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Abstract 16 

The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined 17 

for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens 18 

loaded with pure bending moments taking into account the presence of large-scale bridging and the multi-axial 19 

state of stress in the test specimen. The fracture resistance is calculated from the applied moments, the elastic 20 

material properties and the geometry of the test specimen. The cohesive law is then determined in a three step 21 

procedure: 1) Obtain the bridging law by differentiating the fracture resistance with respect to opening 22 

displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to 23 

a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative 24 

modelling approach so that the changing state of stress and deformation across the width of the test specimen is 25 

taken into account. The changing state of stress and deformation across the specimen width is shown to be 26 

significant for small openings (small fracture process zone size). This will also be important for the initial part of 27 

the cohesive law with high stress variation for small openings (a few microns), but the effects are expected to be 28 

smaller for large-scale-bridging where the stress varies slowly over an increase in crack opening of several 29 

millimetres. The accuracy of the proposed approach is assessed by comparing the results of numerical simulation 30 

using the cohesive law derived by the above method, with those of physical testing for the standard DCB Mode I 31 

delamination test (ASTM D 5528). 32 
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1 Introduction 35 

The fracture process zone (FPZ) in a delaminating fibre reinforced polymer laminate is 36 

usually long in the plane of fracture in comparison with the smallest specimen dimension, i.e. 37 

the thickness of the laminate. The reason for the large FPZ is the development of fibre 38 

bridging following in the wake of the crack tip. Fibre bridging is beneficial in the sense that it 39 

leads to an increased fracture resistance, and thus increases the damage tolerance. Cohesive 40 

zone models (CZM) [1, 2] are well suited for modelling this kind of FPZ. A CZM can be 41 

implemented by inserting cohesive elements [3] at interfaces where fracture is expected to 42 

propagate. Therefore CZM has become a favoured tool for modelling delamination [4-17]. A 43 

cohesive law that relates separation of the fracturing surfaces to the traction transferred 44 

between them governs the cohesive elements. Since the law relates tractions to separation, it 45 

is often referred to as a traction-separation law. A major challenge in the use of CZM in 46 

structural design of engineering structures is to characterise the cohesive law of the real 47 

fracture process zone of the material or interface. The existing test standards [18, 19] 48 

concerned with interface properties of fibre reinforced polymer composites are designed for 49 

determining the critical energy release rate, i.e. under the premises of linear-elastic fracture 50 

mechanics (small-scale fracture process zone). Within linear-elastic fracture mechanics, the 51 

criterion for crack growth is that the energy release rate is equal to the work per unit area of 52 

the cohesive tractions and represents the fracture energy associated with a fully developed 53 

FPZ [20, 21]. However, linear-elastic fracture mechanics concepts are not applicable for 54 

large-scale bridging problems; instead cohesive laws can be used for representing the 55 

mechanics of fracture, including the energy dissipation at a crack tip and the work of tractions 56 

in a bridging zone behind the crack tip. Crack initiation and arrest, and thus the shape of the 57 

delaminated area in a composite structure are governed not only by the overall geometry, the 58 

loading and the total fracture resistance but also by underlying details of the traction-59 

separation law [22]. More reliable procedures for determining the underlying details of the 60 

traction-separation law are needed. 61 

 62 

The path independent J integral [20] has been adopted to determine the cohesive laws from 63 

experiments [12-14, 23] for plane problems. This has opened for the possibility of measuring 64 

the shape of the cohesive law. For large-scale bridging (LSB) problems, the J integral of the 65 

standard DCB specimen loaded with wedge forces can be determined experimentally by 66 

measuring the rotations where the forces are applied [24, 25], i.e. requiring more 67 
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instrumentation than for the LEFM delamination test. Although with the J integral approach 68 

more instrumentation is needed in a DCB configuration, there is no need to monitor the crack 69 

tip position during the test, which is always difficult. The need to measure rotations can be 70 

avoided by applying pure bending moments to the test specimens instead of forces [17, 21], 71 

since for the DCB loaded with pure bending moments the J integral is given in closed 72 

analytical form, independent of crack length and valid also for LSB-problems. In reality, 3-73 

dimensional (3D) effects associated with anticlastic bending [26] of the beams in the cracked 74 

region lead to inaccuracy when the crack opening is measured at the edge of the specimen; the 75 

anticlastic curvature makes the crack opening at the edge of the specimen smaller than that at 76 

mid-width, while restraint of the anticlastic bending in the middle region induces variation of 77 

the stress state across the specimen width. These effects also cause the longitudinal position of 78 

the crack tip to vary across the width of a fracture mechanics test specimen. Then the resulting 79 

cohesive tractions will vary across the specimen, in particular in the representation of the 80 

crack tip fracture energy, where the cohesive traction is expected to vary from high to near-81 

zero over small openings.  82 

 83 

A remaining challenge is to extend the approach for plane problems to 3-dimensional 84 

problems and account for the changing state of stress across the width of the specimen. As 85 

will be shown later, both material properties and specimen geometry affect the result.  86 

