 

This PhD is a culmination of a long education through which I have been privileged to work with a 
long list of extremely talented and inspiring teachers. I would like in particularly to acknowledge the 
outstanding faculty at College of the Atlantic, especially my undergraduate advisors Chris W. 
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Petersen, Ken Cline, and John Anderson who have been very influential in shaping the way I 
approach science. I would also like to thank my MSc advisor Jes Søe Pedersen for giving me 
valuable preparation for setting out into the world of research. 

Finally, I am extremely grateful to my wonderful family and friends for all their support and for 
giving me the time and space to focus when my work demanded it. A special thanks to my Sami 
for the endless encouragement and understanding and for the invaluable help in keeping me on 
track, keeping my spirits up and keeping the right perspective during these last busy months.  

Thank you all! 

 

 

Berkeley, June 2012 

 

 

Nina Overgaard Therkildsen 
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Thesis summary 
Accelerated rates of climate change and other growing anthropogenic pressure challenge the 
persistence of many plant and animal populations. Faced with drastically altered environmental 
conditions, natural populations may either go extinct locally or respond by: 1) dispersing to areas 
with more favorable conditions; 2) modifying their trait expression to better fit with new local 
conditions through phenotypic plasticity; or 3) adapt genetically in response to selection. A better 
understanding of the relative importance of these different coping mechanisms and the interactions 
between them in different settings will be crucial for making reliable predictions about the future 
distribution of biodiversity. 

The present thesis uses genomic analysis of historical and contemporary DNA samples to 
retrospectively assess how populations of Atlantic cod, Gadus morhua, have responded to 
environmental and human-induced changes over the past century. Capitalizing on unique 
collections of archived samples and recently developed genomic resources, we study temporal 
and spatial variation at both microsatellite loci and up to 1047 gene-associated single nucleotide 
polymorphisms (SNPs) over a period of 80 years. The extensive sampling in time and the – for a 
non-model species – high genomic coverage provide unprecedented resolution for disentangling 
effects of drift, migration and selection. This elucidation generates novel insights about how cod 
previously have responded microevolutionarily to changed conditions. Focusing on two different 
cod population complexes, our overarching objectives have been to assess 1) whether levels of 
genetic diversity, population structure and distribution patterns have remained stable over time 
despite large demographic changes, 2) if we could detect molecular signatures of selection over 
decadal time scales and if so, how widespread such signatures would be, 3) if recent changes in 
selection pressures have been gradual or abrupt and what factors may have driven them, 4) how 
temporal and spatial variation in selection pressure have interacted, and 5) if signatures of recent 
selection are parallel between adjacent populations and across different geographic regions. 

The thesis is divided into six chapters that report on different efforts to address these objectives. It 
opens with a general introduction and synopsis that lays out the context for the research, 
summarizes the main findings and discusses perspectives for future research (Chapter 1). Chapter 
2 presents a baseline study demonstrating temporal stability at microsatellite loci over an 80-year 
period in a Canadian cod population. This result sets the stage for two SNP-based spatiotemporal 
population genomics studies that search for signatures of recent selection and examine the 
stability of population structure in Canadian (Chapter 3) and Greenlandic (Chapter 4) cod 
populations. The final two chapters elaborate on methodological developments that were 
implemented to reach the primary research goals: Chapter 5 evaluates the quality of SNP 
genotyping in our historical samples and demonstrates high reproducibility of our presented data 
while Chapter 6 proposes a new statistical approach to detecting loci under selection based on 
temporal variation in allele frequencies. 

Our results provide important insights about the recent dynamics at both study locations. In 
Canada, the population structure appears to have remained intact over the study period, whereas 
in Greenland the temporal analyses reveal large changes in the spatial distribution and mixing of 
different populations. Against this backdrop of contrasting neutral evolutionary patterns, we 
observe widespread signatures of selection in both systems, reflected in substantial locus-specific 
divergence in space and time. This suggests ongoing adaptation in response to temporally and 
spatially varying selection pressures, and nonparallel patterns between adjacent areas indicate 
that populations may react differently to environmental variation. Both dispersal and adaptation 
hence appear to be important responses to environmental change in cod populations, depending 
on local conditions. These findings have important implications for our understanding of local 
adaptation and evolutionary potential in high gene flow organisms and underscore the need to 
carefully consider all dimensions of biocomplexity for evolutionarily sustainable management of 
biodiversity and natural resources. 
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Dansk resumé 
Klimaforandringer og andre former for menneskeskabt påvirkning truer den fremtidige eksistens af 
mange dyre- og plantearter. Under drastisk ændrede miljøforhold kan vilde bestande enten uddø 
lokalt eller reagere ved 1) at bevæge sig til områder med mere gunstige forhold; 2) at modificere 
deres fysiologiske egenskaber gennem fænotypisk plasticitet; eller 3) at tilpasse sig genetisk i 
respons til selektion. En bedre forståelse af den relative vigtighed af disse 
overlevelsesmekanismer – og samspillet mellem dem – vil være afgørende for at kunne forudsige 
den fremtidige fordeling af biodiversitet.  

Denne afhandling anvender genomisk analyse af historiske og nutidige DNA-prøver til retrospektivt 
at undersøge hvordan torskebestande (Gadus morhua) har reageret på naturlige og 
menneskeskabte ændringer i deres miljø over det seneste århundrede. Ved hjælp af unikke 
samlinger af arkiverede prøver og nyudviklede genomiske ressourcer studerer vi den tidslige og 
rumlige variation for både mikrosatellit loci og op til 1047 single nucleotide polymorphisms (SNPs) 
over en 80-årig periode. Den omfattende prøvetagning og den, for en ikke-model art, høje 
genomiske dækning giver hidtil uset opløsning til at udrede de historiske effekter af drift, migration 
og selektion. Denne udredning skaber ny indsigt i hvordan torsk tidligere har reageret 
mikroevolutionært på ændrede forhold. Med fokus på to forskellige bestandskomplekser har vores 
overordnede formål været at undersøge 1) om mængden af genetiske variation og 
populationsstrukturen er forblevet stabile over tid på trods af store demografiske ændringer, 2) om 
vi kan detektere molekylære signaturer fra selektion over meget korte tidsskalaer (årtier), og hvis 
det er tilfældet, hvor udbredte sådanne mønstre er, 3) om nylige ændringer i selektionstryk er sket 
gradvist eller pludseligt, og hvilke faktorer der har skabt ændringerne, 4) hvordan tidslig og rumlig 
variation i selektionstryk har spillet sammen, og 5) om vi ser parallelle genetiske ændringer i nabo-
populationer og på tværs af geografiske regioner. 

Afhandlingen er delt ind i 6 kapitler, som beskriver forskellige aspekter af vores indsats for at 
besvare disse spørgsmål. Der indledes med en generel introduktion og synopsis, som opridser 
konteksten for forskningsprojektet, opsummerer hovedkonklusionerne og diskuterer perspektiver 
for fremtidig forskning (Kapitel 1). Kapitel 2 præsenterer et baseline studie, som demonstrerer 
tidslig stabilitet for mikrosatellit loci over en 80-årig periode i en canadisk torskebestand. Dette 
resultat sætter scenen for to SNP-baserede spatio-temporale population genomics studier, hvor vi 
undersøger om der er tegn på nylig selektion og om populationsstrukturen er stabil i canadiske 
(Kapitel 3) og grønlandske (Kapitel 4) torskebestande. De to sidste kapitler beskriver metode-
udvikling, som vi foretog for at nå projektets hovedmål: Kapitel 5 evaluerer kvaliteten af SNP 
genotypning i vores historiske prøver og demonstrerer en høj grad af reproducerbarhed af vores 
præsenterede data, mens Kapitel 6 foreslår en ny statistisk metode til at identificere loci under 
selektion udfra tidslig variation i allelfrekvenser. 

Vores resultater giver vigtig ny indsigt i torskebestandenes dynamik ved begge studielokaliteter. I 
Canada så populationsstrukturen ud til at være forblevet intakt over perioden, mens den tidslige 
analyse i Grønland viste store ændringer i geografisk fordeling og opblanding af forskellige 
bestande. Op imod denne baggrund af modsatrettede neutrale evolutionære mønstre, 
observerede vi udbredte tegn på selektion i begge systemer, afspejlet i stærke locus-specifikke 
afvigelser fra de generelle mønstre i både tid og rum. Dette tyder på igangværende tilpasning i 
respons til tidsligt og rumligt varierende selektionstryk og ulige mønstre i forskellige områder 
indikerer at bestandene reagerer forskelligt på miljøvariation. Det ser derfor ud til at både 
ændringer i udbredelsesområdet og genetiske tilpasninger er vigtige reaktioner på 
miljøforandringer i torskebestande afhængigt af de lokale forhold. Disse erkendelser har vigtige 
konsekvenser for vores forståelse af lokale tilpasning i organismer med højt gen flow og 
understreger behovet for at indregne alle dimensioner af biokompleksitet for at opnå en 
evolutionær bæredygtig forvaltning af biodiversitet og naturressourcer. 

8



	  

 
CHAPTER 1 
 

General introduction and summary of findings 

 
Nina Overgaard Therkildsen 

 

 
 

 

1. INTRODUCTION 

1.1 Background 

Growing anthropogenic pressure now challenges the persistence of many plant and animal 
populations (e.g. Hughes et al. 1997; Brook et al. 2008; Maclean & Wilson 2011). A diverse array 
of direct impacts such as pollution, habitat degradation, introduction of invasive species, and 
overexploitation add to accelerated rates of climate change to drastically alter the environmental 
conditions for species around us. Phenotypic plasticity—the ability of a single genotype to exhibit 
variable phenotypes in different environments—enables organisms to cope with many of these 
changes through adjusted trait expression, so that they can remain in their habitat without genetic 
adaptation. This mechanism has been crucial for mediating responses to rapid environmental 
shifts in many natural populations (Charmantier et al. 2008; Gienapp et al. 2008; Hendry et al. 
2008), but physiological and evolutionary constraints impose limits on its capacity (Dewitt et al. 
1998; Auld et al. 2010). 

In response to environmental change - human-caused or otherwise - that exceeds the tolerance 
limits achievable through current phenotypic plasticity, populations may either go extinct locally, 
disperse to areas with more favorable conditions or adapt genetically in response to selection—all 
processes of potential evolutionary consequence. A better understanding of the relative 
importance of these processes and the interactions between them in different settings will be 
essential for making reliable predictions about the future distribution of biodiversity. 

 

1.2 Focus of the thesis 

To this end, the present thesis applies retrospective monitoring of genetic variation in natural 
populations of Atlantic cod (Gadus morhua) to examine how they have responded to human-
induced and natural changes to their environment over the past century. The overarching aim has 
been to elucidate the roles that adaptation and distributional shifts have played in shaping these 
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responses and this way shed light on the extent, as well as the temporal and spatial patterns, of 
recent microevolution in the species.  

This chapter introduces the context for the research project and discusses its main findings in 
relation to current knowledge in the field. I will first briefly elaborate on the different evolutionary 
responses to changing environments and outline how genetic methods in general, and temporal 
genetic analyses in particular, are useful for studying these processes in natural populations 
(Section 2). I will then consider how general characteristics of marine fish affect potential 
evolutionary responses (Section 3) and introduce the study species (Section 4). With the stage set, 
Section 5 will present the specific objectives for the thesis research and Section 6 will describe the 
applied methodology. I will follow with a summary of my findings in the different studies and my 
overall conclusions (Section 7), and finally discuss the implications of these findings as well as 
perspectives for future research (Section 8). 

 

 

2. WHY USE MOLECULAR GENETIC METHODS TO STUDY EVOLUTIONARY CHANGE? 

This section will briefly discuss how population responses to changed environmental conditions 
can have evolutionary consequences and outline why DNA-based methods are powerful tools to 
study these processes. 

 

2.1 Demographic changes 

Human activities that either create adverse conditions for growth and reproduction, impose direct 
harvesting, or affect the carrying capacity of habitats can strongly reduce the sizes of natural 
populations or alter their structure. Because genetic drift scales inversely with effective population 
size, such changes can result in loss of genetic diversity, and quantification of molecular variation 
at polymorphic sites across the genome is the most direct way to study this. There are indeed 
numerous documented examples of human-induced erosions of genetic diversity, for example due 
to fishing or hunting (e.g. Ryman et al. 1995; Allendorf et al. 2008) or population fragmentation 
caused by habitat destruction (e.g. Dixo et al. 2009; Struebig et al. 2011).  

Loss of genetic variation can adversely affect population viability, both by reducing individual 
fitness in the short term and by impairing the ability to evolve in the future (Allendorf et al. 2008). 
Clearly, loss of functionally important variation can be detrimental in both the short and long term, 
but the implications of reduced diversity at neutral markers—that are typically used in population 
genetic studies—are less clear. A central question is whether the level of variation at neutral loci is 
similar to the variation at functionally important loci (e.g. quantitative trait loci), so that neutral loci 
reflect variation that is important for fitness and evolutionary potential. 

A considerable research effort has been devoted to exploring this issue, and although many 
studies have failed to detect a correlation between heterozygosity at neutral markers and individual 
fitness, this correlation has been clear in other contexts, particularly in small populations 
(Frankham et al. 2002; Szulkin et al. 2010). Similarly, studies comparing molecular variation at 
neutral loci with the quantitative genetic variation at ecologically important traits have varied 
immensely in their conclusions and overall suggest only a weak correlation (Reed & Frankham 
2001). This pattern of weak correlation between the signal from neutral markers and adaptive 
variation also seems to emerge from studies that compare levels of differentiation between 
populations (Merilä & Crnokrak 2001; McKay & Latta 2002; Holderegger et al. 2006). 
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These findings could suggest that neutral variation is a poor proxy for population viability and 
evolutionary potential. However, selection is always context-specific and loci that are neutral or 
nearly neutral now may become subject to selection under different environmental conditions. This 
means that neutral variation could potentially become adaptive variation in the future, so 
apparently neutral variation could represent a crucial part of a population’s evolutionary legacy. 
Neutral markers therefore remain useful monitoring tools as indicators of genome-wide levels of 
variation, but they can increasingly be supplemented with markers directly associated with 
functional genes for more comprehensive insights about patterns of diversity (Allendorf et al. 
2010). 

 

2.2 Adaptation 

Altered selection pressures that act on traits with a heritable basis can theoretically cause adaptive 
changes over very short time. The literature contains many examples of rapid adaptation in wild 
populations over contemporary time scales, especially in response to human impacts (e.g. 
Kinnison & Hendry 2001; Palumbi 2001; Stockwell et al. 2003; Smith & Bernatchez 2008). 
However, it is still unclear how widespread such short-term adaptive changes are, and under what 
conditions they occur at rates fast enough to track environmental and human-induced changes 
(Hendry et al. 2008; Hoffmann & Sgrò 2011).  

Progress in elucidating these important questions has been hampered by the notorious difficulty in 
demonstrating a genetic basis for apparent local adaptations in natural populations (Gienapp et al. 
2008; Hoffmann & Willi 2008). There are multiple strategies for disentangling the effects of 
phenotypic plasticity from genetic differences underlying observed trait variation (recently reviewed 
by Hoffmann & Sgrò 2011; Hansen et al. 2012). Most approaches involve either laboratory 
experiments such as common garden/reciprocal transplant setups or quantitative genetic 
techniques that require knowledge of family relationships—both undertakings that can be 
logistically prohibitive with large, long-lived and highly abundant organisms. For such systems, 
molecular genetic methods often offer more accessible opportunities for detecting signatures of 
adaptive divergence. Because selection affects the pattern and distribution of genetic variation 
both within and between populations, its signatures can often be detected in samples collected 
directly from the wild (Nielsen 2005; Storz 2005). The recent advances in sequencing and 
genotyping technologies make these molecular approaches even more powerful because 
increased genome coverage result in higher chances of identifying regions under selection (Luikart 
et al. 2003; Allendorf et al. 2010). 

 

2.3 Shifts in distribution and migration patterns 

Although distributional shifts per se do not necessarily have evolutionary impacts, they are often 
associated with altered patterns of gene flow between populations, which can have profound 
genetic consequences. A number of human activities such as overexploitation or habitat 
destruction can potentially affect species distribution patterns, but climate change has by far 
received the most attention as a driving force of distributional shifts. Overwhelming evidence 
makes it clear that global temperature increases have already caused substantial shifts in the 
range of many species, both terrestrial and marine (e.g. Root et al. 2003; Parmesan 2006; Chen et 
al. 2011). Studies that document these patterns and those that predict future impacts (e.g. Deutsch 
et al. 2008; Cheung et al. 2009) provide important insights. However, they typically focus on the 
species level, ignoring that species are made up of populations which each may harbor unique 
adaptations to specific local environments and therefore will react differently in response to altered 
conditions (Hilborn et al. 2003; Schindler et al. 2010; Kelly et al. 2011).  
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In most cases, it is unclear to what extent climate-induced species distribution shifts simply reflect 
the sum of different populations moving to new areas as they track the changing location of their 
environmental “niche”. Alternatively, species-level shifts may result from extinction of certain 
populations—and therefore loss of a unique portion of the species’ evolutionary legacy—coupled 
with local growth and spatial expansion in previously marginal populations. Understanding 
population diversity, and the extent to which populations are adapted to different conditions is 
therefore critical for making accurate predictions about the future distribution of biodiversity. As 
already mentioned, genetic methods are useful in this context because they can identify signatures 
of adaptive divergence. They are also, however, powerful tools for inferring basic population 
structure (e.g. Pritchard et al. 2000; Corander et al. 2003; Jombart et al. 2010), for tracing 
individuals to their population of origin (Manel et al. 2005; Nielsen et al. 2012), and for estimating 
contemporary and historical migration rates (Paetkau et al. 2004; Hey & Nielsen 2004; Yamamichi 
& Innan 2012). 

 

2.4 The power of genetic monitoring 

A primary reason why molecular tools are useful for studying evolutionary forces in the wild is that 
patterns of genetic diversity typically integrate effects accumulated over millennia. This means that 
cumulative impacts of even weak patterns can be detectible, but it makes it challenging to 
distinguish signatures of historical events predating colonization of current habitats from ongoing 
evolutionary changes. Hence, snapshot observations of the current distribution of genetic variation 
often tell us little about how stable these patterns are over time or how quickly they may change in 
response to human activities. 

Temporally spaced DNA samples offer a unique opportunity for studying genetic change directly. 
This approach has been termed genetic monitoring and can either rely on pre-planned recurrent 
sampling or on archived or resurrectable samples, as well as data from previous studies, to obtain 
retrospective insights (Schwartz et al. 2007). By comparing the genetic composition of a population 
before and after a change in environmental conditions, it is possible to track changes in allele 
frequencies ‘in real time’ for direct assessment of genetic impacts. Previously, studies using 
presumably neutral markers have offered important insights about neutral processes including 
effective population sizes, loss of diversity, and stability of population structure and migration rates 
(see reviews by Leonard (2008), Wandeler (2007), and Nielsen and Hansen (2008)). Also, studies 
targeting specific candidate genes expected to be under selection have provided insights about the 
temporal dynamics of adaptive variation (e.g. Umina et al. 2005; Jensen et al. 2008; Marsden et al. 
2012). 

With the advances in molecular techniques, efforts to study temporal adaptive genetic variation are 
no longer limited to genes a priori expected to be under selection. Instead, it is now possible to 
screen large panels of genetic markers and apply genome scan approaches (see Section 6.4) to 
identify loci that are likely affected by selection. Genome scans are often used in comparisons of 
samples collected across space (Luikart et al. 2003; Storz 2005; Stinchcombe & Hoekstra 2007), 
but has only rarely been utilized to identify signatures of selection and ongoing adaptation over 
time in wild populations (notable examples are Hansen et al. 2010; Poulsen et al. 2011; Bourret et 
al. 2011; Orsini et al. 2012). This paucity of temporal applications probably results from technical 
constraints and limited sample availability. Yet, where such challenges can be overcome, 
simultaneous assessment of adaptive genetic variation at both the temporal and spatial scales 
over which different evolutionary forces are acting, offers extraordinary prospects for gaining more 
comprehensive insights into the potential for rapid adaptation. 
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3. EVOLUTIONARY RESPONSES TO CHANGE IN MARINE FISH 

This section will outline some basic characteristics of marine fish and discuss the implications of 
these characteristics for studying evolutionary responses to change. 

 

3.1 Why study marine fish? 

Marine fish are useful models for studying responses to global change for a number of reasons. 
First, they are typically widely distributed across a range of ecological gradients, so it is possible to 
comparatively study impacts in different settings (Nielsen et al. 2009a). Being ectotherms, they are 
also more intimately linked with their environment than most terrestrial organisms, so may respond 
more readily to change (Cossins & Crawford 2005). At the same time, many species have been 
subjected to substantial and quantifiable human pressure in the form of intensive fisheries. This 
allows for important comparisons of how natural and human-induced influences interact in shaping 
evolutionary trajectories.  

The perhaps most essential attributes in relation to genetic monitoring, however, are the extensive 
collections of archived samples that are available for many fish species. Owing to commercial 
interest, scales and otoliths have been collected systematically from many major fish stocks over 
the past century (initially for age and growth rate determination). Where these samples have been 
retained, they probably make up the most comprehensive collections of archived material from 
natural populations of any taxa, providing unparalleled opportunities for retrospective genetic 
monitoring (Nielsen & Hansen 2008). 

 

3.2 General characteristics 

While fish represent an extremely diverse group of species with a variety of life histories, 
behaviors, and physiologies, they can be grouped into general types. This thesis focuses on what 
has been called “classical” marine fish, which are characterized by large population sizes, high 
fecundity, high dispersal ability of adults, and pelagic eggs and larvae (Nielsen & Kenchington 
2001; Nielsen et al. 2009a). Many commercially harvested species fit in this category and typically 
exhibit weak, but often highly significant, levels of population structure (Waples 1998; Hauser & 
Carvalho 2008). The following sections will discuss how these general characteristics are expected 
to influence potential evolutionary responses to change. 

 

3.2.1 Large population sizes 

With population sizes that typically exceed millions of individuals, it may be expected that selection 
has a greater impact on evolutionary trajectories in marine fish than it does in species with smaller 
populations, in which selection to a greater extent is counteracted by drift—another reason why 
fish are useful models to study effects of global change. The impact of evolutionary forces, 
however, depends on the effective population size (Ne), not the census size (N), and a large body 
of research indicates that there can be extremely large discrepancy between these parameters in 
marine organisms. 

Recent studies have suggested that effective sizes of marine fish populations typically range from 
a few hundreds to a few thousands even though their census sizes are often two to five orders or 
magnitude higher (reviewed by Hauser & Carvalho 2008; Palstra & Ruzzante 2008). Such 
extremely small Ne:N ratios are expected to result primarily from high variance in reproductive 
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success, as has been termed sweepstakes recruitment (Hedgecock 1994; Hedgecock & Pudovkin 
2011). It has been demonstrated theoretically that this effect can substantially decrease Ne:N ratios 
(Waples 2002; Hedrick 2005). However, the extent of skew in reproductive success required to 
explain observed patterns appears in some cases inconsistent with ecological observations 
(Flowers et al. 2002; Poulsen et al. 2006). The very high polymorphism observed at microsatellite 
loci in marine fish is also hard to reconcile with very small Ne’s, unless the Ne’s were reduced very 
recently or mutation rates are higher than currently expected (Poulsen et al. 2006; Palstra & 
Ruzzante 2008). Furthermore, the overall similarity of reported estimates across wildly different 
species and habitats (see Table 1 in Hauser & Carvalho 2008) could also reflect general limitations 
of genetic methods to estimate contemporary Ne when it is so large that sampling error may 
exceed signatures of drift (see Waples 1989; 1998). 

If reported estimates indeed reflect biological reality, marine fish may be susceptible to loss of 
genetic diversity in face of demographic perturbations, because such Ne’s are within the range 
typically considered at risk (Frankham et al. 2002). Two pioneering genetic monitoring studies 
reported loss of both heterozygosity and allelic variation at microsatellite loci over decades of 
intense exploitation in marine fish populations (Hauser et al. 2002; Hutchinson et al. 2003). These 
studies have received a lot of attention in the literature as illustrations of conservation concern for 
marine fish. However, almost all subsequent temporal genetic studies based on a range of fish 
species including herring, eel, tuna, ray, cod, and sole have revealed stable levels of genetic 
diversity despite fisheries-induced population collapses (e.g. Hoarau et al. 2005; Poulsen et al. 
2006; Nielsen et al. 2007; Han et al. 2008; Chevolot et al. 2008; Therkildsen et al. 2010; Riccioni et 
al. 2010; Larsson et al. 2010; Cuveliers et al. 2011; Jakobsdottir et al. 2011). These findings 
indicate that although human-induced diversity loss may be possible in marine fish, it is far from a 
universal consequence of fishery collapse and the debate about realistic magnitudes of Ne in 
marine fish populations remains open. Certainly, Chapters 2, 3, and 4 of this thesis demonstrate 
that it is always important to consider alternative causes such as genotyping error, selection and 
distributional shifts to explain observed temporal allele frequency changes. 

 

3.2.2 Potential for high gene flow 

With high dispersal ability of both pelagic and adult life stages and a habitat characterized by few 
obvious barriers, marine fish have traditionally been expected to exhibit high levels of gene flow. 
Such gene flow could limit adaptation to local conditions and temporal changes in these, because 
the diversifying effect of localized selection pressures would be swamped by the homogenizing 
effect of gene flow. For this reason, it was previously expected that local adaptation would be rare 
or absent in marine fish (Hauser & Carvalho 2008). 

However, an accumulating number of recent studies based either on genomic signatures of 
selection on specific loci (e.g. Hemmer-Hansen et al. 2007; Nielsen et al. 2009b; Bradbury et al. 
2010) or on common garden experiments (Marcil et al. 2006; e.g. Conover et al. 2006; Grabowski 
et al. 2009) have provided strong evidence for adaptive divergence in marine fish, even over 
surprisingly small spatial scales across which neutral genetic markers have typically have revealed 
very limited levels of population structure (Hutchings et al. 2007; Olsen et al. 2008; Poulsen et al. 
2011). Strong local selection pressures (Olsen & Moland 2011) and low realized levels of gene 
flow due to homing behaviors (Robichaud & Rose 2004; Svedäng & Righton 2007) and larval 
retention (Cowen et al. 2006; Knutsen et al. 2007; Bradbury et al. 2008) have been suggested as 
mechanisms that enable adaptation in these systems. Regardless of the particular interplay of 
factors, the evidence supporting adaptive divergence across a range of spatial scales strongly 
indicate that temporal variation in selection pressures also may leave genomic signatures in 
marine fish. 
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The potential for high gene flow must, however, be carefully considered as an alternative to 
selection in explaining temporal shifts in allele frequencies. An unavoidable—but often 
underappreciated—challenge in genetic monitoring is to clarify whether you have sampled a single 
population over time or if you have sampled different populations that moved in and out of the 
study area (Hansen et al. 2012). In principle, a genome scan approach (see Section 6.4), should 
be able to disentangle effects of migration and selection because it is based on the premise that 
migration should have relatively homogenous effects across the entire genome, whereas selection 
should only affect specific gene regions (Lewontin & Krakauer 1973; Luikart et al. 2003). However, 
when the genetic differentiation to potential migrant source populations is very low across neutral 
loci but higher at loci under selection, this separation of evolutionary forces can become 
challenging. We address this issue with simulations in Chapter 3, whereas in Chapter 4 we 
observed higher baseline levels of differentiation allowing for better disentanglement of the effects. 

 

3.2.3 Fisheries-induced selection 

Direct exploitation has probably been the main human impact on fish populations over time. 
Fisheries have been called large-scale uncontrolled experiments in evolutionary selection (e.g. 
Rijnsdorp 1993, Stokes and Law 2000) because fish harvest often constitutes a dominant source 
of mortality for the affected populations (up to four times the natural mortality (Jørgensen et al. 
2007)) and is almost always non-random with respect to fish phenotypes (e.g. typically fish of a 
certain size or behavior are targeted). When there is a heritable component to the phenotypic 
variation among fish, such strong selective mortality can cause adaptive change. Life history 
theory and empirical evidence suggest that fisheries this way can induce evolutionary changes in 
many demographically and ecologically important traits (see Law 2000, Heino and Godø 2002, 
Munch et al. 2005). Some of these changes can have highly adverse effects on the productivity 
and resilience of fish stocks, thus potentially jeopardizing future yields and sustainability (Stokes & 
Law 2000; Heino & Godø 2002; Conover & Munch 2002). 

Despite the clear theoretical foundations and a substantial research investment, it has, however, 
been difficult to determine whether exploited stocks are indeed undergoing fisheries-induced 
evolution, and if so over what time scales. The resulting uncertainty coupled with the potentially 
severe consequences has sparked a high-profiled debate about whether fisheries management 
should account for the evolutionary dimension of exploitation, and the issue remains unresolved 
(e.g. Jørgensen et al. 2007; Hilborn & Minte-Vera 2008; Browman et al. 2008; Kuparinen & Merilä 
2008). 

Given the difficulty of studying the genetic basis of trait variation in the wild, most efforts to inform 
this debate have been based on indirect methods, primarily empirical analyses of decadal trends in 
observed trait variation in exploited stocks (reviewed in Jørgensen et al. 2007) and modeling 
studies (e.g. Ernande et al. 2004; Dunlop et al. 2009). While the combined evidence generated 
through these approaches strongly indicate evolutionary effects, methodological shortcomings 
have prevented unequivocal proof that observed changes are truly genetic: Since models 
necessarily are simplifications of reality, it is difficult to evaluate their biological realism without 
empirical testing, and studies of directly observable trait changes in nature suffer from difficulties in 
disentangling the effects of environmental and genetic influences on trait expression (Kuparinen & 
Merilä 2007; Browman et al. 2008). A robust method for filtering away the effects of environmental 
variation involves bringing animals into controlled settings so that observed trait variation should 
reflect genetic differences only. Such experimental simulations have delivered an important proof-
of-concept, demonstrating empirically that fisheries selection can cause substantial genetic 
changes in the exploited populations (Conover & Munch 2002; Reznick & Ghalambor 2005; 
Conover & Baumann 2009). However, due to logistic constraints, these studies have been based 
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on short-lived model organisms in highly simplified set-ups, and it is unclear whether the findings 
can be scaled up to the complex dynamics of commercial fish populations in the wild. 

Retrospective genetic monitoring of these wild populations provides one of the most promising 
avenues for elucidating the genetic basis of apparent fisheries-induced evolution. With the 
increasing ability to track functionally important genetic variation, progress towards this goal is 
already being made (Chapters 3 and 4). However, a complete understanding of fitness effects 
underlying observed genetic changes and interactions between fishing and other drivers of 
selection will probably only emerge through substantial dedicated research efforts that integrate 
the powers of different approaches (Conover & Baumann 2009). A particularly valuable approach 
in this context will be to combine spatiotemporal genetic studies in the wild with genetic studies 
under common garden conditions. 

 

 

4. THE STUDY ORGANISM: ATLANTIC COD (Gadus morhua) 

This section will describe the basic biology of the study organism and provide an overview of the 
human pressure it has been exposed to through fisheries. Following the general species-level 
information, I will briefly introduce the specific populations studied in the thesis. 

 

4.1 Why Atlantic cod? 

We based our studies on Atlantic cod because it has historically been one of most important 
commercial fish species in the North Atlantic and owing to this commercial interest, as well as its 
pivotal ecological role in many marine ecosystems, has received enormous research attention. It is 
thus among the most well-studied marine fish, providing valuable background knowledge on its 
ecology, reproduction and population structure. Extensive collections of archived cod otoliths also 
exist in many North Atlantic fisheries research institutions, and with a published full genome 
sequence (Star et al. 2011) and hundreds of curated EST-derived SNPs placed on a linkage map 
(Hubert et al. 2010; Bowman et al. 2011), it probably has more genomic resources available than 
any other non-model fish species. This combination of sample availability and genomic tools 
enables extensive exploration of functional genetic variation in both time and space. 

 

4.2 Basic biology 

As a prime example of a classical marine fish, the Atlantic cod is characterized by mobile adults, 
high fecundity, external fertilization, and pelagic eggs and larvae. It can live for up to 25 years, and 
exhibiting indeterminate growth like other teleost fish, can reach lengths of 2 meters (Cohen et al. 
1990) and weights of almost 100 kg (Frimodt 1995). However, very few individuals now attain this 
age and size and populations are generally made up of considerably smaller fish. Spawning occurs 
in multiple batches over a period of 3-6 weeks and a female typically produce between 300,000 
and millions of eggs in a breeding season (Kjesbu et al. 1996; Chambers & Waiwood 1996). 
Fecundity scales with body size so larger females produce more eggs. There is considerable 
variation in the life history parameters between different populations and the age at maturity 
ranges from 2-3 years in some areas and up to 8 years in others (McIntyre & Hutchings 2003). 

Some cod populations undertake annual migrations of 100s of kilometers while in other 
populations, adults remain sedentary all year (Robichaud & Rose 2004). However, during the 
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pelagic egg and larval stage, dispersal is governed by local oceanographic conditions. Eggs hatch 
after about 60 degree-days and the larval phase lasts about 750 degree-days (Cohen et al. 1990), 
i.e. the duration of the pelagic stage in water of 8°C is about 100 days. Mortality rates are high 
during the early life stages and the survival rate from birth until age 3 years has been estimated to 
be around 10-6, so one in a million (Hutchings 1999). Adult cod live demersally (it is called a 
“groundfish”) and inhabit coastal areas and offshore continental shelves throughout the North 
Atlantic. In the eastern part, it ranges from the North Sea northward to the Barents Sea off Norway 
and northern Russia and across to Iceland and Greenland. In the Northwest Atlantic, it ranges from 
Cape Hatteras in the south to Baffin Island in the North (Mieszkowska et al. 2009). 

 

4.3 Fishing impacts 

Human exploitation of cod can be traced back at least 1000 years (Barrett et al. 2008). Its 
widespread abundance throughout the North Atlantic has supported some of the world’s largest 
and economically most important fisheries and fishing pressure has been intense on all 
populations throughout its range (Mieszkowska et al. 2009). Global landings of this species peaked 
already in the late 1960s when the total annual landings were almost 3 million tons (FAO 2000). 
Since then landings have declined steadily and are now at about one fourth of the maximum level 
(FAO 2000). This drop in landings results from collapses in several important fisheries and 
decreased abundance in others. The most renown of these collapses has occurred in the 
historically very large cod fisheries off eastern Canada. These stocks have suffered dramatic 
declines of up to 99.9% compared to historic levels and were completely closed to fishing in the 
early 1990s (Hutchings & Reynolds 2004). Also in the Northeast Atlantic, many stocks have 
declined over the past decades, and population collapse has been imminent in many areas 
(Mieszkowska et al. 2009). While several factors may have contributed to these widespread 
declines, overexploitation has been implicated as the main cause in many cases (Myers et al. 
1997; Pauly et al. 2002).  

As a consequence of the sharp declines in abundance, researchers have debated the extinction 
vulnerability of cod, and several populations have been added to governmental and 
intergovernmental lists of threatened or endangered species (COSEWIC 2003; Dulvy et al. 2005; 
Reynolds et al. 2005). The conservation concern arises in part because recovery from low 
abundance level may be extremely slow. Many collapsed fish stocks show no or little change in 
abundance after more than 15 years following the collapse (Hutchings 2000; 2001). Many different 
factors may contribute to the lack of recovery, including depensation (the Allee effect), changes in 
species compositions, and habitat modifications (see Hutchings & Reynolds 2004). However, it has 
also been hypothesized that genetic changes may play a role (Hutchings 2005; Enberg et al. 
2009). 

A large proportion of studies documenting fisheries-induced evolution in life history traits have 
been conducted on cod populations. These have documented substantial reductions in either 
growth rate or timing of reproduction over the past decades in cod throughout its range (e.g. 
Jørgensen et al. 2007; Swain et al. 2007; Pardoe et al. 2009). As discussed above, statistical 
treatment of observed trait variation in the wild do not provide entirely conclusive evidence for the 
genetic basis of changes. Questions have also been raised about whether distributional shifts and 
population replacement, rather than adaptive evolution, can explain the observed changes 
(Andersen & Brander 2009). However, the combined evidence of parallel trends in multiple studies 
illustrates the pervasiveness of a common pattern. Getting a better understanding of whether the 
changes indeed reflect ongoing adaptation—and therefore potentially much more slowly reversible 
than purely phenotypic changes (Law 2000; Salinas et al. in press)—will be important for clarifying 
their role in stock recovery and persistence. It will also be important with more detailed 
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investigation into the nature of the selection pressure imposed by fishing and how this selection 
interacts with other evolutionary forces to shape population responses. 

