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Abstract Robotic systems consisting of a neuron culture
grown on a multielectrode array (MEA) which is connected
to a virtual or mechanical robot have been studied for ap-
proximately 15 years. It is hoped that these MEA-based robots
will be able to address the problem that robots based on con-
ventional computer technology are not very good at adapt-
ing to surprising or unusual situations, at least not when
compared to biological organisms. It is also hoped that in-
sights gained from MEA-based robotics can have applica-
tions within human enhancement and medicine. In this pa-
per, I argue that researchers within this field risk overstating
their results by not paying enough attention to fundamental
challenges within the field. In particular, I investigate three
problems: the coding problem, the embodiment problem and
the training problem. I argue that none of these problems
have been solved and that they are not likely to be solved
within the field. After that, I discuss whether MEA-based
robotics should be considered pop science. Finally, I inves-
tigate the ethical aspects of this research.

Keywords MEA-based robotics · neuron culture · coding ·
embodiment · training · research ethics

1 Introduction

The possibility of using biological neurons grown on mi-
croelectrode arrays (MEAs) as part of robotic systems has
been studied for approximately 15 years, see DeMarse et al
(2001), Cozzi et al (2005), Novellino et al (2007), Warwick
et al (2010b), Tessadori et al (2012). It is hoped that MEA-
based robotics will address the well-known problem that
robots based on conventional computer technology are not
very good at adapting to surprising or unusual situations, see
Tessadori et al (2012). One could compare the clumsy and
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irregular movements of, e.g., most current vacuum cleaner
robots to the rapid escape response through jet propulsion
of the squid or the sophisticated wall-following behavior
of the cockroach, see Dickinson et al (2000), Cowan et al
(2014). It is also hoped that biological AI will have appli-
cations within human enhancement and medicine, both di-
rectly by enabling us to design neural prosthetics and indi-
rectly by teaching us more about the biological principles of
the brain. Researchers within the field are not modest about
what they have achieved. In Warwick et al (2010b), the re-
searchers claim that ‘research is ongoing in which biologi-
cal neurons are being cultured and trained to act as the brain
of an interactive real world robot’. The title of the paper is
‘Controlling a mobile robot with a biological brain’ and one
of the keywords is ‘intelligent controlling mechanism’. Fur-
ther, the researchers claim to be able to ‘train’ the neuron
culture. In Tessadori et al (2012), it is claimed that ‘these re-
sults prove that an in vitro network of biological neurons can
control an external agent’. There are several questionable
terms employed above, amongst which are ‘brain’, control’
and ‘intelligent controlling mechanism’, as well as ‘train-
ing’ a term that implies teaching goal-directed behavior. To
take an example, is it correct to call a neuron culture grown
on a two-dimensional array a brain? The brain of an actual
evolved biological organism is a highly complex, function-
ally organized, three-dimensional object, far from the much
simpler two-dimensional cultures grown for the purpose of
current MEA-based robotics - although even these simpler
cultures are very hard to understand.

In this paper, I first provide a brief history of MEA-based
robotics to situate the field in a scientific context. After this,
I present and analyze three principal research challenges
for MEA-based robotics related to neural coding, embodi-
ment, and the training of neuron cultures. I consider whether
MEA-based robotics should be considered pop science or
proper science. Finally, I take a look at the ethical aspects of
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this research. Some researchers within the field have claimed
that their research provides an ethical advantage, see War-
wick et al (2010b), Warwick (2010), Warwick (2012). Sup-
posedly, this perceived advantage comes from a comparison
to research that uses actual animals to control robotic body
parts, as reported in, e.g., Reger et al (2000) and Talwar et al
(2002), as the latter research is more invasive. I will argue
that, even if we find this comparison acceptable, the research
introduces several hitherto unknown ethical complications
into current robotics, which makes it hard to speak of an ad-
vantage.

