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Topology optimization of coated structures and material
interface problems

Anders Clausena,∗, Niels Aagea, Ole Sigmunda

aDepartment of Mechanical Engineering, Solid Mechanics, Technical University of Denmark,
Nils Koppels Alle, B. 404, DK-2800 Lyngby, Denmark

Abstract

This paper presents a novel method for including coated structures and prescribed
material interface properties into the minimum compliance topology optimization
problem. Several elements of the method are applicable to a broader range of in-
terface problems. The approach extends the standard SIMP method by including
the normalized norm of the spatial gradient of the design field into the material
interpolation function, enforcing coating material at interfaces by attributing par-
ticular properties. The length scales of the base structure and the coating are
separated by introducing a two-step filtering/projection approach. The modeled
coating thickness is derived analytically, and the coating is shown to be accu-
rately controlled and applied in a highly uniform manner over the structure. An
alternative interpretation of the model is to perform single-material design for ad-
ditive manufacturing. Infill is assumed to be constituted of an isotropic porous
microstructure satisfying the Hashin-Shtrikman bounds and is modeled using the
homogenized material properties. A range of numerical results illustrate the ef-
fectiveness of the approach.

Keywords: Topology optimization, Coating, Interface representation, Two-step
filtering, Additive manufacturing

1. Introduction

The objective of this study is to design coated structures by topology optimiza-
tion. Metal coating of polymer structures is commonly used to enhance functional
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or visual properties or to reduce component cost. Furthermore, many polymers
are easily processed into complex shapes that metals alone could not form. Such
structures, when coated with metal, combine the processing and cost advantages
of polymers with the performance benefits of metal.

While there exists a wide range of metal coating technologies (Møller and
Nielsen (2013)), one of the most common techniques is electroplating. In elec-
troplating, the polymer base structure is initially etched to create small pores in
the surface where the coating material can anchor. The polymer surface is then
activated with palladium salts and subsequently immersed in a concentrated elec-
troless copper or nickel plating bath for autocatalytic plating. The surface thereby
becomes conductive and may be coated with a range of different metals by means
of electrolytic plating. The most common polymer material used as a substrate
for electroplating is acrylonitrile-butadiene-styrene (ABS). The initial etching re-
moves the butadiene phase which allows for a very strong adhesion between poly-
mer and coating. ABS is also widely used in additive manufacturing (AM), specif-
ically in fused deposition modeling (FDM). Combining the advantages of metal
coated polymers with the design freedom afforded by AM has the potential to
create new types of architectures (Schaedler et al. (2011)).

This work models coated structures. The method assumes perfect bonding
between the substrate and the coating material. The study is limited to 2D ap-
plications. Assuming the absence of closed cavities, the model should be readily
expandable from 2D shapes to 3D objects.

The paper considers minimum compliance problems. The approach suggested
in the paper draws on the basic ideas of the SIMP approach (for the fundamentals,
see e.g. Bendsøe and Sigmund (2003)). The usual stiffness interpolation from
SIMP is extended to include spatial gradients of the (filtered) design field. This
allows to identify material interfaces and enforce coating. In order to control the
spatial gradient field and thereby assure a uniform coating thickness a two-step
filtering approach is introduced.

Spatial density gradients have earlier been used for identifying material in-
terfaces. The context has been restriction methods / perimeter control rather than
modeling of interface properties. Petersson and Sigmund (1998) introduce a slope
constraint with pointwise bounds on the density slopes to ensure existence of so-
lutions. The topic is discussed in more detail by Borrvall (2001).

Filter processes performed over several steps to control different geometric
properties simultaneously have earlier been used. Sigmund (2007) provides an
overview of the most common filters and shows how morphological operators
may be combined to assure that several properties are simultaneously attained.
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As an example the combined open-close or close-open operator allows to obtain
minimum hole size and minimum structural detail size simultaneously.

The ability to accurately describe material interfaces is often mentioned as an
advantage of level-set based approaches, for which interfaces are implicitly de-
fined by iso-contours of a level-set function. For a review of level-set based topol-
ogy optimization, see e.g. van Dijk et al. (2013). Based on the level-set method,
Vermaak et al. (2014) present a method for including material interface proper-
ties in the optimization of multi-phase elastic and thermoelastic structures. Rather
than modeling a sharp interface between two different materials, a transition zone
is introduced to allow for graded properties.

The method presented in this paper shows that a level set based method is
not the only possible approach when solving problems requiring the ability to
accurately describe material interfaces. A density based approach may as well be
used. More generally speaking, issues which were earlier considered a drawback
of density based approaches compared to level set based approaches have been
solved in recent work. An example is the presence of intermediate densities in
the final design. By introducing projections methods such as robust optimization
(Wang et al. (2011)) this issue may to a large extent be overcome. Combined with
the advantages of density based approaches (such as the availability of sensitivity
information in the entire design domain), a density based approach was considered
the preferred choice for solving the problem addressed in this paper. For a detailed
comparison of density based vs. level set based approaches see Sigmund and
Maute (2013).

The remainder of the paper is structured as follows: Section 2 presents the
problem formulation. This includes the material model and the interpolation
scheme assuring coating at all surfaces, as well as the optimization problem and
the sensitivity analysis. Section 3 presents and discusses numerical results. A
general discussion is presented in section 4. Section 5 concludes the paper.

