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Abstract

A method is developed to obtain the mode I cohesive law of elastic-plastic
materials using a Double Cantilever Beam sandwich specimen loaded with
pure bending moments. The approach is based on the validity of the J
integral for materials having a non-linear stress-strain relationship without
unloading of any material point. This assumption is not met exactly as there
is a small region at the active cohesive zone where the material unloads. To
examine the error of the method, a numerical parameter study is performed
for a wide range of material and specimen parameters. The error of the
method is below 16% and thus the method can be used to measure cohesive
laws including their shape.
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1. Introduction

Linear elastic fracture mechanics (LEFM) is applicable [1] when the frac-
ture process zone is very small in comparison with all length dimensions
(including the crack size) of a component. The fracture process zone is then
embedded within a universal crack tip stress field (the so-called K-dominant
zone). In contrast, when the size of the fracture process zone is comparable
to or larger than any relevant specimen dimension, the fracture process zone
should be modelled by non-linear fracture mechanics e.g. by a cohesive zone
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model [2–7]; describing the fracture process of materials through a traction
separation relationship as shown in Fig. 1.

Since Needleman [8] introduced a mode I cohesive law in a continuum
mechanics finite element model, cohesive zone modelling has been widely
used in advanced numerical models of materials and structures [9–15]. How-
ever, despite the widespread use of cohesive laws, the number of studies
covering the experimental determination of cohesive laws is relatively small
[16]. In most cases, the cohesive laws are determined indirectly by comparing
experimentally measured specimen response (e.g. overall load-displacement
relationships) with model predictions for a number of cohesive law parame-
ters through an iterative guessing process [11, 17]. These approaches can be
used for both elastic and elastic-plastic materials. The shortcomings of these
approaches are a) that they usually require extensive computational effort to
extract the cohesive law parameters (each specimen must be modelled when
new experimental results are obtained), and b) that the shape of the cohesive
laws is pre-defined and not an outcome from the experiments.

A small number of experimental methods have been developed to deter-
mine cohesive laws directly [6, 18, 19]. Cox and Marshall [6] back-calculated
the cohesive tractions, σ, using fracture mechanics based on experimentally
measured crack opening profiles. To obtain the full cohesive law, the crack
opening profile should be measured at (stationary) cracks including cracks
for which the end-opening is equal or larger than the critical separation,
δc (Fig. 1). For most configurations, however, it is difficult to avoid crack
growth, unless the specimen is partially unloaded. However, unloading alters
the cohesive tractions so they differ from the tractions acting in the cohesive
zone during monotonic loading. Cotterell and Mai [18] and Brenet et al.
[19] used the so-called direct tension test. Calculating the traction as the
force per cross-sectionnal area and measuring the displacement between two
points across the cohesive/failure plane with an extensometer, the cohesive
law can be measured. However, the separation is not always uniform across
the width of the specimen. Thus, these experimental techniques are either
involved and/or it is difficult to achieve the correct conditions [16]. An al-
ternative method is to derive the cohesive law from measurements of the
path independent J integral [20] and the end-opening of the cohesive zone
as proposed by Li and Ward [21]:

σ =
dJ

dδ∗
(1)
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where J is the value of the J integral [20] and δ∗ is the end-opening,
i.e. the crack opening displacement at the end of the fracture process zone.
It should be noted that the J integral approach is valid also for problems
involving large-scale bridging (large fracture process zone) [7, 22].

Li and Ward [21] used two different compact tension specimens to de-
termine the J integral. Sørensen and Jacobsen [23] also used the J integral
approach, Eq. 1, but they used a single double cantilever beam (DCB) spec-
imen loaded with pure bending moments. In this case the J integral can
be derived in closed form [7], and the mode I bridging/cohesive law can be
directly measured using Eq. 1. A closed form solution exists also for other
DCB specimen loaded by axial forces and bending moments such as a bima-
terial/sandwich DCB specimen (see Fig. 2) when both materials are linear
elastic [24]. For linear elastic materials, the J integral value increases to a
maximum value when the end-opening attains the critical separation, δc, and
J remains at this steady-state value, Jss, during subsequent crack propaga-
tion. A differentiation of J according to Eq. 1 gives - correctly - zero traction
for δ∗ > δc.