2 A brief history of MEA-based robotics

It has been known since the beginning of neuroscience that
neurons communicate through both electrical and chemical
signals, see Pereda (2014). Hence, the wish for establishing
direct electrical contact with neuron cultures through stim-
ulation and recording of signals arose rather naturally. To
avoid various problems with the placement of electrodes in
live animals, the idea of growing neurons directly on a mi-
croelectrode array (MEA) was conceived. Neurons are taken
from live animals (often embryonic rats) and placed in a thin
layer on an MEA. After a few days the neurons start to net-
work and exchange chemical and electrical signals. Via the
electrodes on the array, researchers can stimulate selected
areas of the neuron culture with electrical signals as well as
record the electrical output coming from it. Fairly reliable
input-output relations can be established, called neural path-
ways. Apart from the signals induced by the input, sponta-
neous local electrical activity can be recorded at various out-
put electrodes, as well as global activity of a short duration
spanning the entire network, referred to as bursts, see Maeda
et al (1995). The first reported development and study of mi-
croelectrode arrays is Thomas et al (1972). However, this
pioneering study failed to make recordings, a goal that was
accomplished in the study reported in Pine (1980). The first
study to use MEAs as a controlling mechanism for a virtual
robot (more precisely a virtual animal or animat) is DeMarse
et al (2001). It was hoped that the new research object could
help us understand cognition, create novel neural prosthetics
and foster new forms of artificial intelligence, see Bakkum
et al (2004). The researchers succeeded in creating a system
that could obtain information from a living neural network,
using this information to control the animat through medi-
ating software and stimulating the network. The researchers
failed to determine how or if the visual patterns produced
by the animat were connected to the neural coding that is
supposedly present in the neural network. We call this prob-
lem the coding problem. At the core of the coding problem
is communication. Do we know the language of the neuron
culture, can we understand signals coming from it and can it

in turn understand our signals? The animat also did not dis-
play goal-directed behavior; in other words, it was unlikely
that the neuron culture had any intentional control over its
virtual robot body. We call this the embodiment problem.
The embodiment problem is closely related to control. What
does it take for us to say that the neuron culture is, func-
tions like or behaves as if it were a brain controlling a body?
Finally, the researchers did not determine how to teach the
neuron culture how to improve its performance. We might
call this the training problem. The core of the training prob-
lem is desired change. How can we get the neuron culture to
develop in a direction we would like it to? The three prob-
lems are interconnected, and researchers usually claim to ad-
dress several or even all three problems at once, see Marti-
noia et al (2004), Cozzi et al (2005), Novellino et al (2007),
Warwick et al (2010b), Tessadori et al (2012). However, for
the purpose of understanding the limitations of the field, it is
analytically more appropriate to separate the three problems,
which I will do in the following section.

3 Research challenges

3.1 The coding problem and communication

Although it is widely acknowledged that neuron communi-
cation is strongly related to electrical activity, the message
from experts in neuroscience is quite clear: at the moment,
we know very little about decoding or reading the neural
code (i.e., how to translate signals from neurons into infor-
mation about perception or behavior) and even less about
encoding or writing the neural code (i.e., how to translate
sensory information into signals understood by neuron cul-
tures), see Stanley (2013).

Presently, we do not understand the nature of the
coding systems that are used in single neurons, and
it is unclear what sorts of dimensional reduction are
possible across populations and networks of neurons.

Cowan et al (2014)
Because this is clearly the case, how do the researchers in
MEA-based robotics obtain results? Would it not be impos-
sible to induce perception about the external environment
in the neuron culture and to interpret the signals from the
neuron culture as motor commands without a basic under-
standing of this neural code? Although the answer seems to
be a clear ‘yes’, it is instructive to observe how they proceed
to obtain results. First, some background: According to the
neuroscientific paradigm, all information about the sensory
world comes from an organism’s observation of its own neu-
rons in real time, see Bialek et al (1991). Neurons send out
electrical pulses referred to as action potentials or spikes,
which are regarded as essentially identical. Sequences of
spikes are referred to as spike trains. It is believed that the
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neural code is intrinsically linked to these spike trains. How-
ever, there is a long standing dispute about whether the neu-
ral code is based upon the mean firing rate of spikes (a rate
code) or whether the spacing between spikes also carry in-
formation (a timing code), although it has also been sug-
gested that both coding schemes might be active at different
time scales, see Stanley (2013). In the early 1990s, Bialek
and collaborators developed an important model of infor-
mation transmission from the sensory system to the central
nervous system. The model was based upon experimental
studies of a movement-sensitive neuron in the visual system
of the blowfly Calliphora erythrocephala, and similar stud-
ies, see Bialek et al (1991). The researchers were able to
reconstruct the waveform of the time-variant visual stimuli
through an algorithm that takes the spike trains of a neu-
ron as input. In other words, they could reconstruct some of
what the fly sees through its neural activity. The approach
is justified through matching of the resultant waveform with
the known waveform of the stimuli. A simplified model of
how to reconstruct stimuli from spike trains was suggested
in Gabbiani and Koch (1996). This model was in turn used
in Novellino et al (2007) in reverse order in an application
within MEA-based robotics. Sensory input from a robot was
averaged and presented to the neuron culture as spike trains.
The output from the culture was translated via conventional
algorithms and presented to the robot body as motor com-
mands. However, there is a fundamental problem with this
approach. The work of Bialek and successors show using
methods from information theory and probability theory that
it is possible to encode information via spike-trains. How-
ever, this result leaves the question as to whether the organ-
ism actually does encode information in this way completely
open.