 

4.4 Population structure 

Decades of population genetics research have revealed extensive population structure in Atlantic 
cod over both small and large spatial scales throughout its range (reviewed in Hauser & Carvalho 
2008). In addition to a deep split between European and North American cod populations (O Leary 
et al. 2007; Bigg et al. 2008; Pampoulie et al. 2008), cod are subdivided into many smaller units on 
each side of the Atlantic, and genetic differentiation has been observed down to the level of 
individual fjords (Jorde et al. 2007) or between depth strata within the same area (Pampoulie et al. 
2006). There is still little documentation for the long-term stability of such extreme microgeographic 
differentiation, but many studies report short-term stability of observed population structure over a 
few years, and in some cases stability over decades has been confirmed (e.g. Ruzzante et al. 
2001; Poulsen et al. 2006; Nielsen et al. 2007). This stability supports the biological realism of the 
observed structure, although the level of differentiation is generally very low, often with FST < 0.01 
on regional scales (Hauser & Carvalho 2008; Knutsen et al. 2011). This low differentiation may 
reflect high levels of gene flow between populations, but could also indicate recent divergence and 
large Ne’s. Tagging studies and larval dispersal surveys in many cases suggest that ongoing 
exchange among populations is limited (e.g. Robichaud & Rose 2004; Svedäng & Righton 2007; 
Bradbury et al. 2008), and recent findings of very strong divergence at specific loci (e.g. Nielsen et 
al. 2009b; Bradbury et al. 2010; Nielsen et al. 2012) may support this notion. Even though 
adaptation is possible in face of strong gene flow if differences local selection pressures are strong 
enough to overcome the homogenizing effects of migration (Lenormand 2002; Sambatti & Rice 
2006), such signatures of selection may also reflect a high degree of current isolation that is not 
yet visible at neutral markers because large Ne’s have limited accumulation of drift since 
divergence. 

 

4.5 The study populations 

In this thesis, we study two very different cod population complexes. Chapters 2 and 3 focus on a 
central part of the cod distribution range around the Gulf of St. Lawrence in Canada where cod 
probably have been present for many millennia, potentially pre-dating the last glacial maximum 
(LGM; Bigg et al. 2008). All the populations in this region have suffered population collapses due to 
overfishing and have all failed to recover, in part because of major habitat changes (Hutchings & 
Reynolds 2004). These populations thus represent a system that has been highly dominated by 
direct human impact for many decades, but more recently also have been affected by a number of 
significant environmental changes. 

Chapter 4, in contrast, focuses on the northern range edge for cod in waters around Greenland, 
which currently represents marginal habitat, reflected in a non-constant occurrence of cod (Buch et 
al. 1994; Rätz & Lloret 2005). This region appears to have been colonized by cod after the LGM 
(Bigg et al. 2008) and variation in local conditions have, at least over the past few centuries, 
spurred episodic outbursts of cod abundance interchanged with periods of virtual absence from 
some areas (Hansen 1949; Buch et al. 1994). This highly dynamic system has probably been 
dominated by environmental influences, although human overexploitation has also had important 
demographic impacts at times (Buch et al. 1994; Rätz & Lloret 2005). 
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5. RESEARCH OBJECTIVES 

In the two described populations complexes, we wanted to address the following overarching 
questions: 

• Are levels of genetic diversity, population structure and distribution patterns stable over 
time despite large demographic changes? 

• Can we observe molecular signatures of selection over decadal time scales? 
• If so, what is the genomic pattern (i.e. which and how many locations in the genome are 

affected, does selection appear to have been gradual or abrupt, and can we identify 
potential drivers of the selection)? 

• What is the interaction between selection in space and time? 
• Are signatures of recent selection parallel between adjacent populations and across 

different geographic regions? 

 

 

6. METHODS  

This section will introduce the main methodology we applied to meet the research objectives. I will 
describe the rationale for choosing the particular methods and briefly outline their power and 
limitations. 

 

6.1 Genetic markers 

We applied two different types of genetic markers: microsatellites (Chapter 2) and single 
nucleotide polymorphisms (SNPs; Chapters 3-6). Microsatellites are short tandem repeats of 1-6 
nucleotides and alleles are distinguished by varying number of repeat units (i.e. total length). The 
fragmented nature of historical DNA limits microsatellite analysis in genetic monitoring to loci with 
maximum allele sizes below ~250 bp, but many microsatellites fulfill this criterion and constitute 
valuable resources (Wandeler et al. 2007; Nielsen & Hansen 2008). 

Although it is well known that some microsatellites occur within genes or are part of upstream 
regulatory elements, they are generally expected to be embedded in non-coding sequence and of 
no functional effect, therefore reflecting effects of neutral evolutionary forces and demographic 
history (Beebee & Rowe 2008). However, if a microsatellite locus is linked to a proximate 
functional locus, it may be subject to hitchhiking selection, which can substantially bias analyses 
based on assumptions of neutrality (Luikart et al. 2003; Nielsen et al. 2006). We applied 
microsatellites for a baseline assessment of temporal trends in genetic variation (Chapter 2) 
because their mutation rates typically are much higher than other nuclear loci, and thus they are 
more polymorphic (Li et al. 2002). Such loci with many rare alleles provide maximal power for 
detecting recent loss of genetic variation because allelic diversity is a much more sensitive 
indicator of population bottlenecks than heterozygosity (Cornuet & Luikart 1996; Allendorf et al. 
2008).  

SNPs are single base substitutions and represent the simplest and most abundant form of genetic 
variation, widely distributed throughout all genomes. For analyses of degraded DNA, a technical 
advantage of SNPs is that their genotyping typically requires only a short (<100 bp) flanking 
sequence for each locus, so they can be analyzed even in highly fragmented DNA (provided the 
quality is adequate). Recent developments also allow high throughput simultaneous analysis of 
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1000s of SNPs either through genotyping-by-sequencing (Elshire et al. 2011; Davey et al. 2011) or 
chip/array-based genotyping platforms (Edenberg & Liu 2009).  

These technologies provide unprecedented resolution for studying genomic patterns and allow 
separation of genome-wide from locus-specific variation, which is a powerful approach for 
detecting effects of selection (Luikart et al. 2003; Allendorf et al. 2010). SNPs are common both in 
functional and non-coding parts of the genome, so panels can be selected based on study 
objectives. Following our baseline assessment that indicated no temporal change at microsatellite 
loci in the Canadian population (Chapter 2), we wanted to search for signatures of selection. With 
this goal in mind, we based the remainder of the studies on a highly targeted panel consisting 
exclusively of SNPs developed from expressed sequences (Moen et al. 2008; Hubert et al. 2010; 
Bowman et al. 2011). With the limited (although much increased compared to previous studies) 
genome coverage currently achievable for population studies of non-model organisms, this allowed 
us to focus on functional genetic variation, which is most likely to have been affected by selection. 
Using SNPs located in genic regions hence maximized our chances of detecting signatures of 
selection and, as an added advantage, will facilitate future efforts to understand the phenotypic 
effect of interesting polymorphisms.  

Our non-random selection of loci would introduce ascertainment bias for certain types of analysis 
(e.g. Rosenblum & Novembre 2007; Albrechtsen et al. 2010). However, since our study is based 
on observed shifts in allele frequencies, not the allele frequency spectrum itself, our SNP selection 
should not cause biases in the temporal analysis. Nevertheless, as a result of the targeted 
sampling of loci, our results cannot easily be extrapolated to the rest of the genome and hence do 
not necessarily provide robust estimates of the proportion of the genome that is affected by short-
term selection. 

 

6.2 Estimation of Ne 

To better understand the evolutionary trajectories of the study populations and to quantify genome-
wide levels of genetic variation between sampling points, we estimated Ne’s based on observed 
temporal variation in allele frequencies. This is the most commonly applied approach for estimating 
contemporary Ne (Palstra & Ruzzante 2008; Luikart et al. 2010) and is based on the principle that if 
effects of migration, selection and mutation can be assumed negligible, observed genetic changes 
over a given number of generations will reflect genetic drift, the magnitude of which is inversely 
proportional to the effective population size (Waples 1989; Wang 2005). 

A number of estimators have been proposed based on this principle (reviewed by Wang 2005; 
Leberg 2005; Luikart et al. 2010). Traditional moment-based methods (Krimbas & Tsakas 1971; 
Nei & Tajima 1981; Waples 1989) remain popular because of their simple computations and their 
direct interpretations in relation to classical population genetics theory. In recent years, a number 
of more computationally intensive methods have been developed based on e.g. maximum 
likelihood (Anderson et al. 2000; Wang 2001), Bayesian coalescent inference (Berthier et al. 
2002), or approximate Bayesian computation (Tallmon et al. 2004). Because these newer methods 
tend to use more information in the data, they are expected to be superior to moment-based 
methods both regarding accuracy and precision. Several comparative simulation studies have 
confirmed that this indeed is often the case (Wang 2001; Berthier et al. 2002; Tallmon et al. 2004), 
although not in all situations (Jorde & Ryman 2007). 

In Chapter 2, we compare the results from several different Ne estimators, including a completely 
different type of method that is based on the amount of linkage disequilibrium (LD) observed within 
single samples rather than temporal changes between samples (Waples & Do 2008). We found 
that many methods could not distinguish the Ne from infinity, indicating that it is so large that there 
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was no observable drift signal in the data after accounting sampling error. It is well-known that 
genetic methods have limited power to distinguish large from very large Ne’s (Nei & Tajima 1981; 
Luikart et al. 2010), but even when an accurate quantification is not possible, these methods can 
be useful for confirming that the Ne of a population is not small. Our comparative study found 
relatively consistent results from multiple methods that are based on different models with varying 
assumptions and different mathematical approaches (Chapter 2), so we proceeded to only apply a 
single method (either likelihood or moment-based) for the remaining chapters. 

 

6.3 Discriminant analysis of principle components (DAPC) 

Computation of F-statistics or genetic distances from a priori defined groupings of individuals 
probably remains the most widely applied approach for describing genetic population structure. It 
can often be useful, however, to also apply clustering methods that decompose a sample of 
individuals into genetically distinct groups without a priori characterization of these groups. In 
recent years, Bayesian clustering methods such as Structure (Pritchard et al. 2000; Falush et al. 
2003) or BAPS (Corander et al. 2003) have been among the most popular for this type of analysis. 
Based on minimizing the Hardy Weinberg and linkage disequilibrium that would arise if individuals 
from different randomly mating populations are mixed, these methods infer the most likely number 
of populations represented in a sample according to explicit population genetics models.  

Such Bayesian clustering methods have been immensely important for improving our 
understanding of population structure in a wide range of species, but unfortunately, their power to 
detect and describe structure decreases with the degree of differentiation between groups, and 
they provide little useful information when differentiation is very low (e.g. Latch et al. 2006; Waples 
& Gaggiotti 2006). As corollary, we also found that the weak differentiation between samples in our 
studies here (mean pairwise Fst<0.017, Chapters 3 and 4) generally did not allow meaningful or 
conclusive results from clustering individuals into populations based on Structure analysis. 

In contrast, we found that a recently developed method, discriminant analysis of principle 
components (DAPC; Jombart et al. 2010) had greater power to extract useful information about 
clusters in our dataset. This multivariate method identifies groups of similar individuals through K-
means clustering and then describes the relationship among these groups by constructing 
synthetic variables that maximize variance between and minimize variance within groups. One 
advantage of DAPC is that it does not rely on assumptions of particular population genetics models 
or a particular type of substructure. Further, in a comparative evaluation on simulated data, DAPC 
consistently showed similar or better performance than Structure for inferring the correct number of 
populations represented in a sample, and appeared clearly superior when the underlying 
simulation scenario was complex (Jombart et al. 2010).  

In spite of the superior performance across the parameter space tested, DAPC may, like other 
clustering methods, sometimes infer artifacts of discrete groups in populations where genetic 
diversity is continuously distributed (Jombart et al. 2010). However, the distribution of membership 
probabilities for each individual to the identified clusters is indicative of how distinct clusters are, 
and scatter plots of the synthetic variables allow for a graphical assessment of how the genetic 
variability in the data is organized. The method thus has several features that are useful for 
interpreting the results, and although more extensive evaluation is required to fully understand its 
powers and limitations, DAPC seems like a very promising tool. It may also generally prove more 
powerful than alternative methods when differentiation is low, as indicated by our empirical 
experience (Chapter 4). It should be kept in mind, however, that the ability to pick up vague 
structure is always associated with a risk of confusing sampling noise or data errors with true 
biological signals (Waples 1998; Hedrick 1999). Therefore, results should always be interpreted 
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with due consideration of possible confounding factors, and where possible, temporal replication 
can considerably strengthen confidence in the results (Waples 1998). 

 

6.4 Genome scans 

A central goal of this thesis was to search for signatures of very recent selection in the studied cod 
populations. Selection can affect the pattern and distribution of genetic variation both within and 
between populations and species, and a number of statistical tests have been developed to 
identify these effects (see reviews by Nielsen 2001; 2005). Some of the most popular tests (e.g. 
Tajima’s D or MacDonald-Kreitman) are based on signals that have accumulated within single 
populations over many, potentially thousands of, generations. Therefore, these methods are not 
spatially explicit and can typically not resolve the temporal dimension of variation in selection 
pressures. Because we here were interested in divergence between populations and in directional 
selection occurring over the study period, we instead applied genome scan methods (Storz 2005; 
Beaumont 2005) that compare differences in observed allele frequencies among population 
samples.  

The basic premise underlying genome scan methods (also called outlier tests) is that neutral 
evolutionary forces like migration and drift are expected to exert relatively uniform effects across 
the entire genome, whereas selection is expected to act only on specific loci and closely linked 
sites (Cavalli-Sforza 1966; Lewontin & Krakauer 1973). Therefore, genomic regions that show 
divergent patterns of differentiation are likely affected by selection, either as the direct target or 
through hitch-hiking effects (Lewontin & Krakauer 1973; Luikart et al. 2003; Storz 2005).  

As was recognized in the initial formalized test based on this principle, it can be applied to 
characterize variation both in space between different populations and in time within the same 
population (Lewontin & Krakauer 1973; 1975). However, almost all subsequent statistical 
refinements of the method have focused on the between-population scenario (e.g. Beaumont & 
Nichols 1996; Beaumont & Balding 2004; Foll & Gaggiotti 2008; Excoffier et al. 2009). Such spatial 
methods, which assume that samples are collected at a single time point from geographically 
separated populations exchanging migrants, have occasionally been applied to temporal data 
based on serial sampling of a single population (e.g. Bourret et al. 2011; Poulsen et al. 2011; 
Orsini et al. 2012). While this type of application may yield some insights, the results can be hard 
to interpret because the clear violation of the inherent population genetic model leaves 
uncertainties about the reliability of p-values or posterior probabilities for a locus being a significant 
outlier (see Hansen et al. 2012). To ameliorate this problem, we adapted a commonly applied 
outlier detection method to explicitly evaluate outlier status in relation to a temporal scenario 
(Chapter 6) and applied this in combination with conventional spatial tests for integrated 
spatiotemporal analysis (Chapters 3 and 4). 

Although genome scan methods are increasingly popular in studies of natural populations, the 
underlying approach has been severely criticized in a number of recent papers (reviewed by 
Barrett & Hoekstra 2011; Li et al. 2011). The criticisms mainly concern whether the models applied 
to generate neutral expectations adequately account for effects of demographic history (Thornton 
& Jensen 2007; Hermisson 2009), whether it makes sense to assume that neutral evolutionary 
forces have equal baseline effects across the genome (Buerkle et al. 2011), whether selection 
indeed only affects localized regions of the genome or if it has much more pervasive effects than 
previously appreciated (Hahn 2008), and whether outlier status implicate adaptive significance 
(Barrett & Hoekstra 2011). While all these concerns certainly have some validity, they mostly relate 
to the certainty of conclusions that can be drawn about locus-specific effects or to uncharacterized 
downstream fitness effects of particular outliers. Genome scans remain useful tools to identify the 
genomic regions that are most likely to have been affected by selection and thereby generate 
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important candidate loci for follow-up studies that can further clarify specific selection patterns and 
functional roles. 

 

6.5 Landscape genomics 

In addition to genome scans, we used a landscape genomics approach to test for associations 
between environmental parameters and temporal and spatial variation in allele frequencies. The 
underlying principle here is that strong correlations can suggest selection driven by particular 
environmental variables (or correlated factors) and hence help generate hypotheses about 
causative agents for observed patterns (Joost et al. 2007; Manel et al. 2010a; Coop et al. 2010). 
To account for the allele frequency patterns that arise due to factors such as differences in sample 
sizes and shared history among some populations, we primarily applied a recently developed 
Bayesian method that incorporates a null model based on covariance at putatively neutral loci 
(Coop et al. 2010). 

Generally, landscape genomics methods have been developed to compare spatial patterns of 
allele frequency variation to some average measure of environmental conditions at the sampling 
sites (e.g. Joost et al. 2007; Manel et al. 2010b). This way, observed allele frequencies likely 
reflect accumulated responses to long-term exposure to particular environmental agents. 
Nevertheless, the principle is also applicable to tests for temporal correlations between allele 
frequency variations and environmental conditions at different sampling time points (Hansen et al. 
2012). These correlations may be considerably more difficult to detect than spatial correlations 
because of uncertainties about cumulative effects and lag time in the responses. However, an 
assessment of broad patterns can be a very useful starting point for more detailed investigations to 
identify putative drivers of selection. 

 

 

7. SUMMARY OF STUDIES AND FINDINGS 

Below, I will briefly outline the content and main findings from each thesis chapter and discuss how 
the combined conclusions contribute to our understanding of recent microevolution in high gene 
flow species. The thesis opens with a baseline study on temporal genetic variation at neutral 
markers (Chapter 2) to set the stage for two retrospective population genomics studies that identify 
signatures of recent selection and examine the stability of population structures in the two very 
different cod population complexes (Chapters 3 and 4). As supporting material, two final chapters 
(5 and 6) report on methodological developments that were required to achieve the research 
objectives of the primary studies, and which will be useful for future research. 

 

Chapter 2: Large effective population size and temporal genetic stability in Atlantic cod 
(Gadus morhua) in the southern Gulf of St. Lawrence 

This paper is based on work I started for my M.Sc. thesis but have substantially revised (including 
additional data analysis) during my Ph.D. studies. It is included here because it provides an 
important baseline for the subsequent studies. Based on extensively validated genetic data from 
historical and contemporary samples from the Gulf of St Lawrence cod population, we here found 
complete stability of allele frequencies at nine polymorphic microsatellite loci over 80 years, 
spanning a period from before the commercial fishery intensified to present time when the 
population is at historically low abundance. Over the period, we did not observe any loss of 
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heterozygosity or allelic diversity. As a consequence of the temporal stability, the majority of 
applied estimation methods could not distinguish the Ne from infinity. The lower 95% confidence 
limit on estimates was generally >500, suggesting that the effective population size is likely to be 
considerably larger. 

These findings of genetic continuity, maintained levels of standing genetic variation and a large Ne, 
despite severe reductions in census size, were very promising for the prospects of detecting 
signatures of selection, because they indicated that drift and migration had not been important 
drivers of microevolution in this population over the study period. Accordingly, the temporal stability 
at neutral markers represents an ideal baseline for testing the hypothesis of recent selection, 
because any substantial locus-specific departures from temporal stability would likely reflect 
signatures of selection. Hence, this study set the stage for our more comprehensive SNP analysis 
of the system. 

 

Chapter 3: Microevolution in time and space: SNP analysis of historical DNA reveals 
dynamic signatures of selection in Atlantic cod 

This study was designed to follow up on the findings from Chapter 2 of long-term temporal stability 
at neutral loci in the southern Gulf of St. Lawrence cod, by now looking for genetic signatures of 
selection over the 80-year period. To obtain a better temporal resolution, we supplemented our 
previously analyzed samples with additional time points from the intervening period. Since the Gulf 
of St. Lawrence is a semi-enclosed basin that appears to contain a reproductively isolated 
population, we did not expect that population replacement could impact our results, but to control 
for this, and to assess interactions between temporal and spatial variation in selection pressures, 
we also included temporally spaced samples from three adjacent populations. Through genome 
scans based on an initial screening of >1000 SNPs in the temporally extreme samples and 160 
SNPs in a follow-up panel, we identified 77 loci that showed highly elevated levels of differentiation 
in either time, space, or both. Temporal allele frequency shifts at certain loci correlated with local 
temperature variation or with fisheries-induced life history changes. Surprisingly, however, largely 
non-overlapping sets of loci were temporal outliers in the different populations and outliers 
identified in the 1928-2008 comparison showed almost complete stability from 1960-2008. The 
apparent contrasting micro-evolutionary trajectories among populations resulted in sequential 
shifts in which loci were spatial outliers, with no locus maintaining elevated differentiation 
throughout the study period.  

To evaluate whether gene flow could have driven these outlier patterns, we conducted a series of 
simulations to assess how much migration would be needed to generate the observed allele 
frequency changes. We found that migration rates of >0.2 would be required, but such high rates 
are highly inconsistent with ecological data and observations of temporally stable (though weak) 
spatial structure at neutral loci, This suggests that disintegrated population structures or shifting 
migration patterns alone cannot explain the observed allele frequency changes at outlier loci, 
indicating that they are likely driven by highly dynamic temporally and spatially varying selection.  

 

Chapter 4: Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern 
range margin of Atlantic cod Gadus morhua 

In contrast to Chapter 3 that focused on populations from the central part of the species’ 
distribution range where cod has continuously been present at least since the 1500s, this chapter 
focused on the northern edge of cod distribution, which currently is marginal habitat, reflected in a 
non-constant occurrence of cod (Buch et al. 1994). With the forecasted warming, however, this 
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region is predicted to become an important area for the species (Drinkwater 2005). Hence this 
system represents an exciting opportunity to study ongoing climate-change induced colonization of 
northern habitats. Related to earlier environmental fluctuations, cod has episodically exhibited 
dramatic outbursts of abundance in the waters around Greenland over the past centuries (Hansen 
1949; Buch et al. 1994). It has, however, been unclear to what extent such rapid increases in 
abundance have arisen through recurrent colonization by populations from elsewhere (Iceland) or 
if they result from sudden growth in resident populations that have maintained a stable distribution 
through periods of rarity. Also, the degree of reproductive isolation among previously hypothesized 
population components was unknown, as were potential adaptive differences among these 
components. 

In this manuscript, we, as in Chapter 3, used a spatiotemporal population genomics approach to 
examine the temporal stability of population structure and identify signatures of divergent selection 
over a period of 78 years spanning major demographic changes. In this system, however, we a 
priori expected a more dynamic population structure and focused particularly on elucidating this 
aspect along with assessing potential adaptive differences. By genotyping >900 SNPs in almost 
850 individuals collected through extensive sampling from spawning grounds both contemporarily 
and during a historical period of maximum abundance, we identified four genetically distinct groups 
that over time exhibited varying spatial distributions with considerable overlap and mixing. At some 
spawning grounds, the genetic composition remained stable over decades, whereas complete 
population replacement was evident at others. We observed highly elevated differentiation in 
certain genomic regions, which is consistent with adaptive divergence between the groups. This 
indicates that they may harbor diverging adaptations to the Arctic environment and therefore will 
respond differently to environmental variation. Significantly increased temporal changes at a 
subset of loci also suggest that adaptation may be ongoing and that the populations possess 
potential for rapid response to altered selection pressures.  

Overall, this study illustrates a highly dynamic system where different population components 
exhibit divergent distribution patterns, potentially due to differential response to environmental 
changes. Yet, the continued presence of all populations even over decades of virtual absence of 
cod in certain regions indicates considerable resilience in this system of biocomplexity and 
suggests that historical fluctuations have been caused by combinations of local population growth 
and external influx. 

 

Chapter 5: Evaluation of a high-throughput SNP genotyping platform for analysis of 
degraded DNA from historical fish samples 

This technical note describes the performance of the Illumina GoldenGate SNP genotyping assay 
for our historical DNA samples analyzed in Chapters 3 and 4. This assay is based on hybridization 
of allele-specific fluorescently labeled primers to the template DNA and can genotype up to 3072 
SNPs simultaneously, providing a powerful medium-throughput platform for population genomics in 
non-model organisms. Developed for high-quality DNA, we had not previously seen this platform 
used for historical samples, so we did not a priori know if it would be applicable for our work. 
However, the genotyping is based on short (60 bp) oligonucleotide probes, suggesting that it could 
be robust to DNA fragmentation typical of degraded historical samples.  

Fortunately, we found remarkably high genotyping quality for the majority of our samples. Our 
analysis identified a number of factors that correlated with reproducibility and call rate, providing 
valuable information for the planning of future studies. We also demonstrated that after quality 
filtering which maximized data retention while limiting potential inaccuracies, the genotyping error 
rate was always <3% (much less for certain samples) and generally >90% of samples were 
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successfully genotyped for each SNP. These results strongly support the reliability of data 
presented in Chapters 3 and 4.   

 

Chapter 6: Ftemp: A method to detect genomic signatures of selection from temporal 
sampling 

This chapter describes a methodological adjustment that was needed to identify signatures of 
selection from temporal genetic data. As described in Section 6.4, practically all modern genome 
scan methods are developed for spatial comparisons of allele frequencies between populations 
and hence are based on models that do not necessarily provide a good characterization of 
variation over time within a single population. In this paper, we propose a modification of the 
commonly applied genome scan method fdist (Beaumont & Nichols 1996). Our approach 
compares the observed temporal differentiation at individual loci to a neutral expected distribution 
generated through simulations of drift within a single population. We demonstrate that the model 
generally is robust to uncertainty in parameter input values and that it responds as expected to 
variations in sampling configuration. Application to example datasets shows that it identifies a 
larger number of temporal outliers than methods designed to evaluate spatial patterns, but that the 
strongest outliers are consistently identified by all methods. The main strength of our proposed 
approach is that it provides an intuitive and simple framework that generates readily interpretable 
statistical thresholds for analysis of temporal data. 

The method is currently only implemented in personal R-scripts, but with additional collaborators 
(Tiago Antao and Samitha Samaranayake), we are exploring the potential for developing it into a 
user-friendly java-application for public release.  

 

Overall conclusions and implications 

With the powerful combination of large panels of gene-linked SNPs and sampling that spans 
several populations over multiple decades, Chapters 3 and 4 represent—to my knowledge—the 
most extensive temporal genetic studies on natural populations of any non-model species 
conducted to date. For this reason, they provide unprecedented insight into how selection operates 
and interacts with other forces over—in evolutionary terms—short time scales in presumably high 
gene flow organisms. 

The spatiotemporal approach was common to both studies, but the higher temporal resolution in 
the Canada study versus the emphasis on spatial resolution in Greenland makes the findings 
highly complementary. In both cases, however, the sampling over time was essential for 
understanding recent patterns in population structure and spatial distributions and for 
demonstrating that these can either show complete stability or dramatic changes over periods with 
large demographic fluctuations, depending on local conditions. In the Canadian populations, the 
level of genetic differentiation between populations was very low, except at a few outlier loci that 
showed increased divergence at different time points. This pattern made it difficult to draw strong 
conclusions about the temporal stability of population structure from the observed allele 
frequencies at non-outlier loci alone. However, the historical genetic data was useful to 
parameterize simulations that, in combination with ecological data, suggested that migration or 
population replacement could not explain the very large changes in allele frequencies we observed 
at certain loci, and that the population structure has remained stable despite the low differentiation.  

In the Greenlandic populations, the level of differentiation was also too low for successful 
application of several standard methods for inferring population structure. However, with a 
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multivariate approach, we were able to assign the majority of individuals to one of four identified 
populations with high statistical support. Through this assignment of individuals collected in both 
historical and contemporary time, we could directly observe how the genetic composition of cod in 
specific locations changed over time. We saw that in some areas, almost all sampled individuals 
originated from the same population and that this pattern was consistent between sampling years. 
In other areas, population samples appeared to contain individuals originating from different 
populations. Sometimes the constitution of these mixtures seemed stable over time while they 
varied between sampling years in other locations. In the most extreme cases, both the historical 
and the contemporary samples from a location were relatively “pure”, but assigned to different 
populations, suggesting complete population replacement. Monitoring the genetic origin of fish at 
different points in space and time therefore provided an important tool for tracking changes in the 
spatial distribution and mixing patterns of the different overlapping populations. Understanding this 
dynamic population structure was important both for elucidating the neutral microevolution in the 
system and for providing a baseline against which to detect signatures of selection. 

Both of our main studies suggested that signatures of selection were widespread, causing 
divergence in both space and time. In Canada (Chapter 3), the outlier loci on average showed 
more variation among sampling times within populations than they did in spatial comparisons 
among populations. This indicates that at least over the time scale considered, temporal variation 
in selection pressures had a greater impact than spatially varying selection in shaping allele 
frequencies in this system. This contrasts with the Greenland study (Chapter 4) where the average 
spatial variation at outlier loci exceeded the temporal variation. Another interesting difference is 
that in Canada, most outliers showed elevated divergence in both space and time, whereas there 
was almost no overlap between spatial and temporal outlier loci in Greenland.  

These differences may be caused by a number of factors. Variation in the power to detect outliers 
may play a role due to the inherent incongruence in sampling designs. However, the much larger 
geographical scale considered in Greenland could also explain why spatial variation in selection 
pressures would be larger in this system. Additional studies will be needed to further elucidate 
interactions between temporal and spatial scales of selection in marine fish. The few previous 
studies that have screened temporal trends in either single genes or smaller panels of gene-linked 
SNPs have provided mixed results with some reporting complete stability (Nielsen et al. 2007; 
2009b; Poulsen et al. 2011) and others notable changes at particular loci (Árnason et al. 2009; 
Jakobsdottir et al. 2011; Poulsen et al. 2011). 

The relatively large allele frequency shifts we observed here within populations suggest that 
temporal variations in selection pressures are pronounced. This may have to do with the short time 
scale we consider, as a number of studies have demonstrated that in nature, selection typically 
shows large fluctuations in both direction and strength, and that short term variation often exceeds 
long term averages (Kinnison & Hendry 2001; Hairston et al. 2005; Siepielski et al. 2011). In any 
case, our results suggest that selection has strongly affected the Canadian cod populations over 
the study period, potentially reflecting ongoing adaptation to changing conditions. Considering how 
dominant fisheries have been in shaping mortality patterns here, it is likely that this human impact 
has at least partially contributed to the selection pressures, although changing environmental 
conditions probably also have been important. We draw a similar conclusion about the Greenlandic 
cod populations, but our results also make it clear that dynamic and contrasting dispersal 
patterns—probably driven by a number of environmental influences—also have played an 
important role in this system. 

While slightly different SNP panels were applied, a number of loci showed strong outlier patterns in 
both studies, making these particularly interesting candidates for follow-up studies to clarify their 
functional roles and potential fitness effect (see below). Among the common outliers was a group 
of SNPs in strong linkage disequilibrium (LD) that spanned > 20 cM on the linkage map. Notably, 
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however, each study also showed signs of strong selection on an additional group of strong LD 
SNPs that did not show outlier behavior in the alternate study. These patterns indicate that both 
common and contrasting regions of the genome are involved in adaptive responses to different 
environmental variables in both space and time. 

Although the phenotypic and fitness effects of observed outlier loci remain unknown, the findings 
here add an important perspective to recent studies presenting evidence for local adaptation in 
marine fish either through elevated divergence at specific loci (Nielsen et al. 2009b; Bradbury et al. 
2010) or common garden experiments (Marcil et al. 2006; Grabowski et al. 2009; Harrald et al. 
2010). Where temporal stability has not been demonstrated, it can clearly not be assumed a priori. 
If environmental conditions are highly dynamic, local adaptation may also not necessarily imply 
static differences between populations, but can reflect ongoing changes.  

The abundance of both temporal and spatial outlier loci suggest that selection have played an 
important role in shaping the recent microevolution in the studied populations and that cod can 
respond rapidly to changes in selection pressure. Future investigations will help reveal the extent 
to which these signatures translate to adaptive trait changes, but the dynamic patterns suggest 
marine fish populations are reacting to human-induced and natural modifications of their 
environment through a number of mechanisms. 

 

 

8. FUTURE PERSPECTIVES 

This thesis illustrates how technological developments continue to enable entirely novel insights 
about the distribution of biodiversity in nature and fundamentally expand the range of questions we 
can address in our research. Such technology-driven insights have certainly influenced molecular 
studies of vagile marine organisms. As mentioned above, these species were previously expected 
to be genetically homogeneous and relatively panmictic throughout their range, but the advent of 
highly polymorphic markers completely transformed our understanding of how widespread 
population structure is (Hauser & Carvalho 2008). Similarly, the increasing ability to screen large 
panels of genetic markers is beginning to reveal how pronounced and abundant signatures of 
divergent selection appear to be (Nielsen et al. 2009b; Bradbury et al. 2010; Pespeni et al. 2012). 
Now, as the next wave, we can extend population genomics to the temporal dimension and start to 
discover how selection pressures vary in time and interact with other forces to shape evolutionary 
trajectories over short temporal scales. 

Yet, we are only at the dawn of this new research approach, and genetic monitoring of both neutral 
of functional genetic variation has enormous potential that has still to be fully unleashed. There are 
many exciting avenues for future research based both on application of tools that are already 
available, on taking advantage of rapid improvements in sequencing methods, and on coupling 
population genomics with alternative disciplines. In the following, I will briefly outline how I envision 
that follow-up investigations could further build on our existing results. 

 

8.1 Higher temporal resolution 

The purpose of this thesis research was to gain a synoptic overview of overarching temporal 
patterns in the two study populations and generally to assess the potential for identifying 
signatures of ongoing selection through retrospective monitoring over decadal time scales. The 
promising results will provide the basis for more detailed follow-up studies that focus on a finer 
temporal resolution. For example, more frequent sampling coupled with distinction between age 

28



	  

classes will likely provide deeper insights into how selection operates and fluctuates over time and 
will allow more strongly supported hypotheses about what factors are driving it. It will also allow 
more fine-grained analysis of how environmental factors have affected the spatial distribution of 
different subpopulations and interactions among these. 

In addition, archaeological samples, e.g. fish bones from historical human settlements, can extend 
studies even further back in time, potentially centuries or millennia (Barrett et al. 2008). The DNA 
quality of such samples may prohibit broad screening of hundreds of markers, but it may be 
possible to genotype individual candidate loci for longer-term assessments of distribution patterns 
and responses to selection (e.g. Svensson et al. 2007; Watson & Lockwood 2009).  

 

8.2 Better genome coverage 

Although we here study temporal variation at a much greater number of markers than has been 
available in the past for non-model organisms, we are clearly only capturing a fraction of the 
genomic signatures of selection. The decreasing cost and increasing throughput of sequencing 
and genotyping technologies will enable much denser marker coverage in the future (Allendorf et 
al. 2010; Davey et al. 2011), which will be important for more comprehensive insights into the 
genome-wide signatures of selection.  

However, although entire genomes can now be sequenced even from ancient specimen 
(Rasmussen et al. 2010), population studies will still for some time face a strong trade-off between 
the density of genomic coverage and the number of samples analyzed, and technological 
limitations for degraded historical samples remain. If these limitations are taken into account, 
various genotyping-by-sequencing methods (Elshire et al. 2011; Davey et al. 2011) may prove the 
most efficient for future research although high throughput genotyping platforms (Edenberg & Liu 
2009) also have advantages. Depending on specific project goals, it will be important to decide 
whether to target loci that are randomly distributed in the genome (e.g. developed from restriction 
enzyme-based methods (Davey et al. 2011)) or to focus efforts on genic regions (e.g. identified 
with RNA-Seq (Wang et al. 2009)). The advantage of the former approach is a more systematic 
survey of genome-wide patterns, whereas the latter allows better coverage in regions most likely to 
be affected by selection and thus easier association with functional impacts. 

Before extending the genomic coverage to completely new regions, however, there is also much 
additional information to gain from surveying more closely the genomic neighborhoods of the 
candidate outlier loci identified here. Our results suggested that several outliers were located in 
extensive LD groups and more fine-grained investigation of these regions will be important for 
narrowing in on the specific targets of selection. The fragmented nature of the current cod genome 
assembly (Star et al. 2011) does not presently allow full overview of the sequence variation 
surrounding outlier SNPs, but coupled with the linkage map (Hubert et al. 2010) it provides a useful 
tool for future targeted re-sequencing of specific regions. 

 

8.3 Understanding the adaptive significance 

While the molecular signatures of recent selection are informative in themselves, a full 
understanding of their role in short-term adaptation to altered conditions requires that links 
between genotype, phenotype, fitness, and selective drivers be established (Stinchcombe & 
Hoekstra 2007; Nielsen 2009; Barrett & Hoekstra 2011). Generating this full line of evidence is a 
notoriously challenging feat that has only very rarely been achieved in natural populations (see 
Barrett & Hoekstra 2011). 
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Methods such as association mapping may help reveal genotype-phenotype correlations in the 
wild (Ellegren & Sheldon 2008; Slate et al. 2008), but it is often difficult to disentangle complex 
interactions, especially in large populations that cannot practically be pedigreed. Therefore 
progress towards a better understanding of the adaptive significance will to a large extent depend 
on controlled laboratory studies. Integration of molecular and quantitative genetics methods in 
such set-ups would help reveal the genetic basis underlying phenotypic traits (Stinchcombe & 
Hoekstra 2007; Naish & Hard 2008), but would be logistically challenging due to the long life span 
of cod and other commercial fish. Long-term collaborations with the aquaculture industry may 
prove fruitful in this respect because of the shared interest in understanding the genetic basis of 
key traits. 