2. Problem formulation

In this section the optimization problem is defined. This includes defining an
appropriate material model, formally defining the optimization problem, and de-
riving sensitivities. The material model and characteristic properties are derived
analytically based on continuous versions of the design field and filters. Only
when formally defining the optimization problem, the discretized version is intro-
duced.
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Figure 1: Illustrative sketch of relation between coated structure, filtered design field and physical
density function. a Extract of a coated structure in 2D. b Feature from (a). c 1D physical density
function representing the feature. d Underlying (filtered) design field with a feature of width w.

2.1. Material model
A coated structure is characterized by a base structure made of one material

(referred to as the substrate in a process context) and a coating made of a different
material. Initially, no limitations are put on the shape and dimensions of the base
structure, whereas the coating is assumed to have a constant, pre-defined thick-
ness, tre f , at all surfaces of the base structure. Fig. 1 shows a sketch of a coated
structure in 2D and illustrates how the associated physical density function should
look like for a 1D cross section.

This physical density function may be obtained from a filtered 0/1 design field
by utilizing that the interface is characterized by a large spatial gradient, see Fig.
1d. If the base material is chosen where the design field equals 1 and the coating
is enforced where the spatial gradient is large, the physical density function from
Fig. 1c is obtained.

It is important to notice that the prescribed coating thickness, tre f , is a fixed
parameter which is defined as part of the design problem. For the optimization
problem it is convenient to define the coating based on the spatial gradient of the
design field in order to assure sufficient design freedom. The modeled coating
may be characterized by a thickness, t. This parameter, referred to as the modeled
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Figure 2: Two-step filter process allowing to separate length scales of base structure and coating.
The physical density is an interpolation of ϕ and ‖∇ϕ̂‖

α
.

coating thickness, therefore depends on the design field. This approach assures
sufficient design freedom, but must be combined with a method to control the
gradient field in order to end up with the correct coating thickness in the final
design.

To control the shape of the gradient a two-step filtering process is applied
as illustrated in Fig. 2. First, the design field, µ , is smoothed (giving µ̂) and
projected (giving ϕ = ¯̂µ). This projection defines the (polymer) base structure. In
order to identify the interface of the base structure, a second smoothing is applied
(giving ϕ̂). A large norm of the spatial gradient, ‖∇ϕ̂‖

α
, in this second smoothed

field defines the interface (the index α means that the norm is normalized, see
section 2.1.2). The normalized norm is subsequently projected to model a sharp
interface. This field, denoted ‖∇ϕ̂‖

α
, defines the coating. Using this approach

the desired coating thickness is defined indirectly by setting the filter radius used
for the second smoothing, as this parameter determines the width of the interface
region.

In the following subsections the above considerations will be developed in
more detail.

2.1.1. Filters
Filters are a commonly used regularization technique in SIMP-based topol-

ogy optimization to avoid mesh-dependency of solutions. In standard filtering
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techniques the filter radius, R, is equal to the radius of the neighborhood defined
around each individual element for a filtering step. Certain filters assure a min-
imum feature size, e.g. the Heaviside projection (Guest et al. (2004)) for which
the minimum feature size equals 2R. More details on standard filtering techniques
may be found in Sigmund (2007).

In this work, where material interfaces are described by means of spatial gra-
dients, the role of the filters is extended to provide the necessary control over the
spatial gradient field. A density filter / smoothing and a projection scheme are
applied.

Smoothing
The applied density filter is a so-called PDE-filter based on a Helmholtz-type
partial differential equation (Lazarov and Sigmund (2011)). For the isotropic case
the filtered density field, µ̂ , is implicitly defined as a solution to the Helmholtz
PDE

− r2
∇

2
µ̂ + µ̂ = µ (1)

with appropriate boundary conditions. The scalar r is a length scale parameter.
The relation between r and the filter radius, R, in standard filtering techniques is

r =
R

2
√

3
(2)

In this work the filter radius will be reported in terms of R due to its more intuitive
nature.

As opposed to standard filtering techniques which are solved for element den-
sity variables, the PDE-filter is solved for nodal density variables. The PDE filter
has several advantages justifying the additional mapping needed between elemen-
tal and nodal densities: First, using nodal densities allows for an easy calculation
of the spatial gradient and a convenient definition of boundary conditions. Sec-
ond, the PDE-filter is suitable for parallel implementation which makes it a more
attractive choice for large problems.

Projection
Projection methods (Guest et al. (2004), Sigmund (2007)) provide an efficient
means of obtaining black-and-white designs. Wang et al. (2011) propose the fol-
lowing smoothed projection:

¯̂µi =
tanh(βη)+ tanh(β (µ̂i−η))

tanh(βη)+ tanh(β (1−η))
(3)
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Here, β determines the “sharpness” of the projection. η ∈ [0;1] is the threshold
parameter. For η = 0 and η = 1 the projection reduces to the Heaviside step filter
(Guest et al. (2004)) and modified Heaviside filter (Sigmund (2007)), respectively.
In the limit of β → ∞ these two threshold values provide length scale control for
the solid and void phase, respectively. For intermediate values of η there is no
length scale control.

Separating length scales by two-step filtering
At sharp edges in the design field, the spatial density function is non-smooth and
the gradient is not (analytically) defined. Using the gradient of the smoothed field
eliminates this problem. When the PDE filter is applied (as in this work) the nodal
densities are readily available for calculation of spatial gradients.