 87 

The objective of the present study is to demonstrate that a cohesive law for 3D finite element 88 

implementation can be fitted from experimental test results taking into account the changing 89 

crack opening and state of stress across the width of the test specimen. In the study, DCB tests 90 

using pure bending moments have been carried out on a set of laminate specimens. Attempts 91 

have then been made to derive from these tests a cohesive law for Mode I delamination using 92 

a modified iterative modelling approach [27-30]. First, the cohesive law for Mode I 93 

delamination is obtained using the J integral approach for plane problems [12], which 94 

implicitly assumes that the crack opening is the same across the width of the specimen. A 95 

simplified, multi-linear cohesive law is then implemented in a three-dimensional finite 96 

element model where the parameters describing the cohesive law are defined as variables. 97 

These variables are then optimised for the model result to fit the experimental response. The 98 

variation in crack opening across the test specimen is then accounted for. Finally, the 99 

accuracy of the approach is tested by numerically simulating a separate test, namely the 100 
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standardised ASTM double cantilever beam (DCB) specimen [18], using the derived cohesive 101 

law, and comparing the calculated load-displacement response to that from a corresponding 102 

physical test. Note that the standardised DCB specimens and the moment loaded DCB 103 

specimens had different widths and width to height ratios. 104 

 105 

A short theoretical background for the use of the J integral and the effect of changing state of 106 

stress is presented in the following section.  107 

2 The path independent J integral approach 108 

The path independent J integral was first applied to crack problems by Rice [20] and can be 109 

used to calculate the fracture resistance, 
R
J  , during crack growth. 110 

 111 

For a homogeneous DCB specimen loaded by pure bending moments, an evaluation of the J 112 

integral along the external boundaries of the DCB specimen in Figure 1 c) gives (assuming 113 

plane stress) [31] 114 

   (1) 115 

where M is the applied moment, B and H are the beam width and height, respectively and E11 116 

is the Young's modulus in the x1 direction. In the present paper, the composite laminates are 117 

analysed as homogeneous beams. This is assumed to be acceptable provided the correct 118 

bending stiffness is modelled.  119 

 120 

 Evaluating the J integral along the edge of the FPZ in Figure 1 a) gives [20, 31] 121 

 ( )

*

R,FPZ FB tip

0

d ,J J

δ

σ δ δ= +∫   (2) 122 

where 
*

δ  is the end-opening of the FPZ, ( )FB
σ δ  is the traction as a function of separation δ 123 

along the FPZ associated with fibre bridging and 
tipJ  is the J integral evaluated around the 124 

crack tip.  125 

 126 

Due to path-independence, JR,ext = JR,FPZ. At low load levels when JR,ext (or equivalently,  JR,FPZ) 127 

is below a certain value, denoted
0
J ,  no crack growth takes place and 

*
δ  = 0.  When the 128 

external load is increased so that JR,ext reaches 
0
J , the crack will open ( > 0).   is thus  the 129 
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crack tip fracture energy. A bridging zone now forms between the initial and the present crack 130 

tip. The length of the bridging zone is denoted L. With increasing JR,ext, the length of the active 131 

cohesive zone, L, and the end-opening, 
*

δ , increase as the crack tip advances.  When 
*

δ  132 

reaches a critical value, 
0
,δ  the fracture surfaces are completely separated at the end of the 133 

crack. The FPZ is then fully developed and the fracture resistance attains a constant value, 134 

denoted the steady-state fracture resistance, which represents work of separation per unit area 135 

of the cohesive traction. For steady-state specimens, further crack extension will not cause an 136 

increase in the active cohesive zone length, L, while for other fracture specimens, the active 137 

cohesive zone length may continue to change [30].  138 

 139 

In equation (2), the traction-separation law represents a bridging law describing the relation 140 

between traction and separation in the wake of the crack tip.  When the FPZ is modelled using 141 

cohesive elements the crack tip energy is included in the traction separation law and equation 142 

(2) becomes [13] 143 

 ( )