Once genotype-phenotype links are established, it will be important to examine how phenotypic 
variation translates into fitness effects in the wild and how these change over time. The extensive 
monitoring data accumulated through decades of stock assessment research on commercial fish 
stocks provide a valuable resource for this and for estimating selection differentials on specific 
traits (e.g. Swain et al. 2007; Kendall & Quinn 2012). Correlations between the temporal trends in 
such differentials or the raw genotypic and phenotypic variation and historical records of 
environmental variation or human pressure can provide compelling evidence for causative drivers 
of selection. However, multi-generational selection experiments provide the strongest evidence for 
how particular factors shape the fitness landscape and cause adaptive change (Conover & 
Baumann 2009). While such undertakings are almost impossible with Atlantic cod, studies of 
model organisms (e.g. Conover & Munch 2002; Reznick & Ghalambor 2005) may provide parallel 
insights and can identify candidate genes for use in retrospective monitoring of wild populations. 

 

8.4 Exciting times ahead 

The rapid advances in sequencing technology are currently revolutionizing population genetics 
and–especially in combination with inferences from other disciplines—provide unprecedented 
insights about adaptation and the distribution of genetic variation in natural populations. By 
extending these insights to the temporal dimension, genetic monitoring will undoubtedly play an 
important role in improving our understanding of how different microevolutionary processes play 
out and help clarify how populations will respond to rapid changes. The opportunities are only 
starting to unfold. 
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Abstract: Worldwide, many commercial fish stocks have experienced dramatic declines due to overfishing. Such fisheries-induced 

population reductions could potentially erode the genetic diversity of marine fish populations. Based on analyses of DNA extracted from 

archived and contemporary samples, this paper compares the genetic variability at nine microsatellite loci in a Canadian population of 

Atlantic cod (Gadus morhua) over 80 years, spanning from before the fishery intensified to now when the population is at historically low 

abundance. Extensively validated genetic data from the temporally spaced samples were used to estimate the effective population size. Over 

the period, we observed no loss of either heterozygosity or allelic diversity. Several of the estimation methods applied could not distinguish 

the effective population size from infinity, and the lower 95% confidence limit on estimates was generally >500, suggesting that the 

effective population size is probably considerably larger than this. Hence, it appears that the southern Gulf of St. Lawrence cod stock has 

maintained genetic variability to sustain future evolution despite a dramatic population decline. 
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In  recent  years  many  commercial  fish  stocks  have  de- 

clined  dramatically  as  a  result  of  overfishing  (Hutchings 
and Reynolds 2004; Worm et al. 2006). A growing body of 

literature has addressed the possible genetic consequences of 
such extensive fishing pressure in relation to selection on 

ecologically and demographically important traits such as 
growth and age and size at maturity (e.g., Stokes and Law 

2000;  Conover and  Munch 2002;  Law  2007).  Meanwhile, 
there  has  generally  been  less  focus  on  whether  severe 

fisheries-induced population reductions have eroded the ge- 
netic diversity of exploited stocks. 

The general lack of concern for this issue probably relates 

to the very large sizes of most exploited fish populations. 
Even after commercial  collapse,  these populations number 

millions  of individuals.  This  is well  above  the  population 

sizes typically considered at risk of losing genetic diversity 
(Frankham et al. 2002 and references therein). However, the 

rate of loss of genetic diversity is determined by the effec- 

tive population size (Ne) rather than the census size (N), and 
several studies have suggested that the ratio between these 
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two parameters (the Ne/N ratio) could be extremely low in 

marine fish compared with natural populations of most other 
organisms (see review by Hauser and Carvalho 2008). Sur- 
prisingly small effective population sizes of hundreds to a 
few thousand individuals have been reported for marine fish 
populations whose census sizes are up to five orders of mag- 
nitude larger (see e.g., Hauser et al. 2002; Hutchinson et al. 

2003; Hoarau et al. 2005). 
Although the degree to which such extreme estimates of 

Ne/N ratios reflect the true dynamics of biological systems 

has  been  questioned  (Flowers  et  al.  2002;  Poulsen  et  al. 

2006), these findings caution that marine fish could be at 
greater risk of losing genetic diversity because of fisheries- 
induced population reductions than previously believed. Ap- 
parent loss of genetic diversity following intensive exploita- 
tion  has  already  been  reported  for  several  marine  fish 

species (Smith et al. 1991; Hauser et al. 2002; Hutchinson 
et al. 2003), but other studies have found temporal stability 
in genetic diversity despite heavy fishing pressure (Ruzzante 

et al. 2001; Jakobsdó ttir et al. 2006; Poulsen et al. 2006). It 
is therefore important that we gain a better understanding of 
how vulnerable fish stocks are to erosion of genetic varia- 
tion 

To this end, we studied temporal genetic variation in At- 
lantic cod (Gadus morhua) in the southern Gulf of St. Law- 

rence, Canada. This population has been exploited 
commercially  for  centuries,  but  fishing  intensified  in  the 
1940s, with landings peaking at >100 000 t in 1956 (Fish- 
eries  and  Oceans  Canada  (DFO)  2008;  Fig.  1a).  Biomass 

and abundance of commercial-sized cod declined sharply in 
the 1960s and early 1970s, but then quickly increased again 
(because   of   a   period   of   unusually   strong   recruitment) 

(Fig. 1b). However, like many of the other Canadian cod 
stocks, the southern Gulf of St. Lawrence stock suffered a 
second dramatic decline in the early 1990s, and at that time 

a moratorium on fishing was imposed because of the low 
abundance. While the collapse in this area was not at first 
as dramatic as in some of the nearby stocks (e.g., the north- 

ern cod off Newfoundland; Hutchings and Reynolds 2004), 
the  population  has  not  yet  recovered  despite  more  than 

15 years  of  severely  reduced  fishing  pressure.  During  the 

early population reduction in the 1960s, abundance declined 
less sharply for mature individuals than for the total or ex- 

ploitable population (Fig. 1b). This is because the age at ma- 
turity declined markedly during this period (Swain 2010), so 
that increased spawning at young ages partly compensated 

for the loss of older spawners and the mean age of spawners 
substantially declined (Supplemental Fig. S13). Thus, in ad- 
dition to census size fluctuations, the population has under- 
gone dramatic demographic changes, which could also affect 
the Ne, especially if reproductive success is correlated with 

body size. The estimated abundance of mature individuals 
is currently at the lowest level ever recorded. In 2008 the 
spawning stock was estimated to consist of about 44 million 
fish, about  8%  of  the  recorded  maximum  and  about  one- 
third of the harmonic mean spawning stock size over the pe- 
riod 1950–2008 (118 million fish), and spawner abundance 
is expected to continue to decline (DFO 2008; Swain and 
Chouinard 2008). 

Fig. 1. Historical landings (a) and estimated biomass and 

abundance (b) for the southern Gulf of St. Lawrence cod stock. 

Panel b shows mature abundance (dashed line) as well as biomass 

(heavy grey line) and abundance (solid black line) of cod aged 

5 years and older (the main ages contributing to the fishery). Land- 

ings and estimates of abundance and biomass at age are from 

Chouinard et al. (2008); mature abundance is computed based on 

revised maturity ogives estimated by D.P. Swain (unpublished 

data). 
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Based on DNA extracted from archived and contemporary 
samples, we compared the genetic composition of this popu- 
lation over a time span of 80 years from before the fishery 

intensified to the present. We conducted an extensive quality 
control  of  the  historical  data  because  the  degraded  DNA 
from these samples makes genotyping particularly error- 
prone. The results were used to investigate whether this pop- 
ulation has suffered a loss of genetic diversity following in- 
tensive exploitation. To gain a better understanding of the 
observed pattern, we also applied several methods to esti- 

mate the Ne. With an estimated mean census size of 118 

million individuals, we expect that the Ne  of this population 

could still be large, and it is notoriously difficult to distin- 

guish  a large  Ne  from  a very  large  one  based  on genetic 

data (Nei and Tajima 1981; Waples 1989; Palstra and Ruz- 
zante 2008). For this reason — and because it arguably is 
the most relevant indicator for precautionary management — 
we  focused  particularly  on  the  lower  limits  of  the  confi- 

dence intervals of Ne  estimates to assess whether the Ne  of 

this population could be of conservation concern. 
�

3 Supplementary data for this article are available on the journal Web site (http://cjfas.nrc.ca). 
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Samples 

The source of historical DNA from the southern Gulf of 
St. Lawrence cod stock was a set of archived otoliths col- 
lected in 1928 near Paspébiac in the western end of the 
southern Gulf (Fig. 2). These otoliths (n = 57 individuals) 
were  obtained  from  the  National  Institute  of  Aquatic  Re- 

Fig. 2. The southern Gulf of St. Lawrence, showing sampling loca- 

tions for the 1928 sample (square) and the 2008 sample (circles). 

The 50, 100, and 200 m isobaths are indicated by the grey lines. 

sources in Denmark and had been stored individually in pa-
per envelopes at room temperature. Contemporary samples 

(n = 60 individuals) were obtained from gill tissue collected 
within <100 km of the historical sampling location from ma- 
ture individuals at spawning time (May–June) in 2008. 

�

Laboratory procedures 

DNA was extracted from both historical and contempo- 
rary  samples  with  an  Omega  EZNA  Tissue  DNA  kit 
(Omega Bio-Tek, USA). This method was used because it 
has been demonstrated to perform well with otolith DNA 
samples and does not damage otoliths during extraction 
(Therkildsen et al. 2010). The gill tissue was processed ac- 
cording  to  the  manufacturer’s  instructions.  Otoliths  were 
left  in  the  digestion  solution  for 3 h and  removed  before 
DNA was purified from the extract following the same pro- 
cedure as used for gill tissue. 

The samples were genotyped at nine di-, tri-, and tetra-nu- 
cleotide microsatellite loci: Gmo 2 (di-) and Gmo 132 (di-) 
(Brooker  et  al.  1994);  Gmo  8  (tetra-),  Gmo  19  (tetra-), 
Gmo  34  (tetra-),  and  Gmo  35  (tri-)  (Miller  et  al.  2000); 
Tch 11 (tetra-) and Tch 14 (tetra-) (O’Reilly et al. 2000); 
and Gadm 1 (di-) (Hutchinson et al. 2001) (see Table 1 for 

allele size ranges). For the contemporary samples, polymer- 

ase chain reaction (PCR) amplification was conducted using 
30 PCR cycles, while historical samples were amplified with 

39 cycles. The PCR amplification products were analyzed 
on a Basestation51 automated sequencer (MJ Research/Bio- 
Rad), and allele sizes were scored using the CARTOGRA- 
PHER Sequencing and Genotyping Analysis Software (MJ 

Research). Individuals with known genotypes were included 
in all gel runs to ensure correct fragment size scoring. 

�

Quality control of the genotyping 

Because DNA in historical samples is degraded and only 
available in small quantities, it is more prone to generating 
genotyping errors than DNA from contemporary samples 
(Taberlet et al. 1996; Pompanon et al. 2005). Therefore, sev- 
eral precautions were taken to minimize this risk. Both DNA 
extraction and PCR preparation with the historical samples 
were conducted in an isolated laboratory located in a sepa- 
rate building where no fish samples had previously been an- 
alyzed.  Negative  controls  were  used  in  all  runs  (both 
extraction  and  PCR).  Furthermore,  all  historical  samples 
were genotyped following a multiple tubes approach (Navidi 
et al. 1992; Taberlet et al. 1996) based on generating several 
independent replicates of each genotype, because consensus 
genotypes (consistent results from multiple reactions) should 
be more reliable than results from a single reaction. 

Two amplifications were initially carried out for each in- 
dividual at each locus. If the same genotype was obtained in 
both, this consensus genotype was recorded. If different gen- 
otypes were observed in the replicates, additional PCRs were 
conducted  until  each  allele  had  been  observed  twice  or  a 

consensus homozygote genotype could be assigned. In cases 
where three or more replicate genotypes were identical but a 
single replicate was different from the others, we followed 
the methodology in Miller and Waits (2003) and devised the 

consensus genotype based on the principle of parsimony. In- 
itial trials had shown that the two types of genotyping er- 
ror — allelic dropout (non-amplification of one allele) and 
mistaken alleles (mismatch between assigned alleles and 

consensus genotype due to, e.g., PCR artifacts, mis-scoring, 
other human errors, or sporadic contamination) — were al- 
most equally common. Hence, in an example of four repli- 

cates yielding genotypes AA, AA, AA, and AB, the most 
parsimonious consensus genotype would be a homozygote 
with one mistaken allele rather than a heterozygote where 

the same allele had dropped out three times. In cases where 
a consensus genotype could not be assigned after seven inde- 
pendent PCRs or where more than four amplification at- 
tempts  had  failed,  the  genotype  was  recorded  as  missing. 

Only consensus genotypes  were used for further  analyses. 
To assess the repeatability of results, >35% of genotypes (in- 
cluding all homozygotes at most loci) from the contemporary 
samples were also replicated in independent PCRs. 

Genotyping error rates were assessed by recording mis- 
matches between replicates and corresponding consensus 
genotypes (assuming the latter represented ‘‘true’’ geno- 
types). Allelic dropouts and mistaken alleles were recorded 

independently. We quantified errors both per amplified al- 
lele (as defined by Broquet and Petit (2004)) and the propor- 
tion of positive PCRs that contained at least one of the two 
error types (as suggested by Hoffman and Amos 2005; Pom- 

panon et al. 2005). Finally, to identify genotyping errors not 
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Table 1. Sample size (n), allelic richness (adjusted to 39 individuals), observed (Ho) and expected (He) heterozygosity, p value 

for the tests of deviation from Hardy–Weinberg Equilibrium (HWE), and locus-specific FST  for the two temporally spaced sam- 

ples from southern Gulf of St. Lawrence cod. 
�

n Allelic richness Ho  He  p (HWE) 
�

Locus Size range (bp) 1928 2008 � 1928 2008 � 1928 2008 � 1928 2008 � 1928 2008 FST 

Gmo 2 107–153 46 60 � 12.5 12.3 � 0.87 0.77 � 0.83 0.81 � 0.44 0.26 0.005 

Gmo 8 121–289 46 60 � 13.7 16.6 � 0.89 0.88 � 0.92 0.92 � 0.13 0.84 0.001 

Gmo 19 120–224 40 60 � 20.9 19.0 � 0.98 0.95 � 0.94 0.94 � 0.86 0.19 0.000 

Gmo 34 095–111 49 60 � 4.8 4.6 � 0.65 0.43 � 0.57 0.43 � 0.93 0.16 0.016 

Gmo 35 121–148 47 60 � 7.6 7.6 � 0.79 0.73 � 0.77 0.78 � 0.35 0.44 0.005 

Gmo 132 111–125 47 60 � 6.0 6.5 � 0.79 0.58 � 0.70 0.63 � 0.67 0.17 0.009 

Tch 11 115–215 39 60 � 18.0 20.0 � 0.92 0.92 � 0.93 0.94 � 0.32 0.54 0.001 

Tch 14 103–231 45 60 � 19.3 19.3 � 0.96 0.87 � 0.94 0.93 � 0.14 0.42 –0.008 

Gadm 1 168–180 45 60 � 5.9 5.6 � 0.62 0.55 � 0.62 0.59 � 0.29 0.21 –0.008 

�

Average across loci 45 60 12.1 12.4 0.83 0.74 0.80 0.77 0.27* 0.25* 0.002* 
�

*Results from multi-locus test or estimation. 

�
detectable  through replication  (see DeWoody et al. 2006), 
the  program  MICRO-CHECKER  (Van  Oosterhout  et  al. 
2004) was used to test for evidence of stutter, null alleles, 
and large allele dropout in the consensus data sets for both 

1928 and 2008. 
�

Testing assumptions for the statistical analysis 

Deviations from Hardy–Weinberg proportions for each lo- 
cus and sample as well as genotypic disequilibrium between 
all pairs of loci in each sample were tested using the pro- 
gram FSTAT version 2.9.3.2 (Goudet 1995, 2001). A se- 
quential Bonferroni correction was applied to correct for 

multiple tests (Rice 1989). In addition, to test for evidence 
of selection effects on any locus, a neutrality test was ap- 
plied using the Bayesian method implemented in the soft- 
ware BAYESCAN (Foll and Gaggiotti 2008). 

�

Comparison of genetic diversity 

Using FSTAT version 2.9.3.2 (Goudet 1995, 2001), the 
genetic diversity of each sample was quantified by Nei’s 
(1987) unbiased heterozygosity and by allelic richness (ad- 
justed to 39 individuals, which was the smallest number of 
individuals genotyped for any locus; El Mousadik and Petit 
1996). To test for differences in diversity between samples, 
these statistics were computed for each locus in each sample 
and were compared by a Wilcoxon’s signed rank test. We 
used  the  c2   test  implemented  in  the  program  CHIFISH 
(Ryman 2006) to test for differences in allele frequency dis- 
tributions at any locus between the samples. The genetic dif- 
ferentiation between samples was also estimated by single- 
and multi-locus FST values following Weir and Cockerham 

(1984). The 95% confidence interval on the multilocus esti- 
mate was determined by bootstrapping over loci, and the 
significance was tested by permuting genotypes between 
samples  using  the  test  procedure  by  Goudet  et  al.  (1996) 
and 1000 permutations as implemented in FSTAT version 

2.9.3.2 (Goudet 1995, 2001). 
�

Estimation of the effective population size: single sample 

estimator 

We applied the linkage disequilibrium (LD) method to 
obtain separate estimates of Ne in 1928 and in 2008. This 

method is based on the notion that LD at neutral, unlinked 

loci  in  isolated  randomly  mating  populations  should  arise 
only as a result of drift, and hence the level of nonrandom 
association of alleles at different loci should reflect the Ne 

of the population (Waples 2006; Waples and Do 2009). We 
estimated Ne with each sample using the program LDNE 
(Waples and Do 2008). Since allele frequencies close to 0 
or 1 can affect this method in ways that are not completely 
understood (Waples 2006), we used a cutoff point at fre- 
quencies  >0.02 (excluding  single  copy  alleles),  which  has 
been shown to minimize bias for simulated data sets similar 
to ours (Waples and Do 2009). Estimates of Ne were com- 
puted based on the entire data set, but to assess sample size 
effects when comparing the 2008 results with the 1928 sam- 
ple, the analysis was repeated on a subset of 40 randomly 
selected individuals from 2008. 
�

Estimation of the effective population size: the temporal 
method 

The temporal method for estimating Ne  is based on quan- 
tifying the amount of drift or the rate of coalescence that has 
occurred  between  two  or  more  samples  taken  at  different 
times from the same population (Leberg 2005; Wang 2005). 
No   universally   superior   estimator   has   been   identified 
(Tallmon et al. 2004; Jorde and Ryman 2007), so we com- 
pared several different applications that are based on differ- 
ent mathematical properties. Common to these approaches is 
the assumption that mutation, migration, and selection have 
not significantly influenced the variance in allele frequencies 
between samples. 
�

Estimating the generation length 

Application  of  the  temporal  method  to  estimate  Ne   re- 
quires information about the number of generations between 
samples. The generation length of populations with overlap- 
ping generations is equal to the mean age of parents (Hill 
1979). Following Miller and Kapuscinski (1997), this was 
approximated  as  the  mean  age  of  spawners  weighted  by 
age-specific fecundity. The relative fecundity of each female 
age class was calculated based on the stock-specific relation- 
ship  between  age  and  fecundity  (McIntyre  and  Hutchings 
2003).  Abundance  and  maturity  data  on  each  age  class 
(D.P. Swain, unpublished data) were then weighted by these 
relative  fecundities.  Although  differences  in  reproductive 
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success among males have been demonstrated in captivity 

(Bekkevold et al. 2002), there are no data to quantify this 
effect in the wild. Therefore male reproductive contribution 
was assumed to be equal across age classes. 

An average of the weighted female and unweighted male 
age distributions of spawners was computed for each year in 

the period 1950–2008 (Supplemental Fig. S12). The overall 
average generation time in the period was 6.35 years, corre- 
sponding to 12.6 generations between the samples. This is 
probably a slight overestimate because the average age of 
spawners has declined during the period (Swain 2010; Sup- 

plemental Fig. S12), and no data were available for 1928– 
1950 when it was likely to have been higher. Hence, for the 
analyses with the temporal method, we applied an estimated 
span of 12 generations. To assess the sensitivity of our Ne 

estimates  to  uncertainty  in  generation  time,  all  analyses 
were also conducted assuming spans of 9 and 15 genera- 
tions. 

�
Moment estimator 

The  classical  estimator of  Waples  (1989)  is widely  ap- 
plied for estimating temporal Ne. However, Jorde and Ry- 

man (2007) developed a modified, less biased moment 
estimator for small sample sizes and skewed allele frequen- 
cies (many rare alleles), as characterized in this data set. We 
used the program TEMPOFS (Jorde and Ryman 2007) to es- 

timate Ne with this modified estimator. 
�

Pseudo-likelihood estimator 

In addition to the computationally simple moment estima- 
tor, we also used the pseudo-likelihood method of Wang 
(2001) as implemented in the program MNE 2 (Wang and 
Whitlock 2003). This method finds the value of Ne that 

maximizes the probability of the data based on a Wright– 
Fisher  model  of  genetic  drift  and  uses  more  information 
about  allele  frequencies  in  the  samples  than  do  moment- 
based estimators. The program requires an input for the 
maximum value that Ne may assume (NeMAX), and we con- 

ducted  separate  analyses  with  an  NeMAX  of  103,  104,  and 

3 x 104  (the largest value the program could handle on a 
standard computer). 

�
ABC estimator 

As a final application of the temporal method, Ne was es- 

timated with approximate Bayesian computation (ABC) im- 
plemented in the program DIY ABC (Cornuet et al. 2008). 
Based on summary statistics known to have a relationship 
with  Ne,  this   method   compares   the  observed   data  set 

sampled from the studied population with an unknown Ne 

against  500 000 data  sets sampled temporally  from  simu- 
lated populations, each with a known Ne. We used different 

sets of broad uniform priors on Ne ranging from 1 to 106 and 

a generalized stepwise mutation model with the prior param- 
eters used in Cornuet et al. (2008). The posterior distribution 
for Ne  was generated with a local logistic regression based 

on logit-transformed  estimates  of Ne  from  5000 simulated 

data sets (the 1% most similar to the observed data). Three 
independent runs were conducted for each set of priors for 
Ne  to check the consistency of results, and the presented re- 

sults are averages of the mode and the 0.025 and 0.975 
quartiles between these three runs. 

Effect of genotyping error 

To assess the potential effect of genotyping errors without 
quality control on our Ne estimates, all analyses were re- 

peated with an uncorrected data set consisting of the first 
genotypes observed for each individual at each locus. 

�
"����
� 
�

Genotyping 

Of the 57 historical individuals, eight were removed in a 
prescreening: three because they showed signs of multiple 
genotypes (pre-extraction sample contamination) and five 
because of poor amplification. For the remainder of the sam- 
ple, on average 3.1 (range 2–7) positive PCRs were geno- 
typed per locus per individual. The number of consensus 
genotypes obtained for the historical samples ranged from 
39 to 49 per locus (Table 1). In single reactions, 7.9% of 
amplified alleles were classified as mistaken, and the aver- 
age   rate   of   allelic   dropout   was   8.9%   (Supplemental 

Table  S12). The amplification  success was higher for loci 
with shorter allele sizes (Supplemental Fig. S22); thus, large 
allele dropout may have affected our historical data. Indeed, 
for six of the nine loci, the largest allele dropped out more 
often (data not shown). The effect of this on the consensus 
data appeared to be limited, however, as no significant dif- 
ferences  in  average  allele  size  or allelic  richness between 
the 1928 and the 2008 sample were detected (see below). 
Likewise, tests conducted in MICRO-CHECKER on the 
consensus data set did not detect evidence of large allele 
dropout, stutter, or null alleles. 

The  overall  reliability  of  the  consensus  data  can  be 
coarsely approximated by calculating the probability of as- 
signing a wrong allele to the consensus genotype after two 
independent reactions (i.e., the same error occurring in both 
replicates) as the squared probability of each type of error. 
Since average rates of mistaken alleles and allelic dropout 
were both around 8%–9%, this error is &0.8%. With addi- 
tional replication (>2) for many genotypes, the actual error 
rate is likely even lower. Hence, despite the relatively high 
error rate for single amplifications, the overall reliability of 
the consensus data is likely above 99%. 

All of the 60 contemporary samples were successfully 
genotyped at all loci. The replication of a subset of geno- 
types revealed an allelic dropout rate of 0.9% and 0.5% mis- 
taken alleles, but these were corrected through replication. 

�
Testing assumptions for the statistical analysis 

The data showed no significant deviations from Hardy– 
Weinberg   expectations   for   any   locus   in   any   sample 
(Table 1), and none of the pairwise comparisons in the link- 
age disequilibrium test were significant after Bonferroni cor- 
rection. The neutrality test did not detect any outlier loci; 
the posterior probability of being affected by selection was 
£0.62 for all loci, and the results were consistent between 
independent runs (results not shown). Hence all loci were 
included in further analyses. 

�
Comparison of genetic diversity 

The average allelic richness was slightly higher in 2008 
than  in  1928,  while  the  average  expected  heterozygosity 
was  slightly  higher  in  1928  (Table  1).  However,  none  of 
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these differences were significant on a locus-by-locus basis 
(p > 0.17 for both). There were also no significant differen- 
ces in allele frequencies between the samples (p = 0.51), and 
the multilocus FST estimate was 0.002 (95% confidence in- 

terval: –0.002 to 0.006) and not significantly different from 
zero (p = 0.48). 

�
Estimation of the effective population size 

The results obtained with the different Ne estimators are 
summarized (Fig. 3). With the LD method, the point esti- 
mate for 1928 could not be distinguished from infinity. For 
2008, the method yielded a finite estimate of 580 individuals 
(895 when the analysis was based on only 40 individuals), 

but the 95% confidence interval included infinity. While the 
point estimate for 2008 is smaller than that for 1928, the 
confidence intervals  broadly  overlap  (even  extending 
slightly lower in 2008 than in 1928; see Fig. 3), making the 

data inconclusive about possible changes in Ne over time. In 
both years, the lower bound of the confidence interval was 
around a few hundred. 

All three applications of the temporal method yielded 

somewhat larger point estimates. The Jorde–Ryman moment 
estimator provided a finite point estimate for Ne of 1768 with 
95% confidence intervals spanning from just over 500 to 
infinity.  The  pseudo-likelihood-based  estimator  generated 
point estimates that were equal to or very close to the maxi- 
mum allowed for all values of NeMAX tested (Fig. 3), sug- 

gesting that Ne  is >3 x 104  (which was the largest size that 

could be tested here). The lower 95% confidence limit, how- 
ever, was consistent between runs at around 103 regardless of 
the NeMAX. The ABC method provided fairly consistent esti- 

mates of Ne for a broad range of prior values (Fig. 3), and it 

was the only method that yielded finite confidence intervals 
that were not constrained by the priors. When the maximum 
Ne  allowed was <104  (the estimation process was limited to 

within the interval given in the priors), the estimate was 
exactly the maximum value, suggesting that Ne  was larger 

than this. For all other prior sets tested, the estimate of Ne 

was around 104, and lower and upper 95% confidence limits 
were around 5 x 103  to 6 x 104, respectively. Results were 
similar for independent runs with the same priors. 

Varying the assumed number of generations between sam- 
ples affected the Jorde–Ryman and the MNE estimator in 
predictable ways. Reducing the span to nine generations 
caused a ∼25% decrease in the lower confidence interval limit, 

while increasing it 15 generations caused a corresponding  

∼25%  increase.  The results  obtained  with  the ABC method 

were more variable, but with lower confidence interval limits 
only changing by up to ∼10%. Based on available data for this 

population (Supplemental Fig. S12), spans of 9 and 15 
generations over the 80-year period appear to  represent  the  
extremes  of  plausible  values.  Thus these effects represent 
the maximum bias expected from un- certainty in estimating 
this parameter. 

�
Effects of genotyping error 

Analysis of the uncorrected data revealed large deviations 
from Hardy–Weinberg equilibrium (HWE) proportions at 
several loci in the 1928 sample and significant differences 

in allele  frequencies between the two samples (p = 0.03). 
The average heterozygosity in both samples was identical to 

Fig. 3. Point estimates (dots) and precision limits (error bars) of Ne 

obtained with different estimators. LD is the linkage disequilibrium 

method applied separately to the 1928 and the 2008 sample. J–R is 

the Jorde–Ryman temporal method, MNE is the pseudo-likelihood 

method, and ABC is the method based on approximate Bayesian 

computation. Error bars represent 95% confidence intervals (2.5% 

and 97.5% quartiles of the posterior distribution for the ABC). LD 

and J–R are moment-based and incorporate no prior. MNE uses a 

uniform prior from 0 to NeMAX, and the ABC estimates are based 
on uniform priors from NeMIN  to NeMAX. The priors used in different 

runs are illustrated by the shaded bars. 

that computed for the consensus data set, while the average 
allelic richness was slightly lower both for the 1928 and the 
2008 sample in the uncorrected data, though still not signifi- 
cantly different between samples (p = 0.20). The LD esti- 
mate  based  only  on  the  2008  sample  was  slightly  higher 
with the uncorrected data, but all Ne estimates involving the 

historical sample (which was particularly error prone) were 
considerably lower with the uncorrected data (Supplemental 
Fig.  S32).  Point  estimates  were  at  least  50%  lower,  and 
lower  confidence  interval  limits  were  at  least  35%  lower 
than those obtained with the consensus data. The two meth- 
ods for which point estimates were beyond the estimation 
capabilities with the consensus data (LD and MNE) also 
yielded finite estimates with uncorrected data (Supplemental 
Fig. S32). 

�
#��	�������

Although a large reduction in census population size in- 
evitably will result in the loss of many rare alleles at the ge- 
nomic level (Ryman et al. 1995; Allendorf et al. 2008), our 
study suggests that the southern Gulf of St. Lawrence cod 
stock has not suffered any reduction in common genetic di- 
versity indices at microsatellite loci despite severe popula- 
tion  reductions  due  to  intensive   fishing  over  the  past 
80 years. The selection of methods applied to estimate the 
Ne varied in their point estimates and their precision, but 

generally had overlapping confidence intervals. The LD esti- 
mator suggested that Ne  could be as low as a few hundred, 

but with a point estimate of infinity for the 1928 sample and 
exceedingly  wide  confidence  intervals,  this  was  also  the 
most  imprecise  and  uninformative  estimator.  All  applica- 
tions  of  the  temporal  method  (based  on  more  data  using 
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both samples) suggested that Ne was larger than 500–5000 

(lower 95% confidence interval limit). The consistent exclu- 
sion of very low values of Ne  from the confidence intervals 

by these three methods that are based on different models 
with varying assumptions and different mathematical ap- 
proaches provides compelling evidence that the Ne of this 

population is at the very least 500 and most likely consider- 
ably larger than that. This finding is consistent with the ob- 
servation of temporal stability in genetic diversity because 
an Ne  much above 500 exceeds the population sizes typi- 

cally  associated  with  immediate  loss  of  genetic  diversity 
due to drift (Frankham et al. 2002 and references therein). 

�
Precision of estimates 

The  study  remains  inconclusive  about  the  exact  magni- 
tude of Ne. The LD method was uninformative, with confi- 

dence intervals extending from a couple of hundred 
individuals to infinity. The point estimates from the tempo- 
ral method indicated that it was either 2000 – 10 000 (Jorde– 
Ryman and ABC) or considerably greater (MNE). This un- 
certainty is not surprising given that in general, genetic Ne 

estimators  do not perform well for large populations (Nei 
and Tajima 1981; Waples 1989) because when there is little 
drift, the signal-to-noise ratio becomes very small. This may 
compromise the accuracy of all the estimators, and it is not 
obvious which methods would perform best under such cir- 
cumstances, as comparative simulation studies are typically 
only carried out for small to moderate Ne  (see e.g., Tallmon 

et al. 2004; Jorde and Ryman 2007). In general, however, 
there  are  several ways that  the  precision  of our estimates 
could have been improved: (i) increasing the number of in- 
dividuals in each sample; (ii) increasing the number of gen- 
erations between samples; (iii) integrating information from 
additional temporal samples; or (iv) increasing the number 
of  loci  or  the  variability  of  the  loci  used  (Waples  1989; 
Wang 2001; Palstra and Ruzzante 2008). 

Recent papers have emphasized that a very extensive 
sampling of individuals may be needed to achieve estimates 
with finite bounds when Ne is large (Ovenden et al. 2007; 

Palstra and Ruzzante 2008), but studies based on archived 
samples are limited by the number of historical individuals 
available and the extra time and resources required for their 
reliable genotyping. Although the sample size used in this 
study for this reason was modest, it is typical of studies us- 
ing temporal sampling to estimate Ne (see Palstra and Ruz- 

zante   2008).  The   finding   of   no  genetic   differentiation 
between temporal samples (with a narrow confidence inter- 
val of the FST estimate) also suggests that sampling effects 

were low. Reducing these sampling effects further (by in- 
creasing sample size) would thus likely have lead to even 
smaller  estimates  of  variance  in  allele  frequencies,  and 
hence larger sample sizes for this study could possibly have 
increased Ne estimates and narrowed confidence limits, but 

would unlikely have reduced the lower limit. 

The  relatively  small  sample  size  was  also  compensated 
for by using the oldest available samples providing the max- 
imum  number  of  generations  between  samples  possible. 
With extensive resources for genotyping, multiple sampling 
times could have improved precision and accuracy and al- 
lowed inference about potential temporal changes in the Ne. 

However,  if  only  a  limited  number  of  individuals  can  be 

genotyped, information content is maximized by pursuing 
temporal extreme samples rather than spreading out the sam- 
pling within the time period studied. 

While adding more loci may be the most straightforward 
way of increasing the power for Ne  estimation, we expect 

that the number of loci analyzed would need to be consider- 
ably  increased  to  achieve  a  markedly  greater  precision. 
Since we found no significant changes in allele frequencies 
at any of the loci studied, additional neutral loci are unlikely 
to show a significantly elevated drift signal. When this is the 
case, the estimators hardly have  any temporal  variance  to 
work with — even with vast numbers of loci or samples. 
Accordingly,  adding  a  few  more  loci  is  unlikely  to  add 
much power. A many-fold increase  in the number of loci 
used may improve the statistical  precision,  but as pointed 
out by Palstra and Ruzzante (2008), the practical value of 
obtaining precise estimates of Ne when it is large may not 

always justify the extensive efforts required. While it may 
be of general interest to derive reliable inference about the 
Ne/N ratio in large populations, the main question of interest 

to management is whether Ne is small. It has been suggested 

that an Ne of up to 5000 may be required for maintaining 

evolutionary potential in the long term (e.g., Lande 1995). 
The ABC method indicated that Ne  for the southern Gulf of 

St. Lawrence cod exceeded this value, but it was not ex- 
cluded from the confidence intervals obtained with other 
methods. However, our estimates are in general sufficiently 
precise to demonstrate that the Ne of this population is un- 

likely to be below the more commonly considered critical 
size of 500 individuals (Frankham et al. 2002). 

�
Comparison to Ne estimates in other studies 

The Ne  estimates presented here are similar in magnitude 

to those presented  in several other studies on marine  fish 
(e.g., Hoarau et al. 2005; Saillant and Gold 2006), but are 
much larger than the extremely small values of Ne  of a few 

hundred that have been proposed for a North Sea cod popu- 
lation (Hutchinson et al. 2003) and for a New Zealand snap- 
per  stock  (Pagrus  auratus)  (Hauser  et  al.  2002).  One 
possible reason for the higher Ne estimates obtained in this 

study could simply be that the census size of the population 
is more than an order of magnitude larger than in the cited 
studies. If there were a fairly constant Ne/N ratio for marine 

fish populations, we would expect a proportionately larger 
effective size. However, the Ne/N ratio is likely to vary be- 

tween populations depending on both environmental condi- 
tions and variation in life history parameters, so the 
discrepancies could reflect real population-specific differen- 
ces.  Nevertheless,  it  is  also  possible  that  the  results  pre- 
sented  here  overestimate  the  true  Ne   or  that  results  from 

other studies represent underestimates, as there are a range 
of factors that can affect Ne  estimates, including violation 

of model assumptions and technical problems (e.g., through 
unidentified population structure, migration, genotyping er- 
rors, and inadequate sampling of individuals and loci). 

�
Model assumptions 

The temporal method is based on a model with discrete 
generations and assumes that mutation, selection, and migra- 
tion are unimportant in changing population allelic frequen- 
cies  relative  to  genetic  drift.  The  assumption  of  discrete 
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generations is obviously violated because cod populations 
have  overlapping  generations.  Using  empirical  data  from 
the literature, Palstra and Ruzzante (2008) have confirmed 
that ignored age structure has probably introduced a strong 

bias into many empirical Ne estimates. However, simulations 

have shown that with about 12 generations between samples 
(as was the case here), the bias induced by this violation is 
negligible (Waples and Yokota 2007). The number of gener- 
ations is probably also sufficiently low for effects of muta- 
tions to be safely ignored (Waples 1989; Beaumont 2003). 
However, the assumptions of no effects of selection on the 
markers used and of complete isolation of the studied popu- 
lation may be more problematic. 