The two-step filtering process illustrated in Fig. 2 allows to separate the length
scales of the base structure and the coating. First, the base structure is defined by a
smoothing and subsequent projection of the design field. The smoothing is defined
by the radius R1, and the projection is controlled by the parameters β and η . This
filtering process provides an indirect length scale control of the base structure. In
order to identify the interface of the base structure (represented by the projected
field, ϕ), a second density filter is applied. By choosing the filter radius, R2, of this
second filter independently of R1, the thickness of the coating may be decoupled
and controlled independently of the feature size of the base structure. In order
to model a sharp material interface, the normalized gradient norm of this second
density filtered field, ‖∇ϕ̂‖

α
, is subsequently projected using the parameters βg

and ηg which may also be chosen independently of the parameters β and η from
the first projection.

2.1.2. Gradient norm
The two-step filtering and interpolation approach illustrated in Fig. 2 involves

the gradient norm for enforcing coating material at all interfaces between base
material and void. More precisely, this gradient norm refers to the normalized
Euclidean norm of the spatial gradient of the second smoothed field, ϕ̂ . The index
α refers to the normalization, i.e.:

‖∇ϕ̂‖
α
≡ α ‖∇ϕ̂‖ (4)

where the normalization factor α is defined as the inverse of the maximum possi-
ble gradient norm of the second smoothed field, ϕ̂ . This implies that

0≤ ‖∇ϕ̂‖
α
≤ 1, ∀ϕ (5)
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Derivation of the value of α which can be determined a priori is presented in
section 2.1.4. It is the projection of this normalized gradient norm, ‖∇ϕ̂‖

α
, that

is used for enforcing coating material.

2.1.3. Interpolation functions
Based on the above considerations, interpolation functions for the physical

density and stiffness may be defined. The material properties of the base material
are defined as a ratio of the coating material’s properties:

1. Coating material: Mass density m0, stiffness E0

2. Base material: Mass density λmm0, stiffness λEE0

The coating material is assumed to have a higher stiffness and mass density than
the base material, i.e. both λm and λE are contained in the interval [0,1]. The
assumption is generally valid when considering polymer based structures with a
metal coating. To make the connection with the standard SIMP interpolation as
evident as possible, the mass density of the coating material is assumed to be m0 =
1. Thereby the physical density and mass density may be used interchangeably,
as the coating material has a mass density of 1, whereas the base material has a
mass density of λm. Both materials are assumed to be isotropic with a Poisson’s
ratio, ν0, independent of interpolation density.

The physical density, ρ , and stiffness, E, are defined as an interpolation of ϕ

and ‖∇ϕ̂‖
α

:
ρ(ϕ,‖∇ϕ̂‖

α
) = λmϕ +(1−λmϕ)‖∇ϕ̂‖

α
(6)

E(ϕ,‖∇ϕ̂‖
α
) = E0

[
λEϕ

p +(1−λEϕ
p)(‖∇ϕ̂‖

α
)p
]

(7)

The penalization parameter, p = 3, is the same for ϕ and ‖∇ϕ̂‖
α

. Note that when
the gradient norm approaches zero, i.e. when going away from the interface, the
expressions reduce to:

ρbase(ϕ,0) = λmϕ

Ebase(ϕ,0) = E0λEϕ p
(8)

The similarity with standard SIMP is evident. At the other extreme where the
normalized gradient norm approaches 1, i.e. at the interface region, the physical
density and stiffness approach 1 and E0, respectively:

ρcoating(ϕ,1) = λmϕ +(1−λmϕ) = 1

Ecoating(ϕ,1) = E0 [λEϕ p +(1−λEϕ p)] = E0
(9)
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The physical density and stiffness functions are graphically represented in Fig. 3
and 4 for an example 1D design variable step function, µ . There is a symmetry
condition at the right edge, meaning that the figure represents (half of) a sharp
edged feature. For the example, λE < λm. Remark that the slope at the interpolated
edge is steeper for the stiffness function than for the physical density interpolation.
This is due to the penalization of intermediate design densities as known from
standard SIMP.

In addition to the properties given by Eq. (8) and (9) the following properties
may be verified by insertion into (6) and (7) or by considering Fig. 3 and 4:

ρ(0,0) = 0

ρ(1,0) = λm
(10)

and
E(0,0) = 0

E(1,0) = λEE0
(11)

This follows the intention that base material is enforced where the design field
equals 1 and has a low gradient. Equation (9) assures that coating material is
enforced where the spatial gradient is large.

Note that unlike the standard SIMP interpolation, the stiffness is not defined
as an explicit function of the physical density, ρ (no bijective mapping exists
between the physical density and stiffness). Instead, both the physical density and
stiffness are interpolated based on the projected design variable field, ϕ , and the
normalized gradient of the filtered field, ‖∇ϕ̂‖

α
.

2.1.4. Controlling gradients to achieve prescribed coating thickness
Coating material is imposed at interfaces based on the normalized gradient

norm of the second filtered field, ϕ̂ . This makes the modeled coating thickness, t,
dependent on several variables.

The starting point is a given feature of width w in the first projected field,
ϕ = ¯̂µ . Note that w varies throughout the field depending on which feature is
considered. The field, and therefore w, depends on the filter radius, R1, and the
projection parameters, η and β . The normalized gradient norm at the projected
edge depends on the second filter radius, R2, and the normalization factor, α .
Finally, the modeled coating is obtained by projecting the normalized gradient
norm, making it also dependent on the second projection parameters, ηg and βg.
In this section it is shown how the thickness, t, of the modeled coating can be
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controlled to be equal to the prescribed coating thickness, tre f , through the second
filter radius, R2.