*

R,FPZ CL

0

d ,J

δ

σ δ δ= ∫   (3) 144 

where 
CL( )σ δ  represents the cohesive law.  145 

The relation between the tractions and the opening separation at the crack end can then be 146 

obtained by differentiating the external J integral with respect to the end opening of the 147 

cohesive zone [23, 31]. By assuming this is representative for the rest of the interface, the 148 

cohesive law for the interfaces is given: 149 

 
*

,*)(
δ

δσ
∂

∂
=

extR

CL

J
  (4) 150 

In equation (4), )( *
δσ

CL
 can be understood as the traction acting at the position of the end 151 

opening of the cohesive zone. However, assuming the cohesive law is a material property, 152 

independent of position, the general cohesive law is the same as the one found at the end-153 

opening, so that in the functional form for the cohesive law we can replace δ* with  δ.    154 

3 Test specimen, experimental setup, data analysis and results 155 

The mechanical properties of the non-crimp fabric glass-fibre vinylester composite material 156 

and dimensions of the DCB test samples are presented in Table 1 and illustrated in Figure 2. 157 

The lay-up is [(90/0)9]S, and the weight distribution within each ply is 95% in the 0° direction 158 

and 5% in the 90° direction, so that the laminate does not possess bend-twist coupling. The 159 
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end-opening δ* was measured using an extensometer attached to the side of the upper and 160 

lower beams at the initial prefabricated crack tip at )2/,0(),( 21 Hxx ±= . Mode I 161 

delamination was promoted by applying equal moments in the opposite directions in a 162 

progressive manner by increasing the rotations of the specimen beam ends [17]. The fracture 163 

resistance was calculated from the measured applied moments, equation (1).  164 

 165 

An exponential decay function of the following form was fitted to the fracture resistance:  166 

 J
R
δ( ) = J

a
1− e

−δ δa( )+ Jb 1− e
−δ δb( )+ J0   (5) 167 

where the fitting parameters Ja, δa, Jb and δb are presented in Table 1. The resulting fracture 168 

resistance curves are plotted in Figure 3 a). In Figure 3 b) it can be seen that the fracture 169 

resistance increases before any opening displacement is observed. The fracture resistance at 170 

which the opening displacement starts is associated with the crack tip fracture energy, 
0
J . 171 

The crack tip fracture energy is the base for the fitted function plotted in Figure 3 a) and b). A 172 

bridging law is obtained by differentiating the fitted function analytically with respect to the 173 

end-opening in accordance with equation (4). The result is (see  Figure 3 c): 174 

 σ
FB

= δ
a
J
a
e
−δ δa +δ

b
J
b
e
−δ δb   (6) 175 

The derived bridging law is highly non-linear. The peak stress is approximately 0.9 MPa and 176 

the critical separation, δ
0

 is about 3 mm. The bridging law does not include the deformations 177 

(separation) associated with the crack tip that gives rise to 
0
J , see equation (2).  As seen in 178 

Figure 3 b), 
0
J is dissipated within a small opening displacement (assumed to be in the order 179 

of 0.01 mm).  180 

 181 

A cohesive law should prescribe a traction-separation relation that dissipates the total energy 182 

associated with both the cracking at the crack tip and fibre bridging in the bridging zone.  183 

Figure 3 d) presents a cohesive law that has a cohesive traction that increases to a peak value, 184 

σ̂ , stays constant for a small opening, ˆδ , and then decays rapidly within small openings 185 

added to the initial part of the bridging law such that the cohesive law includes work of 186 

cohesive tractions corresponding to the crack tip fracture energy. The value of σ̂ represents 187 

the interface strength and ˆδ needs to be fitted so the area under the traction-separation law 188 

equals the critical crack tip energy. In reality only 
0
J , determined by acoustic emission and 189 

initiation of crack end opening, can be determined from experiments; the chosen peak stress 190 
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therefore affects the associated separations and vice versa. Accurate determination of the peak 191 

stress and separation parameters is a key issue in the remainder of this paper.  192 

 193 

It is well known that for wide specimens the crack front often has a “thumb-nail” shape, i.e. 194 

the crack is somewhat shorter at the free edges and longest half way across the specimen 195 

width [32]. The opening displacement at a given x1 position within the active cohesive zone is 196 

thus not constant across the specimen width. 197 

 198 

Therefore, the opening displacement 
*

δ measured at the side of the specimen does not 199 

accurately represent the behaviour for the whole delamination front. Furthermore, partial 200 

restriction of anticlastic bending leads to deviation from a state of plane stress. Consequently, 201 

the interface traction obtained with the plane stress assumption through equation (4) will not 202 

be accurate. In the next section it will be shown that the opening tractions are non-uniform 203 

across the specimen width and that the non-uniformity is affected by the Poisson's ratio. This 204 

is of particular importance for small openings where the value of the cohesive traction is 205 

expected to vary significantly, such as in the description of cohesive laws representing the 206 

crack tip fracture energy . 207 

4 Numerical approach and results 208 

A three-dimensional finite element model of the DCB specimen was made using the LS-209 

DYNA finite element code. The specimen material and geometric properties are presented in 210 