Microsatellites   are   generally   expected   to   be   neutral 
markers, and we did not detect evidence of temporal selec- 
tion on any locus over the time span studied here. However, 
the  power  of  this  test  was  low  because  of  the  relatively 
small  number  of  loci  and  samples  (Guinand  et  al.  2004), 
and other studies have shown that two of the loci we em- 
ployed (Gmo 34 and Gmo 132) may be affected by selection 
(Nielsen et al. 2006; Westgaard and Fevolden 2007). In fact, 
these  two  loci  showed  the  highest  FST  differentiation  be- 

tween samples, and although the changes in allele frequen- 
cies were not significant, the slightly larger differentiation 
could possibly indicate directional selection affecting these 
loci. This, in turn, generates larger variance in allele fre- 
quencies,   resulting   in   smaller   Ne    estimates.   Excluding 

Gmo 34 and Gmo 132 from analyses yielded point estimates 
and lower confidence interval limits 10%–65% higher than 
those based on all loci. Thus, including these two loci in 
our study could have biased the Ne estimates downwards, 

making  our  results  conservative  in  terms  of  evaluating 
whether Ne could be small. Point estimates and lower confi- 

dence limits may for this reason be substantially larger than 
reported here. 

In  relation  to  migration,  there  are  probably  few  com- 
pletely isolated populations in nature, and this is especially 
true for marine fish that have long dispersal capabilities and 
live in an environment with few strong physical barriers to 
gene flow. Hence, the question is not whether the assump- 
tion of no gene flow is violated, but rather whether the ef- 
fect is sufficiently small to safely be ignored. Migration can 
cause either an under- or an over-estimation of Ne depending 

on the degree of differentiation from source populations and 
the time scale involved (Wang and Whitlock 2003; Fraser et 
al. 2007). Migration from a dissimilar source can increase 
the change in allele frequencies between two temporally 
spaced samples, and if this is interpreted as a higher level 
of drift it will be translated to an underestimate of the Ne. 

Migration  from  a  genetically  similar  source,  on  the  other 
hand, may counteract the effects of drift by homogenizing 
gene frequencies between sampling times, and in such cases 
estimates of Ne could reflect the size of a larger metapopula- 

tion rather than the local population sampled (Wang and 
Whitlock 2003). 

Given that this study detected virtually no signal of drift, 
only the latter scenario may be of concern. Based on the 
variation at six hypervariable microsatellites, Ruzzante et al. 

(2000) found that there was a significant genetic distance 
between cod samples within the Gulf of St. Lawrence and 
cod sampled from different nominal stocks in its approaches. 

However, they did not find significant differentiation be- 
tween the two nominal stocks within the Gulf, the southern 
and the northern stocks. Based on the available evidence, it 
cannot be excluded that gene flow from the northern Gulf 
has caused an overestimate of the effective size of the pop- 
ulation residing in the southern Gulf. 

However, both traditional tags and otolith elemental fin- 
gerprints as natural tags suggest a high degree of reproduc- 
tive isolation between the cod in the northern and southern 
Gulf (Campana et al. 2000; Robichaud and Rose 2004). Fur- 
ther, there are significant differences in vertebral counts be- 
tween the northern and southern populations (Swain et al. 

2001). While this morphological trait is affected by environ- 

mental factors, it also has a genetic component and has been 
proposed to be fitness-related in other species (Billerbeck et 

al. 1997; Swain and Foote 1999). The difference may thus 
represent   adaptive   divergence   between   the   populations. 
Such divergence was recently found between southern Gulf 
of St. Lawrence cod and other nearby populations, as there 

were genetically based differences in life history traits over 
scales with little differentiation at microsatellite loci (Hutch- 
ings et al. 2007). Therefore, the absence of differentiation at 
neutral markers between the southern and northern Gulf cod 

may reflect historical events and large effective population 
size rather than contemporary gene flow. 

Undetected  population  substructure  within  the  southern 
Gulf could also affect the spatial scale for which an Ne esti- 

mate applies. There is currently no genetic evidence avail- 
able  to  suggest  population  structure  within  the  southern 
Gulf itself, but should such structure exist, our Ne  estimates 

would  apply  only  to  a  portion  of  the  nominal  stock  and 
hence underestimate the magnitude for the whole area. 

�
Genotyping errors 

In addition to violation of model assumptions, genotyping 
errors can also affect the Ne estimates. While probably few 

data sets on genetic markers are error free, there is a partic- 
ular  concern  when  working  with  historical  material 
(Hoffman and Amos 2005; Pompanon et al. 2005). As dem- 
onstrated by our estimates based on uncorrected data, geno- 
typing errors in the historical sample could lead to inflated 
measures of differentiation between temporal samples and 
hence marked underestimates of Ne. Despite our large efforts 

to  minimize  this  effect,  residual  errors  in  our  data  set 
(arising from large allele dropout or other) may have biased 
our reported estimates downward. However, such errors are 
likely to cause departure from HWE, create signs of LD be- 
tween loci, or cause divergence between samples, and none 
of these phenomena were observed. In combination with the 
failure of the software MICRO-CHECKER to detect devia- 
tions from expected  frequency distributions of allele  sizes 
and genotypes, this strongly suggests that genotyping error 
did not significantly influence our results. 

Quantification of genotyping errors and incorporation of 
special precautions to mitigate their effect are standard pro- 
cedures in most population genetic studies based on nonin- 
vasive samples (hair, feces, urine, etc.; Taberlet et al. 1999; 
Broquet and Petit 2004) and have been widely applied in 
studies using museum specimens as a source of DNA (e.g., 
Miller and Waits 2003; Sefc et al. 2003; Frantz et al. 2008). 

However, this issue is often not explicitly discussed in his- 
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torical genetic studies based on archived fish scales and oto- 

liths. This is somewhat surprising given that this source of 

historical DNA may be available in smaller quantities and 
may  be  more  susceptible  to  pre-extraction  contamination 

than other sources of historical DNA, such as bone or teeth 
(because DNA is recovered from the surface of otoliths and 

hence  samples  cannot  be  decontaminated  prior  to  extrac- 
tion). The present study clearly demonstrates that genotyp- 

ing errors, if not accounted for, can pose considerable 
problems when working with these kinds of samples. We 

therefore highly encourage explicit quantification of geno- 
typing error rates and careful quality control of data in fu- 

ture studies with historical otolith and scale samples. 

�
Implications 

Given that in the current study, the genetic data were ex- 
tensively validated and the assumptions of the Ne estimation 

methods appear to be met, our findings clearly suggest that 
the cod population in the southern Gulf of St. Lawrence has 
a large effective  population size and has not suffered any 
loss of heterozygosity and allelic richness at neutral markers 
over  the  past  80  years.  This  suggests  that  the  extremely 
small estimates of Ne reported in other studies do not appear 

to be a universal phenomenon for marine fish populations. 

The large Ne  of the southern Gulf of St. Lawrence cod 

stock implies that future evolution in this population is un- 
likely  to  be  constrained  by  reduced  genetic  variability.  It 
also  implies,  however,  that  selection  will  be  an  effective 
force in driving this future evolution, as selection is counter- 
acted by drift to a lesser extent in large populations than in 
small ones (Frankham et al. 2002 and references therein). 
Considering  that  the  Ne   estimates  obtained  here  may  be 

greater than estimates reported for many other populations 
of marine fish, southern Gulf of St. Lawrence cod may be 
particularly vulnerable to effects of fisheries-induced selec- 
tion  (as  well  as  other  contemporary  selection  pressures), 
which may reduce the capacity of the population to demo- 
graphically deal with environmental perturbations. The data 
presented here on temporal stability at neutral markers will 
serve as an important baseline for future evaluations of 
adaptive evolution at the DNA level. 
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Fig. S1. The weighted mean age of spawners by year for females (solid line) and 
males (dashed line) in the southern Gulf of St. Lawrence cod stock. See the main 
article for details on the calculation. Based on data from Chouinard et al. (2008) and 
D. P. Swain (unpublished data).   
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Fig. S2. The amplification success rate (black circles) and the proportion of 
individuals for which a consensus genotype could be assigned (open circles) in the 
1928 sample for each locus in relation to its average allele size. 
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Fig. S3. Point estimates (dots) and precision limits (error bars) of Ne obtained with 
different estimators on the uncorrected (grey dots and error bars) and consensus data 
(black dots and error bars). LD is the linkage disequilibrium method applied 
separately to the 1928 and the 2008 sample.  J-R is the Jorde-Ryman temporal 
method, MNE is the pseudo-likelihood method, and ABC is the method based on 
approximate Bayesian computation. Error bars represent 95% confidence intervals 
(2.5% and the 97.5% quartiles of the posterior distribution for the ABC). LD and J-R 
are moment-based and incorporate no prior. MNE use a uniform prior from 0 to 
NeMAX and the ABC estimates are based on uniform priors from NeMIN to NeMAX. The 
priors used in different runs are illustrated by the shaded bars. 
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ABSTRACT 

Little is known about how quickly natural populations adapt to changes in their environment and 
how temporal and spatial variation in selection pressures interact to shape patterns of genetic 
diversity. We here address these issues with a series of genome scans in four overfished 
populations of Atlantic cod (Gadus morhua) studied over an 80-year period. Screening of >1000 
gene-associated single nucleotide polymorphisms (SNPs) identified 77 loci that showed highly 
elevated levels of differentiation, likely as an effect of directional selection, in either time, space or 
both. Temporal allele frequency shifts at certain loci correlated with local temperature variation or 
with fisheries-induced life history changes. Surprisingly, however, largely non-overlapping sets of 
loci were temporal outliers in the different populations and outliers from the 1928-1960 period 
showed almost complete stability during later decades. The contrasting micro-evolutionary 
trajectories among populations resulted in sequential shifts in spatial outliers, with no locus 
maintaining elevated spatial differentiation throughout the study period. Simulations coupled with 
observations of temporally stable spatial structure at neutral loci suggest that population 
replacement or shifting migration patterns alone could not explain the observed allele frequency 
variation. Thus, the genetic changes are likely driven by highly dynamic temporally and spatially 
varying selection, potentially related to fishing pressure. These findings have important implications 
for our understanding of local adaptation and evolutionary potential in high gene flow organisms 
and underscore the need to carefully consider all dimensions of biocomplexity for evolutionarily 
sustainable management. 

 

Keywords: selection, temporal, historical DNA, genome scan, Gadus morhua, fisheries-induced 
evolution 
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INTRODUCTION 

In face of accelerated rates of climate change and other growing anthropogenic pressure, it is 
important to get a better understanding of how quickly natural populations can adapt to altered 
conditions. The literature contains many examples of rapid evolution in wild populations over 
contemporary time scales (e.g. Kinnison & Hendry 2001; Palumbi 2001; Stockwell et al. 2003; 
Smith & Bernatchez 2008). However, it is still unclear how widespread such short-term adaptive 
changes are and under what conditions they occur at rates fast enough to track environmental and 
human-induced changes (Hendry et al. 2008; Hoffmann & Sgrò 2011). Progress in elucidating 
these important questions has been hampered by the notorious difficulty in demonstrating a 
genetic basis for apparent local adaptations in natural populations (Gienapp et al. 2008; Hoffmann 
& Willi 2008). There are multiple strategies for disentangling the effects of phenotypic plasticity 
from genetic differences (recently reviewed by Hoffmann & Sgrò 2011; Hansen et al. 2012). Most 
approaches involve either laboratory experiments such as common garden or reciprocal transplant 
setups or quantitative genetic analysis that require knowledge of family relationships—both 
undertakings that can be logistically prohibitive with large, long-lived and highly abundant 
organisms. For such systems, molecular genetic methods often offer more accessible 
opportunities for directly observing the underlying genomic signature of selection and adaptive 
divergence (Nielsen 2005; Storz 2005). Yet, because patterns of genetic diversity integrate effects 
over millennia, it remains challenging to distinguish historical selection predating colonization of 
current habitats from ongoing selection. Hence, snapshot observations of the current distribution of 
genetic variation often tell us little about how stable these patterns are over time or how quickly 
they may change in response to human activities. 

Temporally spaced DNA samples offer a unique opportunity for studying genetic change directly. 
By comparing the genetic composition of a population before and after a change in environmental 
conditions, it is possible to track changes in allele frequencies for retrospective ‘real time’ 
assessment of genetic impacts. Previously, studies using presumably neutral markers have offered 
important insights about demographic processes including estimates of effective population sizes, 
loss of diversity, and stability of population structure and migration rates (see reviews by Wandeler 
(2007), Leonard (2008), and Nielsen and Hansen (2008)). Also, studies targeting specific 
candidate genes expected to be under selection have begun to elucidate the temporal dynamics of 
adaptive variation (e.g. Umina et al. 2005; Jensen et al. 2008; Marsden et al. 2012).  

Now, with advances in molecular techniques, efforts to study temporal adaptive genetic variation 
are no longer limited to genes a priori expected to be under selection. While neutral evolutionary 
forces such as drift and migration are expected to leave genome-wide signatures, selection is 
expected to act only on specific loci and closely linked genomic regions (Cavalli-Sforza 1966; 
Lewontin & Krakauer 1973). Therefore, comparisons of locus-specific levels of differentiation 
among large panels of genetic markers, potentially allow for disentangling the effects of neutral 
processes from the effects of selection. Such “genome scan” approaches are often applied to 
identify loci affected by selection in space (Luikart et al. 2003; Storz 2005; Stinchcombe & 
Hoekstra 2007), but have only in a few cases been utilized to identify signatures of selection and 
ongoing adaptation over time in wild populations (notable examples include Hansen et al. 2010; 
Poulsen et al. 2011; Bourret et al. 2011; Orsini et al. 2012), most often due to technical constraints 
and limited sample availability. Yet, where such challenges can be overcome, simultaneous 
assessment of both the temporal and spatial scales over which different evolutionary forces are 
acting, offers extraordinary prospects for gaining more comprehensive insights about the potential 
for rapid adaptation. 

Like many marine fish species, the Atlantic cod (Gadus morhua) is characterized by high dispersal 
ability and a wide distribution with few obvious barriers to migration. Previously, local adaptation 
was expected to be rare or absent for such species as the homogenizing effects of presumed high 
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levels of gene flow would swamp the diversifying effects of local selection. However, recent studies 
based both on genomic signatures of selection on specific loci (e.g. Nielsen et al. 2009; Bradbury 
et al. 2010) and common garden experiments (e.g. Marcil et al. 2006; Grabowski et al. 2009; 
Harrald et al. 2010) have provided strong evidence in support of adaptive divergence in cod. 
Signature of divergent selection have been observed even over surprisingly small spatial scales 
where neutral genetic markers have typically revealed very limited levels of population structure 
(Hutchings et al. 2007; Olsen et al. 2008; Poulsen et al. 2011). 

Recent research has also indicated that cod may possess very high potential for rapid adaptation 
in response to human impacts. Being one of the historically most important commercial fish 
species in the North Atlantic, it has been subjected to substantial fishing pressure throughout its 
range. Theory and modeling work predict that the selection and high mortality imposed by such 
exploitation can cause large and rapid adaptive changes in the targeted populations (e.g. Ernande 
et al. 2004; Law 2007), a finding also supported by controlled experiments (Conover & Munch 
2002; Reznick & Ghalambor 2005). Time series of phenotypic data for many cod populations do 
indeed demonstrate marked changes in life history traits such as growth and timing of maturation 
over recent decades (e.g. Trippel 1995; Olsen et al. 2005; Swain et al. 2007). Statistical analysis 
has indicated that these changes represent an evolutionary response to fishing (reviewed by 
Jørgensen et al. 2007), although the degree to which such results reflect genetic as opposed to 
environmentally induced effects remains somewhat controversial (Kuparinen & Merilä 2007; e.g. 
Hilborn & Minte-Vera 2008). Further, as pointed out by Andersen and Brander (2009), the 
geographic variation in the affected traits among different populations is often as large as the 
observed changes over time within single areas (see e.g. Olsen et al. 2004; 2005). This raises 
questions about the role of distributional shifts or altered migration patterns (as opposed to local 
fisheries selection) as a cause of the observed intra-population trait changes. At the same time, the 
recent trait changes within single populations may impact the stability of apparent signatures of 
local adaptation in this high gene flow species. 

Capitalizing on recently developed genomic resources and invaluable archived specimen 
collections, we here address these issues with the—to our knowledge—most extensive tempero-
spatial genome scan study on wild populations to date. We focus on a complex of Canadian cod 
populations that over recent decades have suffered major collapses due to overexploitation and 
experienced large ecosystem changes in their habitats. By screening temporal and spatial 
variation in allele frequencies at up to >1000 gene-associated single nucleotide polymorphisms 
(SNPs), some of which appear to be under selection over larger spatial scales (Nielsen et al. 2009; 
Bradbury et al. 2010), we search for loci that show elevated levels of differentiation, indicative of 
selection, over the past 80 years. Specifically, we ask whether there are (a) any genomic 
signatures of selection over time within individual populations, (b) if such trends correlate with life 
history changes or fluctuations in potential drivers of selection, and (c) if parallel temporal patterns 
are observed across space. We also explore genomic signatures of elevated divergence between 
populations and assess whether those spatial patterns are stable over time. Finally we evaluate 
the alternative hypothesis that gene flow alone—rather than ongoing selection—could explain 
observed patterns of change and discuss the implications of our findings as well as the advantages 
of conducting simultaneous spatial and temporal analysis for revealing the genetic basis of micro-
evolutionary change.  

 

MATERIALS AND METHODS 

The study populations and samples 

The study was centered on an 80-year time series of samples from a cod population in the 
southern Gulf of St Lawrence (management division 4T), Canada, but to assess relationships 
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between temporal and spatial patterns of variation, it also included samples from three nearby 
management areas (divisions 3NO, 3Ps, 4VsW; Fig. 1). These four populations have exhibited 
variable demographic trends over the years, but none of them have fully recovered from the severe 
overexploitation that led to major collapses in virtually all Canadian cod populations in the 1990s. 
Exemplifying the pattern of apparent adaptive divergence in both time and space described above, 
common garden experiments have indicated clear, genetically based functional differences among 
these particular populations for a number of traits (Marcil et al. 2006; Hutchings et al. 2007) and 
more or less parallel reductions in growth rate and/or timing of maturation have also been 
observed within all of them over recent decades, likely reflecting fisheries-induced evolutionary 
change (Hutchings 2005; Olsen et al. 2005; Swain et al. 2007; Swain 2011).  

Contemporary samples of gill tissue were collected from all populations on research cruises during 
2008-2010. Historical samples consisted of archived otoliths that had been stored individually in 
paper envelopes at room temperature since collection. The oldest otoliths from 1928 were 
obtained from DTU Aqua, Denmark where they had originally been acquired for a study of cod 
“races” (Schmidt 1930). All other otoliths were obtained from the collections at Fisheries and 
Oceans Canada. Sets of at least 30 otoliths were selected for single years between 1928-2008 
based on availability (see Table 1 for final sample sizes and years). All individuals, with the 
possible exception of the 1928 sample, for which the sampling time is unknown, were collected 
during the spawning season and were of reproductive age. 

 

DNA extraction and genotyping 

DNA was extracted with Omega EZNA Tissue DNA kits (Omega Bio-Tek, USA) following the 
manufacturer’s instructions for fresh tissue and the procedure described by Therkildsen et al. 
(2010a) for otoliths. To pre-screen DNA extracts, we amplified four highly polymorphic 
microsatellites (mean number of alleles 19) in all samples using a PCR multiplex kit (Qiagen, 
Germany) and analyzed the fragments on an ABI 3130 Genetic Analyzer (Applied Biosystems, 
USA). We removed individuals that showed evidence of cross-sample contamination (amplification 
of >2 alleles for any locus) or that failed to produce reliable amplification within 2-3 attempts. For 
the historical samples, both DNA extraction and PCR preparation were conducted in an ancient 
DNA laboratory or a separate facility where no contemporary fish samples had been processed. 

Samples that passed the pre-screening were genotyped for a set of gene-associated SNPs, 
primarily developed by the Canadian Cod Genomics and Broodstock Development Project (Hubert 
et al. 2010; Bowman et al. 2011). We used an initial panel of 1536 SNPs (see Nielsen et al. 2012) 
and to position as many SNPs as possible on the cod linkage map (Hubert et al. 2010) and obtain 
annotation information, we mapped the 120 bp flanking sequence of each SNP to the cod genome 
sequence (see Supporting information Note 1). In a trade-off between the number of samples and 
the number of SNPs to analyze, we applied a two-step approach: Initially, we only scanned the end 
points of the longest available time span, i.e. the 1928 and the contemporary sample from 4T, with 
the full 1536 SNP panel. Since the majority of SNPs showed no temporal variation in allele 
frequencies among these samples (see below), all other samples were analyzed with only a subset 
of SNPs, including the 50 loci that showed the largest temporal changes in the initial scan, 29 
candidate genes for life history traits (Hemmer-Hansen et al. 2011), 23 loci that had been shown to 
be under selection in this species on broader geographical scales (Nielsen et al. 2009; Bradbury et 
al. 2010), and a random selection of the remaining loci for a total of 182 SNPs.  

All SNP genotyping was performed by the Roslin Institute at the University of Edinburgh, Scotland, 
using the Illumina GoldenGate platform (Fan et al. 2006) following the manufacturer’s protocol. 
This array-based technology relies on hybridization of short (<60 bp) locus- and allele-specific 
probes to the template DNA and should therefore be well suited for historical DNA that typically is 
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fragmented. To minimize the risk of cross-sample contamination, historical and contemporary 
samples were kept separate during all steps. The SNP data were visualized and analyzed with the 
GenomeStudio Data Analysis Software package (llumina Inc.). 

 

Data quality control 

To ensure reliability of the SNP data despite the degraded nature of DNA from historical samples, 
we implemented several data control procedures and applied a conservative quality filtering. First, 
genotypes were called based on manual editing of all SNP cluster positions. Second, 29 DNA 
extracts were re-genotyped in independent assays to assess the reproducibility of results, and we 
excluded SNPs yielding <0.7 reproducibility rate between the genotypes in replicate samples. 
Third, we only included data points with a GenCall score of >0.4 (a data quality metric; Illumina 
recommends a standard threshold of 0.25 (Illumina 2008)) and excluded SNPs and samples that 
following this strict filtering yielded call rates (percentage of successful genotype calls) < 0.5. 

We computed expected (He) and observed heterozygosity (Hobs) and tested for Hardy-Weinberg 
equilibrium (HWE) in all samples using 105 permutations with the Monte Carlo procedure 
implemented in the R-package adegenet (Jombart 2008). The degree of linkage disequilibrium 
(LD) between all pairs of loci within each sample was evaluated with the genetics package in R 
(Warnes 2003). Here and where appropriate throughout the analysis, we corrected for multiple 
testing by computing the expected false discovery rate (FDR), or q-value, for each test based on 
the distribution of p-values using the R-package qvalue (Storey & Tibshirani 2003). We considered 
tests significant when the FDR was <5% (q<0.05).  

 

Temporal outlier detection 

Identifying loci that show divergent patterns of differentiation in temporally spaced samples is 
conceptually similar to searching for outliers in samples collected from different spatial populations. 
We therefore applied a modified version of the commonly used approach of Beaumont and Nichols 
(1996) to detect temporal outlier loci within each of the four populations. Based on the premise that 
selection should affect only certain parts of the genome whereas neutral evolutionary forces should 
cause genome-wide effects, this method compares the observed locus-specific differentiation as a 
function of heterozygosity to a null distribution generated through simulations.  

Here, we adapted the original outlier detection method to fit our scenario by generating the 
expected null distribution of genetic change through simulations of drift within a single isolated 
population rather than drift-migration equilibrium between multiple demes. Our null model was 
based on multi-generational sampling of a Wright-Fisher population that for each scenario was 
parameterized with the number of generations between sampling points, the harmonic mean of 
sample sizes, and the effective population size (Ne) estimated for each population with the 
software MLNE (Wang 2001 see supplementary material for details). Following the procedure in 
Beaumont and Nichols (1996), the simulated distribution was then used to identify outlier loci that 
varied more over time than expected due to drift and sampling error (see Supporting information 
Note 2). 

We conducted separate temporal genome scans for the initial SNP panel genotyped in the 4T 
1928 and 2008 samples and for the subsequent samples from each of the four populations, every 
time basing the null distribution on 105 simulated data points. All simulations and computations 
were completed with custom R-scripts (available upon request). 
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Spatial outlier detection 

In addition to testing for temporal outliers within each population, we also looked for spatial outliers 
among the populations at three periods in time: the 1960s, the 1980s-1990s (here we had no 
sample from 4VsW), and among contemporary samples. For this analysis, we applied the standard 
fdist2 model (Beaumont & Nichols 1996) as implemented in the software Lositan (Antao et al. 
2008). This method is based on the same approach as the temporal genome scans, but here the 
neutral expectations are generated through coalescent simulation under an island model. We used 
105 iterations, the infinite alleles mutation model and assumed 30 demes (varying input parameters 
did not change results). For extra validation, we compared our results to outputs from a different 
commonly applied spatial genome scan method, the Bayesian approach of Beaumont and Balding 
(2004) as implemented in the program BayeScan (Foll & Gaggiotti 2008).  

 

Correlation to environmental variation 

The moderate number of samples in this study precludes rigorous statistical testing of how allele 
frequency shifts may correlate with environmental or phenotypic variables. However, to investigate 
what factors may be associated with temporal shifts within the 4T population, which was sampled 
at seven time points, we computed Pearson’s correlation coefficients (r) between allele frequencies 
at temporal outlier loci and data on a suite of environmental and demographic factors for the 
sampled years. The factors included fishing mortality, temperature, biomass, and indices of growth 
rate and length at maturation (see Table S1, Supporting information, for a full list of variables and 
data sources). Based on the obtained coefficients, we compared the relative degree of correlation 
between outlier loci and explanatory variables and further examined the strongest observed 
patterns. 

 

Differentiation among samples 

We used a hierarchical AMOVA with time points nested within populations to assess how the 
overall genetic variation was distributed in space and time. This was done in Arlequin vers. 3.5 
(Excoffier & Lischer 2010) and the significance of contributions from the different levels was tested 
with 10000 permutations. Pairwise FST between all samples was computed with the Fstat function 
from the Geneland package in R (Guillot et al. 2005), and we tested for pairwise differences in 
allele frequencies among all samples using Chi-square tests, as implemented in the software 
Chifish (Ryman 2006). 

To obtain estimates reflecting signatures of neutral evolutionary forces only, we repeated all these 
analyses on a reduced set of loci (n=101), excluding all spatial and temporal outlier loci (see 
below). We also used the program Powsim 4.0 v4.1 (Ryman & Palm 2006) to evaluate our power 
to detect genetic heterogeneity in the different comparisons.  

To visualize the patterns of sample differentiation, we applied principal coordinates analysis 
(PCoA) to the pairwise FST matrices using the adegenet package in R (Jombart 2008). The weak 
differentiation between populations (see Results) provided insufficient power to apply genetic 
clustering methods, assignment tests or admixture proportion estimation to further elucidate the 
neutral population structure and its stability through time. We did try to apply these methods, but 
without getting meaningful results, as expected when differentiation is very low (see Waples & 
Gaggiotti 2006). 
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Contemporary migration 

The low levels of differentiation also precluded estimation of contemporary migration rates (Wilson 
& Rannala 2003; Faubet et al. 2007). However, to evaluate if migration rather than selection could 
explain our observations, we constructed simulations to elucidate how much migration would be 
needed if gene flow alone should have caused the observed temporal variation at outlier loci. 
Assuming that the 1960s samples reflected baseline allele frequencies for the four populations, we 
simulated various levels of exchange (migration rate m ranging from 0-1) between populations 
over the sampling period and analyzed these simulated data with our temporal genome scan 
model (see Supporting information Notes 2 and 3). For each population, we evaluated the number 
of significant temporal outliers under different combinations of m, local Ne and source population of 
migrants as well as how many of these outliers were identical to the temporal outliers in the 
observed data. 

 

RESULTS 

Data quality and genetic diversity 

A total of 508 samples could be used for analysis, while 137 were discarded due to poor 
amplification, contamination or low quality SNP genotyping. For the initial scan, 1047 SNPs were 
successfully genotyped, passed the quality criteria and were polymorphic in at least one sample. 
For the follow-up panel, 160 SNPs (of 182) could be used for analysis. The error rate among 
replicate samples was <5% for all historical samples and <1% for contemporary samples and the 
mean SNP call rate was >90% for all included loci (except from the 1928 sample where the mean 
call rate was 0.76). 

On average 85% of the loci were polymorphic in each sample (Table 1). The average He within 
samples was 0.26 and there was no clear relationship between He or the proportion of polymorphic 
loci and the sampling year (Table 1). In the 1047-SNP data set, 31 tests involving 25 SNPs 
showed significant departures from HWE proportions after FDR correction and 6 loci showing 
departure in >1 sample were excluded from analysis. In the 160-loci set, we observed only a single 
significant departure from HWE after FDR control among samples.  

In the 1047-SNP data, between 1.7 and 2.7% of pairwise tests for the LD were significant (q<0.05). 
In the 160-SNP data, between 2.1 and 5.8% of pairwise tests for LD between loci within each 
sample were significant (q<0.05). From this panel, almost all SNPs that showed significant LD in 
multiple samples originated from one of three clusters on different linkage groups and were outliers 
either in space or time (see below). 

 

Temporal outliers 

The generation lengths for the four populations were estimated to be 6-8 years so our sampling 
covered 6-12 generations (Table S2, Supporting information). The temporal variation in allele 
frequencies over this period indicated that the Ne was >30 000 (the maximum estimation capability 
of the applied method) in all populations and the lower 95% confidence limit was always >500 
(Table S2, Supporting information). 

In the initial comparison between 1928 and 2008 in 4T, the temporal differentiation at 50 of the 
1047 loci exceeded the 95% confidence limit for neutral expectations, but only 10 remained 
significant (q<0.05) after FDR correction (Fig. 2a). Nine of these (and in total half of the 50 outliers) 
were successfully genotyped in the additional samples. Surprisingly, the vast majority of the initial 
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outlier loci did not show increased temporal differentiation among the second set of samples. 
Although we observed allele frequency changes of >50% between 1928 and 2008 in 4T, none of 
these loci showed outlier patterns in the intermediate time period from 1960-2002 within 4T (Fig. 
2b, Table 2). Examination of the temporal data showed that the changes had primarily occurred 
between 1928 and 1960 and that allele frequencies at these loci had remained stable from 1960 to 
2008 (Fig. 3a). Similar patterns of stability were observed in the other populations, although one 
locus from the initial comparison was also a significant temporal outlier in 3NO (Fig. 3b-d). 

Considering only the samples collected between the 1960s and 2000s, the genome scans 
identified an entirely different set of loci as outliers. Between 7 and 14 of the 160 loci genotyped 
here fell above the 95% confidence envelope for null expectations in the different populations, but 
only in 3NO and 4T were >1 locus significant after FDR correction (Fig. 2, Table 2). In 3Ps, a 
subset of the significant 3NO outliers also showed increased differentiation, but interestingly, there 
was basically no overlap between the outliers of 3NO and 4T (Table 2). 4VsW showed an 
intermediate pattern where subsets of both 3NO and 4T outliers as well as an additional group of 
loci showed increased differentiation (Table 2). Examination of outlier allele frequencies revealed 
that the 3NO outliers in fact also showed large differentiation within 4T, but mostly between 1928 
and 1960 (and therefore were not detected in the 1960-2002 genome scan). The 4T outliers, 
however, remained stable in 3NO and 3Ps throughout the study period, indicating clear non-
parallel trajectories for these loci among the populations (Fig. S1, Supporting information).  

 

Spatial outliers 

The Lositan analysis indicated that the differentiation at 7-15 loci exceeded the 95% confidence 
limit on neutral expectations in the spatial comparisons for different time periods (Fig 4, Table 2). 
BayeScan generally identified fewer outliers (in some comparisons none at all), but never loci that 
were not identified by Lositan and it was qualitatively consistent in identifying the most 
differentiated loci (Fig. S2, Supporting information).  

Comparison of the three snapshots in time revealed a marked sequential shift in the loci exhibiting 
spatial divergence, with no overlap between the 1960s and the contemporary spatial outliers, while 
the spatial outliers from the 1980s-90s comparison showed overlap both with the time period 
before and after (Table 2). No locus remained a spatial outlier at all time periods. Removing the 
4VsW sample from the spatial comparisons resulted in much fewer and some different outliers 
(Fig. S3, Supporting information), suggesting that this population is driving much of the overall 
outlier pattern observed. However, this population was not sampled in the 1980s-1990s period that 
overall showed the highest number of outliers, so the locus-specific patterns of spatial divergence 
are clearly highly dynamic. 

The dynamic pattern of spatial divergence is further supported by the match between temporal and 
spatial outliers. The spatial outliers in the 1960s were a subset of the loci that were temporal 
outliers within 3NO (and to a lesser degree 3Ps and 4VsW). Since these loci were no longer 
spatial outliers at later time points, the temporal changes have homogenized allele frequencies 
among populations. The contemporary spatial outliers, on the other hand, were for a large part the 
same loci that were temporal outliers in 4T (and to a lesser degree 4VsW). Since these loci were 
not spatial outliers in the 1960s, the temporal changes of outlier loci in 4T and 4VsW caused 
greater divergence among populations over time. 

In total, 33 loci were outliers either in space, time or both (in the post-1928 data). These were 
spread over at least 11 linkage groups and generally displayed low and non-significant levels of LD 
between them (Fig. S4, Supporting information). However, 13 of the outliers clustered into two high 
LD groups, each spanning 10-14 cM and mapping to 5-6 different scaffolds that combined cover 
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>2Mb in the Ensembl cod genome assembly (www.ensembl.org; release 65, Dec 2011). Most 
outlier SNPs were located in the 3’ UTR of gene models (Table S3, Supporting information). 

 

Correlation to environmental variation 

An index of ambient temperature for cod during the feeding season showed the best temporal 
correlation with allele frequencies at the temporal outlier loci in 4T (r>0.8 for most loci), indicating a 
co-varying temporal pattern (Fig 5a). A similar correlation was also evident for two other outlier loci 
(Fig. S5, Supporting information). Within 4T, a set of loci initially identified as temporal outliers in 
3NO also showed a strong correlation (r>0.9) to temporal shifts in estimated probabilistic 
maturation reaction norm midpoints (Fig. 5b), a life history change expected to reflect an 
evolutionary response to fishing (Swain 2011). These loci also showed correlation with the 
temporal trend in total mortality rate (r>0.8; Fig. S5, Supporting information). 

 

Differentiation among samples 

The AMOVA revealed that for certain loci, differences between populations or between time points 
within populations accounted for up to 12% of the total variation (Fig. S6, Supporting information). 
For the total set of post-1928 outlier loci (n=33), temporal and spatial dimensions explained about 
equal amounts of variation (on average 2.7% of the total variation was found between time points 
within populations and 2.1% between populations, both levels being highly significant (p<0.0001)). 

For the non-outlier loci that presumably reflect neutral population structure, a much smaller 
proportion of the variance was partitioned among the hierarchical levels. There was low but 
significant spatial variation (p=0.0064), but no significant variation among time points within 
populations (p=0.87; Table 3). These results of very weak but temporally stable spatial structure 
were corroborated by the pairwise tests for differences in allele frequencies. With all loci, pairwise 
Fst ranged from -0.007 to 0.086 and 31 tests were significant after FDR correction including 
comparisons both within and among populations. When only considering the “neutral” set of loci, 
no comparisons were significant after FDR correction (Table S6, Supporting information). The 
mean pairwise Fst among samples for these loci was 0.0015 and simulations indicated that with 
the applied panel of markers and sample sizes, we would only have a 14% chance of detecting 
significant differentiation at this level (results not shown). However, by pooling the time points 
within areas, we should have >75% chance of detecting differentiation among populations, and we 
did indeed find significant differences in allele frequencies (p<0.04) between all combinations 
except those involving 3Ps, which could not be differentiated from 3NO and 4T. Consistent with the 
barely detectible—yet significant—level of differentiation, the PCoA plots did not show clear 
separation of the samples. However, there is a vague tendency for samples from the same 
populations to cluster together along the primary axes of variation although there are differences 
between sampling years (Fig. S7, Supporting information). 

 

Contemporary migration 

Simulations indicated that in general, migration rates of 0.2-0.3 would be required to generate a 
similar number of significant temporal outliers as were observed in the different populations (Fig. 
S8, Supporting information). For 3NO, somewhat higher migration rates of >0.6 could have driven 
allele frequency changes at the specific loci that were observed as significant temporal outliers in 
the actual data (Fig. S9, Supporting information). However, this was only if migrants originated 
from 4VsW –the population that 3NO was the most differentiated from at neutral markers (Tables 
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S5 and S6, Supporting information). In 4T, even complete replacement by any of the other 
populations could not account for the frequency shifts at the observed outlier loci (on average <1 of 
these loci were identified as outliers in the migration simulations regardless of Ne and m values 
assumed; Fig. S9, Supporting information). 

 

DISCUSSION 

This study revealed highly heterogeneous patterns of differentiation among SNPs from different 
regions of the cod genome, with certain gene-linked SNPs showing substantially elevated 
divergence in either time, space, or both. Over the short time scale and small geographical area 
considered, we observed markedly different microevolutionary trajectories within four adjacent 
populations and found a temporal shift in which loci showed increased differentiation during 
different time periods. Because the majority of genomic locations showed almost complete stability 
in allele frequencies, the significantly higher differentiation at specific loci likely reflects effects of 
selection either directly at these loci or at closely linked sites.  