A first step is to derive an expression for the normalization factor, α . This
factor should be chosen as the inverse of the maximum possible value of the gra-
dient norm in the second filtered field. Note that this value is a constant which
is calculated before the optimization loop. To find this scaling value a simplified
problem is considered in the following. The maximum will appear where the first
projected field, ϕ , has a discrete (step) edge. Here the edge is assumed perpendic-
ular to the x-direction. The edge should be straight and the feature should be of
infinite extent in the x-direction. The extent in the y-direction may be of arbitrary,
positive length, defined by the real valued limits y1 and y2 > y1. Such an edge
may be represented as a Heaviside step function (see Fig. 5) in the limit of β →∞

:
ϕH(x,y) = H(x) (12)

where

H(x) = Heaviside(x) =
{

0 x < 0
1 x > 0 (13)

The function is not defined for x = 0.
Solving the PDE (1) with four homogeneous Neumann boundary conditions

(at y = y1, y = y2 and the limits of x→±∞) gives the second filtered field

ϕ̂H(x,y) = H(x)+
ex 2

√
3

R2

2
(1−H(x))− e−x 2

√
3

R2

2
H(x) (14)

This solution is independent of y and identical to the solution when using the
corresponding 1D step function

ϕH(x) = H(x) (15)

This implies that using the PDE filter allows to reduce length scale studies of the
2D problem to a 1D problem when the assumptions mentioned in this section are
applied. This would not have been the case if a standard linear filter had been
used.

The maximum gradient norm is obtained in the limit of x→ 0 as:

‖∇ϕ̂H‖max =

√
3

R2
(16)
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Figure 5: 2D step function representing the limit feature edge of infinite extent for calculation of
maximum gradient.

giving a gradient normalization factor of

α =
R2√

3
(17)

Based on this definition of α a relation between the second filter radius, R2,
and the modeled coating thickness, t, may the derived. The projection thresholds
are chosen as ηg = η = 0.5 and it is assumed that β and βg are arbitrarily high.
This implies that all projected fields have sharp edges. With these assumptions, the
point limiting the coating from the base material or void is where ‖∇ϕ̂‖

α
= ηg.

Based on this, the modeled coating thickness may be expressed as an explicit
function of the filter radii, R1 and R2, and the width, w, of a sharp-edged feature
in the design field. The analytical expression is rather lengthy and is omitted
here, however, the analytical curves showing the thickness, t, as a function of w
are plotted for various values of R1 and R2 in Fig. 6. The modeled thickness
converges quickly to a constant, maximum value, tmax, which only depends on the
second filter radius, R2:

tmax =
ln(2)√

3
R2 (18)

By exchanging this asymptotic value, tmax, by the prescribed coating thickness,
tre f , the required value of R2 is obtained:

R2 =

√
3

ln(2)
tre f ≈ 2.5tre f (19)

The larger the first filter radius, compared to the second, the narrower the tran-
sition band of w-values leading to intermediate coating thickness, i.e. between
the minimum width, wmin, and the width where the thickness reaches (a given
percentage of) the prescribed coating thickness tmax = tre f .
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Figure 6: Modeled coating thickness, t, as a function of feature width, w, for a sharp-edged feature
in the design field, µ .

Sharp-edged features in the design field, µ , with w < wmin will be filtered
out by the first filtering and projection, meaning that the coating thickness is not
defined for these values. Note that with the assumption of arbitrarily large β ,
features in the design field with smooth edges will be projected to have sharp
edges in ϕ , and the features may be attributed an equivalent sharp-edged width.

2.2. Optimization problem
The optimization problem is a standard minimum compliance problem with a

constraint on the volume. For the discretized problem the continuous fields (e.g.
µ) are replaced with vectors of element values (µµµ).

The global stiffness matrix, K, is defined as:

K(µµµ) = ∑
e

ke(µµµ) = ∑
e

Ee(ϕe(µµµ),‖∇ϕ̂e(µµµ)‖α
)k0

e (20)

where ke is the element stiffness matrix, and k0
e is the element stiffness matrix for

an element with unit Young’s modulus. For the numerical implementation a small
minimum stiffness (λE,minE0) in void elements is required to avoid singularity.
The first term in the stiffness interpolation, λEϕ

p
e , is replaced with λE,min +(λE−

λE,min)ϕ
p
e .
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The optimization problem is defined in the following way:

min
µµµ

: c(µµµ) = UTKU

subject to: KU = F
g(µµµ) =V (µµµ)/V ∗−1≤ 0

0≤ µe ≤ 1, ∀e

(21)

Here c is the compliance, U and F are the global displacement and force vec-
tors, respectively, g is the volume constraint, V (ρρρ(µµµ)) = ∑viρi(µµµ) is the material
volume and V ∗ is the maximum allowed volume.

Design updates are performed based on sensitivities using MMA (Svanberg
(1987)).