Table 1 and Figure 2. The beams in the moment loaded DCB specimen were modelled using 211 

8-node solid elements with an isotropic material description fitted to resemble the flexural 212 

stiffness of the composite beams. The beams were modelled using volume elements with all 213 

sides having lengths of approximately 0.5 mm. An orthotropic material description with a full 214 

lay-up description based on unidirectional plies did not produce significantly different results 215 

from an isotropic one as long at the bending stiffness was unchanged. Due to symmetry, only 216 

one-half of the width of the specimen was modelled. The model is illustrated in Figure 4. The 217 

surfaces at the beam-ends in Figure 4 are modelled as rigid bodies. The simulations were 218 

executed in a nonlinear dynamic analysis with implicit time integration. The reason for using 219 

a dynamic analysis was to introduce the mass-matrix to ease the convergence in each load 220 

step. Monotonically increasing equal moments, acting in opposite directions, are prescribed to 221 

0
J
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these rigid bodies. The contact area between fixture and beam is the same as in the 222 

experiments [17]. 223 

 224 

The fracture interface was modelled with 8-noded finite-thickness cohesive elements with a 225 

general cohesive material formulation referred to as *MAT_186 in the LS-DYNA material 226 

library [33]. The cohesive elements had the dimensions: 0.5 mm, 0.5 mm, and 0.001 mm in 227 

width, length and thickness respectively. The constitutive model is a cohesive law that 228 

includes both crack tip and fibre bridging behaviour.  229 

 230 

As a preliminary investigation, to evaluate the effect of the above mentioned stress and crack 231 

opening variations across the width [32], a simple bi-linear cohesive law was used as model 232 

input. The cohesive law parameters are given in terms of the peak stress (set to 20 MPa) and 233 

the critical separation,
0
,δ  was set to 0.1 mm. These parameters are chosen for illustration 234 

purpose. The bi-linear shape is chosen because this is the shape most commonly used in FEM 235 

when delamination is included [4, 7, 34-37]. The value of the critical separation used in these 236 

simulations is much smaller than the value determined earlier from the experiments (here  237 

was about 3 mm), but is of the order of magnitude corresponding to the parameters describing 238 

the crack tip fracture energy. The J integral approach described in section 2 was applied to see 239 

if changing the Poisson's ratio or specimen width affected the calculated cohesive law. The 240 

aim of this preliminary investigation was to see if the cohesive law used in the model input 241 

can be determined from post processing the results of a delamination simulation, and what 242 

might affect the outcome. The end-opening displacement was extracted from the simulations 243 

for )2/,0(),( 21 Hxx ±=  and the resulting cohesive law was calculated using equation (4). 244 

First, a DCB specimen with the width of 30 mm was modelled with four different Poisson's 245 

ratios. Then the Poisson's ratio was fixed at 0.30 and the cohesive law was calculated from 246 

four models with different widths.
 

247 

 248 

The calculated cohesive laws are plotted in Figure 5 a) and b). Both figures illustrate that the 249 

results are affected by both material properties and specimen geometry. The peak cohesive 250 

traction is significantly affected. Critical cohesive traction, as seen from the input cohesive 251 

law curve, is 20 MPa. Hence, all tractions above 20 MPa are in error. The reason tractions 252 

appear to exceed the critical cohesive traction is simply that the tractions are calculated based 253 

on the assumption that the crack tip opening displacement is equal across the width of the 254 

0
J
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sample. Due to the variation of stress state (and deformations) across the width of the beams, 255 

the crack will start to develop in the centre of the specimen before it is visible at the side of 256 

the specimen where the crack tip opening displacement is recorded. The calculated cohesive 257 

law is equal to the law used as model input when the Poisson's ratio is set to zero. The stress 258 

state is then reduced to plane stress throughout the specimen, with no anticlastic bending, and 259 

the crack front remains straight. 260 

 261 

With respect to delamination problems, the effect of Poisson’s ratio is thus very important for 262 

small separations corresponding to the part of the cohesive law that is associated with the 263 

crack tip fracture energy, 
0
J , which occurs in the range of separation of the order of tens of 264 

microns. The effect of the Poisson's ratio is likely to be much less significant for openings 265 

corresponding to the crack bridging regime, where the traction value is much lower and 266 

decreases to zero over an increase of 3 mm in the crack opening. 267 

4.1 Fitting the cohesive law 268 

In the following, we develop a cohesive law that incorporates the crack tip fracture energy, 269 

0
J . The cohesive law is modelled as multi-linear and an iterative approach is applied to 270 

determine the cohesive law parameters. First, a bridging law is calculated from equation (6). 271 