. . . the reconstructions performed on H1 [the neuron]
in the house fly and on cells in other animals, as well
as this theoretical work, leave totally open the impor-
tant problem of determining whether the information
on a time-varying stimulus that can be encoded in a
neuronal spike train is actually used by the organism
. . .

Gabbiani and Koch (1996)

The researchers in MEA-based robotics base their re-
search on assuming that a previous result holds beyond its
boundary. They assume knowledge about writing the neural
code. In fact, they are encoding information in a way that
might not be decoded in any way. First, because the neu-
ron code might be fundamentally different from what is as-
sumed. For instance, current research suggests that the com-
munication between neurons is more complicated and de-
pends heavily on synchrony between neurons on a timescale
of a few milliseconds, Stanley (2013). Taking this into ac-
count would require a refinement of the present recording

and stimulation protocols. Further, because of the embodi-
ment problem discussed below, researchers within this field
do not have any reliable biophysical information to check
whether the assumptions about coding are justifiable. Be-
cause there is most likely no coherent organism whose be-
havioral data can be measured, the research cannot contribute
to solving the coding problem.

3.2 The embodiment problem and control

The basic idea behind MEA-based robotics is to provide a
neuron culture with a robot body. The goal of this research
is to create a hybrid being in control of its own behavior.
The challenges involved in reaching this goal we call the
embodiment problem. It should be mentioned that it is in
principle possible to solve the embodiment problem inde-
pendently of the coding problem. That is, the neuron cul-
ture could in principle be in control of a robot body without
us knowing the exact coding mechanism enabling it to con-
trol its body parts. However, because the actions of current
MEA-based robots rely heavily on researchers interpreting
neural activity from the network and translating it into motor
signals to the robot body, it is not very likely that the embod-
iment problem will be solved before the coding problem. In
fact, it is recognized that

...one still knows very little about the fundamental
neuronal processes that give rise to meaningful be-
haviours...

Warwick et al (2010a)
Because this is the case, we can ask a similar question to the
one we asked in the previous section. How do MEA-based
robotics obtain results if they really have very little idea of
how a neuron culture controls a body? As one study admits
about translating neuron activity into motor commands un-
der such conditions

Any ‘decoding’ strategy is clearly arbitrary...

Martinoia et al (2004)
The answer is that they use the information they obtain for
the neuron culture in a way that fit the model of behavior
they have chosen. In a number of applications, the goal of
researchers has been to make the robot behave as a simple
evasive Braitenberg vehicle, see Braitenberg (1986). Instead
of waiting for behavior or control to emerge, this means that

...outputs were chosen [...] in order to result in a be-
havior that is as close as possible to the obstacle
avoidance. Obstacle avoidance can be achieved if the
activation of sensors on one side elicits a decrease of
speed at the opposite side.

Cozzi et al (2005)
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All it takes to establish a simple negative correlation of
this kind is finding an input-output relation where an in-
crease in stimulus causes an increase in recorded neural ac-
tivity, see Cozzi et al (2005). The neuron culture simply acts
as a mere channel through which sensory information flows
and is turned into behavior by conventional software. As one
study bluntly puts it:

In the initially developed culture, we found, by ex-
perimentation, a reasonably repeatable pathway in
the culture from stimulation to response. We then
employed this to control the robot body as we saw
fit.

Warwick et al (2010a)
Researchers within this field apparently do not fully rec-
ognize how problematic this approach is. In MEA-based
robotics, the behavioral data, i.e., the movements of the robot,
are unreliable as a way of finding out about the principles
governing the neuron culture. In spite of a superficial re-
semblance, the data collected from the movement of the
robot body is not comparable to the data collected from a
freely moving animal whose brain activity we simultane-
ously measure. The robot behavior is in fact constructed by
conventional algorithms and software to a degree, where we
could remove the neuron culture from the robotic system
without making much of a difference (except making it more
efficient). This is clearly not the case when experimenting
with live animals, where the removal of the brain would
also stop the animal from moving. The decision mechanism
of the robot is manufactured by the researchers and set up
on a pragmatic basis as they ‘see fit’. This makes it hard
to see how proper scientific hypotheses about the behavior
of the robot and the activity of the neuron network could be
formed, which would actually enhance our knowledge about
the biological principles of the brain.