 

Patterns of selection 

If selection indeed is the primary driver behind the observed allele frequency shifts at outlier loci, 
then this study indicates highly variable local selection pressures that both target different regions 
of the genome and work at varying strengths and directions depending on the area and time period 
considered. Most notably, the majority of temporal outliers in the 1928-2008 comparison in 4T 
showed little change between 1960 and 2008, a period during which large allele frequency shifts 
were observed at a completely different set of loci. This indicates that different parts of the genome 
may have been under selection early and late in the study period. Similarly, a subset of the 3NO 
temporal outlier loci were not outliers in 4T between 1960 and 2002, but exhibited a slight clinal 
pattern apparent through comparison with the 1928 sample. This may suggest that these loci were 
also under selection in 4T, but at an earlier time than in 3NO. 

Varying power to detect outliers caused by the non-symmetric sampling pattern (imposed by 
limited sample availability) probably explains a portion of the variation in which and how many loci 
were detected as statistically significant temporal outliers in the different populations. For example, 
the smallest numbers of significant temporal outliers were found in 3Ps and 4VsW—the 
populations for which we had the fewest samples. However, qualitative comparison makes it clear 
that the largest changes were found at different loci in the different populations and that patterns of 
allele frequency change at particular loci were often non-parallel. 

A number of outlier loci showed gradual and directional changes over time, but many also showed 
more fluctuating, apparently ephemeral patterns. Such unstable patterns of selection are in line 
with the combined inference from numerous temporally replicated studies on phenotypic selection 
in natural populations, which indicate that strong temporal variation in both the direction and 
strength of selection is the norm rather than the exception over short time scales (recently 
reveiwed by Siepielski et al. 2009; Bell 2010; Kingsolver & Diamond 2011). Although some of the 
patterns reported in these studies may be caused by sampling error (Morrissey & Hadfield 2012), 
short-term fluctuations in selection pressures may be particularly common in a highly dynamic and 
stochastic environment like the ocean, so they would explain our observed patterns well. 
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Drivers of selection 

Our exploratory correlation analysis showed that allele frequencies at temporal outliers in 4T 
seemed to track variation in ambient fall temperature, indicating that this variable could reflect a 
possible driver of selection. Although based on relatively few data points, this relationship is 
supported by a previous finding of strong temperature-associated clines in allele frequencies at 
these particular loci over large spatial scales (Bradbury et al. 2010). The lack of correlation with 
other tested temperature variables could suggest that the index of ambient temperature, which 
summarizes the local temperature measurements in areas where cod have been most abundant 
for a particular year, is a more biologically relevant variable than coarser scale measurements. 
Genotype-environment correlation analyses are always limited by the difficulty in identifying and 
obtaining data on the dimension of environmental variation that is of importance to the organism 
(Hansen et al. 2012). This is particularly challenging in temporal studies where cumulative effects 
and unknown time lags often will be important. 

These challenges may explain why we did not observe direct correlations between any outliers and 
the instantaneous fishing pressure among 4T outliers (although some loci seemed to correlate 
loosely with the total mortality rate). The contrasting trajectories for allele frequency shifts at outlier 
loci in the four populations could be interpreted as evidence for fisheries not being a dominant 
driver of selection overall as we might have expected parallel signatures of selection across these 
highly exploited populations. However, although all four populations have been fished heavily over 
the study period, small-scale differences in exploitation patterns and intensity may have mediated 
variations in the specific selective response, so our results do not rule out fishing as an important 
driver. 

Notably, in 4T, allele frequency changes at a set of linked loci strongly correlated with temporal 
shifts in probabilistic maturation reaction norms that are expected to reflect an evolutionary 
response to fishing (Swain 2011). Also, the pattern of variation among the 4T outliers in linkage 
group 12 corresponds to some extent with temporal shifts in the size selectivity imposed by fishing 
(Sinclair et al. 2002; Swain et al. 2007). While these correlations do not establish functional 
causality, they indicate that some of the observed patterns of selection could be related to 
fisheries-induced phenotypic changes in life history traits. The correlation with observed 
phenotypic changes is less clear-cut for some of the other populations with fewer samples, but our 
initial synoptic findings here are consistent with both temperature- and fisheries-induced selection 
pressures acting over the study period. 

 

Targets of selection 

The strength of genome scan approaches, as applied here, is that they do not require the target of 
selection to be known a priori and that observed patterns are intrinsically genetic in contrast to 
quantitative trait changes, which can be partly of fully environmentally induced. The drawback of 
the genome scan approach is that, especially for non-model organisms, it can be difficult to 
establish the phenotypic significance and fitness effects of interesting genetic polymorphisms. A 
first step is to identify the exact targets of selection. Since most of the SNPs studied here were 
located in 3’ UTR regions of various genes and the few that were located in coding sequence were 
synonymous polymorphisms, we are unlikely to have identified the exact causative mutations 
(although the loci may have regulatory roles). We have, however, narrowed in on important 
candidate genes and we noted that many outlier loci were found in regions with genes related to 
metabolism (see supplementary material), indicating a possible relationship with life history traits. 
These findings constitute valuable starting points for future more detailed efforts to identify specific 
targets of selection. 
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The role of gene flow 

Conceivably, dynamic dispersal rather than spatially and temporally varying selection pressures 
acting within separate populations over the study period could explain the large allele frequency 
shifts observed. Generally, migration is expected to have genome-wide effects (Cavalli-Sforza 
1966; Lewontin & Krakauer 1973), but it will only leave observable signatures at loci where allele 
frequencies differ between demes. Because allele frequency differences at non-outlier loci were so 
small among the four populations, the elevated temporal differentiation at specific loci could in 
principle have been caused by increased migration from a deme (or number of demes) that 
differed in allele frequencies only at those particular loci. Such locus-specific differentiation 
between demes would likely have arisen due to selection, but would primarily reflect effects 
accumulated in the past, potentially over long time scales. To better understand mechanistically 
how microevolution operates in this system, it is critical to distinguish between pre-adapted demes 
moving in and out of the sampling sites and ongoing changes in which genotypes survive and 
reproduce within specific locations. 

While the low level of differentiation at neutral loci could indicate high gene flow, it could also 
reflect large Ne’s and recent divergence that have limited the accumulated effects of drift. Here, our 
results suggested a large Ne in all populations, consistent with a previous temporal study of the 4T 
population using microsatellites (Therkildsen et al. 2010b). Because the evolutionary 
consequences of gene flow scale with the absolute number of effective migrants, Nem (Wright 
1931), the finding of large Ne’s imply that even extremely small migration rates could homogenize 
allele frequencies at neutral loci. However, our simulations suggest that extreme migration rates of 
at least 0.2 - 0.3 would be needed to cause the strong shifts in allele frequencies we observed 
within populations. Such high migration rates are beyond levels normally associated with separate 
populations (Waples & Gaggiotti 2006) and are at odds with ecological data that suggest 
substantial reproductive isolation of the studied populations. Consistent phenotypic differences 
have been demonstrated (Swain et al. 2001), and despite extensive seasonal migrations, studies 
based on both traditional tags and otolith microchemistry have indicated that in 4T, almost all fish 
return to spawn with their local population (Campana et al. 2000; Robichaud & Rose 2004), and 
this is also true for 4VsW (Robichaud & Rose 2004). Tagging results are more mixed for the two 
other populations (Robichaud & Rose 2004), but much of the reported population mixing occurs 
outside the spawning season and samples from these populations were specifically selected from 
locations that are expected to be minimally affected by migration. Clearly, tagging studies on adults 
provide no information about dispersal during the larval stage. However, although the dispersal 
potential of this life stage is high in cod (Helbig et al. 1992; Pepin & Helbig 1997), several recent 
studies have demonstrated surprisingly high retention rates within a few kilometers depending on 
local oceanographic conditions (Knutsen et al. 2007; Bradbury et al. 2008). Predominant currents 
out of the Gulf of St Lawrence make external larval input into the 4T population unlikely and 
modeling predicts a high degree of local retention, although a small portion of its larvae may drift to 
the other management areas (Chassé 2003). 

However, if migration rates from larval drift should amount to >0.2 and Ne’s are at the very least 
500 and probably much higher (Table S2, Supporting information), then the Nem would be >>100, 
a number much greater than what is typically considered a threshold for genetic separation of 
populations (Waples & Gaggiotti 2006). Such a high Nem seems highly inconsistent with the 
temporally stable spatial genetic structure that, although weak, was observed here and that has 
also been demonstrated previously with microsatellites among several of these populations 
(Ruzzante et al. 1996; 2000; 2001; Beacham 2002).  

In addition, although the increased differentiation at the specific outlier loci in 3NO could have been 
caused by very high levels of migration from a mix of the other populations, this was not the case 
for 4T where none of the other populations could have served as a source for the divergent allele 
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frequencies at outlier loci. We cannot completely exclude that some unsampled “ghost” population 
has contributed such migrants, but given that the Gulf of St Lawrence is a semi-enclosed basin 
that hosts a special set of oceanographic conditions, potential sources are difficult to imagine. 
Thus, although gene flow likely plays a role in this system, it is highly implausible that it has been 
the main driver behind the observed patterns at outlier loci in this study. 

 

Other alternative explanations 

A number of additional factors could potentially have affected our results. First, genotyping errors, 
either random or related to variable levels of DNA degradation in the historical samples, could 
cause false impressions of large allele frequency differences. However, while suboptimal DNA 
quality inevitably has caused a few inaccuracies in our dataset, the stringent quality control 
measures implemented and the resulting high degree of reproducibility of genotyping clearly 
indicates that this effect has been minor. There is no relationship between sample age and 
observed genetic diversity (Table 1), and outlier loci do not exhibit significantly elevated error rates 
(Fig. S10, Supporting information). The strongest verification of data reliability, however, comes 
from the highly consistent patterns of strong LD among outlier loci across all samples including the 
4T 1928 (Fig. 5, Fig. S4, Supporting information). 

Second, violated model assumptions or general methodological limitations may have resulted in 
false positives among the identified outliers. However, the differentiation at the majority of outlier 
loci was substantially elevated compared to the rest of the loci, i.e. not just at a tail of a continuous 
distribution (Fig. 2 and 4). Hence a slight change in the cut-off for significance that may change the 
status of a few weak outliers would not affect conclusions about these highly divergent loci. 
Additionally, previous studies have demonstrated that many of the outlier loci identified here also 
show elevated differentiation among cod populations across much larger spatial scales (Nielsen et 
al. 2009; Bradbury et al. 2010), supporting their affiliation with selection. 

Third, when temporal variation exceeds spatial differences in genetic studies of marine organisms, 
the pattern is often attributed to random genetic patchiness caused by extremely high variance in 
reproductive success, termed “sweepstake recruitment” (Hedgecock 1994; Hedgecock & Pudovkin 
2011). With successive waves of offspring originating from relatively few parents that happened to 
match favorable conditions during spawning, the increased drift within each cohort can leave 
ephemeral signatures of differentiation. However, this process would create temporal 
heterogeneity across the entire genome, not only at specific loci, so it is unlikely to have caused 
the patterns we observe. Hence, in the absence of convincing alternative explanations, it seems 
highly likely that temporally and spatially varying selection has played an important role in shaping 
the large locus-specific allele frequency changes observed in this study. 

 

Implications and future research 

The finding of highly dynamic signatures of selection in western Atlantic cod populations raises the 
question of whether our observations reflect a general pattern of microevolution in marine fish. 
Only very few other studies have so far examined temporal variation in genetic markers under 
selection. Focusing on just a single locus, the well-studied Pan-I, Nielsen et al. (2007) found 
temporal stability in four cod populations over decadal time scales, whereas two studies have 
presented evidence of potentially fisheries-induced temporal changes in allele frequencies for this 
locus in Icelandic cod (Árnason et al. 2009; Jakobsdottir et al. 2011). The latter findings are in line 
with the results here where Pan-I also was appeared to be under temporal selection. We showed, 
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however, that it along with 5 other outliers was part of a tight LD group spanning >2Mb of the 
genome, indicating that this locus may just be a marker for the region, not the target of selection. 

A previous temporal genome scan in cod reported stability of allele frequencies over a 24-year 
period at the Faroe Bank (Nielsen et al. 2009), but a different study showed marked temporal shifts 
in allele frequencies at several loci in other cod populations in the Northeast Atlantic (Poulsen et al. 
2011). Thus there is evidence that ongoing selection over short time scales may be a widespread 
phenomenon at least for cod but also likely in other marine fish populations; future research using 
retrospective genetic analysis (Nielsen & Bekkevold 2012) are needed to generate further insights 
into its extent.  

Despite that direct phenotypic and fitness effects of observed outlier loci remain elusive, the 
findings here add an important new perspective to recent studies presenting evidence for local 
adaptation in marine fish either through elevated divergence at specific loci (e.g. Nielsen et al. 
2009; Bradbury et al. 2010) or common garden experiments (e.g. Marcil et al. 2006; Grabowski et 
al. 2009; Harrald et al. 2010). Our study illustrates that where temporal stability of genetic 
divergence has not been demonstrated, it can clearly not be assumed a priori. If environmental 
conditions are highly dynamic, local adaptation may also not necessarily imply static differences 
between populations, but can reflect ongoing changes. Findings of greater temporal than spatial 
variation at certain loci may be limited to studies that, like here, focus on a small geographical area 
over which environmental conditions are relatively similar. However, future studies over larger 
spatial scales should provide additional insights about the interactions between temporal and 
spatial variation in selection pressures. In any case, the large changes observed over just a few 
generations—in some cases correlating with environmental or life history trait variation—suggest 
that cod populations can respond rapidly to changes in selection pressures and therefore may be 
able to quickly adapt to human-induced modifications of their environment. 

A better understanding of temporal and spatial scales of adaptation will be crucial both for our 
fundamental understanding of microevolution in high gene flow organisms and for conservation 
and fisheries management. The importance of intraspecific diversity in fitness-related traits for 
ensuring stability and persistence of species and fisheries yields is increasingly being recognized 
(Hilborn et al. 2003; Hutchinson 2008). Adaptive divergence between populations or between 
subunits of metapopulations can generate ‘portfolio effects’ that dampen overall fluctuations in 
abundance because if various population components are adapted to different conditions, they 
may exhibit independent and complimentary reactions to perturbations (Hilborn et al. 2003; 
Schindler et al. 2010). Our results here demonstrate that it is critical to consider not only the spatial 
but also the temporal dimension of this biocomplexity and to evaluate how human activities affect 
the overall system resilience.  
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FIGURE LEGENDS 
 
 
 
Fig 1. Map showing the approximate sampling locations for the four populations (blue dots). 
Dashed lines delimit Northwest Atlantic Fishery Organization (NAFO) management areas for cod 
in Canada and grey solid lines are the 200 and 1000 m isobaths. 
 
Fig. 2. Results from the temporal outlier tests in 4T 1928-2008 (2 samples; a), 4T 1960-2002 (5 
samples; b), 3NO 1960-2010 (4 samples; c), 3Ps 1964-2010 (3 samples; d), and 4VsW 1964-2010 
(2 samples; e). Each dot represents a locus, illustrating its temporal differentiation (Ftemp, y-axis) 
against its mean heterozygosity (Hs, x-axis). The lines represent the 95% (grey) and the 99% 
(black) confidence envelopes of the simulated neutral distribution. Significant outliers after FDR 
correction (q<0.05) are circled in red. 

Fig. 3. Observed allele frequencies at the significant 4T 1928-2008 outlier loci in different sampling 
years in 4T (a), 3NO (b), 3Ps (c), and 4VsW (d).  Outlier loci are plotted in different shades of 
green and each dot represents a sample. Dots are connected with lines for easier visualization of 
temporal trends. 

Fig. 4. Results from the spatial outlier tests in the 1960s (a), the 1980s-1990s (b), and the 2000s 
(c). Tests for the 1960s and 2000s are based on all four populations while the 1980s-1990s test is 
based on 4T, 3NO and 3Ps only. Each dot represents a locus, illustrating its spatial differentiation 
(FST, y-axis) against its mean heterozygosity (He, x-axis). The lines represent the 95% (grey) and 
the 99% (black) confidence envelopes of the simulated neutral distribution. Significant outliers after 
FDR correction (q<0.05) are circled in red.  

Fig. 5. Observed allele frequencies at temporal outlier loci in different sampling years within 4T 
plotted with temporal trends in ambient fall temperature for cod (a), and probabilistic maturation 
reaction norm midpoint (b). Loci in linkage group 12 are plotted in different shades of blue and loci 
in linkage group 1 in different shades of red and orange. Dots represent samples and they are 
connected with lines for easier visualization of temporal trends. 

 

 

 

 

 

 

 

 

AUTHOR CONTRIBUTIONS BOX 

NOT and EEN designed the research with input from DPS, MJM, and EAT. DPS, MJM, and EAT 
contributed samples. NOT and DM performed the laboratory research. NOT analyzed the data with 
input from EEN, SRP, TDA, and JHH. NOT and EEN wrote the paper with input from all other 
authors. 

72



Population Year n* # loci % variable Hobs  He

4T 1928 29 1047 0.87 0.27 0.28
1960 37 160 0.84 0.25 0.26
1968 31 160 0.84 0.28 0.27

   1974** 14 160 0.78 0.27 0.26
1976 36 160 0.85 0.28 0.27
1983 37 160 0.86 0.28 0.28
2002 29 160 0.84 0.28 0.26
2008 39 1047 0.86 0.28 0.28

3NO 1960 28 160 0.82 0.25 0.26
1973 37 160 0.85 0.26 0.26
1990 37 160 0.86 0.25 0.25
2010 32 160 0.87 0.27 0.26

3Ps 1964 33 160 0.82 0.25 0.25
1993 25 160 0.84 0.26 0.25
2010 26 160 0.86 0.28 0.27

4VsW 1961 16 160 0.86 0.27 0.26
2010 22 160 0.92 0.28 0.28

Table 1. Sampling years for each population and sample size (n),
number of loci genotyped (# loci), the proportion of loci that were
polymorphic (% variable), and the observed (Hobs) and expected (He ) 
heterozygosity for each sample

*Sample sizes represent the number of individuals included in the analysis
(i.e.excluding samples that did not pass the quality filtering criteria)

** Due to the small n, this sample was pooled with the 1976 sample for analysis
(there was no significant difference in allele frequencies between 1974 and 1976)
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SNP Name LG

       3NO   3Ps              4T 4VsW 1960s 1980-1990* 2000s 

Rhod_1_1 1 99*, BS3* 95 99 99* 95, BS3
cgpGmo-S1874 1 99* 95 95 99 95, BS3
cgpGmo-S1955 1 99* 95 95 99 95, BS3
cgpGmo-S1166 1 99* 95 99 99, BS3
cgpGmo-S985 1 99* 95 99 95
Pan1 1 99* 99 95 95
cgpGmo-S1456 2 99* 95
cgpGmo-S1101a 2 95 99
cgpGmo-S1068 2 99
cgpGmo-S1970 5 95
cgpGmo-S1200 7 99* 95 99*
cgpGmo-S1017 9 95
LDHB 9 95
cgpGmo-S1737 12 99*, BS3* 99* 99 99*
cgpGmo-S180b 12 99*, BS10* 99 99*, BS10* 99*, BS10*
cgpGmo-S816a 12 99*, BS10* 95 99*, BS10 99*, BS3
cgpGmo-S866 12 99*, BS10 95 99, BS3 99, BS3*
cgpGmo-S57 12 99*, BS10 95 95
cgpGmo-S2101 12 99*
cgpGmo-S1046 12 99*,  BS3 95 95
cgpGmo-S316 12 95 95
cgpGmo-S142 14 95
cgpGmo-S1467 14 95
cgpGmo-S955 17 99*
cgpGmo-S1340 18 99
cgpGmo-S442a 18 95
Gm370_0380 22 95
Anti_1 22 95 95
Gm0588_0274 ? 99*
cgpGmo-S1406 ? 95 99*
cgpGmo-S1731 ? 95
Gm335_0159 ? 99*

Total number of outliers 14 7 10 13 7 15 8
Total with FDR control 10 0 7 1 1 4 5

*This comparison does not include 4VsW

Spatial outliersTemporal outliers

Table 2. Summary of significant results in temporal and spatial outlier tests on the 1960-2010 samples. 95 and 99 indicate
that the locus was above the 95% or the 99% confidence limits, respectivel, in ftemp or fdist analysis. * indicates that the
outlier remained significant following FDR control (q<0.05), BS3 and BS10 indicate that the locus was an outlier in
BayeScan analysis with prior odds favoring the neutral model of 3 and 10, respectively.
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Table 3. Results from the AMOVA based on all loci (n=157) and non-outlier loci only (n=101)

Data Source of variation F-index df p-value 

All loci Among populations FCT 3 0.10 0.44 (0.21 - 0.68) <0.00001
Among time points within populations FSC 12 0.12 0.54 (0.28 - 0.83) <0.00001
Among individuals within time points FIS 463 0.22 1.03 (-0.41 - 2.67) 0.01059
Within individuals 21.35 97.99

Non-outlier loci Among populations FCT 3 0.02 0.15 (0.024 - 0.27) 0.00639
Among time points within populations FSC 12 -0.01 -0.09 (-0.24 - 0.064) 0.86560
Among individuals within time points FIS 463 0.19 1.14 (-0.58 - 3.156) 0.01269
Within individuals 16.16 98.80

% variation (95% CI)Var components
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Supplementary Methods/Results 
 

Note 1: Genomic location and annotation of SNPs  
 

Approach 

In total 985 of the 1536 study SNPs were already positioned on the cod linkage map (Hubert et al. 
2010; Borza et al. 2010). By mapping 120 bp of the flanking sequence surrounding each SNP on 
to scaffolds of the cod genome sequence (Star et al. 2011) using BLASTN with an e-value 
threshold of 10-10, we could anchor an additional set of 489 SNPs (for a total of 1474) to the linkage 
map. The SNPs were fairly evenly distributed among the 23 linkage groups (with between 34 and 
97 (mean of 64) SNPs per linkage group), ensuring broad genomic coverage in our initial scan. 

The expected functional role was already described for the candidate gene SNPs (Hemmer-
Hansen et al. 2011), but for the remainder, we queried the 120 bp flanking sequence for each SNP 
against NCBI’s NR database and Uniprot’s SwissProt and TrEMBL databases using BLASTX with 
an e-value threshold of 10-5. Only ~30% of sequences showed significant homology to known 
proteins, probably because they were primarily developed from the 3’ end of ESTs and many are 
therefore located in non-coding untranslated regions (Hubert et al. 2010). However, even if the 
SNPs are not direct targets of selection, they may be affected by hitchhiking effects from selection 
acting on closely linked sites (Smith & Haigh 2007). Therefore, we examined annotation 
information for the surrounding genomic region of each SNP by mapping (with BLASTN using an 
e-value threshold of 10-10) the flanking sequence onto the Ensembl Atlantic cod genome assembly 
(www.ensembl.org; release 65, Dec 2011). This assembly has been annotated using a 
combination of the standard Ensembl pipeline and a complimentary method based on aligning re-
organized scaffolds to the stickleback (Gasterosteus aculeatus) genome (Star et al. 2011). We 
extracted data, including gene ontology (GO) terms, for all gene models located within 10 kb up- or 
downstream of each SNP. To summarize the functional information associated with outlier SNPs, 
the online tool CateGOrizer (Hu et al. 2008) was used to cluster the extracted GO terms according 
to the MGI GOSlim2 classification method (single occurrence counting). For the SNPs that were 
located within coding regions of the gene models, we determined whether the substitution caused 
an amino acid change or not following the approach used by Milano et al. (2011). 

 

Results for outlier SNPs 

All post-1928 outlier loci showed significant matches to the annotated genome assembly (all but 
two mapped uniquely to single GeneScaffolds). Only 11 of these outlier SNPs were located directly 
within gene models and 6 of these within exons (all synonymous substitutions). However, the +/- 
10 kb flanking region contained between 1 and 5 gene models for all outlier SNPs, adding up to a 
total of 80 gene models represented by the outlier loci (Table S3). These genes were associated 
with a total of 239 GO terms (146 unique terms), representing a broad variety of functional roles. 
Classification of the GO terms into MGI GOslim2 overview categories revealed that the most 
frequently represented summary categories among the outlier loci were metabolism and 
developmental processes (Table S4). 
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ST2: Temporal outlier detection 
 

Approach 

To identify loci that showed elevated levels of differentiation among samples collected over time 
within single populations, we used a modified version of the fdist method (Beaumont & Nichols 
1996) that is commonly applied for this purpose in spatial comparisons of samples collected from 
different populations at a single time point. Based on the premise that selection should affect only 
certain parts of the genome whereas neutral evolutionary forces should cause genome-wide 
effects, the method compares the observed locus-specific FST values as a function of 
heterozygosity (Hs) to a null distribution generated through simulations. Any loci that show 
divergent patterns of differentiation compared to this neutral expectation are then considered a 
candidate for being affected by selection. 

Here, we adapted the method to fit our scenario by generating the expected neutral distribution 
through simulation of drift within a single population rather than as drift-migration equilibrium 
between multiple demes, as is implemented in the original formulation. Migration can have 
contrasting effects on allele frequencies within a population over short time scales depending on 
the level of differentiation between the source and the recipient populations (Wang & Whitlock 
2003; Fraser et al. 2007) and this can be complex to generalize. Consequently, our null model 
included only the effects of drift and sampling within an isolated population. Assuming that the time 
scale considered in this study (up to 12 generations) is sufficiently short to ignore the effects of 
mutations, any departure from the null model expectations is then likely caused either by selection 
or gene flow.  

 

Model and parameter inputs 

Our simulations were based on single bi-allelic loci at initial frequency f0 in a Wright-Fisher 
population of constant size, Ne, that reproduced over tmax generations. At each ts generation, a 
sample of size n individuals were collected. We ran the analysis separately for each of the four 
populations, each time parameterizing the model to most closely match the studied scenario. 

The initial allele frequency f0 at each simulated locus was a random number between 0 and 1, but 
to generate a roughly uniform distribution of Hs values among the simulated loci, we enriched for 
low starting frequencies. We used the pseudo-likelihood estimator of Wang (2001) as implemented 
in the software MLNE (Wang & Whitlock 2003) to estimate the Ne for each population based on 
temporal shifts in allele frequencies. To match the simulation assumptions, we used the closed 
population model (i.e. no migration) and set NeMAX to 30,000, the maximum value the program 
could handle on a standard computer. Because the Ne is a difficult parameter to estimate, 
particularly for large populations (Hare et al. 2011; Palstra & Ruzzante 2011), we took a 
conservative approach and used the lower 95% confidence interval limit on estimates as input for 
the simulations. Further, to minimize downward bias from inclusion of loci potentially under 
selection (Wang 2005; Leberg 2005), we ran the analysis iteratively: First we identified outlier loci 
from preliminary simulations with an Ne estimate based on all loci. We then re-estimated the Ne 
based only on non-outlier loci and used this second estimate as input for the final simulations. 

We estimated the generation time for each of the four populations as the mean age of spawners 
based on survey data on abundance, age distribution, and fecundity at age following the approach 
in Therkildsen et al. (2010). We then considered our first sample from each population generation 
0 and converted years between subsequent sampling points to generations (rounded to integers). 
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Tmax was the generation where the contemporary sample was collected and each preceding 
sample represented a generation ts. The sample size n was the harmonic mean of sample sizes for 
the population. Using these parameter inputs, we obtained time series of observed allele 
frequencies for the simulated loci that corresponded to the sampling pattern in the real data. 

 

Outlier identification 

We quantified the temporal variance in allele frequencies Ftemp between all samples from a 
population in both the observed and simulated data with Wright’s F (Wright 1951), correcting for 
sampling effects following Waples (1998): 

 

 

The correction for sampling effects was important because missing data made the actual sample 
size vary between loci in the observed data. Following Beaumont and Nichols (1996), we plotted 
Ftemp as a function of the Hs for each locus. We simulated 100,000 independent loci and for each 
computed paired values of Ftemp and Hs. As in the fdist method, the paired values were rank-
ordered by Hs and grouped into overlapping bins of 4,000 points centered on every 2,000th point. 
For each bin, we computed the quantiles of the distribution of Ftemp values that would define the 
confidence envelopes in which 95% and 99%, respectively, of the data points were expected to lie 
if behaving according to the model. To assess the statistical significance of departures from the 
neutral expectation, empirical p-values were computed for each locus as the proportion of 
simulated data points within its bin that showed higher Ftemp than the observed value. To control 
the false discovery rate to <5%, we also computed q-values for all loci using the R-package qvalue 
(Storey & Tibshirani 2003). All simulations and computations were completed with custom R-
scripts (available upon request).  

Since both the Ne and the generation length are difficult to estimate in wild populations, we 
evaluated the sensitivity of the method to uncertainty in these parameter inputs. Basing simulations 
on point estimates instead of the lower confidence interval limits for Ne generally caused no 
difference to which loci were identified as outliers (only one locus more or less in a few cases). 
Similarly, almost identical results were obtained when varying the generation time estimate (Table 
S2) by +/- 2 years. This stability indicates that our conclusions are robust to uncertainty in input 
parameters. 

 

 

2n
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ST3: Simulation of migration between populations 

To evaluate whether migration between the populations could have caused the observed temporal 
fluctuations at outlier loci, we conducted a series of simple simulations involving various levels of 
exchange. For one population at a time (the focal population), we used a Wright-Fisher model of 
size Ne similar to the model adopted for the temporal outlier detection above, but here we for each 
generation let Nem individuals originate from a separate source population rather than the focal 
population. In each simulated data set, we recorded allele frequencies at 160 loci corresponding to 
the real data. Treating the 1960s samples as baselines, we used the observed allele frequencies in 
these samples (assuming no sampling error) as initial frequencies for our focal and source 
populations. For each focal population, we conducted separate simulations with each of the three 
other populations as the migrant source, each time sampling the simulated focal population at the 
generations and with the sample sizes that matched the observed data.  

We then compared these simulated data to the null distribution of expected differentiation in the 
absence of selection and gene flow (generated for the focal population in Supporting information 
Note 2) to identify the total number of temporal outliers (regardless of locus identity) as well as the 
proportion of the actual temporal outlier loci from the observed data that also became temporal 
outliers in the simulations. Because of uncertainty in Ne estimates, we ran the simulations for focal 
population Ne ranging from 100 to 100,000 and varied m from 0 to 1 in steps of 0.1, using 100 
simulated datasets for each combination of values. The simulations were conducted with custom 
R-scripts available upon request. 
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Population Generation length Generations sampled Ne (95% CI)

3NO 8.1 0, 2, 4, 7 Inf (509-Inf)
3Ps 7.8 0, 4, 6 Inf (619-Inf)
4VsW 6.4* 0, 8 Inf (452-Inf)
4T 1960-2002 6.4 0, 1, 2, 3, 6 Inf (568-Inf)
4T 1928-2008 6.4 0, 12 1576 (820-9045)

* Assumed to be identical to 4T because 4VsW and 4T have similar generation length estimates in Table
A1 of the Committee on the Status of Endangered Wildlife in Canada (2010) COSEWIC assessment and
update status report on the Atlantic cod (Gadus morhua) in Canada

Table S2. Estimates of generation length, generations sampled in the study, and
the effective population size (Ne) and its 95% confidence interval (CI) for each
population. All Ne estimates are based on a subset of loci that exclude temporal
outliers for the given population. For 4T separate estimates are presented for
the 1928-2008 and the 1960-2002 samples due the different number of loci. Inf
indicates Ne estimates of infinity
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GO Class ID Definitions Counts Fractions

GO:0008152 metabolism 48 23.08%
GO:0007275 developmental processes 24 11.54%
GO:0006810 transport 20 9.62%
GO:0003676 nucleic acid binding 16 7.69%
GO:0007165 signal transduction 14 6.73%
GO:0019538 protein metabolism 12 5.77%
GO:0016301 kinase activity 10 4.81%
GO:0005215 transporter activity 10 4.81%
GO:0016020 membrane 8 3.85%
GO:0004871 signal transducer activity 8 3.85%
GO:0030234 enzyme regulator activity 8 3.85%
GO:0005886 plasma membrane 6 2.88%
GO:0005634 nucleus 4 1.92%
GO:0006259 DNA metabolism 3 1.44%
GO:0016070 RNA metabolism 3 1.44%
GO:0005840 ribosome 2 0.96%
GO:0005929 cilium 2 0.96%
GO:0006950 stress response 2 0.96%
GO:0016265 death 2 0.96%
GO:0005576 extracellular 2 0.96%
GO:0005739 mitochondrion 2 0.96%
GO:0007155 cell adhesion 2 0.96%

Total 208* 100.00%

* 56 single occurrence GO-terms did not fit any GOslim2 category

Table S4. Ranked list of the MGI GOslim2 summary categories 
represented in the GO-terms associated with gene models located 
within 10kb up- or downstream from outlier loci (listed in Table S3)
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1928 1960 1968 1974 1976 1983 2002 2008 1960 2010 1960 1973 1990 2010 1964 1993 2010

4T 1928 - 0.074 0.068 0.052 0.071 0.062 0.086 0.066 0.083 0.063 0.063 0.077 0.074 0.067 0.078 0.072 0.075
1960 ** - -0.002 -0.007 0.004 0.017 0.001 0.002 0.014 0.016 0.005 0.000 0.007 0.000 0.004 0.000 0.001
1968 **  - -0.003 -0.001 0.005 0.003 -0.002 0.010 0.006 0.005 0.004 0.016 0.007 0.010 0.008 0.000
1974 **   - 0.000 0.009 -0.002 -0.002 0.005 0.006 -0.001 -0.004 0.004 0.000 0.002 -0.004 -0.005
1976 ** *   - 0.006 0.000 0.000 0.003 0.006 0.016 0.003 0.026 0.014 0.019 0.016 0.000
1983 ** ** * * * - 0.013 0.006 0.013 0.000 0.020 0.016 0.034 0.021 0.026 0.022 0.010
2002 **     ** - 0.003 0.001 0.015 0.010 0.002 0.023 0.008 0.013 0.011 -0.004
2008 ** *    ** * - 0.009 0.006 0.015 0.003 0.020 0.007 0.014 0.012 0.002

4VsW 1960 ** ** *  * **  * - 0.016 0.022 0.004 0.042 0.020 0.023 0.023 0.008
2010 ** ** ** * * * ** ** * - 0.021 0.014 0.027 0.019 0.024 0.019 0.010

3NO 1960 ** * *  ** ** * ** ** ** - 0.011 0.013 0.005 0.009 0.001 0.007
1973 **  *   **  * * ** ** - 0.015 0.006 0.010 0.007 -0.001
1990 ** * ** * ** ** ** ** ** ** ** ** - 0.001 0.002 0.001 0.014
2010 **  *  ** ** * * ** ** * *  - 0.002 -0.003 0.002

3Ps 1964 ** * *  ** ** * ** ** ** ** *  - -0.005 0.010
1993 **  *  ** ** * ** ** **    - 0.006
2010 **     **   * **   ** * -

1928 1960 1968 1974 1976 1983 2002 2008 1961 2010 1960 1973 1990 2010 1964 1993 2010

4T 1928 - 0.006 0.005 -0.006 -0.002 0.003 0.009 0.000 -0.007 0.004 0.001 0.001 0.006 0.000 0.012 0.007 0.000
1960 * - -0.007 -0.012 -0.004 -0.001 0.000 -0.002 0.002 0.001 0.001 0.000 -0.003 -0.003 -0.001 -0.001 -0.001
1968 * - -0.007 -0.005 -0.003 0.001 -0.004 0.003 0.002 0.002 0.004 0.000 -0.001 0.001 -0.001 -0.003
1974  - -0.006 -0.007 -0.006 -0.005 -0.007 -0.005 -0.006 -0.007 -0.005 -0.004 -0.004 -0.008 -0.010
1976  - 0.000 0.001 -0.003 0.002 -0.003 0.001 0.004 0.001 0.003 0.004 0.003 -0.003
1983 * - 0.000 -0.002 -0.002 0.002 0.000 0.005 0.003 -0.001 0.001 -0.001 -0.006
2002 * - 0.005 0.000 0.006 -0.002 0.007 0.004 0.000 0.001 0.001 -0.004
2008 * - 0.002 0.000 0.004 0.003 0.002 0.000 0.003 0.002 0.000

4VsW 1961  - -0.001 0.003 0.002 0.006 -0.004 -0.003 -0.002 -0.001
2010  - 0.009 0.005 0.003 0.005 0.006 0.005 -0.003

3NO 1960  *  * - 0.004 0.005 -0.001 0.001 -0.006 -0.007
1973 *    - 0.001 0.002 0.003 0.002 0.003
1990 *    - -0.001 0.000 0.002 0.000
2010     - 0.000 -0.001 -0.002

3Ps 1964 *   * - -0.005 0.000
1993 * - -0.004
2010  -

4T 4VsW 3NO 3Ps

4T 4VsW 3NO 3Ps

Table S5. Pairwise differentiation between samples based on all loci (n=160). Cells above the diagonal show pairwise FST and cells below the diagonal show results from
pairwise chi-square tests for significant differences in allele frequencies. * indicates p<0.05, ** indicates significance after FDR correction (q<0.05)

Table S6. Pairwise differentiation between samples based on non-outlier loci (n=101). Cells above the diagonal show pairwise Fst and cells below the diagonal show
results from pairwise chi-square tests for significant differences in allele frequencies. * indicates p<0.05. No tests were significant after FDR correction (q<0.05).
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Fig. S1. Observed allele frequencies at significant 3NO temporal outliers (left panel) and significant 
4T temporal outliers (right panel) in samples from different years in 3NO (a and b), 3Ps (c and d), 4T 
(e and f) and 4VsW (g and h). Loci in linkage group 12 are plotted in different shades of blue, loci in 
linkage group 1 in different shades of red and orange and loci from other linkage groups in green and 
purple. Dots represent samples and they are connected with lines for easier visualization of temporal 
trends. 
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Fig. S2. Results from the BayeScan outlier tests on samples from the 1960s (a), 1980s-1990s (b), and 
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favor of a model including selection vs. a model of neutral differentiation (x-axis). The vertical lines indicate 
the significance threshold (controlling the FDR to <0.05) and loci positioned on the right side of these lines 
are considered outliers. Loci that were also significant in the Lositan analysis are marked in red.
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Fig. S3. Results from the Lositan spatial outlier tests in the 1960s (a) and 2000s (b) excluding 
the 4VsW sample. Each dot represents a locus, illustrating its spatial differentiation (Fst, y-axis) 
against its mean heterozygosity (x-axis). The lines represent the 95% (grey) and the 99% 
(black) confidence envelopes of the simulated neutral distribution. Significant outliers after 
FDR correction (q<0.05) are circled in red. 
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Fig. S4. LD patterns among the temporal and spatial outlier loci in 3NO (a), 3Ps (b), 4T (c), and 4VsW 
(d). The heatmaps show pairwise r2 (see scale on plot) between loci computed from all samples (years) 
pooled within each population. Loci are ordered by linkage group and position within linkage group, 
where known, in ascending order from left to right. Linkage group 1 and 12 are highlighted.
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Fig. S7. Sample positions along the primary axes of the PCoA based on pairwise Fst matrices 
computed from non-outlier loci only (n=101). Samples from 3NO (pink) seem to cluster together on 
axes 1 and 3 (b). Samples from 3Ps (blue) cluster together on axes 2 and 4 (c and d). Samples 
from 4T (yellow) cluster together on axes 2 and 3 (c) and samples from 4VsW (green) on axes 1 
and 3 (b).
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Fig. S8. Heatmaps showing the maximum number of temporal outliers (regardless of locus iden-
tity) obtained in simulations of various combinations of local Ne and migration rates from the 
other populations for focal population 3NO (a), 3Ps (b), 4T (c), and 4VsW (d). See SuppInfo ST3 
for details.
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Fig. S9. Heatmaps showing the number of observed temporal outlier loci (in the real data) that 
also became temporal outliers in simulations of various combinations of local Ne and migration 
rates from the other populations for focal population 3NO (a) and 4T (b). See SuppInfo ST3 for 
details. Results are not shown from 3Ps and 4VsW because they had ≤ 1 significant temporal 
outlier. 
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Fig. S10. Comparison of the distribution of genotyping concordance among 29 (a) or 10 (b) replicate sam-
ples for SNPs that were not outliers in any comparison (Non-Outliers), SNPs that were 95% outliers but not 
significant after FDR correction (Weak Outliers) and SNPs that remained significant outliers in either time or 
space after FDR correction (Strong Outliers). The horizontal band in each box represents the median, the 
bottom and top of the boxes represent the 25th and 75th percentiles, and the error bars define the 5th and 
the 95th percentiles. Outlier data points are marked by dots.
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Abstract 

Accurate prediction of species distribution shifts in the face of climate change requires a sound 
understanding of population diversity and local adaptations. Previous modeling has suggested that 
global warming will lead to increased abundance of Atlantic cod (Gadus morhua) in the ocean 
around Greenland, but the dynamics of earlier abundance fluctuations are not well understood. We 
applied a retrospective spatiotemporal population genomics approach to examine the temporal 
stability of cod population structure in this region and search for signatures of divergent selection 
over a 78-year period spanning major demographic changes. Analyzing >900 gene-associated 
SNPs in 847 individuals, we identified four genetically distinct groups that exhibited varying spatial 
distributions with considerable overlap and mixture. The genetic composition had remained stable 
over decades at some spawning grounds, whereas complete population replacement was evident 
at others. Observations of elevated differentiation in certain genomic regions are consistent with 
adaptive divergence between the groups, indicating that they may respond differently to 
environmental variation. Significantly increased temporal changes at a subset of loci also suggest 
that adaptation may be ongoing. These findings illustrate the power of spatiotemporal population 
genomics for revealing biocomplexity in both space and time and for informing future fisheries 
management and conservation efforts. 