Then an area is added to the bridging law so that it becomes a complete cohesive law that 272 

includes the critical crack tip energy. The area added to the bridging law is based on the 273 

assumption that the interface behaviour is linearly elastic up to the critical interface strength. 274 

The shape presented in Figure 3 d) is chosen. By this approach
0
J will be dissipated within the 275 

shortest possible opening displacement without exceeding the assumed interface strength. At 276 

some opening displacement, , the crack tip energy is fully dissipated. The cohesive law 277 

should here include both the work of the bridging traction and the crack tip fracture energy
0
J278 

at the end-opening . This point can be seen in Figure 3 d) where the Adjusted CL aligns 279 

with the Calculated BL. The area under the cohesive law at this point is (see equation (2)) 280 

 

  

J
R,FPZ

δ
A

*( ) = σ
FB

δ *( )
0

δ
A

*

∫ dδ *
+ J

0
  (7) 281 

For openings larger than 
*

A
δ , the cohesive law should follow the bridging law, see Figure 3 d). 282 

However, in the present paper, the cohesive law is defined as a multi-linear law with linear 283 

interpolation between tractions defined for six opening displacements. The reason for using 284 

*

A
δ

*

A
δ
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such a multi-linear law is not based on a physical interpretation of the actual material 285 

behaviour, but rather the limitations of the constitutive model used for the numerical 286 

implementation [33]. 287 

 288 

Finally, the defined tractions and opening displacements are fitted to the experimental results 289 

using the optimisation tool LS-OPT [38]. The optimisation processes in LS-OPT are based on 290 

the response surface methodology [39]. The aim is to minimize the residual between a 291 

response from the model and a response from experimental test results. The opening 292 

displacement at the initial crack tip and the applied moments from the experimental results are 293 

used as objective for the optimization process. The response surface is created from a series of 294 

FEM simulations where the variables have been given different values. Upper and lower 295 

limits are defined for each variable, e.g. the opening displacement δ4 has to have a value 296 

higher than δ3 but lower than δ5. The process of setting the values of the variables within the 297 

prescribed range is organised by the optimisation scheme used in LS-OPT. Here, an ASA 298 

hybrid optimization scheme with a D-optimal sampling procedure of linear order [38] is used. 299 

Each sampling point is produced from one FEM simulation of the complete delamination. 300 

One iteration includes a minimum number of sampling points defined by i = 1.5 n +1( )+1 , 301 

where i is the number of sampling points (complete finite element analyses of the entire test) 302 

and n is the number of variables. Each FEM simulation has a CPU time of 6-8 hours. The 303 

initial cohesive stiffness defined by δ2 and σ2 is chosen with respect to the finite thickness of 304 

the cohesive element and the stiffness of the bulk material. The traction plateau defined by σ2 305 

and σ3 is kept flat by setting σ2 = σ3. To further reduce the number of variables, δ5 = 0.5 δ6. 306 

The total number of variables is thus 6 and the number of sampling points therefore becomes 307 

12.  308 

 309 

The solution converged after seven iterations. The total CPU time for the optimisation process 310 

was approximately 550 hours. Figure 6 shows a selection of iteration results. The cohesive 311 

law parameters used as first guess (first sampling point in first iteration) are listed in Table 3, 312 

along with the resulting cohesive law after seven iterations. Both of the cohesive laws are 313 

plotted together with the measured bridging law in Figure 7. The cohesive law parameters 314 

with the greatest changes were δ
3

 and σ
5
.  315 

 316 
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A propagating delamination modelled using cohesive elements can have difficulties with 317 

convergence if the mesh is coarse [16]. In the present FE model the element dimensions in the 318 

plane of delamination were 0.5 x 0.5 mm, i.e. 30 elements across the modelled width of half 319 

the specimen. The fully developed failure process zone (FPZ) was more than 40 mm long and 320 

thus covered by more than 80 cohesive elements in the direction of crack propagation. The 321 

evolution of the crack tip, i.e. the development of J0, was covered by approximately 5-10 322 

elements as the crack propagated. The actual number of elements that cover the complete FPZ 323 

depends on the shape of the cohesive law. It is important to adjust the loading steps in the 324 

analysis so that the separation parameters describing the development of J0 are captured. 325 