MEA-based robotics is a science in its infancy. I have
argued that it is misleading to claim that the neuron culture
controls the robot body. Scientists within the MEA commu-
nity claim that they have created a robot body controlled by
a neuron culture. To ensure that this is not a mere quibble
about words, it would be prudent to clarify the crucial con-
cept ‘control’ to make a more thorough evaluation of these
claims. However, attempting to do so will easily lead us into
deep metaphysical discussions about the nature of free will,
autonomy, and so on. To sidestep discussions that are not
pertinent to the issues in this paper, the optimal strategy
seems to be to opt for the weakest possible definition of con-
trol that is mostly compatible with MEA-based robotics. If a
definition can be found that makes the claim of the scientists
true, this claim can be justified, at least as seen from a per-
spective that is sympathetic to MEA-based robotics. How-
ever, if researchers fail to meet the requirements of such a
definition, it is safe to say that they have not accomplished
what they claim. However, because finding such a minimal

definition is an optimization problem that would require a lot
of work and which will be complicated by the vagueness of
the term ‘the project of MEA-based robotics’, the approach
to be followed here will be different. I will take three con-
ceptions of control off the shelf, which seem relatively sym-
pathetic to the mechanistic view of the mind shared by many
researchers in neuro science, one from philosophy, one from
the field of neuromechanics, and one from control theory.
These conceptions are of decreasing strength in that they
require less and less of the controller. The discussion will
highlight what is missing from current MEA-based robotics.
Finally, I will discuss the difference between control and
mere causation, as an identification of the two trivializes the
concept of control.

3.2.1 Dennett’s definition of control

The philosophical definition to be considered below is the
one presented by Daniel Dennett, see Dennett (1984). Al-
though Dennett claims to capture our everyday concept of
control with his definition, he also claims that the definition
is compatible with more technical definitions found in au-
tomata theory and cybernetics, and in general, he takes care
to keep his philosophical views compatible with a determin-
ist view of science, which also seems predominant within
robotics, neuroscience, and AI, or at least acceptable within
these fields as a philosophical position.

Definition 1 (Control - Dennett) A controls B if and only
if the relation between A and B is such that A can drive B
into whichever of B’s normal range of states A wants B to
be in. (If B is capable of being in some state s and A wants
B to be in s, but has no way of putting B in s or making B go
into s, then A’s desire is frustrated and to that extent A does
not control B).

Applied to the present case, the neuron culture controls the
robot body if and only if the neuron culture can drive it into
a state of turning, speeding up, etc., when the neuron cul-
ture wants it to do so. However, we have absolutely no idea
what the robot culture wants. It might be a good idea to high-
light the extent of our lack of knowledge by a comparison to
a study of the wants and needs of biological rats. A recent
study shows that biological rats can feel regret, which the re-
searchers contrasts to disappointment and defines as the re-
alization that a worse than expected outcome is due to one’s
own mistaken action, see Steiner and Redish (2014). This
study is conducted in a socio-economic framework (a restau-
rant row task) and is based on a correlation between the ob-
servation of ‘regretful’ behavior (e.g., rats looking back to-
wards a better but presently unobtainable option) and brain
activity in the orbitofrontal cortex of biological rats and the
analogy to the human case, where this area of the brain has
been documented to be connected to expressing regret. This
study requires at least three elements for its success.
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1. A functionally organized brain analogous to the human
brain.

2. Bodily expressions of what can be perceived as inten-
tional behavior.

3. A clear idea of what is valued by the animal (food), en-
abling the connection to an economic theory of rational
choice.

None of these elements are available to the researchers in
current MEA-based robotics. First, the neuron culture is not
known to be organized functionally like a mammal brain.
Therefore, it is hard to interpret activity in the network in
analogy to activity in areas of the human brain. Second,
the bodily expressions of the robot are based on measuring
outputs from the culture, which are in turn based on neu-
ral pathways found prior to the experiments. These outputs
are used as ‘researchers see fit’, i.e., the neuron culture can-
not be said to choose its own action in any way. This means
that these bodily expressions cannot be used as an indepen-
dent control of intentional behavior in analogy to human be-
ings (there is no analogy to looking back for an MEA-based
robot). Third, with regard to value, although, the neuron cul-
ture needs nourishment, there is no indication that it experi-
ences anything like hunger, e.g., studies do not report trying
to link the provision of nourishment with a training protocol
for neuron cultures. We must conclude that it is very un-
likely that the neuron culture controls the robot body in the
sense of Dennett’s definition.

3.2.2 Neuromechanics

I now turn to a different conception of control, which will
be weaker in the sense that it does not require us to be able
to talk directly about the mental states (wants) of the con-
troller because it only focusses on purely physical aspects.
In the cross-disciplinary field of neuromechanics, the ex-
act way the brain interacts with other parts of the body is
studied, see Nishikawa et al (2007). As one of the applica-
tions of neuromechanics is the design and control of mobile
robots, MEA-based robotics could look to neuromechanics
for a foundation. Applying this conception of control to the
case of MEA-based robotics will further highlight what is
missing from the current research in this area. The follow-
ing quote shows how motor control is conceived within neu-
romechanics.