2.3. Sensitivity analysis
For the sensitivity analysis the explicit statement of variable dependency is

omitted, i.e. the long notation ρ(ϕ,‖∇ϕ̂‖
α
) used in previous sections is replaced

with the shorter ρ etc. Furthermore, the following notation is introduced:

E = E0
[
ε

S +(1− ε
S)εG

]
= E0

[
ε

S + ε
G− ε

S
ε

G
]

(22)

where S refers to “SIMP”, and G refers to “gradient”:

ε
S = λEϕ

p, ε
G = (‖∇ϕ̂‖

α
)p (23)

Using the adjoint method, the sensitivity of the objective function with respect to
an element design variable is:

∂c
∂ µe

=−UT ∂K
∂ µe

U = ∑
i

∂Ei

∂ µe
(−uT

i k0ui) (24)

with
∂Ei

∂ µe
= E0

[
∂εS

i
∂ µe

+
∂εG

i
∂ µe
−

∂ (εS
i εG

i )

∂ µe

]
(25)

The first derivative term is obtained using the chain rule:

∂εS
i

∂ µe
=

∂εS
i

∂ϕi

∂ϕi

∂ µe
= pϕ

p−1
i λE

∂ϕi

∂ µe
(26)
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Note that when using the minimum stiffness λE,min, the factor λE should be modi-
fied to (λE−λE,min) in (26). The term ∂ϕi/∂ µe represents the standard modifica-
tion of sensitivities due to filtering and projection. The expression is omitted here
but may be found in the respective papers (Lazarov and Sigmund (2011) for the
PDE-filter and Wang et al. (2011) for the projection).

The second derivative term of (25) is elaborated in a similar way:

∂εG
i

∂ µe
=

∂εG
i

∂ (‖∇ϕ̂i‖α
)

∂ (‖∇ϕ̂i‖α
)

∂ µe
= p(‖∇ϕ̂i‖α

)p−1 ∂ (‖∇ϕ̂i‖α
)

∂ µe
(27)

The last derivative term of (27) is further developed using the chain rule:

∂ (‖∇ϕ̂i‖α
)

∂ µe
=

∂ (‖∇ϕ̂i‖α
)

∂ (‖∇ϕ̂i‖α
)

∂ (‖∇ϕ̂i‖α
)

∂ µe
(28)

Again, the factor ∂ (‖∇ϕ̂i‖α
)/∂ (‖∇ϕ̂i‖α

) is a standard filter modification factor.
The derivative of the normalized gradient norm (the second factor in (28)) is:

∂ (‖∇ϕ̂i‖α )
∂ µe

= α

‖∇ϕ̂i‖

(
∂ ϕ̂i
∂x

∂

∂ µe
(∂ ϕ̂i

∂x )+
∂ ϕ̂i
∂y

∂

∂ µe
(∂ ϕ̂i

∂y )
)

(29)

This expression involves the two gradient components of the second smoothed
field:

∇ϕ̂i =

∂ ϕ̂i
∂x
∂ ϕ̂i
∂y

=

 ∂

∂x
∂

∂y

NT
ξ̂ξξ iii = Bξ̂ξξ iii (30)

Here, ξ̂ξξ iii is a vector of the four nodal densities of the second smoothed field cor-
responding to element i. Note that the nodal densities are obtained directly when
using the PDE-filter (see section 2.1.1). N is a vector of the four shape functions
relating ξ̂ξξ iii with ϕ̂i, and B2x4 is the gradient computation matrix for which the two
rows are obtained by differentiating the four shape functions with respect to the
two spatial variables, x and y, respectively.

Eq. (29) also involves the derivative with respect to the design variables of the
partial, spatial derivatives. As the terms in x and y are identical only the term in x
is developed further here. Based on the gradient calculation shown in Eq. (30) and
denoting the two rows of B by Bx and By, respectively, the following expression
is obtained:

∂

∂ µe
(
∂ ϕ̂i

∂x
) =

∂

∂ µe
(Bx

ξ̂ξξ iii) =
4

∑
k=1

Bx
k
∂ ξ̂ik

∂ µe
(31)
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The factor ∂ ξ̂ik/∂ µe is a standard filter modification factor. The calculation of this
term is described in detail in Lazarov and Sigmund (2011).

The last derivative term of (25) is obtained simply by using the product rule:

∂ (εS
i εG

i )

∂ µe
=

∂εS
i

∂ µe
ε

G
i + ε

S
i

∂εG
i

∂ µe
(32)

Expressions for all terms have already been given above.

3. Results

In the following a range of numerical results are presented. Many parame-
ters are identical for all examples: The penalization p = 3 is used for both ϕ

and ‖∇ϕ̂‖
α

. The two projections are performed with identical parameters. The
threshold is η = ηg = 0.5, and the sharpness parameter is initialized with β = 8.
This number should be sufficiently high to make the projected gradient have an
impact already from the beginning of the optimization. A continuation scheme is
adopted, where β is gradually increased to 64 by doubling at every 100th iteration
(or at convergence).

3.1. MBB beam
The first numerical example is the MBB benchmark example. The design

domain is shown in Fig. 7. A few, minor modifications of the standard design
domain are introduced: First, homogeneous Dirichlet boundary conditions have
been prescribed for the PDE filter to force a gradient at outer boundaries. Sym-
metry constraints have homogeneous Neumann conditions. Second, solid material
(coating material) is required at all loads and supports to overrule the zero Dirich-
let condition. For a point load or support, the width of the solid box should be
larger than the filter radius. This simultaneously removes the large, local defor-
mations that would appear and should be modeled if a thin shell is subdued a
perpendicular, concentrated load (same principle as a fiber reinforced sandwich
structure). At solid boxes a Dirichlet boundary condition of µ̂ = 1 is prescribed.
Identical boundary conditions are used for the two density filtering steps. The
domain has the dimensions 150 by 50 and is discretized by square elements with
varying refinement.