Figure 8 shows the distribution of normal opening traction in the cohesive elements used in 326 

the optimisation process as the delamination propagates towards the left. The crack tip does 327 

not follow a straight line through the width of the specimen. The plot illustrates that the crack 328 

opening displacement observed at the side of the specimen may not relate directly to the 329 

observed fracture resistance. It can be seen in Figure 8 that the interface tractions in the centre 330 

elements start to decrease from the critical traction level before the elements at the edge reach 331 

the critical traction level.  In Table 3 it can be seen that the opening displacement (after 332 

fitting) is 0.001 mm when the cohesive tractions reaches 20 MPa and 0.013 mm when the 333 

tractions start to decrease. This indicates a difference in opening displacement across the 334 

width of at least 0.012 mm at a given position x1.  335 

 336 

LS-OPT was initially also used to do a sensitivity analysis. It was confirmed that the residual 337 

between the model and the experimental results was more sensitive to the changes in δ3 than 338 

in σ 2,3 . The traction was then given upper and lower bound values of 28 and 15 MPa, 339 

respectively. The reason for the choice of upper bound value is that the bulk material has a 340 

measured elastic limit at 28 MPa transverse to the fibre orientation [40]. The interface should 341 

be the weakest link for normal stresses in the thickness direction of the laminate and should 342 

therefore be lower than the damage threshold for the bulk material. The choice of lower limit 343 

was set to a low value based on the observed behaviour of the bulk material. 344 

5 Evaluating the fitted cohesive law 345 

Experimental results from standardised force-loaded double cantilever beam (DCB) 346 

delamination tests [18] were compared with numerical predictions based on the fitted 347 

cohesive law. The standardised test specimens were produced with the same constituents and 348 

procedures as the specimens for the moment based delamination tests. Loads were measured 349 
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with a load cell and the opening displacement at the end of the specimen was measured using 350 

an extensometer. However, an interpretation using linear-elastic fracture mechanics would be 351 

inappropriate due to large-scale bridging. 352 

 353 

The numerical model had the same element dimensions as those used for modelling the 354 

moment based delamination tests. Implicit time integration with adaptive time step control 355 

was used. Material and geometrical properties are presented in Table 2. The FEM results 356 

based on the two cohesive laws, presented in Figure 7 and Table 3, are compared with the 357 

experimental DCB test results in Figure 9. It is clear that the cohesive law that was optimised 358 

using LS-OPT gives significantly better results than the multi-linear cohesive law used as a 359 

starting point for the optimisation. 360 

6 Discussion 361 

The success of the optimization process depends on the choices made during the optimization 362 

setup. The choice of sampling point selection scheme, number of sampling points and 363 

possible interaction between variables and optimization algorithm are choices that affect the 364 

computational cost of completing the necessary number of iterations. More important are the 365 

choices and assumptions made regarding the cohesive law. It is computationally favourable to 366 

choose few but well placed variables in the cohesive law and keep as many properties as 367 

possible constant. The number of simulations per iteration is governed by the sampling 368 

selection scheme used and the number of variables evaluated. Adding an additional variable 369 

can cause the number of simulations per iteration to increase significantly. It is therefore 370 

important to have an approximate idea of what the actual cohesive law should look like and 371 

use as few variables as possible. If the initial value is chosen poorly, it may be difficult for the 372 

optimization process to produce acceptable results within reasonable computational costs.  373 

 374 

The need for adjusting the multi-linear cohesive law based on the J integral approach can be 375 

seen in Figure 6. The J integral approach implicitly assumes the crack opening is the same 376 

across the width of the specimen. A 3D FE model will include the anticlastic bending effects 377 

and the associated variations in stress state and crack opening across the width. A cohesive 378 

law that is determined based on plane assumptions will then fail to capture the response from 379 

the experiment when used in a 3D FE model. This is the reason why the blue curve in Figure 380 

6 is very different from the experimental results. 381 

 382 
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The choice of using a multi-linear shape for the cohesive law is based on the limitations of the 383 

constitutive model used in the finite element implementation. The reason for defining only six 384 

points on the multi-linear cohesive law is found in the optimisation process. Every sampling 385 

point is based on the result of a complete FEM simulation of the DCB test. Each FEM 386 

simulation has a CPU-time of approximately 6-8 CPU hours. Increasing the number of 387 

variables therefore significantly increases the CPU time of the total optimisation procedure. 388 

The number of sampling points used here was 12 and acceptable results were found after 7 389 

iterations. The total CPU time for the optimisation process was approximately 550 hours. 390 

 391 

In Figure 9, the resulting fitted cohesive law produced significantly better results than the 392 

multi-linear cohesive law used as a starting point for the optimisation procedure. However, 393 

neither of the simulated models completely captured the stiffness shown by the experimental 394 

results. The simulated stiffness is in both cases higher than that of the experimental result. The 395 

discrepancy is partially attributed to the compliance of the test fixture and is considered 396 

acceptable since the beams are modelled with the same isotropic material model as used for 397 

the DCB samples. The resin, fabric, sizing, curing procedure and fibre volume fraction are 398 

equal for both types of DCB samples.  In Figure 9 a plateau is observed in the applied load at 399 

an opening of about 7-8 mm on the FEM results from the fitted cohesive law. This may have 400 