Motor control fundamentally involves a series of trans-
formations of information among different levels and
components of the neuromuscular and skeletal sys-
tems. Sensory information (proprioceptive and ex-
teroceptive) is transduced by sensory structures that
in turn transfer a subset of their information to the
central nervous system which, following yet another
transformation, issues a set of motor commands. The

motor commands trigger force development in mus-
cles, which drive movement and control the mechan-
ics of the body.

Nishikawa et al (2007)
According to neuromechanics controlled (intentional) move-
ment involves a drive from a higher brain center that is com-
municated to a lower network. This simple command is trans-
formed by the network into muscle-tendon actions distributed
over various limbs and joints. Clearly, important compo-
nents of this model are missing from the current research
setup in MEA-based robotics. The distinction between a higher
brain center driving the network and the network is com-
pletely missing, making any talk about a controller or a con-
trolling brain dubious. This is because a neuron culture grown
on a two-dimensional MEA is not functionally organized.
Only one type of cell is used, neglecting the fact that various
cell types are most likely required for functional organiza-
tion, see Zeisel et al (2015). Further, the information dis-
tributed by the nervous system of a live animal in various
ways to facilitate various forms of movement is replaced by
a simple output, making any talk about network controlled
movement dubious. This is because the research setup only
allows recording of electric output from the neuron culture
which is then translated directly into motor commands, ne-
glecting the intermediate role played by the peripheral ner-
vous system in establishing connections between the limbs
and the central nervous system. Because of these missing
components, I must conclude that according to the current
conception of motor control within neuromechanics, there
is no such thing as a brain controlling a body in MEA-based
robotics. We might also note a further deficit in the research
setup, which is that, unlike an engineered device, such as a
remote controlled vehicle, an evolved device, such as a hand
or a mouth, is typically highly multi-functional and flexible
- the human mouth can, for instance, be used to swallow,
yawn, bite, talk, and kiss, which are activities that have very
different purposes, or muscles, which are complex and ver-
satile devices that contribute a lot to the stability and flexibil-
ity of the movement of biological systems, quite apart from
neurological input. Much of the flexibility of biological sys-
tems presumably comes from this physiological flexibility,
which is completely lost by simply combining a mechanical
engineered device with a neuron culture, thus undermining
the goal of MEA-based robotics as described in the intro-
duction.

3.2.3 Control Theory

It appears that there is an even weaker form of control than
the ones considered above, as when we say that the thermo-
stat controls the room temperature, which is not intentional
and does not require the drive of a higher brain center. This
kind of control is studied in the engineering field of control
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theory, which addresses the change and stability of dynami-
cal systems, biological or otherwise, through regulation via
feedback. In this section, I investigate a control theory per-
spective of neuromechanics, see Cowan et al (2014), Roth
et al (2014), and compare the results to that for MEA-based
robotics. According to control theory, regulatory feedback
can change the characteristics of a closed-loop system dra-
matically, making an otherwise fragile system robust, a slow
system fast, and so on. Perhaps the neuron culture does con-
trol the robot body according to this weak conception of
control? Granted that the biological robot does constitute
a closed loop and that sensory feedback does regulate the
behavior of the robot, the question is what the function of
the neuron culture is. The answer seems to be that, in re-
gard to controlling the robot body, the neuron culture is an
unnecessary appendix whose removal would only enhance
the performance of the system. The information delivered to
and from the neuron culture is very coarse grained. On the
other hand,

A hallmark of a high-performance control system is
the ability to achieve large responses over a wide
range of frequencies in response to stimuli (change)
without skirting too close to the instabilities that can
result from high-gain, large-latency feedback (stabil-
ity).

Cowan et al (2014)
It is clear that current MEA-based robots are not high-

performance systems and that we are far from achieving the
flexibility of biological systems. However, one may argue
that the poor performance of these robots does not indicate
that there is no control, only that there is poor control be-
cause when we are attempting to use a tool that we are un-
accustomed to; this argument seems rather to presuppose
control than to establish it. The fact is that the source of
the stability of the biological robot is not related to the neu-
ron culture but to conventional software and the mechani-
cal parts (including sensors). The issue of how to evaluate
change within the culture will be addressed in the follow-
ing section. If there is any important processing of informa-
tion going on in the network, it is not transformed into any-
thing we can meaningfully call control of the robot body. I
therefore conclude that the neuron culture does not control
the movements of robot body according to the conception
of control theory, although the entire system consisting of
conventional software, mechanical parts and as a small and
rather irrelevant part, the neuron culture, does control the
body.