 

Keywords: Genetic monitoring, temporal change, population structure, adaptive divergence, 
contemporary evolution, marine fish, climate change, Greenland 
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INTRODUCTION 

The geographical distribution of many plants and animals is expected to shift poleward in face of 
climate change, as revealed by both modeling and empirical investigations (e.g. Parmesan and 
Yohe 2003; Burrows et al. 2011; Chen et al. 2011). While studies documenting these trends have 
provided important insights, they almost exclusively focus on the species level, ignoring that 
species are made up of populations that each may harbor unique adaptations to specific local 
environments and therefore will react differently in response to altered conditions (Hilborn et al. 
2003; Schindler et al. 2010; Kelly et al. 2011). It is typically unclear to what extent climate-induced 
species distribution shifts simply reflect the sum of different populations moving to new areas as 
they each track the changing location of their environmental “niche”. Alternatively, species-level 
shifts could result from extinction of certain populations—and therefore loss of a unique portion of 
the species’ evolutionary legacy—coupled with local growth and spatial expansion in previously 
marginal populations. With changing conditions, rapid adaptation may also be required, both for 
maintaining current distributions and for colonizing new habitat (Gienapp et al. 2008; Hoffmann 
and Sgrò 2011). Understanding population diversity, temporal dynamics, adaptive divergence and 
evolutionary potential is therefore critical for making accurate predictions about the future 
distribution of biodiversity, both at the species and population levels.  

Atlantic cod (Gadus morhua L.) in the waters around Greenland offers an exceptional opportunity 
for studying these issues at a northern range edge, in a habitat that currently appears marginal but 
is predicted to become much more important for the species with the substantial ocean warming 
forecasted for the region (Drinkwater 2005). Greenland is likely to be among the most recently 
colonized parts of the contemporary range of Atlantic cod (Bigg et al. 2008), and historical records 
show that its abundance here has exhibited episodic extreme fluctuations (Hansen 1949; Buch et 
al. 1994). The most recent period of high abundance occurred between 1930 and the late 1960s, 
when the continental shelf off Greenland’s west coast supported an enormous cod fishery that for 
decades yielded annual landings >250.000 tons (Buch et al. 1994; Horsted 2000). After 1970, 
however, both the spawning biomass and recruitment declined by nearly 100%, leading to a period 
of virtual absence of cod from the offshore waters, although they remained present in lower 
abundance inshore (Horsted 2000; Storr-Paulsen et al. 2004; Rätz and Lloret 2005). Multiple 
similar abundance outbursts, coupled with varying expansion and retraction of the northern 
distribution limit, have been reported over the past centuries (Hansen 1949; Buch et al. 1994). 
These patterns have, at least partly, correlated with ocean temperatures (Buch et al. 1994; Stein 
2007), and indeed, coinciding with ocean warming in recent years, increased cod biomass has 
been observed both inshore and offshore in Greenland (Drinkwater 2009; ICES 2011).  

Yet, it remains unclear if increases in abundance—now and in the past—are caused by recurrent 
colonization by populations from elsewhere or if they result from sudden growth in resident 
populations that have maintained a stable distribution through periods of low abundance. Tagging 
studies and egg distribution surveys have suggested that there are separate inshore and offshore 
spawning components within Greenland and that inflow of eggs and larvae from Icelandic waters 
also makes an important contribution to local recruitment (Buch et al. 1994; Storr-Paulsen et al. 
2004). A recent study demonstrated genetic differentiation between samples of cod collected 
offshore and inshore during the feeding season (Pampoulie et al. 2011), but this did not clarify the 
spatial genetic population structure of reproductively isolated units or how the different components 
have been distributed over time. It also did not comprehensively assess adaptive divergence 
between the groups, including their ability to rapidly adapt to changing conditions. 

With recent improvements in high-throughput genotyping methods, it is now becoming possible to 
screen large panels of genetic markers, even in studies of non-model organisms such as Atlantic 
cod. The increased genomic coverage provides unprecedented opportunities, both for detecting 
genetic variation that is affected by selection and for resolving weak population structure, as 
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characterize many marine fish. When these methods can be applied to historical DNA samples, 
which provide unique insights into the past, we obtain an extremely powerful tool for tracking 
population structure and adaptive divergence in both space and time. 

We here illustrate this approach with one of the first spatiotemporal population genomics studies 
on wild populations published for any species. Utilizing invaluable collections of archived material, 
the study is based on extensive sampling of Greenlandic spawning grounds both contemporarily 
and during the historical period of maximum abundance 5-8 decades ago. Through analysis of 
>900 single nucleotide polymorphisms (SNPs), we disentangle locus-specific from genome-wide 
patterns of variation in both space and time to shed light on 1) how many separate cod populations 
inhabit Greenlandic waters; 2) how stable the population structure and the distribution of the 
different components has been over time; 3) whether the populations are adapted to different 
environmental conditions; and 4) whether we can observe signatures of ongoing adaptation over 
the study period. Elucidating these questions will provide important insights about the ongoing 
colonization of northern habitats and help improve predictions of future changes. 

 

 

MATERIALS AND METHODS 

Samples 

Contemporary samples of fin tissue were collected from 13 known spawning areas in Greenland 
during the spawning seasons (March-May) of 2008 and 2010 (Fig 1). Where available, we 
matched these samples with historical otoliths collected in the same locations during the spawning 
season 55-80 years ago. The otoliths had been archived individually in paper envelopes at room 
temperature at the Greenland Institute of Natural Resources. Since low abundance of cod on the 
west coast banks in recent years prevented extensive contemporary sampling here, we added 
additional historical samples from this area. For reference, we supplemented the data with three 
population samples from different spawning components in Iceland collected in 2002, and a single 
population sample collected in Greenland during the feeding season in 2005 (previously analyzed 
by Nielsen et al. 2012). All sampled individuals were of reproductive age and most were in 
spawning condition. Sample sizes as well as sampling locations and years are listed in Table 1.  

 

Molecular analysis and genotyping 

DNA was extracted with Omega EZNA Tissue DNA kits (Omega Bio-Tek, USA) following the 
manufacturer’s instructions for fresh tissue and the procedure described by Therkildsen et al. 
(2010a) for otoliths. To minimize contamination risk, all DNA extraction and PCR preparation from 
otoliths were conducted in an ancient DNA laboratory where no contemporary samples had been 
processed. We also pre-screened the historical extracts by amplifying four highly polymorphic 
microsatellites (mean number of alleles 19) and discarding individuals that showed evidence of 
cross-sample contamination (amplification of >2 alleles for any locus) or that failed to produce 
reliable amplification within 2-3 attempts.  

Samples that passed the pre-screening were genotyped for 1152 previously validated 
transcriptome-derived SNPs (Moen et al. 2008; Nielsen et al. 2009; Hubert et al. 2010; Bowman et 
al. 2011; Hemmer-Hansen et al. 2011). Of these SNPs, 766 were already positioned on the 
published linkage map for Atlantic cod (Borza et al. 2010; Hubert et al. 2010). By mapping 120 bp 
of the flanking sequence surrounding each SNP on to scaffolds of ATLCOD1A build of the cod 
genome (Star et al. 2011) using BLASTN with an e-value threshold of 1e-10, 133 additional SNPs 
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could be anchored (for a total of 899 of the SNPs) to linkage groups (LGs). The applied SNP panel 
was fairly evenly distributed among the 23 LGs (between 20 and 60 (mean of 39) SNPs per LG), 
ensuring broad genomic coverage. 

The SNP genotyping was performed at the Roslin Institute at the University of Edinburgh, 
Scotland, using the Illumina GoldenGate platform following the manufacturer’s protocol. This array-
based technology is based on hybridization of short (<60 bp) locus- and allele-specific probes to 
the template DNA and should therefore be well suited for fragmented historical DNA. To minimize 
the risk of cross-sample contamination, historical and contemporary samples were kept separate 
during all steps. The SNP data were visualized and analyzed with the GenomeStudio Data 
Analysis software package (llumina Inc.). All genotype cluster positions were edited manually and 
we only included data points with GenCall score >0.25 and samples and SNPs with a call rate 
>0.7. 

 

Data quality control and summary statistics 

To evaluate the reproducibility of genotype calls, 26 historical DNA extracts were analyzed in two 
independent assays and a single control individual was included on all 96-well plates. We 
computed the genotyping concordance for each SNP as the number of identical genotype calls 
divided by number of samples where both replicates had been successfully genotyped. SNPs with 
a mean concordance <0.9 were discarded from the data set. 

We computed expected and observed heterozygosity (He and Hobs) and tested for Hardy-Weinberg 
equilibrium (HWE) in all samples using 105 permutations with the Monte Carlo procedure 
implemented in the R-package ADEGENET (Jombart 2008). The degree of linkage disequilibrium 
(LD) between all pairs of loci within each sample was evaluated with the GENETICS package for R 
(Warnes 2003). Here, and where appropriate throughout the analysis, we corrected for multiple 
testing by computing the expected false discovery rate (FDR), or q-value, for each test based on 
the distribution of p-values using the R-package QVALUE (Storey and Tibshirani 2003). We 
considered tests significant when the FDR was <5% (q<0.05).  
 
Population structure 
To examine the patterns and levels of differentiation among samples, we computed pairwise FST 
between all samples with the Fstat function from the GENELAND package in R (Guillot et al. 2005) 
and tested for pairwise differences in allele frequencies among all samples using chi-square tests, 
as implemented in the software CHIFISH (Ryman 2006).  
For further exploration of the population structure, we applied discriminant analysis of principal 
components (DAPC; Jombart et al. 2010) as implemented in R package ADEGENET (Jombart 
2008). Since we did not a priori know how many populations were represented by our data, we first 
used the find.clusters function to run successive K-means clustering of the individuals for K=1:20, 
and identified the best supported number of clusters through comparison of the Bayesian 
Information Criterion (BIC) for the different values of K. We then applied the dapc function to 
describe the relationship between these inferred groups. This function constructs synthetic 
variables, discriminant functions (DFs), that maximize variation between while minimizing variation 
within groups and computes coordinates along these functions for each individual. To avoid over-
fitting, we retained only the 111 first principle components (PCs) from the preliminary data 
transformation step (indicated to be the optimal number based on the optim.a.score function), 
representing 46% of the total variation in the data set (analysis including all PCs yielded virtually 
identical results). 

Based on the derived DFs, we obtained posterior cluster membership probabilities for each 
individual and computed the mean membership probability to the different clusters for each 
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sample. We then categorized samples with mean membership probability of >0.6 to one of the 
clusters as “pure” samples and the others as “mixed” samples (for use in the outlier tests and LD 
analyses). To cross-validate the robustness of cluster assignments, we randomly selected half the 
individuals from each sample as our training data and the other half as our hold-out data. We then 
re-computed the clustering and DAPC analysis based on the training data alone and applied the 
predict.dapc function to position the “hold-out” individuals onto these new DFs. This way, posterior 
membership probabilities for the hold-out individuals reflected how reliably individuals that had not 
been used to define DFs would assign to clusters. 

To assess how much of the observed structure was driven by loci under selection, we repeated all 
the analysis with a subset of the data excluding loci that were spatial or temporal outliers (see 
below) or exhibited high LD (mean r2>0.1 within “pure” samples) with other loci. 

 

Spatial outlier detection 

To identify loci that showed divergent patterns of differentiation compared to neutral expectations 
and therefore potentially have been affected by selection, we applied the Bayesian approach of 
Beaumont and Balding (2004) as implemented in the software BAYESCAN 2.1 (Foll and Gaggiotti 
2008). We set the prior odds for a model without selection to 10:1 and ran the program with 20 
pilot runs of each 5000 samplings followed by an additional burn-in of 50000 and 5000 samplings 
with a thinning interval of 10. Correcting for multiple testing, the program computes q-values based 
on the posterior probability for each locus, and we considered loci with q<0.05 in three 
independent runs significant outliers. 

Because hierarchical structuring, as observed in our data, can lead to an excess of false positives 
if not accounted for in outlier tests (Excoffier et al. 2009), we supplemented the BAYESCAN results 
with simulations under the hierarchical fdist model as implemented in ARLEQUIN 3.5 (Excoffier 
and Lischer 2010). For each run, we used 50000 simulation iterations with a null model with 10 
groups, each containing 100 demes, and computed q-values based on the derived p-values to 
consider loci with q<0.05 significant outliers. 

For both outlier detection methods, we conducted a series of tests with different subsets of the 
samples. Initially, we examined the overall patterns with tests including all samples at two cross-
sections of time, contemporary and historical, here basing the groupings for the hierarchical model 
on the cluster of maximum membership probability for each sample (Table 1). Because we were 
particularly interested in loci under selection between the clusters, we followed up with pairwise 
comparisons of the clusters (here only including the “pure” contemporary samples) and non-
hierarchical tests among the samples within each cluster (historical and contemporary separately). 

 

Temporal outlier detection 

We also applied outlier tests to assess whether any loci showed greater temporal differentiation 
than expected under drift and sampling error alone within the locations where the cluster 
membership of individuals was relatively stable over time. Because the outlier tests applied above 
rely on models of spatial variation between multiple populations, they are not directly suitable for 
examining variation over time within a single population. We therefore adapted the fdist approach 
(used for the hierarchical spatial tests), so that it would better fit a temporal scenario (see 
Supporting information for details). The key difference was that we here generated the neutral 
expectation through simulations under a Wright-Fisher model of drift over time within a single 
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population rather than as drift-migration equilibrium between multiple populations. Otherwise, the 
outlier detection was conducted as in the original approach (Beaumont and Nichols 1996). 

A required input parameter for the temporal null model was the number of generations between 
samples, which we estimated to be between 11-15 in the different locations based on demographic 
data (see Supporting information). A second required input was the effective size (Ne) of the 
sampled population, which we estimated for each location based on the temporal variance in allele 
frequencies between sampling points and which appeared high at all locations (lower 95% 
confidence limit consistently ≥450, see Supporting information). For each run, we simulated 105 
loci and computed p-values for each observed locus indicating the probability that it showed 
greater temporal differentiation than expected from the null model. The temporal outlier analyses 
were completed with custom R-scripts available upon request. 

 

Environmental correlations 

To gain insights about what factors may drive selection in this system, we tested for associations 
between the spatial distribution of allele frequencies and a range of environmental and seascape 
parameters. For this analysis, we used the method implemented in the software BAYENV (Coop et 
al. 2010), which accounts for the underlying population structure when testing for locus-specific 
environmental correlations in a Bayesian framework. The first step is to estimate a covariance 
matrix from a set of presumably neutral SNPs. Based on this matrix, the program then computes a 
Bayes factor (BF) for each locus, reflecting the ratio of posterior support for a model with a linear 
correlation between an environmental variable and allele frequencies versus a model including the 
covariance matrix only. Analyzing the historical and contemporary samples separately, we 
estimated the covariance matrices from a subset of SNPs (n=618) excluding outliers and loci in 
strong LD and used the mean of the two final matrices obtained in two independent runs of each 
105 iterations of the MCMC chain. We considered locus-environment combinations with a log10(BF) 
> 1.5 significant (“very strong evidence” according to Jeffreys (1939) scale).  

Environmental data were primarily obtained from the Nucleus for European Modeling of the Ocean 
(NEMO) shelf sea model. To obtain data that reflected long-term conditions at the sampling 
locations, we used averages of annual values for 1948-2011 within 7x7 km grid cells. For some of 
the coastal positions that fell just outside the geographic coverage of the model, data were 
interpolated from the adjacent grid cells. The Disko Bay (ILL samples) and the Nuuk area were not 
covered in the model. For Disko Bay, adequate observational data were not available, but for 
Nuuk, data on certain variables were compiled from historical CTD data downloaded from the 
ICES Oceans database (http://ocean.ices.dk/) and retrieved from archived logbooks (Hedeholm 
unpublished). We reduced the full set of variables initially considered (Table S1, Supporting 
information) to a subset including only relatively uncorrelated variables (rho<0.8, Spearman Rank 
Correlation Test). The variables considered in the final analysis were latitude, longitude, distance 
to nearest coastline, annual maximum, mean and range for bottom spring temperature, annual 
mean, minimum and range for surface spring temperature, and annual mean bottom salinity. 

 

 

RESULTS 

Data quality and summary statistics 

DNA extracts from a total of 847 individuals were analyzed with the SNP assay  (231 historical 
samples were discarded due to contamination or poor DNA quality). In these samples, 1011 SNPs 
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were successfully genotyped; 935 of these passed the quality criteria and were used for analysis. 
The mean genotype concordance among replicate samples was 98% and the mean call rate for 
samples was 93%. The different samples were polymorphic for between 86 and 99% of loci and He 
ranged from 0.25-0.32 (Table 1).  

In single-locus tests for HWE, 1471 tests (out of 28050) had p<0.05, with the highest concentration 
in the samples OWE10 and QAQ08 (with 87 and 77 out of 935 loci having p<0.05, respectively). 
However, after FDR correction, only 13 tests remained significant (q<0.05) and these were 
distributed among loci and samples. LD analysis revealed variable numbers of significant 
associations among loci in the different samples, but 1747 of the 436612 possible pairwise 
comparisons among loci had a mean r2>0.1 within “pure” samples (see below). When discarding 
one locus from each of these LD pairs, 693 loci remained. 

 

Population structure 

Pairwise FST estimates ranged from -0.003 to 0.072 and were highest between ISC02 and most 
other samples, except the other Icelandic and the Nuuk inshore samples (Fig S1). The majority of 
pairwise comparisons (336 of 378) showed significant differences in allele frequencies between 
samples after correction for multiple testing. Notable exceptions were among the Nuuk samples, 
among the northern west coast Greenland samples, and among the west coast offshore samples 
(Fig. S1, Supporting information). 

Consistent with these results, the K-means analysis revealed that clustering solutions with either 
three or four groups generated the lowest BIC-scores and therefore were best supported (Fig. S2a, 
Supporting information). Two groups were consistent in both clustering solutions: one (the “East” 
cluster) containing the majority of individuals in the Icelandic offshore sample, the east Greenland 
samples and the southernmost offshore samples from western Greenland, and another (the “West” 
cluster) containing the majority of individuals from the remaining western Greenlandic samples 
except the fjord samples from around Nuuk and portions of the contemporary Sisimiut samples 
(Table 1). The three-cluster solution grouped Icelandic and Nuuk inshore samples together, 
whereas the four-cluster solution separated these groups (Fig. S3a, Supporting information). Since 
this separation is geographically meaningful and there is temporally stable significant differences 
between the samples, we proceeded with the four-cluster solution.  

The samples exhibited considerable overlap between the positions of individuals on the DFs. 
However, when examining the mean coordinates of each sample, it is evident that the first DF  
(representing 61.7% of the discriminating power) resolves a continuum from the Greenlandic 
inshore through offshore West and East to Icelandic inshore (Fig. 2). The second DF (representing 
27.6% of the discriminating power) separates inshore samples (in both Greenland and Icelandic 
waters) from offshore samples (Fig. 2a). The third function (representing 10.6% of the power) 
separates both the inshore and offshore groups into Icelandic and Greenlandic components, 
except from a few Greenlandic samples that cluster with the Icelandic samples, likely representing 
migrants (see below; Fig. 2b). Recoding of the coordinates on the first two DFs into signal intensity 
of red and green color, respectively, provides visualization of the geographic distribution of these 
patterns (Fig. 1). Inspection of the allele loadings on the DFs revealed that a large number of SNPs 
spread across different LGs drove the discrimination of the first and the third function, whereas the 
strongest allele contributions to DF 2 (that separated inshore from offshore) were almost 
exclusively dominated by SNPs in LG1 (Fig. S4, Supporting information). 

With K-means clustering based on the full dataset, 87% of individuals showed posterior 
membership probability of >0.95 to one of the four clusters. In the cross-validation where only half 
of the individuals were used as training data, the assignment power remained high, with 82% of 
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the hold-out individuals showing posterior membership probability of >0.95 to one of the clusters 
and 94% of these assigning to the same cluster as in the full data analysis. The consistent results 
obtained when hold-out individuals were not used for defining clusters or DFs indicate that the 
reported cluster configuration was well supported by the data. 

At the aggregate level, 20 of the 28 samples had mean membership probability >0.6 to a single 
clusters, while the remaining 8 appeared to consist of mixtures of cod from different clusters (Table 
1). Both “pure” and “mixed” samples were primarily made up of individuals that assigned with high 
probability to a single cluster (Fig. 3). However, some individuals appear to be admixed, showing 
relatively even membership probabilities between different clusters. Of particular note, the majority 
of the Greenlandic west coast offshore samples appeared to contain approximately even mixtures 
of fish with high assignment probability to the “East” and the “West” clusters, respectively. 
Meanwhile, a vast majority fish in the coastal west coast samples assigned to the “West” cluster 
(Fig. 3). Two exceptions to this were the contemporary samples from SIS that appeared to contain 
a considerable proportion of fish assigning to the “Nuuk” cluster, and contemporary samples from 
PAA and QAQ that appeared to be made up of fish from the “Iceland-inshore” and the “East” 
cluster, respectively (Fig. 3). Since the historical samples from these latter two locations contained 
almost exclusively “West” individuals, the contemporary dominance of the alternate clusters 
suggests complete population replacement in this area. In contrast to these stark temporal 
changes, other locations (UMM, ILL, KAP and DAB) exhibited a high degree of temporal stability, 
as evident both from assignment results (Fig. 3) and from the tight clustering of temporal replicates 
(Fig. 1 and 2).   

When loci potentially under selection (see below) and loci in strong LD were removed from the 
data, the pairwise FST coefficients were considerably lower than with all loci (ranging from -0.003 to 
0.028), but 259 of 378 comparisons still showed significant differences in allele frequencies (Fig. 
S1, Supporting information). The K-means clustering clearly indicated that with this data subset, a 
solution with only two clusters was best supported (Fig. S2b, Supporting information): One cluster 
containing the Icelandic (both inshore and offshore), the east coast, the contemporary QAQ and 
PAA as well as portions of the Nuuk samples, and a second cluster containing the remainder of the 
Greenlandic samples (not a single Icelandic individual assigned to this cluster). The three-cluster 
solution corroborated this, except that it split the “Nuuk” samples into their own cluster (Fig. S3b, 
Supporting information). 

 

Spatial outlier detection 

In all analyses, BAYESCAN detected considerably more outliers than ARLEQUIN (often more than 
twice as many), but ARLEQUIN outliers were almost exclusively a subset of BAYESCAN outliers. 
Here, we present only results on outliers identified by both methods. In the comparison of all 
contemporary samples, 47 loci were either FST (differentiation between all samples) or FCT 
(differentiation between clusters) outliers (the majority both; Table S2, Supporting information), and 
all but 6 of these loci were located in three high-LD regions of LG1, 2, and 7, respectively. Analysis 
of the Icelandic samples alone identified a large proportion of the global outliers in LG1 and LG7, 
but notably not LG2. Within Greenland, the majority of global outliers from LG1 along with a 
number of single loci in other LGs were outliers on a regional scale (Table S2, Supporting 
information). Comparison with analysis of the historical Greenlandic samples suggested that this 
pattern was stable over time, although there were 30% fewer outliers among historical samples 
(Table S2, Supporting information).  

Pairwise comparisons between the clusters showed that LG7 loci were only outliers in tests 
involving the Iceland inshore group (Fig. 4). The majority of global outliers in LG1 were outliers in 
all comparisons involving the “Iceland-inshore” and the “Nuuk” clusters, except in the comparison 
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of these two, indicating a common divergence from the other clusters at this genomic region (Fig. 
4c). The smallest number of outliers was found in the “West”-“East” comparison, but the outliers 
here were in different LGs, thus likely representing independent instances of genomic divergence. 
Few significant outliers were detected within clusters, except from a few cases in both the “East” 
and “West” historical samples.  

 

Temporal outlier detection 

The temporal outlier analyses revealed between 3 and 9 outlier loci, mostly spread over multiple 
LGs, showing elevated levels of differentiation between time points within a location (Fig. 5; Table 
S2, Supporting information). Interestingly, there was no overlap between the loci that were 
temporal outliers in the different locations and only three loci were both spatial and temporal 
outliers. Uncertainty in the estimated parameter input values appeared to only have minor 
influence on the outlier detection. Assuming that the generation length was 7 years instead of 5 
narrowed the confidence limits on simulated Ftemp and produced a few more outliers. Using the 
lower 95% confidence limit rather than the point estimate for Ne generated slightly wider 
confidence intervals and consequently removed a few outliers. However, at least the top three 
temporal outliers for all locations were highly robust to variations in parameter inputs.  

 

Environmental correlations 

The BAYENV analysis identified between 1 and 29 loci that were highly correlated with the 
environmental variables (Table S2). All but two of the significantly correlated loci were also 
identified as spatial or temporal outliers. The high LD-group on LG1 that exhibited strong spatial 
outlier patterns correlated with a number of variables, including distance to shore, sea surface 
temperature range, and salinity. The spatial outlier loci on LG7 were correlated with longitude, 
which is expected given that these loci seemed divergent only between the Iceland inshore cluster 
and the rest. However, a number of additional loci distributed across LGs also correlated with 
longitude. Different sets of loci—some on LG1—correlated with maximum and mean bottom 
temperature, whereas a consistent set of 4 loci correlated with minimum and mean surface 
temperature. Three of these loci were involved in differentiation between the Iceland inshore and 
particularly the Nuuk samples (Table S2, Supporting information). 

 

 

DISCUSSION 

This study identified four genetically distinct groups inhabiting a relatively small geographical area 
at the Northern range margin of the widely distributed Atlantic cod. Genomic analysis of 
contemporary and historical samples revealed that the groups exhibited different spatial 
distributions with considerable overlap and mixing and that the genetic composition at some 
spawning grounds was stable over time, whereas complete population replacement was evident at 
others. Signatures of elevated differentiation in certain genomic regions are consistent with 
adaptive divergence between the groups and significantly increased temporal changes at a subset 
of loci indicate that adaptation is ongoing. 
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Population structure and reproductive isolation 

Our results suggested a relatively high degree of reproductive isolation among the four identified 
groups, as the majority of individuals are assigned to a single cluster with very high certainty. While 
the posterior membership probabilities of the DAPC analysis are not strictly equivalent to individual 
admixture proportions as estimated through commonly applied Bayesian clustering methods (e.g. 
Pritchard et al. 2000; Corander et al. 2008), they do reflect the proximity of individuals to different 
clusters. Hence, individuals with relatively even membership probabilities to multiple clusters could 
either carry uninformative genotypes in relation to cluster separation or be admixed. In contrast, 
population samples that exhibited an intermediate average position between clusters but are made 
up of individuals with high membership probability to different clusters likely represent first-
generation or non-interbreeding mixtures. Our finding that the latter scenario was much more 
common than the former (Fig. 3) does not appear to be an artifact of model over-fitting that would 
be able to distinguish any groupings with high power because re-analysis with randomized prior 
groupings resulted in maximum individual membership probabilities of only 0.3-0.5 for the vast 
majority of individuals (Fig. S5, Supporting information). Therefore, the data strongly suggest that 
spatial mixture among separate genetic clusters was common, but individual admixture much less 
so in this system.  

A high degree of reproductive isolation could appear at odds with the relatively weak level of 
genetic structure observed when outlier loci were removed (Fig. S1, Supporting information). 
However, the differentiation between clusters was highly significant, and low levels of 
differentiation—a typical pattern for marine fish (Waples 1998; Hauser and Carvalho 2008)—does 
not necessarily reflect substantial ongoing gene flow. Our analysis suggested that the Ne was very 
large in all populations and previous ecological niche modeling coupled with genetic analysis 
indicates that the split between Greenlandic and Icelandic/European cod populations postdates the 
last glacial maximum (LGM; c. 21 KYA; (Bigg et al. 2008). Therefore, the low level of differentiation 
may be better explained by limited accumulation of drift due to recent divergence and large Ne’s. 

The configuration of our inferred genetic clusters is consistent with previous hypotheses about 
population structure based on tagging data, abundance records, and egg distribution surveys, 
which also have indicated the presence of four components: an inshore west, offshore west, 
offshore east and inflow from Iceland (summarized by Buch et al. 1994; Storr-Paulsen et al. 2004). 
Among the inshore west coast samples, the genetic isolation of the Nuuk region also corroborates 
insights from egg surveys and historical records, which suggest that this is one of the most 
important inshore spawning areas (Storr-Paulsen et al. 2004). It is uncertain to what extent the 
portions of other samples that assigned to the Nuuk cluster represent related individuals from an 
inshore component distributed all along the coast or show similarity because of common 
adaptations to the inshore environment (see below).  

Regardless of this uncertainty, this study provides important confirmation of the genetic basis of 
previously assumed population structure. Notably, the combination of extensive sampling at the 
spawning grounds and a large panel of SNP markers provided much greater power to resolve 
these patterns than previous genetic studies in the region have achieved (Arnason et al. 2000; O 
Leary et al. 2007; Pampoulie et al. 2011). The DAPC proved a powerful approach for detecting the 
weak, but geographically and biologically meaningful, signal of differentiation. The low 
differentiation made results from the more commonly applied Bayesian clustering algorithm 
STRUCTURE (Pritchard et al. 2000; Falush et al. 2003) less conclusive (not shown), and DAPC 
may in many cases be a suitable alternative (Jombart et al. 2010). 
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Temporal stability of population structure and distribution 

In addition to characterizing the number of cod populations around Greenland, our spatiotemporal 
analysis provided important insights into how the distribution of the different components has 
changed over time. Perhaps most interesting was the demonstration of genetic continuity on the 
west coast banks. After the stock collapse in the late 1960s, cod were considered virtually extinct 
from the offshore regions and it was hypothesized that influx from Iceland would be the only viable 
source of replenishment (Rätz et al. 1999; Stein 2007). Here we show that recently collected cod 
from these offshore areas represent an almost identical mixture of fish with western and eastern 
Greenlandic heritage as was sampled there during the period of maximum abundance. Although 
this population component probably now is recovering from a severe reduction in population size, 
our temporal analysis indicated that the Ne has remained high and thus that the population is 
unlikely to have suffered alarming loss of genetic diversity—a pattern also observed in other large 
cod populations that have undergone substantial population collapses (Ruzzante et al. 2001; 
Poulsen et al. 2006; Therkildsen et al. 2010b). Since the distribution of the western Greenland 
cluster extends to coastal areas where a lower level abundance was maintained (Buch et al. 1994; 
Storr-Paulsen et al. 2004), it cannot be ruled out that the offshore area was re-colonized by a 
population component that had resided inshore. However, it appears virtually impossible that the 
offshore resurgence has resulted exclusively from Icelandic influx. 

Interestingly, all the historical coastal samples outside the “Nuuk” area show remarkable similarity 
(also with one of the offshore areas (LHB, see Figs. 1, 2 and 3), but in contemporary time this 
“pure” west coast cluster is only represented at the northernmost location. At SIS, recent samples 
were more influenced by the “Nuuk” cluster although they still contained a considerable number of 
individuals assigning to the “West” cluster. Interestingly, the 5-year temporal replicates at both 
historical and contemporary time in this location indicate that the proportional representation of the 
different clusters maintained short-term stability. 

In the southern coastal locations (PAA and QAQ), that historically showed genetic similarity to the 
other coastal locations, the “West” cluster became entirely replaced by fish from the “Iceland-
inshore” and “East” cluster. This shifting pattern is consistent with observations of periodic larval 
drift across the Denmark Strait (Wieland and Hovgård 2002), but the complete replacement is 
perhaps surprising. Also, tagging studies have suggested that Icelandic fish migrate back to 
Iceland to spawn and not contribute to recruitment in Greenland. However, the fish analyzed here 
were in spawning condition and thus a large proportion could reproduce locally with uncertain 
consequences for future separation and distribution of the genetic groups. Clearly, the data 
demonstrate highly dynamic patterns with large temporal shifts in the distribution and overlap 
among clusters. Ongoing investigations including samples collected at a finer spatial resolution 
within key locations may reveal what factors drive these changes. 

 

Adaptive divergence and evolutionary potential 

The consistent results from 1) the two independent outlier tests, 2) the loading plots from the 
DAPC, and 3) the correlations with seascape variables indicate strong effects of divergent 
selection in this system. In some cases the signatures of selection were found within, but primarily 
they were evident between the four clusters. This is consistent with cluster-specific adaptations to 
local conditions. The observation that contrasting genomic regions showed elevated divergence 
across different cluster pairs in turn indicates that different genes may underlay the adaptive 
response to different environments. 

The vast majority of outlier loci were located within three genomic regions that span up to >20cM 
on the linkage map and exhibit strong LD within all samples. Consistent with “islands of genomic 
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divergence” against a background of lower levels of differentiation (Turner et al. 2005; Nosil et al. 
2009) , the tight clustering of outliers in the genome also supports that our findings reflect real 
patterns of adaptive genetic divergence, not just spurious statistical outliers. Further, the identified 
outlier regions—and in many cases the same particular SNPs—have also been shown to exhibit 
highly elevated divergence in other parts of the species range over both small and large spatial 
scales (Nielsen et al. 2009; Bradbury et al. 2010; Poulsen et al. 2011), confirming their affiliation 
with local adaptation.  