The problem is optimized using a volume fraction of 40%, a filter radius R1 =
10 and a coating thickness tre f = 2, i.e. R2 = 5. The material parameters are E0 =
1, λm = 0.7 and λE = 0.4, meaning that the coating material is disproportionally
stiff with respect to its weight compared to the base material.
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µ̂ = 1

µ̂ = 1

Figure 7: Design domain for MBB beam, including (nodal) boundary conditions for PDE filter.

Figure 8: Optimized MBB beam. Left: 150 by 50 elements (c = 324.3). Middle: 300 by 100
elements (c = 305.2). Right: 600 by 200 elements (c = 305.8).

Fig. 8 shows the optimized structure using three different discretizations with
element side lengths of 1, 0.5 and 0.25, respectively. The three designs have the
same topology and are very similar in shape. The coating thickness is highly
uniform and almost independent of discretization.

Note that the figure shows the stiffness (E-field) of the structures. For compar-
ison, Fig. 9 shows the physical density field, ρ , of the middle structure. The base
material has a relative stiffness value of λE = 0.4 but a relative physical density
value of λm = 0.7.

A detail of the coating for the three designs is shown in Fig. 10. The coating
thickness is seen to be identical for the three designs, only the resolution is im-
proved. Within the precision of the resolution, and accounting for variations due
to the FE discretization, the thicknesses equal the prescribed coating thickness,
tre f = 2.0. For an axis-parallel edge in the three designs shown in Fig. 8, this
maximum value corresponds to 2, 4 and 8 elements, respectively.

If the resolution becomes even coarser, the diagonal edges would begin to con-

Figure 9: Physical density field, ρ , of optimized MBB beam using 300 by 100 elements.
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Figure 10: Detail of Fig. 8, showing leftmost member. Scale bar indicates tre f = 2.0.

Figure 11: Optimized MBB beam with varying coating thickness. Left: tre f = 1⇒ R2 = 2.5
(c = 374.4). Middle: tre f = 2⇒ R2 = 5 (c = 305.2). Right: tre f = 3⇒ R2 = 7.5 (c = 270.2).

tain one-node connections in the coating which would not make physical sense. In
general it is recommended to resolve coating features with at least two elements in
order for the model to maintain its physical meaning. Assuming a coating thick-
ness everywhere of tre f , denoting the longer of the element side lengths as we, and
using the relation (19), this implies a resolution requirement, i.e. element size, of

2we ≤ tre f ⇒ we ≤
tre f

2
=

ln2
2
√

3
R2 (33)

When choosing R2 close to this limit, R1 should be greater than or equal R2 to
assure sufficiently wide features in the base structure.

In Fig. 11 the same design problem as above is solved with the intermediate
discretization (300 by 100 elements) and varying coating thickness. The modeled
coating thickness is clearly controlled by modifying the filter radius, R2. The
compliance changes as a thicker coating takes up more material per unit length.
The compliance improves significantly when allowing for a thicker coating, and
thereby reducing the amount of base material which is disproportionately weak.
The design is gradually approaching the design obtained with a standard SIMP
optimization. Using the same method as above to calculate the coating thickness,
the relation to Eq. (18) may be verified.

As indicated in the analytical analysis of the modeled coating thickness, il-
lustrated in Fig. 6 from section 2.1.4, the modeled coating thickness at a given
interface point depends on the feature size, w, of the underlying feature in the first
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Figure 12: Dependence of modeled coating thickness, t, on the feature size, w (measured in the
first projected field, ϕ). a First projected field, ϕ . b Physical stiffness field, E. c Comparison of
numerical values obtained in (a) and (b) vs. analytical curve derived in section 2.1.4.

projected field, ϕ . The figure illustrates that a certain feature size is needed in
order to obtain a final design with constant modeled coating thickness. Thinner
features are predicted to have a thinner modeled coating thickness. In Fig. 12
this circumstance has been investigated from a numerical perspective. The same
problem as in Fig. 8 is considered, except that the volume fraction is decreased to
30% and the first filter radius is decreased to R1 = 5. The problem is solved using
the intermediate discretization. The optimized structure is shown in Fig. 8. For
six cross-sections of varying width, the numerical values of w and t have been cal-
culated. In the figure the values are compared to the analytically derived relation.
The numerical results closely follow the analytical prediction to within the preci-
sion of the discretization. In order to be guaranteed a constant modeled coating
thickness for the entire design a sufficiently high minimum feature size is needed.
For most practical applications the coating thickness will be much smaller (at least
several times smaller) than the base structure feature size. This implies a value of
R2 which is correspondingly low compared to R1, meaning that the problem of
non-constant modeled coating thickness is less likely to appear.

3.2. Design dependency on material properties
The topology of the optimized design is dependent on the values of λE and λm.

The effect of varying the relative physical density, λm, for a fixed relative stiffness,
λE = 0.2, is shown in Fig. 13. The filter radii are R1 = R2 = 3.5, corresponding
to a maximum coating thickness of tmax = 1.4. The volume constraint is 40%.

The figure illustrates an important point: When the value of λm is chosen too
close to the volume constraint for the problem, the entire design domain may be
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Figure 13: Effect of varying λm with fixed λE = 0.2. Values of λm (from left to right): 0.2, 0.4,
0.6, 0.8, 0.99.

filled up with base material while keeping below the maximum amount of volume
allowed. This is what happens in the first structure of Fig. 13 with λm = 0.2. The
second structure with λm = 0.4 shows the behavior around the limit value where
the volume constraint becomes active. The coating is only partially created. This
is possible because there is no minimum length scale control in the first projected
design field, meaning that the interface may be blurred sufficiently to make the
gradient norm attain a value below the projection threshold. It is a well-known
issue in SIMP-based topology optimization that the volume constraint has to be
active in order for the penalization to remove intermediate design densities. The
issue may be alleviated using robust design schemes (e.g. Wang et al. (2011)) but
this is outside the scope of this paper.