3.2.4 Weaker forms of control

I have looked at three conceptions of control of decreasing
strength. I cannot completely rule out that an even weaker

conception can be found which validates the researchers’
claim. When looking for such a definition, however, we should
also consider that a definition of control can become so weak
that we cannot distinguish control from mere causation. Ac-
cording to most views on causation, e.g., the counterfactual
account or the regularity account, the output from the neuron
culture does cause the robot body to move, i.e., it is a link in
the causal chain leading to the robot body turning, see e.g.,
Pearl (2009). However, because this output in turn is caused
by the input from the robot body, are we then to say that the
robot body controls the neuron culture in these cases? If cau-
sation is transitive, as at least some philosophers allow, are
we then to say that the robot body controls the robot body,
that the robot body is in fact self-controlled? Clearly, the
identification (or near identification) of causation and con-
trol will trivialize the claim that the neuron culture controls
the robot body. Finally, we might remark that this section
has only been about whether the culture controls the robot
body, not whether the culture itself can be controlled, re-
garding it as a black box, e.g., using methods from fuzzy
control theory, see Chen and Ying (1997). It is clear that
the entire robotic system is controlled by the researchers,
mainly because of the conventional algorithms and mechan-
ical parts such as sensors and wheels. What I have disputed
is the claim that the neuron culture controls the robot body.
However, when discussing the training problem below, I will
consider the possibility of regarding the neuron culture as a
black box whose performance we wish to increase.

3.3 The training problem, desired change and learning

There has been a strong focus within MEA-based research
on teaching neuron cultures behavior, i.e., training them. At
the core of the training problem is the wish to change the
neuron culture in ways that researchers desire. This desired
change, at least as seen from a network internal point of
view, we would call ‘learning’. I will first consider a strong
concept of learning and then consider a weaker concept in
each case evaluating whether it is justified to speak of learn-
ing in the context of MEA-based robotics.

3.3.1 Reinforcement learning

A very natural concept of learning is reinforcement learning,
rewarding desired behavior and punishing undesired behav-
ior to induce a desired change in behavior. Reinforcement
learning is linked to preference, we must know what kind of
things the learner prefers to establish a reinforcement learn-
ing protocol. However, researchers simply do not know what
a neuron culture grown in vitro prefers.

One major problem with this is deciding what the
culture regards as a reward and what as a punish-
ment.
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Warwick (2012)
Without knowing what the culture likes or dislikes, if any-
thing, reinforcement learning is ruled out as an option.

3.3.2 Hebbian learning, performance increase and
functional plasticity

Reinforcement learning provides a rather strong concept of
learning, as it requires making assumptions about the inter-
nal states of the neuron culture in terms of its likes and dis-
likes. As an alternative to reinforcement learning, we might
look at the neuron culture as a black box whose output we
are attempting to change in a direction we desire. With re-
gard to artificial neural networks, this kind of learning is
sometimes referred to as Hebbian Learning, and this term
has also been used within the MEA community, see Ferrández
et al (2013). In a similar vein, the MEA community has
coined the term ‘functional plasticity’ to indicate those changes
in stimulus-response relationships or in spontaneous patterns
that are experimentally induced by electrical stimulation and
lasting at least on the order of an hour, see Massobrio et al
(2015), Wagenaar et al (2006). A standard method of at-
tempting to induce functional plasticity is through what is
known as tetanic shocks. This implies giving the neuron cul-
ture a 20 Hz stimulation with the subsequent effect of in-
creasing the number of spikes at the output electrode, see
Tessadori et al (2012). Taken as a definition of learning, it
is clear that functional plasticity is a very weak form, mean-
ing no more than lasting change in the input-output relation.
Although we might use such a change to create input-output
relations to our benefit, we really cannot say anything about
whether that means there is a ‘subjective’ or ‘meaningful’
aspect of learning taking place in the neuron culture before
we have solved the coding problem or the embodiment prob-
lem. As the researchers acknowledge,

The exact biological mechanisms linking performance
increase and tetanic stimulation are still unclear...

Tessadori et al (2012)
If we knew that the desired change was correlated with

messages written in the neural code or with meaningful bod-
ily behavior we could get somewhere. In other areas of neu-
roscience, we have access to reliable behavioral data, giving
clues as to how to interpret the neurophysiological activity.
Further, the knowledge about the functional organization of
a biological brain can also give clues as to how to interpret
the interaction between brain activity and behavior. In some
cases, it is even possible to open a closed loop to investigate
the roles played by specific neuromechanisms, see Roth et al
(2014). We have no corresponding brain structure or behav-
ioral data with regard to MEA-based robots. Moreover, it is
even controversial whether this weak form of learning, i.e.,
functional plasticity or performance increase, can even be