In the works described above, the material outside the fracture process
zone was assumed to be elastic. However, many materials e.g. polymers or
composites have a non-linear stress-strain relation that needs to be taken
into account.

The study of Tvergaard and Hutchinson [9] gives insight into the roles of
cohesive law and plasticity on the overall fracture resistance. They modeled
crack propagation under the premise of small scale yielding using a cohesive
law and a bulk material exhibiting plasticity embedded in a K-field. Despite
the formation of a plastic zone at the cohesive zone, the initiation of crack
growth (δ∗ reaching δc) was found to occur at J = Jc. This result was antic-
ipated since - during monotonic loading prior to crack growth - the stresses
increase nearly proportionally and the conditions for applicability of a defor-
mation theory [25] are thus met. The application of the J integral for ma-
terials having non-linear stress-strain relationship is valid as long there is no
unloading of any material point so that the non-linear stress-strain behaviour
can then be considered as being non-linear elastic [20] (a.k.a. deformation
theory) [25]. In the simulation of Tvergaard and Hutchinson [9], once crack
propagation occured, the fracture resistance increased since now unloading
(non-proportional stress history) took place. Eventually, after some crack
propagation, the fracture resistance attained a constant, steady-state value.
According to Tvergaard and Hutchinson [9] the value of the steady-state frac-
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ture resistance depends strongly on the ratio of the peak cohesive traction
value σ̂ to the yield stress, σy, of the bulk material. Jss/Jc was found to be
in the range of 2-10 for σ̂/σy in the range of 3-4.

Thus, in the case of crack growth with plastic unloading, a differentation
of the fracture resistance according to Eq. 1 would not give zero traction for
δ∗ > δc. This makes it difficult to determine cohesive laws for elastic-plastic
materials by the J integral approach, Eq. 1. Thus, so far, in the previous
studies involving large scale plasticity, cohesive laws have been identified by
the iterative guessing approach described above [11, 12, 17].

The idea of the present study is to explore whether it is possible to de-
sign fracture specimens for materials that exhibit large scale yielding during
fracture. This will be possible if the specimens undergo only a rather small
unloading during crack propagation. Then, the fracture resistance, calcu-
lated using the J integral, will not show a significant increase due to the
plastic unloading but retain a steady-state value, Jss, close to the work of
separation per unit area of the cohesive law, Jc. The cohesive law can then be
determined using Eq. 1, - and correctly give zero cohesive traction for end-
openings exceeding δc despite the occurrence of large scale plasticity. From
an experimental point of view this would greatly simplify the cohesive law
determination and enable a general approach for cohesive law determination
also for non-linear elastic materials.

The proposed specimen configuration is a sandwich specimen, consisting
of stiff elastic beams bonded to the non-linear test material, loaded with
pure bending moments. The use of the additional elastic beams in sandwich
specimens can be a practical issue; i.e. to prevent large rotation of the
specimen which adds complexity to the analytical approach [26]. Moreover,
the use of stiff elastic beams facilitates the mounting of the specimen to the
fixture avoiding local failure at the point of fixation.

Thus, in the present work, inspired by the work of Thouless et al. [27],
who used the I integral [28] for the analysis of steady-state cracking involving
large-scale plasticity, the general J integral based testing approach using
DCB specimens loaded by pure bending moments is extended to account
for the non-linear material response (e.g. due to plasticity). Fig. 2 shows
the proposed DCB sandwich specimen loaded with pure bending moments.
During loading, plasticity may occur in the beams made of the test material
(but not in the stiff, elastic support beams), but since the value of the moment
must be increased during the experiment to increase J , there will be no
unloading in the beams for the DCB specimen loaded with pure bending
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moments. In contrast, the standard DCB specimen loaded with wedge forces
is not suited for large scale yielding problems since the magnitude of the
force decreases during stable crack growth i.e. the specimen unloads causing
unloading in materials points having undergone plastic deformation which
invalidates the use of the J integral.