Identifying the specific targets of selection in these regions that contain 100s of genes, and 
elucidating the mechanisms behind their fitness effects, will require detailed experiments 
(Stinchcombe and Hoekstra 2007; Barrett and Hoekstra 2011). However, our analysis here 
suggested that the allele frequencies of several loci correlate with spatial variation for a number of 
environmental variables. The highest number of correlations was found for longitude. Longitudinal 
patterns were strongly driven by the difference between Iceland and Greenland and one of the 
major differences between these two areas is the overall temperature regime. The role of 
temperature in shaping allele frequencies in these loci is further supported by a previous study that 
also reported temperature-associated clines on both sides of the Atlantic for many of the same loci 
(Bradbury et al. 2010). The direct temperature variables included in the analysis correlated with 
fewer SNPs than did longitude (though some very strongly). However, as inherent to all correlation 
analyses, it is difficult to know exactly whether a summarized variable captures the biologically 
relevant aspect of environmental variation. 

A perhaps more robust proxy, distance to shore, showed a very strong correlation with the outlier 
loci in LG1, including the well-studied Pan-I polymorphism, for which inshore-offshore divergence 
has also been demonstrated in Iceland and Norway (Fevolden and Pogson 1997; Pampoulie et al. 
2006; Wennevik et al. 2008). Here, this genomic region shows parallel allele frequency differences 
between inshore and offshore samples in both Iceland and Greenland and the DAPC 
discrimination between these groups of samples were almost exclusively driven by loci from this 
group (Fig. S4b, Supporting information). The pattern is so pronounced that with the full SNP 
panel, the K=3 clustering solution grouped the “Nuuk” and “Iceland-inshore” samples together. 
With strong outliers and high-LD loci removed, the “Nuuk” samples show approximately equal 
affiliation with Greenlandic and the Icelandic clusters (Fig. S3b, Supporting information): However, 
with the conservative criteria for detecting outliers applied here, a number of residual signatures of 
weaker selection may remain in this presumably “neutral” data set, leaving the demographic 
history of the Nuuk cluster somewhat confounded.  

Although the specific drivers and mechanisms are only partly resolved, our results clearly indicate 
that the four clusters exhibit different adaptations and therefore may respond differently to climate 
change. If the Greenlandic clusters only split from Iceland after the LGM, the observed signatures 
of selection have all arisen recently on an evolutionary time scale, suggesting a high evolutionary 
potential within the species. The observation of a higher number of outliers in contemporary 
compared to historical samples within Greenland could also indicate ongoing adaptation over the 
study period, although this pattern may also be partly caused by issues of statistical power related 
to the not completely identical sampling schemes in time. Further evidence for ongoing spatial 
adaptation was found in the increased temporal differentiation at particular loci in the locations 
where the presumably neutral genetic composition had been stable. Since the set of temporal 
outliers was generally non-overlapping with spatial outliers (indicating lack of spatial variation in 
allele frequencies at these loci), migration is unlikely to have caused the differentiation that 
exceeds expectations based on drift and sampling error. Therefore, ongoing selection seems the 
most parsimonious explanation, indicating signs of adaptive changes over decadal time scales. 
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Conclusion 

Overall, our results illustrate the complex and dynamic interactions of four genetically distinct 
groups of cod inhabiting the northern range margin of the species. The different groups of cod 
already exhibit signs of adaptive divergence and show potential for rapid response to ongoing 
changes in selection pressures. Temporal variations in the genetic composition at different 
locations suggest that the groups respond differently to environmental variation, although the 
continued presence of all components despite major demographic changes indicates considerable 
resilience. Accordingly, population diversity and evolutionary potential should clearly be taken into 
account in attempts to model or predict species-level shifts to more northern habitats. The 
observed population variability can generate complementary dynamics among population 
components, so-called portfolio effects (Schindler et al. 2010), which may prove critical for 
ensuring the persistence and stability of both the species and future fisheries yields. Conservation 
and resource management efforts should thus carefully consider and aim to protect the full 
biocomplexity of the system, and spatiotemporal population genomics studies provide a powerful 
tool for informing such undertakings. 
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FIGURE LEGENDS 
 
 
Fig. 1. Approximate sampling locations in Greenland and Iceland. Dots shifted left represent 
historical samples while dots shifted right represent contemporary samples (see Table 1 for years). 
The colors of dots represent the sample mean coordinate on the two first DAPC discriminant 
functions recoded as signal intensities of red and green, respectively (see text and Fig. 2). 
 
Fig. 2. Scatterplots of the mean sample coordinates on the first and second (a) and the first and 
third (b) discriminant functions (DF) from the DAPC based on the four inferred clusters. 
Contemporary sample names are plotted in black and historical sample names in grey. The 
colored bars along the first and second DF illustrate the color recoding in intensity of red and green 
shown in Fig. 1 (see text). 
 
Fig. 3. Plot of the posterior membership probabilities of each individual to the Iceland inshore 
(yellow), East (red), West (green), and Nuuk (brown) clusters, respectively. Each vertical line 
represents an individual and is divided into color segments proportional to its posterior 
membership probability to each of the geographic clusters derived from the DAPC including only 
the “pure” samples (see text). The order of individuals within samples is random, but samples are 
ordered according to hydrographic distance from the easternmost sample. 
 
Fig. 4. Matrix of results from the BayeScan spatial outlier tests in pairwise comparisons of the 
clusters. Column and row headers indicate the cluster pair compared in each cell. Each circle 
represents a locus and loci to the right of the vertical bars (representing q = 0.05) are considered 
significant outliers. Loci that were also outliers in the Arlequin analysis are marked by filled circles 
colored blue for loci in LG1, red for loci in LG7 and black for loci in all other LG’s. 
 
Fig. 5. Examples of temporal outlier detection results in DAB (a) and KAP (b). Each dot represents 
a locus, illustrating its temporal differentiation (Ftemp, y-axis) against its He (x-axis). The lines 
represent the 95% (grey) and the 99% (black) confidence envelopes of the simulated neutral 
distribution. 
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Supplementary Note: Temporal outlier detection 

Approach 

To identify loci that showed elevated levels of differentiation among samples collected over time 
within single populations, we used a modified version of the fdist method (Beaumont and Nichols 
1996) that is commonly applied for this purpose in spatial comparisons of samples collected from 
different populations at a single time point. Based on the premise that selection should affect only 
certain parts of the genome whereas neutral evolutionary forces should cause genome-wide 
effects, the method compares the observed locus-specific FST values as a function of 
heterozygosity (Hs) to a null distribution generated through simulations. Any loci that show 
divergent patterns of differentiation compared to this neutral expectation are then considered a 
candidate for being affected by selection. 

Here, we adapted the method to fit our scenario by generating the expected neutral distribution 
through simulation of drift within a single population rather than as drift-migration equilibrium 
between multiple demes, as is implemented in the original formulation. Migration can have 
contrasting effects on allele frequencies within a population over short time scales depending on 
the level of differentiation between the source and the recipient populations (Wang and Whitlock 
2003; Fraser et al. 2007) and this can be complex to generalize. Consequently, our null model 
included only the effects of drift and sampling within an isolated population. Assuming that the time 
scale considered in this study (up to 15 generations) is sufficiently short to ignore the effects of 
mutations, any departure from the null model expectations is then likely caused either by selection 
or gene flow.  

Model and parameter inputs 

Our simulations were based on single bi-allelic loci at initial frequency f0 in a Wright-Fisher 
population of constant size, Ne, that reproduced over t generations. At generation zero and 
generation t, a sample of size n individuals was collected. We ran the analysis separately for each 
of the locations that showed temporal stability in cluster assignment, each time parameterizing the 
model to most closely match the studied scenario.  

The initial allele frequency f0 at each simulated locus was a random number between 0 and 1, but 
to generate a roughly uniform distribution of Hs values among the simulated loci, we enriched for 
low starting frequencies. The input parameters Ne, t and n were adjusted for each location based 
on estimates from the data.   

The sample size n was the harmonic mean of sample sizes for the location. To convert the number 
of years to the number of generations between samples (t), we estimated the generation length as 
the mean age of spawners weighted by age-specific fecundity following Miller and Kapuscinski 
(1997). These calculations were based on abundance-at-age and weight-at-age data from annual 
surveys 1982-2010 (ICES 2011), coupled with maturity- and fecundity-at-weight data (Hedeholm 
unpublished data). The spatial resolution of the data only allowed for a single inshore and a single 
offshore estimate. In both cases, the generation length was approximated to be around 5 years, 
implying that the sampling interval for temporal replicates spanned 11-15 generations.  

We estimated the Ne for each location based on the temporal variance in allele frequencies 
between sampling points using the estimator of Waples (1989), as implemented in the software 
NeEstimator (Peel et al. 2004). Because Ne estimates from genetic data can be biased downward 
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with inclusion of loci under directional selection (Leberg 2005; Wang 2005), we conducted the 
analysis iteratively, first basing simulations on the initial Ne estimates, then re-estimating the Ne 
without the temporal outlier loci detected in this first run, and basing final simulations on these 
adjusted Ne estimates. This estimation procedure suggested that the Ne was very large in all 
locations with lower 95% confidence limits on estimates consistently ≥450. For the locations with 
point estimates of infinity (indicating a size larger than the method could quantify), we used an Ne 
of 10000 as input for the Ftemp simulations. 

 

Outlier identification 

We quantified the temporal variance in allele frequencies Ftemp between all samples from a 
population in both the observed and simulated data with Wright’s F (Wright 1951), correcting for 
sampling effects following Waples (1998): 

 

 

The correction for sampling effects was important because missing data made the actual sample 
size vary between loci in the observed data. Following Beaumont and Nichols (1996), we plotted 
Ftemp as a function of the Hs for each locus. We simulated 100,000 independent loci and for each 
computed paired values of Ftemp and Hs. As in the fdist method, the paired values were rank-
ordered by Hs and grouped into overlapping bins of 4,000 points centered on every 2,000th point. 
For each bin, we computed the quantiles of the distribution of Ftemp values that would define the 
confidence envelopes in which 95% and 99%, respectively, of the data points were expected to lie 
if behaving according to the model. To assess the statistical significance of departures from the 
neutral expectation, empirical p-values were computed for each locus as the proportion of 
simulated data points within its bin that showed higher Ftemp than the observed value. To control 
the false discovery rate to <5%, we also computed q-values for all loci using the R-package qvalue 
(Storey and Tibshirani 2003). All simulations and computations were completed with custom R-
scripts (available upon request). 
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Variables Used with BAYENV

Latitude x
Longitude x
Region (fjord, coastal, offshore)
Distance to nearest shoreline x
Distance to Iceland
Maximum bottom temperature during spawning months x
Mean bottom temperature during spawning months x
Minimum bottom temperature during spawning months
Range in bottom temperature during spawning months x
Maximum annual bottom temperature
Mean annual bottom temperature
Minimum annual bottom temperature
Maximum sea surface temperature during spawning months
Mean sea surface temperature during spawning months x
Minimum sea surface temperature during spawning months x
Range in sea surface temperature during spawning months x
Maximum annual sea surface temperature
Mean annual sea surface temperature
Minimum annual sea surface temperature
Range in annual sea surface temperature
Mean bottom salinity during spawning months
Mean annual bottom salinity
Mean surface salinity during spawning months
Mean annual surface salinity x

Table S1. List of variables initially considered for environmental correlation 
analysis. Variables that were retained for BAYENV analysis are marked by "x"

132



R
eg

io
na

l
P

ai
rw

is
e 

cl
us

te
r c

om
pa

ris
on

s
W

ith
in

 c
lu

st
er

N
am

e
LG

P
os

LD
A

ll
Ic

e
G

C
G

H
I-E

I-W
I-N

W
-E

N
-E

N
-W

I
E

W
N

D
A

B
FY

B
IL

L
K

A
P

U
M

M
D

C
La

t
Lo

ng
M

aB
M

eB
M

eS
M

iS
R

S
T

S
al

cg
pG

m
o-

S
51

2
1

8.
1

x
cg

pG
m

o-
S

17
88

1
12

.8
x+

cg
pG

m
o-

S
96

8
1

14
.6

*
+

cg
pG

m
o-

S
98

5
1

15
.6

*
x+

x+
x+

x
cg

pG
m

o-
S

17
03

1
16

.6
*

x+
x+

x+
x+

x+
cg

pG
m

o-
S

11
96

b
1

16
.9

*
+

+
cg

pG
m

o-
S

87
5b

1
18

.1
*

x+
x+

x
x+

x
x+

cg
pG

m
o-

S
12

68
1

19
.3

*
x

+
cg

pG
m

o-
S

13
65

b
1

19
.7

*
+

cg
pG

m
o-

S
18

53
1

19
.7

*
x+

x
x

x+
x+

x+
x

x+
*

x+
x+

cg
pG

m
o-

S
18

06
1

20
.6

*
x

P
an

1
1

25
.1

*
x+

x
x+

x+
x+

x+
x+

x
x+

*
x+

x+
cg

pG
m

o-
S

83
1

26
.6

*
x+

cg
pG

m
o-

S
85

2
1

26
.8

*
x+

x+
x+

x+
x+

x
cg

pG
m

o-
S

52
3

1
30

.4
*

x
x+

x
cg

pG
m

o-
S

25
4

1
31

.8
*

x
x

+
x

cg
pG

m
o-

S
20

82
1

33
.1

*
x+

x
x+

x+
x+

x+
x

x
x+

*
x+

x+
cg

pG
m

o-
S

60
3

1
34

.1
*

x+
x+

x+
cg

pG
m

o-
S

36
0

1
35

.8
*

x+
x

x
x+

x+
x

x
x+

*
x+

x
cg

pG
m

o-
S

18
45

1
37

.2
*

x+
x+

x
x+

x
cg

pG
m

o-
S

29
2b

1
38

.6
*

x+
x

x
x

x+
x+

x
x

x
x+

+
G

m
39

4_
03

64
1

*
x+

x
x

x+
x+

x+
x

x*
x+

+
cg

pG
m

o-
S

11
66

1
*

x+
x

x+
x+

x+
x+

x+
x

x
x+

*
x

x+
x+

cg
pG

m
o-

S
18

74
1

*
x+

x
x+

x+
x+

x
x+

x
x

x+
*

+
x+

x+
cg

pG
m

o-
S

19
55

1
*

x+
x

x+
x+

x+
x

x+
x

x+
*

+
x+

x+
cg

pG
m

o-
S

20
95

1
*

x+
x

x+
x+

x+
x

x+
x

x
x

x+
*

+
x+

x+
R

ho
d_

1_
1

1
*

x+
x

x+
x+

x+
x+

x
x

x
x+

*
+

+
x+

x+
cg

pG
m

o-
S

75
4

2
1.

0
x

cg
pG

m
o-

S
15

5
2

17
.4

x
x+

cg
pG

m
o-

S
72

8
2

26
.3

x
x

cg
pG

m
o-

S
12

84
2

43
.8

x
cg

pG
m

o-
S

10
26

2
49

.5
*

x+
x+

cg
pG

m
o-

S
14

56
2

49
.7

*
x

cg
pG

m
o-

S
11

01
a

2
49

.7
*

x+
x+

x+
cg

pG
m

o-
S

10
68

2
49

.7
*

x+
x

x+
x+

x+
cg

pG
m

o-
S

17
4

2
49

.9
*

x+
cg

pG
m

o-
S

64
6

3
13

.1
x

cg
pG

m
o-

S
96

0
3

x
cg

pG
m

o-
S

55
2

4
1.

0
x

cg
pG

m
o-

S
54

3
4

32
.2

x
cg

pG
m

o-
S

21
96

5
12

.1
x

cg
pG

m
o-

S
16

07
5

35
.4

x
cg

pG
m

o-
S

11
9b

6
5.

0
x

x
x+

+
x+

cg
pG

m
o-

S
32

1
6

30
.7

x

co
nt

in
ue

d 
on

 th
e 

ne
xt

 p
ag

e

Ta
bl
e
S2
.

O
ve

rv
ie

w
of

ou
tli

er
lo

ci
id

en
tif

ie
d

in
th

e
di

ffe
re

nt
ne

ut
ra

lit
y

te
st

s.
Fo

r
th

e
sp

at
ia

lo
ut

lie
rs

"x
"

in
di

ca
te

s
F S

T
si

gn
ic

an
t

(q
<0

.0
5)

ou
tli

er
s

th
at

w
er

e
id

en
tif

ie
d

bo
th

by
B

ay
eS

ca
n

an
d

A
rle

qu
in

,a
nd

"+
"

in
di

ca
te

s
si

gn
ifi

ca
nt

(q
<0

.0
5)
F C

T
ou

tli
er

s
id

en
tif

ie
d

un
de

rt
he

hi
er

ar
ch

ic
al

m
od

el
.F

or
te

m
po

ra
lo

ut
lie

rs
"x

"
in

di
ca

te
s

lo
ci

th
at

fe
ll

ab
ov

e
th

e
99

%
co

nf
id

en
ce

en
ve

lo
pe

of
th

e
ex

pe
ct

ed
ne

ut
ra

l
di

st
rib

ut
io

n.
Fo

r
th

e
B

ay
E

nv
re

su
lts

,
th

e
ta

bl
e

in
di

ca
te

s
si

gn
ifi

ca
nt

co
rr

el
at

io
n

(lo
g 1

0(
B

F)
>1

.5
)w

ith
en

vi
ro

nm
en

ta
lv

ar
ia

bl
es

in
te

st
s

w
ith

al
ls

am
pl

es
("

x"
),

w
ith

on
ly

co
nt

em
po

ra
ry

sa
m

pl
es

("
+"

)a
nd

w
ith

on
ly

hi
st

or
ic

al
sa

m
pl

es
("

*"
)

S
pa

tia
l o

ut
lie

rs
1

Te
m

po
ra

l o
ut

lie
rs

3
C

or
re

la
tio

ns
 w

ith
 e

nv
iro

nm
en

t2

133



R
eg

io
na

l
P

ai
rw

is
e 

cl
us

te
r c

om
pa

ris
on

s
W

ith
in

 c
lu

st
er

N
am

e
LG

P
os

LD
A

ll
Ic

e
G

C
G

H
I-E

I-W
I-N

W
-E

N
-E

N
-W

I
E

W
N

D
A

B
FY

B
IL

L
K

A
P

U
M

M
D

C
La

t
Lo

ng
M

aB
M

eB
M

eS
M

iS
R

S
T

S
al

cg
pG

m
o-

S
12

00
7

2.
9

*
x+

x
x+

x
x+

x
x+

x
x

cg
pG

m
o-

S
91

7
7

16
.1

*
x+

x
x+

cg
pG

m
o-

S
18

3
7

17
.3

*
x

x
cg

pG
m

o-
S

41
9

7
17

.3
*

x+
x+

x
x+

x+
cg

pG
m

o-
S

15
7

7
17

.3
*

x+
x

x+
x

x+
x+

cg
pG

m
o-

S
11

83
7

17
.3

*
x+

x
x+

x
x+

x+
cg

pG
m

o-
S

26
8

7
17

.3
*

x+
x

x+
x

x+
x+

cg
pG

m
o-

S
18

10
7

17
.3

*
x+

x
x+

x
x+

x+
cg

pG
m

o-
S

18
30

7
17

.3
*

x+
x

x+
x

x+
x+

cg
pG

m
o-

S
81

4a
7

17
.3

*
x+

x
x+

x
x+

x+
cg

pG
m

o-
S

10
39

a
7

17
.3

*
x+

x
x+

x
x+

x+
cg

pG
m

o-
S

10
39

b
7

17
.3

*
x+

x
x+

x
x+

x+
cg

pG
m

o-
S

10
89

7
17

.3
*

x+
x

x+
x

x+
x+

cg
pG

m
o-

S
21

58
7

17
.3

*
x+

x
x+

x
x+

x+
+

cg
pG

m
o-

S
42

6
7

18
.1

*
x

cg
pG

m
o-

S
16

44
7

19
.6

*
x+

x
x

x
x+

cg
pG

m
o-

S
21

34
7

37
.7

x
cg

pG
m

o-
S

11
27

7
+

G
m

07
38

_0
16

0
7

*
x+

x
x+

cg
pG

m
o-

S
39

6
8

26
.2

x
cg

pG
m

o-
S

12
7

9
6.

2
x

cg
pG

m
o-

S
10

17
9

35
.0

*
*

cg
pG

m
o-

S
11

57
9

48
.1

x
cg

pG
m

o-
S

32
7

10
35

.2
x

cg
pG

m
o-

S
61

3b
11

37
.7

x
cg

pG
m

o-
S

60
7

11
43

.7
x

x+
x+

x
x+

x+
x+

cg
pG

m
o-

S
59

6
12

17
.3

x
cg

pG
m

o-
S

19
1

13
6.

3
x

cg
pG

m
o-

S
20

67
13

6.
8

x
cg

pG
m

o-
S

17
20

13
44

.6
x

cg
pG

m
o-

S
69

2b
13

x
cg

pG
m

o-
S

14
67

14
17

.9
x+

cg
pG

m
o-

S
19

88
14

30
.1

x+
x+

cg
pG

m
o-

S
17

81
15

27
.6

x
cg

pG
m

o-
S

46
4

16
4.

0
x

cg
pG

m
o-

S
19

92
18

33
.6

x+
x+

x+
x+

cg
pG

m
o-

S
11

03
18

x
x

cg
pG

m
o-

S
79

4
21

7.
3

x
cg

pG
m

o-
S

82
2a

22
31

.5
x+

x
x

x
+

x
x

*
*

cg
pG

m
o-

S
13

08
22

32
.6

x
cg

pG
m

o-
S

17
18

22
35

.1
x

cg
pG

m
o-

S
72

9
23

x
cg

pG
m

o-
S

23
x

G
m

04
80

_0
39

4
x

cg
pG

m
o-

S
21

22
x

x
G

m
33

5_
01

59
*1

x+
x+

+
x+

G
m

24
0_

02
09

*7
x+

x
x+

x+
x+

x
x+

x
+

x+
x+

To
ta

l n
um

be
r o

f o
ut

lie
rs

22
14

4
2

16
15

19
3

1
2

1
0

1
0

1
4

1
5

6
0

1
20

3
2

2
2

3
3

Ta
bl

e 
S2

 -c
on

tin
ue

d

S
pa

tia
l o

ut
lie

rs
1

Te
m

po
ra

l o
ut

lie
rs

3
C

or
re

la
tio

ns
 w

ith
 e

nv
iro

nm
en

t2

1 Fo
r r

eg
io

na
l a

ss
es

sm
en

ts
 A

llC
=A

ll 
co

nt
em

po
ra

ry
, I

ce
=I

ce
la

nd
 (a

ll 
co

nt
em

po
ra

ry
), 

G
C

=G
re

en
la

nd
 c

on
te

m
po

ra
ry

, a
nd

 G
H

=G
re

en
la

nd
 h

is
to

ric
al

. F
or

 th
e 

cl
us

te
r a

ss
es

sm
en

ts
 I=

Ic
el

an
d 

in
sh

or
e,

 E
=E

as
t, 

W
=W

es
t a

nd
 N

=N
uu

k.

2 D
C

=D
is

ta
nc

e 
to

 c
oa

st
lin

e,
 L

at
=l

at
itu

de
, L

on
g=

lo
ng

itu
de

, M
aB

=M
ax

im
um

 b
ot

to
m

 te
m

pe
ra

tu
re

, M
eB

=M
ea

n 
bo

tto
m

 te
m

pe
ra

tu
re

, M
eS

=M
ea

n 
su

rfa
ce

 te
m

pe
ra

tu
re

, M
iS

=M
in

im
um

 s
ur

fa
ce

 te
m

pe
ra

tu
re

, 
R

S
T=

R
an

ge
 s

ur
fa

ce
 te

m
pe

ra
tu

re
, a

nd
 S

al
=s

al
in

ity

134



IN
C

02
IS

C
02

IS
O

02
TA

S1
0

O
EA

10
O

SO
10

O
W

E1
0

DA
B3

4
DA

B0
8

FY
B5

4
LH

B5
7

SH
B5

0
Q

AQ
47

Q
AQ

08
PA

A4
7

PA
A0

8
AM

E0
8

Q
O

R
08

KA
P4

3
KA

P0
8

SI
S3

2
SI

S3
7

SI
S0

5
SI

S1
0

IL
L5

3
IL

L1
0

U
M

M
45

U
M

M
10

UMM10
UMM45
ILL10
ILL53
SIS10
SIS05
SIS37
SIS32
KAP08
KAP43
QOR08
AME08
PAA08
PAA47
QAQ08
QAQ47
SHB50
LHB57
FYB54
DAB08
DAB34
OWE10
OSO10
OEA10
TAS10
ISO02
ISC02
INC02

** ** ** ** ** ** ** ** ** ** ** * * ** * ** ** ** ** ** ** ** ** ** * * *

** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** * ** *

** ** ** ** ** ** * ** * * * ** ** * ** ** ** ** ** ** ** ** ** * *

** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** * ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * * ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** * *

** ** ** ** ** ** ** ** ** ** * ** * ** * ** ** ** ** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** * ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * *

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** *

** ** ** ** ** ** * * ** ** ** ** ** * ** * * * * ** ** * ** * * *

** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** * * * *

** ** ** ** ** ** * * * ** ** ** ** * ** * ** ** ** * ** ** **

** ** ** ** ** ** * ** ** ** ** * * * * * ** ** * ** ** * ** **

** ** ** ** ** ** * * ** ** ** * * * * ** ** * * * ** **

** ** ** ** ** ** * * ** ** ** ** * ** ** * ** ** * ** * ** **

** ** ** ** * ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** * ** * ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** ** * * ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** **

** ** ** * ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** * ** ** ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** ** **

* * ** ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

0 0.04 0.08

Fst

Fig. S1. Heatmap of pairwise FST values between samples. The lower left 
diagonal represents tests based on all loci while the upper right diagonal 
represents tests based on a subset of loci (n=618) excluding temporal and 
spatial outliers and loci in high LD. In both cases, comparisons that had signifi-
cantly different allele frequencies at the p<0.05 level are marked by *, while 
differences that remained significant after FDR correction are marked by **. 
Samples are ordered according to hydrographic distance from the eastern-
most sample.
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Fig. S3. Plots to illustrate the configuration of inferred clustering solutions for K=2:4 
based on all loci (a) and a subset of loci (n=618) excluding temporal and spatial outli-
ers and loci in high LD (b). Samples are ordered along the vertical axis according to 
hydrographic distance from the easternmost sample and the size of the black squares 
represent how many individuals from the sample were assigned to a given cluster. 
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ABSTRACT 

DNA recovered from historical samples can generate unique insights into recent evolutionary 
history in natural populations. To fully harness the power of retrospective genetic analysis for 
elucidating patterns of both neutral and adaptive variation, there is, however, a need to identify 
high-throughput methods that will allow efficient genotyping at a genome-wide level in such 
studies. Challenges associated with degraded DNA quality have hampered the application of novel 
molecular sequencing and genotyping tools to historical samples, but certain methods are robust 
to suboptimal input material. Here, we show that the Illumina GoldenGate SNP genotyping 
platform can produce high-quality data with DNA samples extracted from archived fish otoliths up 
to 80 years old. Through analysis of 800 individuals (72 re-analyzed in independent assays) for 
192-1536 SNPs, we found that genotype concordance between replicate sample pairs generally 
was high (>97%) for the majority of extracts and that call rates on average were >90%, except in 
the oldest available samples where it was about 76%. We found that low call rates and GenCall 
scores (an Illumina genotype quality metric) were associated with reduced concordance, and used 
this result to develop data quality filtering criteria that maximized data retention while limiting error 
rates. We hence demonstrate that the GoldenGate assay is a valuable method for efficient and 
reliable SNP genotyping in historical samples and lay out a flexible framework for evaluating 
genotyping quality to help ensure and document high data reproducibility in future studies. 

Keywords: Historical DNA, SNP genotyping, temporal analysis, detecting selection, fish otoliths 

142



INTRODUCTION 

DNA recovered from historical samples can provide unique insights into recent evolutionary history 
by making it possible to track allele frequencies over time for direct retrospective assessment of 
genetic changes. Temporal genetic studies based on presumably neutral markers have been 
crucial for elucidating demographic processes in natural populations, e.g. through estimating 
effective population sizes, detecting loss of diversity, and assessing the stability of population 
structure and migration rates (see reviews by Wandeler (2007), Leonard (2008), and Nielsen and 
Hansen (2008)). However, there is also extensive – still largely untapped – potential to use 
historical samples to study the temporal dynamics of adaptive genetic variation (Hansen et al. 
2012). In face of accelerated rates of global change, there is a growing need to improve our 
understanding of how quickly populations can adapt to altered environmental conditions, and 
historical DNA samples can make key contributions in this context. Until recently, however, 
temporal genetic studies were generally limited to studying selection at known candidate genes 
(e.g. Umina et al. 2005; Jensen et al. 2008; Marsden et al. 2012). Such efforts can provide 
important information in relation to specific hypotheses, but more comprehensive insights about 
how selection operates will require studies of temporal variation at a genome-wide level. 

Rapid developments in sequencing and genotyping methods now offer unprecedented 
opportunities for screening large panels of genetic markers in population samples (Allendorf et al. 
2010; Davey et al. 2011). Such data provide powerful tools for identifying signatures of selection in 
both space and time, but technical challenges associated with historical samples have hampered 
the application of high-throughput technologies in retrospective temporal studies. The DNA in 
historical samples is typically fragmented and only available in small quantities resulting in 
inadequate quality for many molecular methods. The ability to harness the power of genome-wide 
analysis for temporal studies therefore depends on identification of technologies that are robust to 
reduced sample quality and therefore can be used for reliable and efficient high-throughput 
genotyping in historical samples. 

The Illumina GoldenGate Assay is a popular genotyping platform that allows for highly multiplexed 
genotyping of up to 3072 single nucleotide polymorphisms (SNPs) simultaneously. Based on 
hybridization of short (<60 bp) allele- and locus-specific probes to the template DNA, it should be a 
promising method for historical samples. Indeed, previous testing has demonstrated that 
performance can remain satisfactory with degraded DNA samples (Shen et al. 2005; Fan et al. 
2006) and very low DNA concentrations (Campino et al. 2011). It has also been shown that both 
call rates and genotype concordance among replicates can remain very high with whole genome 
amplified (WGA) samples, although the results appear highly dependent on the quality and 
quantity of the initial DNA input (Hansen et al. 2007; Cunningham et al. 2008; Mead et al. 2008).  

Here, we summarize our experience with the GoldenGate platform for SNP analysis of historical 
DNA samples extracted from archived fish otoliths up to 80 years old. We evaluate the overall 
genotyping performance and examine how different characteristics of both the DNA extracts and 
the applied SNP panel affect data quality. Because genotyping with historical samples is likely to 
be more error-prone than analysis of contemporary samples, it is important to apply stringent 
quality control measures (Bonin et al. 2004; Pompanon et al. 2005). Yet, at the same time, such 
measures are associated with a risk of discarding useful data. Therefore, a primary purpose of this 
work was to identify quality filtering criteria that would maximize data retention for analysis while 
limiting error rates. The presented results are useful for assessing the general reliability of Illumina 
GoldenGate SNP data generated from partially degraded DNA and for optimizing designs of future 
genotyping projects. 
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MATERIALS AND METHODS 

SNP and sample selection 

We analyzed historical samples of Atlantic cod Gadus morhua with a previously validated SNP 
panel specifically developed for this species and optimized for the GoldenGate platform (Hubert et 
al. 2010; Bowman et al. 2011). This assay has already been successfully applied to genotyping of 
cod population samples based on modern DNA (e.g. Bradbury et al. 2010; Nielsen et al. 2012), but 
it was uncertain how well it would work with suboptimal DNA extracts. 

The source of historical DNA was archived otoliths from commercial fish stocks. Because of 
extensive archived collections, otoliths represent an unparalleled resource for retrospective genetic 
studies if the DNA can be recovered for high-throughput analysis. However, these samples are 
also associated with particular challenges, namely that 1) DNA can only be recovered from the 
surface of these calcareous structures and therefore it is not possible to decontaminate samples 
prior to DNA extraction, 2) the DNA is degraded from postmortem damage and 3) only a small 
amount of DNA can be recovered from each sample. The samples analyzed here originated from 
several different cod populations and had been collected between 1928 and 2002. 

Due to the exploratory nature of this work, the genotyping was completed over multiple rounds, 
assaying different panels of SNPs as outlined in Table 1. To evaluate the reproducibility of results, 
a number of samples were genotyped in two or more independent assays allowing comparison of 
genotype calls among replicates (see Table 1). 

 

DNA extraction, quantification and pre-screening 

DNA was recovered from the surface of the otoliths using an Omega EZNA Tissue DNA kit 
(Omega Bio-Tek, USA) following the protocol described by Therkildsen et al. (2010). The DNA was 
eluded in a total volume of 150 µl buffer. For a subset of samples, we quantified the DNA 
concentration with a Nanodrop 2000 spectrophotometer (Thermo Scientific, USA) and a Quant-iT 
dsDNA High-Sensitivity Assay Kit on a Qubit flourometer (Invitrogen Life Technologies, USA). The 
Nanodrop measurements indicated that the concentration of the extracts ranged between 1-125 
ng/µl (the majority <20 ng/µl) while the Qubit measurements, indicated that concentrations were 
much lower ranging between <0.1-37 ng/µl (mean of 4 ng/µl). Although there was some variation, 
the two types of concentration measurements for each sample were correlated (rho=0.88, 
p=0.0002, Spearman Rank Correlation Test). The generally lower measurements obtained with the 
Qubit may most reliably reflect the DNA concentration because it is based on a fluorescent dye 
that only binds to the molecule of interest. Nanodrop measurements, on the other hand, are based 
on UV absorbance, which cannot distinguish between DNA, RNA, degraded nucleic acids, free 
nucleotides, and other contaminants, therefore probably overestimating DNA concentration. 

A total of 5 µl of each extract was used for the GoldenGate assay, so input quantities ranged from 
0.5 to possibly 625 ng. For the majority of samples, the DNA input was thus much lower than the 
250 ng recommended by Illumina. To more closely follow the recommendations, we tried to 
increase the DNA quantity with whole genome amplification (WGA). In batch 1 (see Table 1), we 
thus included 9 WGA products generated either with multiple displacement amplification using a 
REPLI-g kit (Qiagen) or with Sigma-Aldrich’s GenomePlex method.  

To pre-screen DNA extracts for cross-sample contamination, we amplified four highly polymorphic 
microsatellites (mean number of alleles 19) in all samples and removed individuals that amplified 
>2 alleles for any locus or that failed to produce reliable amplification within 2-3 attempts. The 
amplification was performed with a PCR multiplex kit (Qiagen, Germany) and we analyzed the 
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fragments on an ABI 3130 Genetic Analyzer (Applied Biosystems, USA) or a Basestation51 
automated sequencer (MJ Research/Bio-Rad). All DNA extraction as well as WGA and PCR 
preparation with historical samples were conducted in an ancient DNA laboratory where no 
contemporary fish samples had been processed. 

 

SNP Genotyping 

The SNP genotyping was performed at Gen-Probe (formerly Tepnel Life Sciences), Scotland for 
batches 1 and 2 and at the Roslin Institute at the University of Edinburgh, Scotland for batches 3 
and 4. In all cases, standard protocols for running GoldenGate assays were followed, but historical 
samples were kept separate from contemporary samples to minimize the risk of contamination. 

The GoldenGate assay is based on hybridization of both locus-specific and allele-specific 
oligonucleotide probes to the template DNA. Following extension and ligation, a PCR step with 
fluorescently labeled primers ensures that matching templates are labeled with either Cy3 or Cy5, 
depending on the allele for the particular SNP, and the PCR products then are hybridized to 
specific beads on an array matrix. Genotypes for each SNP are called based on the observed 
signal intensities for the two fluorescent colors, as detected with an array scanner. A genotype that 
is homozygous for a SNP locus will display a signal in either the Cy3 or Cy5 channel, whereas a 
genotype that is heterozygous for this SNP will display signals in both channels. This way, each 
genotype is associated with a measure Theta that indicates the color of the signal (ranging from 0-
1 where 0 is exclusively one color and 1 exclusively the other) and a measure R that indicates the 
overall signal intensity. When the normalized values for these variables are plotted for multiple 
samples, the data should form three distinct clusters corresponding to the three genotypes for 
successfully analyzed SNPs (see Fig. 1).  

We used the GenomeStudio Software (Illumina Inc.) to cluster data and call genotypes. The 
automatic genotype cluster definitions based only on the historical data generated genotype calls 
for almost all data points, but resulted in low concordance among replicates (down to ~70% on 
average). Accordingly, we instead used manually edited cluster positions that had been adjusted to 
fit data from modern samples (“standard cluster”). While these may represent conservative 
definitions of where genotype clusters should be positioned, we observed slight shifts in intensity 
and Theta values for historical samples (see example in Fig. 1). Therefore, we further edited the 
clusters manually to best match the positions in the historical data (“fitted cluster”).  