reliably induced in neuron cultures using current methods,
see Van Staveren et al (2005), Wagenaar et al (2006), Mas-
sobrio et al (2015), for several reasons. For one, the neu-
ron cultures are spontaneously changeable, which makes it
difficult to design a learning protocol with which we can
reliably argue that the change is induced and not just hap-
pening, see Massobrio et al (2015). Related to this is the
fact that the changed (whether induced or not) seem to be of
short duration, often disappearing or taking another form be-
tween training sessions, see Wagenaar et al (2006). A further
methodological problem is how to document changes in the
network from the electrical output, Massobrio et al (2015).
In short, it is hard to know what kind of output should be in-
terpreted as what kind of change, especially when we do not
know what the output means (the coding problem) or even
whether the output is actually commands for meaningful ac-
tions (the embodiment problem).

In conclusion, the value of being able to teach an MEA-
based robot to act in certain ways is indisputable. However,
even with a definition of learning that is so weak that it
means nothing more than ‘lasting change’, it is dubious at
this point whether cultured networks learn.

4 Is MEA-based robotics pop science?

Given the criticism leveled at MEA-based robotics above,
one might be inclined to the conclusion that this is not proper
science, but what is derogatorily referred to as ‘pop science’,
a dubious activity aimed more at attracting media attention
and funding than the search for truth and respect from the
scientific community. However, although this research has
received attention from the media, especially through Kevin
Warwick’s work in the area, this research does not appear
to be pop science, at least not according to my investigation
of the field. This prima facie conclusion is supported by the
fact that the groups conducting this research operate from
respectable universities, and many of the pioneering papers
have been published in respectable journals. Table 1 shows
some pioneering peer-reviewed papers within the field with
the impact factor of the journal and the number of citations
of the paper. In each case, the journal is relevant for the topic
of the paper and is included in the Web of Science. All im-
pact factors, except the one for Ethics and Information The-
ory, are taken from the 2014 Journal Citation Report Sci-
ence Edition published by Thomson Reuters as part of the
ISI Web of Knowledge. The impact factor of Ethics and In-
formation Technology, Warwick (2010), is taken from the
2014 Citation Report Social Science Edition. The numbers
of citations of the individual papers are taken from google
scholar and have not been adjusted for self-citations.

Peer reviews, Web of Science, Impact Factors and num-
ber of citations are blunt and imprecise instruments for eval-
uating scientific quality, but they do provide a lower bench-
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paper Journal IF Paper cited by
Reger et al (2000) 1.386 163
DeMarse et al (2001) 2.066 232
Cozzi et al (2005) 2.083 17
Novellino et al (2007) 0.481 63
Warwick (2010) 1.021 54
Downes et al (2012) 4.620 37
Tessadori et al (2012) 3.568 14

Table 1 Important papers in MEA-based robotics

mark that, in most cases, should save research from deserv-
ing the predicate ’pop science.’ Nonetheless, the above anal-
ysis shows that scientists within this field have been guilty
of hasty generalizations and of overinterpreting previous re-
sults, treating conjectures as firm ground to build upon, which
does not constitute sound methodology. For this reason, the
field can appear to have developed further than is in fact
the case. To foster real scientific development, future re-
search in this emergent field ought to take a much more crit-
ical approach to foundations and to stress limitations and
doubts further. Additionally, the relation between everyday
words, such as coding, control and learning, and the abstract
and simplified versions of these employed in scientific re-
search should be made clear when communicating results
more broadly. The latter is a research ethical concern be-
cause if the public is misled, it will be to the detriment of
science in the long run despite the possibility of fast fund-
ing and press coverage in the short run. This leads me to a
further discussion of the ethical issues facing MEA-based
robotics.

5 Ethical problems

Kevin Warwick has considered ethical aspects of MEA-based
robotics in detail in Warwick (2010), Warwick (2012). War-
wick acknowledges that robots with biological brains present
ethical problems that need to be addressed. Here, I will mainly
focus on two claims made by Warwick: First, growing small
neuron cultures presents an ethical advantage to experiment-
ing with live animals, and second, growing large neuron cul-
tures of human neurons to study diseases of the brain is eth-
ically acceptable. Warwick and collaborators seem to think
that ethical questions related to research using live animals
can be solved by using neuron cultures instead, see Warwick
et al (2010b). At first, this appears to be an odd comparison
to make. Experiments made with live animals have a vari-
ety of purposes, some of which are ethically acceptable and
some of which may not be. Clearly, experiments with neu-
ron cultures could not replace very many of these, e.g., pre-
clinical tests of drugs on rodents could not be done with neu-
ron cultures instead, as we have to test the effects of the drug
on the entire developing animal not just some of its brain