For larger values of λm the optimized structures have a clearly defined and ho-
mogeneous coating. Base material becomes more and more uneconomical as λm
increases. This favors generation of a higher amount of coating material, imply-
ing an increased number of holes. However, simultaneously the total amount of
base material available decreases in order for the volume constraint to be satisfied.
This impedes the structure in branching out in a high number of members, thus
limiting the number of holes and counteracting the other effect.

Fig. 14 shows compliance iso-curves obtained by varying the values of λm and
λE . The dashed line indicates the minimum value, λm = 0.33, required to make
the volume constraint active for this problem. Structures optimized with a value of
λm below this value will attain the same topology, independent of the choice of λE
(see example structures in the figure). However, the stiffness will still vary with
λE . As a result, left of the dashed line all compliance iso-curves are horizontal.

For the part of the figure to the right of the dashed line, the iso-curves appear as
almost straight lines with varying slope. The higher the value of λE and the lower
the value of λm, the lower the compliance. Furthermore, the lower the compliance
value, the larger the distance between iso-lines as the relative change becomes
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Figure 14: Compliance iso-curves when varying λm and λE . For the four example structures
the upper figure shows the stiffness and the lower shows the physical density. The dashed line
indicates the minimum λm required to make the volume constraint active.

larger.

3.3. Bi-axial tension
A second test example is the optimization of a square plate in bi-axial tension.

The design domain is shown in Fig. 15. For symmetry reasons only one quarter
of the domain is modeled. The shown domain has dimensions 100 by 100 and is
discretized using 200 by 200 square elements. The distributed load adds up to 1
for a full plate side length. The problem is optimized for varying filter radius, R1,
and relative stiffness of base material, λE . The coating thickness is set to tre f = 1
(R2 = 2.5), and the volume fraction is 30%. The material parameters are E0 = 1
and λm = 0.75.

Fig. 16 shows the optimized structures. All designs are symmetrical and
have a clearly defined coating. In the top row the relative stiffness, λE , of the
base material is lower than in the bottom row. This makes coating material more
attractive and the result is a higher amount of interface. In the right figures, the
filter radius for the first smoothing is only half of the value used in the left figures,
thereby allowing for smaller and finer features.

3.4. Multiple load cases
Fig. 17 shows a bridge-like design problem involving multiple load cases. The

structure is simply supported and the five vertical unit loads are applied individu-
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Figure 15: Design domain for plate in bi-axial tension, including (nodal) boundary conditions for
PDE filter.

(a) R1 = 5, λE = 0.25, c = 5.18 (b) R1 = 2.5, λE = 0.25, c = 4.82

(c) R1 = 5, λE = 0.40, c = 4.20 (d) R1 = 2.5, λE = 0.40, c = 4.01

Figure 16: Optimized plate under bi-axial loading.
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Figure 17: Design domain for problem with five vertical load cases, including (nodal) boundary
conditions for PDE filter.

Figure 18: Optimized structure for 5 vertical load cases. Average compliance for the five load
cases: c = 30.8.

ally. The objective function is defined as the sum of the corresponding compliance
values. The domain is rectangular with dimensions 200 by 100 and is discretized
with two elements per unit length. The maximum amount of volume allowed is
30%, the first filter radius is R1 = 10 and the coating thickness is tre f = 2 (R2 = 5).
The material parameters are λE = 0.4, λm = 0.75.

The optimized structure is shown in Fig. 18. As it would have been the case
if a standard black and white projection method was used, the optimized structure
consists of triangular holes only. This makes the design perform well for each of
the individual load cases. Again, the coating is successfully applied uniformly at
all interfaces.

3.5. Microstructural infill using Hashin-Shtrikman bounds
A particular application for the approach presented in this paper is the design

of structures or components made of a single material, but where only the surface
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is required to be solid. The interior is instead required to have a fixed, pre-defined
porosity. In additive manufacturing, this situation is frequently encountered: In
the standard format of many 3D printers, a 3D object is defined by its surface.
When preparing the print, the surface thickness and infill percentage are speci-
fied. These parameters may be directly adopted into the approach of this paper:
The surface thickness translates into a coating thickness, tre f (giving the second
filter radius, R2), and the infill percentage gives λm and λE . This approach allows
to cheaply include microstructure into the optimization model by using only the
homogenized properties.

When the porous infill is required to be isotropic and made of the same mate-
rial as the solid shell the relation between the material density, λm, and stiffness,
λE , should satisfy the Hashin-Shtrikman (HS) bounds in order to be physically
meaningful (Hashin and Shtrikman (1963)). In 2D, the HS bounds for the Young’s
modulus, E, are given by (Torquato et al. (1998)):

0≤ E ≤ E∗(ρ) =
ρE0

3−2ρ
(34)

where ρ is the density and E0 is the Young’s modulus for full material density
(ρ = 1). A porous material of density ρ = λm which exactly satisfies the HS
upper bound will thus have a normalized Young’s modulus, λE , of

λE =
E∗(λm)

E0
=

λm

3−2λm
(35)

Fig. 19 shows the HS upper bound normalized with respect to E0 as a function
of the material density. For single material applications, chosen combinations of
(λm,λE) should lie below the curve. Bendsøe and Sigmund (1999) realize mi-
crostructures consisting of solid material and void for a range of combinations of
these parameters.