 

Data quality evaluation 

The quality of a final SNP data set depends both on how many data points are retained for 
analysis after quality control filtering and on the error rate. We therefore evaluated genotyping 
success based on two measures: the call rate (proportion of SNPs or samples genotyped) and the 
reproducibility measured as the concordance of genotypes called among sample replicates. We 
examined how a number of factors listed in Table 2 affected the call rate and genotyping 
concordance among replicates. Due to variation in the applied SNP panels, the quality was 
assessed for each data batch separately. Here, we present data mostly for batches 3 and 4, but 
conclusions were generally similar among all batches. The genotyping performance for 
contemporary samples was generally high (call rates for most samples exceeding 95% and 
genotyping concordance for replicated individuals typically >99%). Therefore, we only present data 
for the historical samples.  
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RESULTS AND DISCUSSION 

Cluster set selection and call rates 

The mean genotype concordance was high (>98%) for most replicate samples, although there was 
a clear tendency for reduced concordance in samples with low call rates (Fig. 2a). Genotypes 
called with cluster definitions fitted specifically to the historical data (“fitted cluster”) provided 
considerably higher call rates, and only marginally lower concordance compared to cluster 
definitions fitted to the distribution of data from modern samples (“standard cluster”; Fig. 2a). Since 
concordance remained high with the “fitted” cluster set, we used this for all further processing to 
maximize data inclusion. 

 

Sample characteristics 

In addition to showing reduced call rates, the few samples that did not exhibit high genotype 
concordance appeared to also be characterized by low GenCall (GC) scores (Fig. 2b). Especially 
in batch 4, which was characterized by generally lower scores than batch 3, there appears to be a 
threshold above which all replicated samples had high concordance, but below which replicate 
pairs showed reduced concordance. Fortunately, the majority of samples in both batch 3 and 4 
showed GC scores above the inferred threshold (Fig. 2b). However, since the call rates and GC 
score varied between years and populations (Fig. 3), strict removal of all individuals with low 
average GC scores would make the resulting sampling scheme very uneven in terms of numbers 
of individuals retained. Hence, instead of removing entire individuals with low average GC scores, 
we removed single genotypes with GC scores below a threshold value. This eliminated the most 
uncertain data points (those that are located too far from the center of a cluster in plots of 
normalized R vs. normalized Theta (see Fig. 1)) and thereby considerably improved concordance, 
while keeping more reliable genotypes for problematic individuals, so that reasonable sample sizes 
could be maintained for all sampling years. 

The tendency for older samples to have lower call rates and concordance (Fig 3) is expected 
because DNA degrades with time, so the observed pattern in fact validates the authenticity of the 
DNA samples (demonstrating that they are not contaminated with contemporary high quality DNA). 
Notably, however, there was considerable variation in sample performance between populations 
and years, indicating that other factors than sample age affect DNA quality (e.g. storage 
conditions, method of collection etc.).  

Genotyping performance was somewhat correlated with DNA concentration, with all the poorer 
performing samples having very low concentration. Interestingly, however, many samples with 
extremely low DNA concentration did show high genotyping success (results not shown). 
Amplification success with microsatellites appeared to be a reliable predictor of genotyping 
success, with samples that adequately amplified in the initial PCR attempt and that required fewer 
PCRs to pass the pre-screening tests having considerably higher call rates. This indicates, that 
microsatellite amplification success is a useful predictor of high SNP genotyping success and can 
be used as a criterion for sample selection in future projects. 

For two of the whole genome amplified samples (one from each of the tested methods), we 
observed genotyping success comparable to or marginally improved over genomic sample 
replicates (similar call rates and genotype concordance >98%). However, for the remainder of 
comparisons, the WGA products performed much poorer than genomic DNA replicates with 
substantially reduced call rates and concordance as low as 50%. Since there appeared to be no 
benefit, but considerable risk to using WGA samples here, we used unprocessed DNA extracts for 
all following assays. Given that we only tested the technique on a small number of samples here 
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and that WGA on degraded samples has been successful in other GoldenGate applications 
(Hansen et al. 2007; Mead et al. 2008), this technique may warrant further investigation for 
historical otolith samples. 

 

SNP characteristics 

Similar to comparisons among samples, there was a tendency for SNPs with higher call rates to 
show better concordance, although the relationship was not very strong (Fig. 4a). The 10th 
percentile GC score did not seem correlated with concordance among SNPs and neither did, in 
general, cluster separation, minor allele frequency, position of heterozygote cluster or signal 
intensity (results not shown). Therefore, neither of these variables warrant data filtering. While we 
saw slightly better performance of SNPs with a higher design scores, the differences were 
relatively small (Fig. 4b), so even SNPs with a suboptimal predicted probability of performing well 
in the GoldenGate Assay (designability rank 0.5) may work well with historical samples. 

 

CONCLUSIONS 

Our study showed that SNP genotyping of historical fish DNA samples with the Illumina 
GoldenGate method generally yielded good concordance among replicate sample pairs and call 
rates within acceptable limits, although not as high as for contemporary samples. The data quality 
assessment showed that sample call rate and sample GC scores appeared to correlate with data 
reproducibility, so filtering data based on these measures may reduce overall error rates. Individual 
SNP call rates also seemed to be loosely associated with variation in concordance, so could be 
applied as a filtering criterion. However, when replicate samples are analyzed, the mean observed 
genotype concordance for each SNP is probably a more informative indicator that can be used to 
exclude loci that yield the least reproducible genotypes. 

Appropriate thresholds for filtering will depend on characteristics of each specific data set and will 
always reflect a balance between retaining as much data as possible for analysis and reducing 
error rates to an acceptable level. Based on the results presented here, and additional analysis, we 
adopted the following criteria: 

• For batch 2 and 4: Only genotypes with a GC score > 0.4, SNPs with a concordance of 
>0.7, and samples and SNPs with a call rate >0.5 were included in the final data set. 

• For batch 3: Only genotypes with a GC score > 0.25, SNPs with a concordance of >0.9, 
and samples and SNPs with a call rate >0.7 were included in the final data set. 

The selection of different thresholds reflects that in the batch 2 and 4 data, a poorer genotype 
concordance required a stricter GC criterion. This removed the most uncertain data points across 
samples and SNPs resulting in lower overall call rates. In batch 3, the same conservative GC 
filtering was not necessary given the high, concordance among sample replicate pairs 
Consequently, call rate and SNP concordance thresholds could then be set higher in order to 
remove only particularly problematic samples and loci.    

With filtering criteria excluding a minimum of individuals from the final data sets, the mean 
concordance of SNP genotypes in replicate samples was >98% and the mean call rate 95% for the 
batch 3 study, while the batch 4 study showed 97% genotype concordance and a mean call rate 
>90% (for batch 2, including samples from 1928, the mean call rate was lower, about 76%, but 
genotype concordance similar to the other batches). These statistics demonstrate that the Illumina 
GoldenGate platform is well suited for genotyping historical samples and that the error rates in the 
resulting data should be low. It must be stressed, however, that DNA quality varies considerably 
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among historical samples, so it will be important to carefully assess each dataset. The approach 
presented here provides a flexible framework for evaluating genotype data obtained from historical 
samples to help ensure and document high data reproducibility in future studies. 
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FIGURE LEGENDS 

 

Fig. 1. GenomeStudio plot for a single SNP showing the normalized signal intensity (Norm R) vs. 
the signal color (Norm Theta) measured for each sample (illustrated by dots). The ellipses 
represent the cluster positions that define genotype calling (only samples within a certain distance 
from the cluster center get called). For this particular SNP (a) shows the “standard” cluster position 
fitted to modern samples from a previous run (not plotted here), and (b) shows “fitted” cluster 
positions adjusted to the historical samples plotted here.   

Fig. 2. Mean genotype concordance plotted against (a) mean call rate for each replicate sample 
pair based on genotypes called with the “standard” (yellow) or the “fitted” (green) cluster definition 
sets in batch 4 and (b) mean sample 10% GC score in batch 3 (blue) and batch 4 (pink). 

Fig. 3. Mean (dots) and +/- 1 standard deviation (error bars) of sample call rates (a) and mean 
concordance among replicate pairs (b) for samples collected in different years and genotyped in 
batch 2 (purple), batch 3 (blue), and batch 4 (pink). For reference, six contemporary replicate 
samples genotyped with batch 4 have been added. 

Fig. 4. Mean concordance (proportion of replicate sample pairs that showed identical genotypes) 
plotted against the call rate for each SNP (a) and mean SNP call rate plotted against the SNP 
designability score (b). Data from batch 3 is plotted in blue while data from batch four is plotted in 
pink. 
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Batch Replicate samples   Collection years

1 17 13 (4 identical extracts, 9 WGA samples) 1928-1976 1536 1282
2 73 10 (all in three repeat assays) 1928-1965 1536 1282
3 340 27 (1 modern ) 1931-1954 1152 1011
4 370 23 (6 modern) 1960-2002 192 166

Samples  SNPs assayed SNPs clustered

Table 1. Overview of the number of samples, sample replicates, collection years, and the number of SNPs assayed and 
successfully clustered (genotypes called) in each batch
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Table 2. Overview of the data-, sample- and SNP characteristics considered in evaluation of genotyping performance

Type Variable Description

Data Genotype clustering set A set of cluster definitions that determine the genotype calling as visualized in plots 
of signal intensity (R) vs signal color (Theta) for each data point (SNP/sample 
combination). 

GenCall score (GC) An Illumina quality metric ranging from 0-1 indicating the reliability of called 
genotypes. Each data point is given a score based on how well the genotype 
clusters are separated, how far the datapoint is located from the center of a cluster 
and on the intensity of the signal.

Samples Sample genotyping concordance The number of SNPs with identical genotype calls in repeat assays (with the same 
DNA extract) divided by the total number of SNPs that were successfully genotyped 
in both assays

Sample call rate The number of genotypes called for a sample divided by the total number of SNP 
successfully genotyped

Sample 10% GC score The 10th percentile rank of GenCall scores (one for each SNP) for the sample
Sample age Years since the sample was collected
DNA concentration DNA concentration quantified with a Nanodrop spectrophotometer or Qubit 

flourometer
Microsatellite amplification 
success

Classification of the initial microsatellite amplification success to "good", "excessive 
stutter", "poor" or "failed" as indicative of DNA quantity and/or quality in the sample 
extract

SNPs SNP genotyping concordance The number of sample replicate pairs that gave identical genotype calls in repeat 
assays divided by the number of replicate pairs for which the SNP was successfully 
genotyped in both assays

SNP call rate The number of samples for which a genotype is called for the SNP divided by the 
total number of samples

SNP 10% GC score The 10th percentile rank of GenCall scores (one for each sample) for the SNP
Cluster separation A measure ranging from 0-1 of how well genotype clusters are separated for a SNP
Minor allele frequency The frequency of the rarest allele among the called genotypes for a SNP
AB T Mean The mean normalized theta values of the heterozygote cluster for the SNP. This 

metric indicates how well the heterozygote cluster is separated from the 
homozygotes

AB R The mean normalized intensity (R) of the heterozygote cluster. This metric helps 
identify SNPs with low intensity data

SNP design score A metric calculated through an Illumina proprietary algorithm based on the SNP 
flanking sequence to indicate the probability of a SNP performing well in the 
GoldenGate assay
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ABSTRACT 

Genome scan approaches are frequently applied for identifying genomic regions under selection. 
Methodological developments have generally focused on applications to spatial variation among 
different populations. However, the principle is equally applicable to genetic variation in samples 
collected over time from a single population. Such temporal data provide powerful insights about 
evolution in ‘real time’, but neutral expectations in temporal scenarios may be different from 
expectations generated through spatial models. Thus, if spatial genome scan methods are applied 
to temporal data, it is unclear both how to parameterize simulations and how to interpret results. 
Targeted methods are therefore needed. Here, we propose a framework that compares the 
observed temporal differentiation at individual loci to a neutral distribution generated through 
simulations of drift within a single population, which is a modification of a commonly applied spatial 
genome scan approach. Application to example datasets shows that it identifies a greater number 
of temporal outliers than methods designed to evaluate spatial patterns, but that the strongest 
outliers are consistently identified by all methods. We also demonstrate that our model is generally 
robust to uncertainty of parameter input values and that it responds as expected to variations in 
sampling configuration. The main strength of our proposed approach is that it provides an intuitive 
and simple framework that generates readily interpretable results for temporal data. 

 

Keywords: outlier test, genome scan, temporal, selection, single nucleotide polymorphisms 
(SNPs) 
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INTRODUCTION 

Since evolution is genetic change over time, comparisons of temporally spaced DNA samples 
should offer the most direct way to study its fine-scale dynamics. Temporal genetic data can be 
generated from targeted repeat sampling of wild or laboratory populations or it can be based on 
archived, recoverable or resurrectable historical material or results presented in previous studies 
for retrospective assessment. Regardless of the data source, the possibility to track allele 
frequencies in ‘real time’ provides unique insights into the evolutionary changes over the studied 
time period. 

A key component of understanding evolutionary change is to disentangle the effects of ongoing 
selection from the effects of demography, gene flow, and population history. Generally, selection is 
expected to act only on specific loci and closely linked sites, whereas neutral forces like drift and 
migration are expected to exert relatively uniform effects across the entire genome (Cavalli-Sforza 
1966). These interacting processes will shape genetic variation in both space and time and hence, 
loci that show divergent patterns of differentiation compared to the rest of the genome either 
between populations or between time points within a single population are likely affected by 
selection (Lewontin & Krakauer 1973). This principle forms the basis of population genomics or 
genome scan approaches, which are widely applied to identify genomic regions undergoing 
selection (Luikart et al. 2003; Storz 2005; Stinchcombe & Hoekstra 2007). Advances in the 
statistical framework underlying these methods have primarily focused on contemporary spatial 
variation between populations (e.g. Beaumont & Nichols 1996; Foll & Gaggiotti 2008; Excoffier et 
al. 2009), probably due to the much greater abundance of such data sets. Limited by sample 
availability and technical constraints associated with degraded DNA in historical samples, temporal 
data sets have been more difficult to generate. However, as entire genomes of ancient specimen 
are now being sequenced (Rasmussen et al. 2010), we are likely to see an increase both in the 
genomic coverage and time scales considered in temporal data sets, and therefore there is a need 
to carefully evaluate the statistical methods applied for their analysis. 

The first formalized test of the principle that selection should cause increased variance in allele 
frequencies at specific loci compared to expectations under neutrality was proposed by Lewontin 
and Krakauer (1973). Based on theoretical predictions about the distribution of single-locus FST 
estimates, this test has been severely criticized, but primarily for its application to spatial genetic 
variation (e.g. Nei & Maruyama 1975; Robertson 1975). It should be much more robust in 
applications to temporal data from a single population (Lewontin & Krakauer 1975; Hedrick et al. 
1976; Gaines & Whittam 1980). Nevertheless, the analytical deductions inherent to the test are 
based on approximations to a chi-square distribution, which may not generally provide an accurate 
description of the distribution of temporal allele frequency variance among loci (Mueller et al. 
1985). Simulations have demonstrated that although the approximation is reasonable for a broad 
set of parameter values, substantial deviations arise under a variety of conditions (Waples 1989b; 
Goldringer & Bataillon 2004). With the computational power available today, it may thus be 
preferable to base tests on direct simulations rather than theoretical approximations. 

A number of alternative tests have been proposed to evaluate whether observed temporal allele 
frequency variation can be explained by drift and sampling alone (e.g. Fisher & Ford 1947; 
Watterson 1982; Mueller et al. 1985; Waples 1989a). Yet, none of these have been widely 
adopted, perhaps because they were developed for specific purposes, have been difficult to 
implement, or have also relied on similar chi-square approximations. More recently, Goldringer and 
Bataillon (2004) suggested a generalized simulation-based test for homogeneity of locus-specific 
temporal variance in allele frequencies, but it was only formulated for comparisons of two 
temporally spaced samples. Sandoval-Castellanos (2010) developed a Bayesian simulation 
method that can incorporate samples from multiple time points and Bollback (2008) proposed a 
method to simultaneously estimate the effective population size (Ne) and the selection coefficient, 
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also from serial sampling of the same population. Common to these three methods, however, is 
the need to generate separate sets of simulations/computations for every locus—a task that 
becomes increasingly cumbersome as the panels of studied genetic markers get larger. 

In the absence of integrated multi-locus methods directed for samples collected over time, the first 
large-scale temporal genome scans that are now beginning to appear in the literature generally 
apply conventional methods designed for spatial sampling (e.g. Hansen et al. 2010; Poulsen et al. 
2011; Bourret et al. 2011; Orsini et al. 2012). Because these methods fit models to the observed 
data, they will almost certainly detect major departures from genome-wide patterns regardless of 
the underlying assumptions about neutral expectations. However, the specific p-values or posterior 
probabilities for a locus being a significant outlier will only apply in relation to the inherent model 
scenario. 

Spatial genome scan methods assume that samples are collected at a single time from 
geographically separated populations that exchange migrants. This is obviously different from 
serial sampling of a single population because samples here are much less independent. One of 
the most commonly applied spatial genome scan methods, BayeScan, is based on the multinomial 
Dirichlet likelihood to estimate locus- and population-specific effects from the observed variation in 
allele frequencies (Foll & Gaggiotti 2008). While this likelihood function should arise in a range of 
demographic equilibrium models (Balding 2003; Beaumont & Balding 2004), it has not been 
demonstrated to be valid for differentiation over time within the same population. Similarly, a 
second popular spatial method, fdist as e.g. implemented in the software Lositan (Antao et al. 
2008) is based on comparing the observed differentiation among samples to an expected neutral 
distribution generated through coalescent simulations under an island model (Beaumont & Nichols 
1996). Although the expected distribution of FST appears robust to some departures from this 
underlying demographic model (Beaumont & Nichols 1996), the degree to which the distribution 
under a temporal model would deviate from this standard has not been thoroughly evaluated. 
Therefore, although spatial genome scan methods may provide roughly accurate estimates for 
temporal data, the clear violation of basic model assumptions makes interpretation of the results 
difficult and could lead to yet unexplored over- or underestimation of the number of loci that are 
affected by selection over time. Consequently, there is a need for methods that are specifically 
tailored to temporal data. 

We here illustrate how the spatial method proposed by Beaumont and Nichols (1996) can be 
adapted to meet this need. As mentioned above, the original formulation of this method compares 
the observed differentiation at each locus to a simulated null distribution generated under an island 
model. However, the approach is flexible because the null distribution can in principle be 
generated under any model and therefore be tailored to match a variety of scenarios. We propose 
that a simple model of drift within an isolated population can be a useful null expectation for 
analysis of data collected over multiple generations and we evaluate its sensitivity to variations in 
sampling configuration and uncertainty of input parameter values. To demonstrate how this model 
can be used to make intuitive inference from temporal data, we apply the method to two example 
data sets and compare its performance to that of two spatial genome scan methods.  

MATERIALS AND METHODS 

The model 

Our approach is based on a forward Wright-Fisher (WF) model to evaluate how much variance in 
allele frequencies would be expected from drift and sampling error alone within an isolated 
population sampled over multiple generations. The effects of new mutations are ignored because 
the model is intended for data collected over time scales that are short enough for the effects of 
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mutations to be assumed negligible compared to other evolutionary forces. Migration can have 
contrasting effects on allele frequencies within a population over such time scales depending on 
the level of differentiation between the source and the recipient populations (Wang & Whitlock 
2003; Fraser et al. 2007). These effects can be complex to generalize and can only be quantified 
with detailed data on source populations, which is often not available. Consequently, migration is 
also not explicitly included in this null model. Any loci that show greater differentiation over time 
than expected from simulations under the null model can therefore be affected either by selection 
or gene flow. Because selection is expected to only affect certain locations in the genome, 
whereas gene flow is expected to have genome-wide effects, the proportion of loci that significantly 
deviate from null expectations may provide insight into the importance of the two forces. However, 
complete disentanglement of these effects may require additional sampling from potential migrant 
source populations. 

Each realization of the null model simulations is based on a single bi-allelic locus at initial 
frequency f0 in a WF population of constant size Ne that reproduces over tmax generations. At each 
ts generation, a sample of size n individuals is collected. The model should be parameterized to 
most closely match the sampling scenario of the observed data. 

The initial allele frequency f0 at each simulated locus is a random number between 0 and 1, but to 
generate a roughly uniform distribution of He values among the simulated loci, we enrich the 
simulations for low starting frequencies. The Ne for the study population should be estimated either 
based on the temporal allele frequency data (e.g. Wang 2005; Luikart et al. 2010), from single-
sample genetic estimators (e.g. Waples & Do 2008; Wang 2009), or with demographic methods 
(e.g. Caballero 1994; Engen et al. 2007). Since inclusion of loci under selection can downward 
bias Ne estimates (Wang 2005; Palstra & Ruzzante 2008), Ne estimation from the genetic data 
should be performed iteratively, first identifying outlier loci from simulations with an Ne estimate 
based on all loci, and then re-estimating the Ne with those loci excluded and using this estimate for 
final simulations of the null distribution.  

The generation time of the studied population needs to be estimated to convert sampling years into 
sampled generations. Since the model is based on forward simulations, the oldest sample is 
considered generation 0 and subsequent sampling years rounded to progressive generations, 
denoted ts. The tmax is the generation where the contemporary sample was collected. The sample 
size n should be the harmonic mean number of individuals included in each sample. This way, for 
each simulated locus, we obtain a time series of allele frequencies corresponding to the sampling 
pattern in the real data. 

For each locus, we quantify the temporal variance in allele frequencies between all samples in 
both observed and simulated data with Wright’s F (Wright 1951) corrected for sampling effects 
following (Waples 1998): 

 

where var(p) is the variance in observed allele frequencies among time points (since this 
implementation of the model is for bi-allelic loci, we only need to keep track of one allele),  is the 
mean observed allele frequency among time points and n is the harmonic mean number of 
individuals included in each sample. 

The correction for sampling effects is important because missing data can make the actual sample 
size vary between loci in the observed data. Following the approach of Beaumont and Nichols 
(1996), we plot the differentiation (Ftemp) as a function of the mean expected heterozygosity among 
samples (Hs) for each observed locus. We then simulate 100,000 independent loci and for each 
compute the Ftemp and Hs. As in the fdist method, the paired values are rank-ordered by Hs and 
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grouped into overlapping bins of 4,000 points centered on every 2,000th point. For each Hs bin, we 
compute the quantiles of the distribution of Ftemp values that define the confidence envelopes in 
which 95% and 99%, respectively, of the data points are expected to lie if behaving according to 
the model. To assess the statistical significance of departures from the neutral expectation, we 
compute empirical p-values for each locus as the proportion of simulated data points within its bin 
that show higher Ftemp than the observed value. To correct for multiple testing, we compute the 
expected false discovery rate (FDR), or q-value, for each locus based on the distribution of p-
values using the R-package qvalue (Storey & Tibshirani 2003). We considered tests significant 
when the FDR was <5% (q<0.05). 

All simulations and computations were completed with custom R-scripts that are available upon 
request.  

 

Sensitivity analysis 

Intuitively we expect that a larger number of sampling times ts and larger sample sizes n for each 
sampling point would reduce the variance in allele frequencies and therefore Ftemp among the 
simulated loci, but to explore how strong this effect would be, we compared the 95% confidence 
envelope in simulations based on different configurations. For this, we assumed a population of 
effective size 500 sampled a various number of times over 12 generations with variable sample 
sizes (see Table 1). 

Because the input parameters that are needed to fit the model to the actual data from the studied 
population—Ne and generation length—are notoriously difficult to estimate in wild populations, we 
also evaluated the sensitivity of the method to uncertainties in these inputs. To assess the 
sensitivity to variations in Ne, we computed the 95% confidence envelope for different populations 
with Ne’s ranging from 50-50000, all sampled 4 times over 12 generations (generation 0, 4, 8, and 
12) with sample sizes n of 30.  

A simplifying assumption of the simulations is that the Ne remains constant over the study period. 
This is unlikely to be true in nature, so we assessed the sensitivity to random fluctuations in Ne in a 
separate set of simulations. Here, the Ne for each generation was derived by multiplying the Ne 
from the previous generation with a factor drawn randomly from a normal distribution with mean=1 
and standard deviation either 0.25 or 0.5. Similarly, we also assessed the effect of a linear 
decrease of either 10 or 20% each generation over the 12 generations. The effect of uncertainty in 
generation length was assessed by comparing the 95% confidence enveloped obtained from 
sampling generations 0, 4, 8, and 12 with simulations where the four samples had been collected 
1-2 generations earlier or later (see Table 1). 

 

Example application and comparison to spatial methods 

To illustrate an example application, we analyzed two datasets from a previous study (Chapter 2) 
with the Ftemp method. The data originates from a population of Atlantic cod (Gadus morhua) in 
the southern Gulf of St Lawrence, Canada, that had initially been sampled at the beginning and 
end of a 12 generation time interval and genotyped for 1047 SNPs (dataset 1). In a follow-up 
study, it was sampled 5 times over a 6-generation period (generations 0, 1, 2, 3, and 6), and these 
samples were genotyped for 160 SNPs (dataset 2). Because the selection of SNP panels was not 
independent, the two datasets were analyzed separately. Attempts to estimate the Ne for this 
population indicated that it was too large to get a point estimate from the genetic data (Therkildsen 
et al. 2010 and Chapter X). However, the lower 95% confidence limit on the Ne estimate was 568, 
so as a conservative measure, we used this as input in the simulations. The 95% confidence 
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envelope and the number of loci significant after FDR correction with the Ftemp method were 
compared with analyses conducted on the same datasets with two popular methods for spatial 
genome scans. The first was Bayescan (Foll & Gaggiotti 2008), for which we used the default 
parameters, but varied the prior odds in favor of the model without selection between 10 and 3. 
The second was the standard spatial fdist method as implemented in the software Lositan (Antao 
et al. 2008) where we used the infinite alleles model and assumed 30 demes. For both programs, 
we used an FDR cut-off of 0.05 to identify significant outliers. 

RESULTS 

Sensitivity 

As expected, both a higher number of sampling times (ts) and larger sample sizes (n) reduced the 
temporal variance in allele frequencies, thereby narrowing the distribution of Ftemp (Fig. 1). When 
sampling only the end points of the time period or when using very small sample sizes (n=15), the 
0.975 quantile of the Ftemp distribution was reduced for low heterozysities (Fig. 1). For the 
remainder of scenarios, the distribution of Ftemp was relatively constant across heterozygosities 
(except when approaching allele fixation at the extremes) and alteration of the simulation 
configurations did not cause major changes to the shape of the conditional distribution of Ftemp (Fig. 
1). Variations in the sampling scheme did notably affect the width of this distribution, however, 
indicating—unsurprisingly—that within the parameter space explored here, increased sampling 
effort leads to increased power to detect outlier loci that show divergent patterns of differentiation 
compared to null expectations. 

The simulated distribution was relatively robust to uncertainty in estimation of the generation 
length. Sampling the population in earlier generations lead to a slightly narrower distribution than 
sampling of later generations after more drift had occurred in the population (Fig. 2). However, the 
effects were small even across the three-fold difference in generation length, indicating that 
uncertainty in estimating this parameter from wild populations will not heavily affect model 
expectations unless the Ne is very small.  

The null distribution was very sensitive to small effective population sizes, however. With an Ne of 
50, the distribution of Ftemp was markedly wider than observed under any other scenario. Increasing 
Ne’s up to around 500 narrowed the distribution, but for Ne’s above this threshold, its exact 
magnitude had little impact on the simulated distribution with the sample sizes tested here (Fig. 
2c). The distribution was also robust to fluctuations in Ne between generations (Fig. 2b). Only one 
of the demographic changes assessed here affected the conditional Ftemp distribution, and that was 
the linear decrease by 20% every generation for 12 generations that reduced the quantile of Ftemp 
at low heterozygosities. This resulted primarily from the low Ne at late generations (here we started 
with Ne =500 so at generation 12 the Ne was 34) and the same effect was not observed for larger 
starting Ne’s (results not shown). 

Example application and comparison to spatial methods 

The simulated Ftemp null distributions for the two example data sets provided a good fit to the 
observed data with 47.6 and 53.3% of data points above the median, respectively. In the two-
sample comparison, 50 of the 1047 loci fell above the 97.5% quantile of the null distribution of Ftemp 
and 10 of these were significant outliers following FDR control (Fig. 3a). In the five-sample 
comparison, 10 of the 160 loci were above the 0.975 quantile and 7 of these significant after FDR 
control (Fig. 3c). Using point estimates instead of lower 95% confidence limits on estimates of Ne 
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did not change the number of outliers and neither did changing the generation length estimate by 
+/- two years.  

Analysis of the same data sets with the spatial model implemented in Lositan generated markedly 
wider null distributions, and consequently fewer significant outliers (Fig. 3 b and d). Yet, in the two-
sample comparison, the null distribution generated by the spatial model at very low 
heterozygosities was much narrower than for the temporal model. Even the 0.995 quantile of the 
spatial model expectation excluded many loci that appeared to just be at the tail of the distribution 
of Fst values and not particularly divergent, likely leading to a high frequency of false outliers when 
applying the Lositan model to this dataset. 

Although more outliers were detected with the Ftemp compared to the Lositan model, the 
significant Lositan outliers were all a subset of the Ftemp outliers. BayeScan detected even fewer 
outliers, but reassuringly, there was again complete overlap between these and the outliers from 
the other methods. With less conservative prior odds, BayeScan also detected more of the 
additional outliers (results not shown). 

The three methods that are based on different models and assumptions thus provide results that 
roughly are qualitatively consistent for these example data sets. For practical purposes, the 
difference in the number of outliers detected results primarily from varying cut-offs for significance, 
with the Ftemp method applying the lowest threshold. 

DISCUSSION 

We have presented a model that can be implemented in an already established analytical 
framework for the purpose of detecting loci under selection from temporal genetic data. The 
simulated distributions changed with model configurations as expected, but generally showed 
robustness to variation in parameter input values, except for very small values of Ne. This indicates 
that the model should be useful for detecting loci affected by ongoing selection in serial samples 
from real populations.  

With the Ftemp model, we detected a higher number of outlier loci than with either of two 
commonly applied genome scan methods designed for spatial samples, although the loci that 
showed the strongest differentiation were identified by all methods. The incongruence of results 
from different methods is not unique to temporal data as it has also often been reported in 
analyses of spatial data (e.g. Beaumont & Balding 2004; Nunes et al. 2010), highlighting the need 
to consider the risk of both type I and II errors. In principle, analysis of simulated data could reveal 
whether the higher number of outliers detected with the Ftemp method compared to results from 
spatial methods reflected greater power to detect selection in temporal data or elevated levels of 
false positives. Such simulation-based evaluation has been applied for comparison of spatial 
outlier detection methods (Pérez-Figueroa et al. 2010; Narum & Hess 2011), but findings will 
always depend on the model chosen to simulate selection. Since selection can act in many 
different ways, it is not certain how generally applicable conclusions from such evaluations are. In 
face of uncertainty about error rates it thus seems of primary importance that results are easily 
interpretable in relation to the study scenario for evaluation of reliability.  

With the Ftemp model, the p-value obtained for each locus represents the probability that temporal 
differentiation of the magnitude observed (or larger) could arise due to drift and sampling alone in 
an ideal population of the same effective population size and generation length. For the Lositan 
model, p-values have no obvious meaning in relation to temporal change. For example, both the 
width of the null distribution and the number of FDR-corrected significant outliers varied somewhat 
depending on the number of demes that were used in the simulations under the island model 
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(results not shown). As this parameter has no clear relation to temporal variation within a single 
population, it becomes unclear how to parameterize the model. Consequently, the Lositan method, 
as well as BayeScan, probably will adequately identify loci that show much greater differentiation 
than the genome average in temporal data, but the threshold for significance is much more 
arbitrary than for analysis of spatial data. Further, although a full exploration of how the distribution 
of single-locus differentiation varies between temporal and spatial models is beyond the scope of 
this paper, the high number of low heterozygosity outliers observed with the Lositan analysis of the 
two-sample comparison suggest that spatial models may not always provide a satisfactory fit to 
temporal data throughout parameter space. 

The model presented here clearly matches the sampling scenario for temporal data much better 
than spatial models do; however, it still includes simplifications. Real populations deviate from ideal 
(WF) populations in numerous ways, but many of these are captured in the concept of the Ne that 
is defined as the size of an ideal (WF) population that would experience the same rate of genetic 
change as the population under consideration (Wright 1931). Therefore, using estimates of this 
parameter as an input should capture the cumulative effects of the simplifying assumption. The 
largest challenge in this regard is that the Ne is difficult to estimate and if estimated based on 
temporal shifts in allele frequencies, this input will typically be based on the same data analyzed 
for outlier identification. However, the Ne estimation step can be seen as part of a model fitting 
procedure or if more independence of analysis steps are desired, alternative methods based on 
single sample methods can be used to estimate the Ne (recently reviewed in Luikart et al. 2010). In 
any case, the general insensitivity of the Ftemp distribution to the magnitude of Ne (above a certain 
threshold) indicates robustness of conclusions regarding outliers despite uncertainty about the true 
Ne value. Only small Ne values changed the distribution significantly, but fortunately that represents 
the parameter range in which genetic methods for Ne estimation have highest precision and 
therefore should be least uncertain (Wang 2005; Palstra & Ruzzante 2008).  

Depending on analysis objectives, the temporal differentiation in observed and simulated data can 
be quantified in several alternative ways. Here, we looked at the overall variance and therefore 
squared deviations from an overall mean because we were interested in detecting loci that showed 
elevated levels of variation in allele frequencies regardless of the direction of change or the 
specific sampling interval during which it occurred. The same simulated data could also be used to 
compute the more classical temporal F measures that is based on the squared difference between 
two temporal samples (see Waples 1989b), allowing for analysis of changes within specific shorter 
time periods. However, potential reductions in power and problems with correcting for multiple 
testing (pairwise non-independent comparisons) should be kept in mind. 

The null distribution may also be simulated under a completely different model and set-up. We 
focused on standing genetic variation in a model only applicable to time frames short enough to 
reasonably ignore the effects of new mutations. For this purpose, we adopted a forward simulation 
approach because it allows for easier monitoring of changes in allele frequency in a population 
sampled at specific time intervals (Hoban et al. 2012). If temporal samples are collected further 
apart, e.g. with ancient DNA samples, it will be necessary to also model mutational processes and 
for such purposes it may be advantageous to base the neutral distribution on a coalescent 
simulator such as SerialSimCoal (Anderson et al. 2005) or Compass (Jakobsson 2009).  

Our study shows that the Beaumont and Nichols (1996) approach is flexible enough to incorporate 
simulation results generated under a range of different models. The data presented here illustrate 
how the Ftemp method offers a framework for a simpler and intuitively more appropriate approach 
for detecting outlier loci from temporal data than has previously been available. This method 
should make statistical inferences in relation temporal genome scan results more robust and easily 
interpretable.  
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FIGURE LEGENDS 
 
 
 
Figure 1. Effect of sampling frequency and sample size on the distribution of Ftemp. Shown are 
0.025, 0.975 quantiles (solid lines) and median (dashed lines) of simulations using a Wright-Fisher 
population model of 500 individuals over 12 generations. In (a) sample sizes of 30 individuals were 
collected either in each generation, every other, every fourth generation or only at the beginning 
and end of the period. In (b) the population was sampled every fourth generation with sample sizes 
varying between 15 and 100 individuals.  

 

Figure 2. Effect of generation length and Ne on the distribution of Ftemp. Shown are 0.025, 0.975 
quantiles (solid lines) and median (dashed lines) of simulations using a Wright-Fisher population 
model sampled with 30 individuals at four time points. In (a) the Ne is kept constant at 500, but the 
assumed generation length varies so that samples cover between 6 and 18 generations. In (b) and 
(c) the sampling covers 12 generations, but the Ne varies over generations starting at 500 (b) or 
the Ne is constant but of variable magnitude (c). Note the different scales on the y-axes.  

 

Figure 3. Comparisons of results from the Ftemp (a and c) and the Lositan method (b and d) 
applied to temporal data from an Atlantic cod population. The population was sampled at the 
beginning and end of a 12-generation period (a and b) or at 5 times over 6 generations (c and d). 
Each black dot represents single locus. Solid lines represent the 95% (grey) and 99% (black) 
confidence envelope of the simulated null distribution.  Significant outliers after controlling the FDR 
to 5% are circled in red. Loci also significant outliers in BayeScan analysis are marked with blue 
circles (dark blue for outliers significant after FDR correction). 
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Table 1. Overview of parameter settings for sensitivity analysis of the Ftemp model (see text for details)

Variable ts n ΔNe Ne Result

ts [0, 2], [0, 4, 8, 12], [0, 2, 4, 6, 8, 10, 12], 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 30 Constant 500 Fig. 1a

n [0, 4, 8, 12] 15, 30, 50, 100 Constant 500 Fig. 1b

GenLength [0, 2, 4, 6], [0, 3, 6, 9], [0, 4, 8, 12], 30 Constant 500 Fig. 2a
 [0, 5, 10, 15], [0, 6, 12, 18]

ΔNe [0, 4, 8, 12] 30 Constant, fluctuating, 
decreasing

500 Fig. 2b

Ne [0, 4, 8, 12] 30 Constant 50, 100, 500, 
5000, 50000

Fig. 2c
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