cells. Further, even if we only consider experiments made
with live animals controlling robot body parts, such as Reger
et al (2000), there are fundamental methodological advan-
tages to these experiments, which may well justify them eth-
ically because of the knowledge gained. With live animals,
we have a functionally organized brain, and because we al-
ready have motor control, it is much more likely that we will
be able to replace the controlled body parts or even the en-
tire body with, e.g., robot limbs and form hypotheses about
the relationship between behavior and neural activity. There
might also be a range of biological questions that can be an-
swered by experiments of this kind, see Roth et al (2014).
Even if we grant that this technology presents an ethical ad-
vantage because no live animals are harmed during the re-
search process (not counting the pregnant rats and their fe-
tuses whose neurons are used), there are new research ethi-
cal questions that will result from this research. Researchers
profess that the neuron cultures may have thoughts that are
unknown to us - they link these possible thoughts with what
we perceive as spontaneous network activity, but this is not
so important for this argument. We do not know what these
neuron cultures feel or think, what they enjoy, and ethically
more relevant, how they suffer. The amount of psycholog-
ical suffering experienced by the neuron culture could po-
tentially be the same or larger than that experienced by a
live rat. Finally, given that computer-based robots are much
more efficient and that experiments with these generally do
not involve any animals being harmed, one could argue that,
if the ethical goal is to reduce the suffering of animals, we
should only experiment with computer-based robots.

In Warwick’s view, one goal of MEA-based robotics should
be to build an oversized brain of human neurons (exceeding
100,000,000,000 neurons). This brain could turn out to be
superior to the brains of regular human beings. However,
this seems to rule out some of the motivation for the re-
search itself. It seems ruled out, at least from the perspective
of rights-based ethics or duty ethics, to perform experiments
on such a brain involving giving or predisposing it for dis-
eases such as Alzheimers one of Warwicks arguments for
the technology. Given that this being’s brain is superior to
ours it seems reasonable that we should give it at least the
same rights as we have ourselves. This imposes a duty on
us not to intentionally harm the being and to not use it as
a means to obtain our own goals. From a consequentialist
point of view, there might be a better chance of justifying
such experiments, given that the benefits of curing a disease
such as Alzheimer’s would be immense. However, should
one not consider the possibility that the utility of such a su-
perior brain is so great as to outweigh the utility of even
curing Alzheimer’s? In this case, the experiment would not
even have ethically justifiable consequences. Warwick also
does not seem to acknowledge that there might be an ethical
problem with experimenting with human neurons just be-
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cause they are human and because our brain is intrinsically
related to our personhood and dignity.

...if a loved one is soon to die, perhaps scientists
could take away neuron slices, culture them and re-
turn them as the brain of a brand new household
robot. Maybe the robot would exhibit some of the
emotional tendencies and traits from the loved one
that would bring back happy memories.

Warwick (2010)
To many of us the thought of bringing back the dead in this
way may sound more like the promise of a zombie movie
than of happy memories. More importantly, the dignity of
the deceased and of what is human in general is not taken
into account here. Using human brains for household robots
seems akin to using human skin for lamp shades as was
done in Nazi Germany. Is there not something fundamen-
tally wrong in reducing what was once a brain of a real per-
son to the performance of household functions, such as vac-
uuming the house or making dinner? There are at least some
ethical questions that would need to be addressed much more
thoroughly before conducting research on MEA-based robots
with human neurons.

6 The prospects of MEA-based robotics

I have shown that the current state of MEA-based robotics
is not sufficiently methodologically grounded and that more
ethical reflection is needed. At the moment, MEA-based robots
function poorly and they most likely have no intentional-
ity. They are black boxes on wheels. However, in the long
run, MEA-based robotics might still provide fruitful insights
and practical applications. It is doubtful whether this will
occur before we have a better understanding of the prin-
ciples of neuron cultures. Given the problems investigated
in this paper, this understanding is not likely to come from
MEA-based robotics alone, but rather from other areas of
neuroscience and neuromechanics. Pending such an under-
standing, researchers within MEA-based robotics ought to
be slightly more modest in stating their results. Overstat-
ing results may not itself constitute bad science and might
be done for a variety of pragmatic reasons, e.g., attracting
media attention and helping obtain funding in the short run.
However, in the long run, neither the scientific community
nor the general public will benefit from such poor commu-
nication. Poor communication might lead us to believe that
we have already obtained what we have not and thus delay
actual scientific progress towards reaching our goals.
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P, La Manno G, Juréus A, Marques S, Munguba H, He L,
Betsholtz C, et al (2015) Cell types in the mouse cortex
and hippocampus revealed by single-cell rna-seq. Science
347(6226):1138–1142