been caused by the restrictions made on the variables during the optimisation setup. The drop 401 

in interface stiffness going from the crack-tip dominated region to the fibre bridging 402 

dominated region of the cohesive law might be too steep. Dissipating the crack tip energy 403 

within a short opening displacement (i.e. a high peak stress over a small opening), still seems 404 

to be an appropriate approach without causing numerical instability. 405 

  406 

The initial stiffness of the cohesive law should be chosen with respect to the thickness of the 407 

cohesive elements so that the traction-separation relation of a finite-thickness element 408 

resembles the stress-strain relations of the bulk material. If the stiffness is chosen poorly the 409 

overall bending response of the laminate may be affected and become too soft. Another 410 

challenge is that rapidly changing stiffness in the cohesive elements may cause numerical 411 

instability. Reducing the size of the cohesive elements reduces the rate of change in stiffness 412 

in adjacent elements in the direction of the propagating delamination. Reducing the time step 413 

will of course also reduce the rate of change in stiffness. If the load step in an implicit model 414 

is sufficiently small, an explicit solution might be faster even if the load steps then will be 415 

significantly smaller.  416 
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 417 

The varying stress state and crack opening across the width of the specimen (induced by the 418 

Poisson effects) is not taken into account in the experimental J integral approach, eq. (4). The 419 

effects presented in Figure 5 a) and b) show the tendency of over-estimating the tractions of 420 

the cohesive law at small opening displacement, and underestimating them at larger opening 421 

displacements. But the total areas of the cohesive laws are all equal to the steady state fracture 422 

resistance. The stress variations across the width seem to give the impression of more rapid 423 

energy dissipation if evaluated from the opening displacement measured at the side of the 424 

specimen. This is also apparent from the fracture resistance curves from the simulations in 425 

Figure 6. The cohesive tractions associated with crack bridging vary much more slowly over 426 

much larger separations and are not expected to be significantly influenced by the Poisson 427 

effects. 428 

 429 

In the experiments, there were some minor discrepancies between initiation of crack end 430 

opening and the first acoustic events. If the crack-end opening displacement first initiates at 431 

the half width across the specimen before it initiates at the side of the specimen, the first 432 

acoustic events should be detected before any crack-end opening displacement is observed at 433 

the side of the specimen. 434 

 435 

The presence of anticlastic bending and the effect it has on the relation between fracture 436 

resistance and crack tip opening at small opening displacement might affect the observed 437 

value of the critical crack tip energy, J0. The findings presented in this paper suggest that 438 

beams displaying anticlastic bending might give the appearance of having higher values of J0 439 

than beams with little anticlastic bending. The reason for this apparent higher value of J0 is 440 

the delayed opening of the crack at the sides of the specimen where the crack tip opening 441 

displacement used to evaluate J0 is measured. This effect could be investigated by checking if 442 

the observed value of J0 changes with increasing specimen width.  443 

 444 

For materials where the cohesive tractions vary rapidly over small openings it would be 445 

convenient to have a correction function that could account for the effect of having states of 446 

stress and deformation that change across the width of the specimen. A challenge with such a 447 

function is that the difference between measured and actual cohesive law is dependent on the 448 

shape of the actual cohesive law. With this in mind, inverse modelling using the three-step 449 

optimisation scheme presented here seems currently to be the most promising approach. The 450 
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effects of Poisson's ratio on the beam deformation (in the form of anticlastic bending) can be 451 

reduced by increasing the beam height relative to the beam width (increasing H/B) - going 452 

from a plate-like geometry toward a more beam-like geometry. This will not eliminate the 453 

presence of anticlastic bending, but it will make the measurements of the opening 454 

displacements at the side of the specimen closer to the value in the middle of the specimens, 455 

thus making them more relevant for the overall behaviour. 456 

7 Concluding remarks  457 

The object of this study was to show that a cohesive law associated with the crack tip fracture 458 

energy could be obtained from experimental tests for implementation in 3D finite element 459 

models. A procedure to achieve this has been developed and tested. Such a cohesive law for 460 

large scale bridging problems consists of two distinct energy-dissipating phenomena: crack tip 461 

energy and fibre bridging. A bridging law describing the fibre bridging is calculated from the 462 

fracture resistance curve by applying the path independent J integral approach for plane 463 

stress. An approximate multi-linear cohesive law is then obtained by combining tractions and 464 

opening displacements for dissipation of fracture energy within a small opening displacement, 465 

corresponding to the crack tip fracture energy,
0
J , and a simplified bridging law that operates 466 

over larger openings. The parameters of the multi-linear cohesive law are then fitted to 467 

account for the changing stress state through the width of the test specimen by using the 468 