In Fig. 20a-b the plate from section 3.3 is optimized using infill material with
properties corresponding to the HS upper bound. The relative stiffness, λE , and
the filter radius are shown in the figure. The relative density, λm, is determined
from λE based on (35). For λE = 0.25 the corresponding relative density is λm =
0.5 and for λE = 0.4 the density is λm = 0.67. All other parameters are the same
as in section 3.3. The obtained topologies resemble those obtained in section 3.3.

In Fig. 20c-d the same problem is solved with a standard projection filter. With
the formulation used in this paper it corresponds to setting the gradient normaliza-
tion factor α to zero. The topologies are different than for the coated designs. The
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Figure 19: Hashin-Shtrikman upper bound of stiffness as a function of material density.

right structure contains some gray areas. The compliance values for these struc-
tures are both lower than the corresponding values for the solid surface structures
optimized with the same filter radius, R1 (by 19 % and 12 %, respectively).

A second example is the T-domain shown in Fig. 21. The domain has the di-
mensions indicated in the figure. The problem is discretized with square elements
of side length 1/8. The first filter radius is R1 = 2 and the coating thickness is set
to tre f = 0.4 giving a second filter radius of R2 = 1. The volume fraction is set
to 40%. The horizontal load which is distributed at the bottom face sums up to
1. Again, the relative material parameters for the base material are set such that
the HS upper bound is attained. In line with the plate example this problem is
optimized both using λE = 0.4 and with a standard projection optimization.

The optimized structures are shown in Fig. 22. The topologies for the two
examples are rather similar, however, several of the holes from the standard pro-
jection solution have been closed when using the solid surface method (λE = 0.4).
At the top center the holes have completely disappeared. At the top of the vertical
member, the holes for the cross beams are only just initiated. Again, the compli-
ance for the standard projection structure is lower (8 %) than for the solid surface
structure.

A range of single material example cases have been run in relation to this pa-
per. For all cases a pure black and white design performs better than a design
with a solid surface and porous infill material attaining the HS upper bound. The
reason is that the microstructure used for the infill is predefined and required to be
isotropic. This corresponds to putting a strong constraint on the microstructure, as
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(a) R1 = 10, λE = 0.40, c = 3.60 (b) R1 = 5, λE = 0.50, c = 3.51

(c) R1 = 10, std. proj., c = 2.92 (d) R1 = 5, std. proj., c = 3.10

Figure 20: Optimized plate under bi-axial loading. a-b Using infill attaining the HS upper bound.
c-d Using standard projection method.
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Figure 21: T-shaped design domain with two simple supports and a moment applied at the bottom.
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(a) λE = 0.40, c = 4355 (b) Std. proj., c = 4012

Figure 22: Optimized structures for T-domain shown in Fig 21.

it does not allow the microstructure to adapt to differences in the principal stress
directions. Even for the plate in bi-axial tension the porous infill leads to sub-
optimal designs. Microstructure is only advantageous when attributed sufficient
design freedom. Including a buckling constraint this conclusion may change.

4. Discussion

This paper focuses on coated structures, however, several elements of the
methodology are promising for broader applications. Particularly the two-step fil-
tering process allowing to identify material interfaces and separate length scales of
base structure and interface may be useful for problems involving interface mod-
eling. An example is to include graded properties at the interface transition zone
for multi-phase structures, thus suggesting an alternative, SIMP-based method to
the level-set based approach suggested by Vermaak et al. (2014). The width and
steepness of the interface may be modeled by modifying smoothing and projection
parameters, or different interpolation schemes may be explored.

More generally speaking, applying the two-step filtering approach allows to
crisply model material interfaces in SIMP-based topology optimization. Further-
more, two-step filtering approaches may find applications outside the area of in-
terface modeling. A related double filtering concept is used to ensure robustness
of topology optimized acoustic structures in Christiansen et al. (submitted).
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The study presented in this paper is limited to minimum compliance design.
However, the primary objective of applying a coating is often to enhance other
properties than stiffness. A range of alternative objective functions or physics
problems could be considered. Examples of the latter include conduction or elec-
tromagnetic problems.

5. Conclusions

This paper introduces a new methodology for topology optimization of coated
structures. The spatial gradient of the design field is used to identify material in-
terfaces and apply the coating. A two-step filtering approach allows to control the
gradient field and separate the length scales of the base structure and the coating.
An analytical expression has been derived for the maximum coating thickness
and the coating is shown to be applied with a highly uniform thickness over the
structure.

The context of the paper is coating, however, several elements from the method-
ology are expected to be applicable to a broader range of problems. Especially the
ability to identify and attribute particular properties to material interfaces is gen-
erally useful. In problems where only the length scale of the material interface is
important one filtering step might be sufficient. Possible alternative applications
have been discussed.

An alternative interpretation based on the typical additive manufacturing work
flow has been presented. Rather than coating a base structure with a different ma-
terial, the optimized structure is representing a single material. Objects optimized
with this approach have a solid shell but a porous infill satisfying the Hashin-
Shtrikman bounds for isotropic material.

The effectiveness of the approach has been illustrated through a range of nu-
merical results.
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