optimisation tool LS-OPT. The fitted cohesive law is evaluated by comparing FEM and 469 

experimental results for a series of ASTM D 5528 Mode I delamination tests. The FEM result 470 

using the fitted cohesive law is found to agree well with the response observed in the 471 

experimental tests. The three-step procedure presented here is successfully shown to 472 

characterize a Mode I cohesive law.  The changing state of stress and deformation across the 473 

width of the specimen is affected by both material properties (Poisson's ratio) and the 474 

geometry of the test specimen. This three dimensional effect is a significant source of error 475 

for small cohesive openings and needs to be taken into account when determining a cohesive 476 

law from the fracture resistance, in particular the traction for small separations corresponding 477 

to the crack tip fracture energy. The effect is expected to be small for problems where the 478 

cohesive tractions represent large-scale bridging for which the tractions are low and decrease 479 

slowly to zero over several millimetres. 480 
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 594 
Table 1. Material and geometric properties for moment loaded DCB specimen. 595 

B 30.11 mm Width 

2H 17.40 mm Thickness 

l 300 mm Length 

a0 59 mm Initial delamination 

E 37 GPa Flexural modulus 

ν12 0.29  Poisson's ratio 

S22=S33 28 MPa Transverse ply strength 

σIc 20 MPa Mode I Critical interface strength  

δ0 3 mm Mode I Critical opening displacement 

Jss 1 kJ/m
2
 Mode I Steady state fracture resistance 

J0 0.21 kJ/m
2
 Mode I crack tip fracture energy 

Ja 0.33 kJ/m
2
 Fitting parameter for equation (5) 

Jb 0.67 kJ/m
2
 Fitting parameter for equation (5)  

δa 6.67 mm Fitting parameter for equation (5)  

δb 0.65 mm Fitting parameter for equation (5) 

 596 
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Table 2. Geometric properties for standardised DCB specimen. 597 

W 22 mm Width 

2H 4.0 mm Thickness 

l 150 mm Length 

a0 50 mm Initial delamination 

 598 

Table 3. Cohesive law parameters before and after fitting.  599 

Before fitting After fitting 

[mm] [MPa] [mm] [MPa] 

δ1 = 0.00 σ1 = 0.00 δ1 = 0.00 σ1 = 0.00 

δ2 = 0.0010 σ 2 = 20.00 δ2 = 0.0010 σ 2 = 20.00 

δ3 = 0.0296 σ 3 = 20.00 δ3 = 0.0130 σ 3 = 20.00 

δ4 = 0.0326 σ 4 = 0.4000 δ4 = 0.0181 σ 4 = 0.6200 

δ5 = 1.5088 σ 5 = 0.0800 δ5 = 1.5088 σ 5 = 0.1568 

δ6 = 3.0176 σ 6 = 0.00 δ6 = 3.0176 σ 6 = 0.00 

 600 

 601 

Figure 1. Integration path for the J integral: a) integration path locally around the cohesive zone, b) 602 

interpretation of traction vs. separation in the FPZ, and c) the integration path along the external 603 

boundaries of a DCB specimen loaded with pure bending moments. 604 

 605 

Figure 2. Geometry of DCB specimens.  606 

 607 

Figure 3. Fracture resistance response from a DCB specimen loaded with pure bending moments. 608 

Fracture resistance and cohesive traction are shown as a function of normalized separation (normalized 609 

by  δ0 = 3 mm). Fitted function on top of experimental scatter a) and b). Details of the calculated bridging 610 

law (BL) c) and the adjusted cohesive law (CL) (adjusted for small separations only) - note different scales 611 

on the axis d). 612 

 613 

Figure 4. The FEM model of the DCB specimen for the moment based delamination test.  614 

 615 

Figure 5. Comparing a bi-linear cohesive law used in the FE model and the cohesive law (CL) calculated 616 

after post processing the model after a) changing the Poison’s ratio, and b) changing the specimen width. 617 

 618 

Figure 6. Fracture resistance during iterative fitting of cohesive law compared to experimental test result 619 

used as fitting objective. 620 
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 621 

Figure 7. a) The calculated bridging law with the cohesive law before (blue colour) and after fitting (green 622 

colour). The details of the crack tip relations are presented in b), and the details of the fibre bridging 623 

region is presented in c). 624 

 625 

Figure 8. Contour plot illustrating opening tractions in cohesive elements as crack propagates. Several 626 

cohesive elements were deleted after exceeding critical separation in the lower two plots. The total active 627 

cohesive zone length, L, is indicated in the lower two plots. The indicated zone covered by eight elements 628 

represents the crack tip zone.  629 

 630 

Figure 9. FEM result before and after fitting of cohesive law compared to experimental results. 631 
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