For the DCB specimen loaded with pure bending moments, an equation
for the J integral can be obtained analytically if the stress-strain law of the
test material is known (see Section 2.1). The equation for the J integral is
independent of the crack length and the details of the cohesive zone. Even
when the crack starts to grow there is no macroscopic unloading in the plas-
tically deforming beams. However, there is a small region behind the active
crack tip e.g. in the case of plasticity, where unloading takes place. Thus,
the proposed method is expected to introduce an error in evaluating the J
integral and consequently an error in the derived cohesive laws. The aim of
the present study is to explore if the J integral approach (Eq. 1) can also be
used to determine cohesive laws under large scale plasticity and to estimate
how large the error can be.

In the present paper, a parameter study is performed to evaluate this
error for a wide range of material and geometric parameters, in order to
clarify if this error is large e.g. in comparison with the scatter of typical
experimental fracture mechanical testing results. The error of the method is
estimated by finite element predictions. More specifically, we use the finite
element method to generate simultaneous data for the applied moments and
the end-opening and then use the moments in the analytical model (as if the
data were experimental measurements) to calculate J as a function of δ∗.
Then by Eq. 1, we calculate the cohesive law, which we can then compare
with the cohesive law specified in the finite element model.

2. Problem statement

The specimen geometry used is a double cantilever beam (DCB) sandwich
specimen loaded with pure bending moments [16, 29] (see Figs. 2 and 3). The
non-linear test material (material #2) is fixed to stiff elastic beams (material
#1). The thickness of the non-linear material is 2h, whereas the thickness of
each elastic beam is H. The specimen and loading are symmetric, and the
crack is assumed to propagate along the specimen mid-plane (mode I).

The fracture process is represented by a trapezoidal shaped cohesive law
as shown in Fig. 1, and the material #2 has a non-linear stress-strain law

5



(representing plasticity), so that plasticity may form at the crack tip and in
the beams (large scale yielding). The non-linear stress-strain behaviour will
be described using a specific formulation that enables the J integral analysis
to be completed analytically (see below).

2.1. Stress-strain laws

Material #1 is taken to be linear elastic, so that σ#1
11 , the stress component

acting in the x1 direction of material #1 is related to the normal strain ǫ11
via Hooke’s law:

σ#1
11 = E#1ǫ11 (2)

where E#1 is the Young’s modulus of material #1.
For the analytical J integral analysis material #2 is assumed to be non-

linear elastic:

σ#2
11 = f(ǫ11) = E#2ǫ11 − σoǫ

2
11 (3)

where E#2 is the Young’s modulus and σo a constant. Thus in the limit
of ǫ11 → 0, the slope of the stress-strain curve is E#2. Both E#2 and σo

are determined by fitting Eq. 3 to the experimental stress-strain response.
The particular form of the function f(ǫ11) is material dependent. Eq. 3 was
found to describe the tensile stress-strain behaviour of all-cellulose composites
rather well [30] and is used in the present work as an example; however, the
approach can be extended to other constitutive laws than Eq. 3. In Eq. 3
no distinction is made if the response is non-linear elastic or elastic-plastic.
For example, Fig. 4 depicts the tensile stress-strain behaviour of an elastic-
plastic material. As long there is no unloading, the stress-strain response
can be described by a monotonically increasing function f(ǫ11). It should
be noted that Eq. 3 is a parabolic equation i.e. the stress decreases after a
characteristic strain, ǫu, has been reached. The maximum stress, σu, is given
by:

σu =
E#22

4σo

and ǫu =
E#2

4σo

(4)

In the remainder of the paper, we will present results expressed through
σo or σu whenever we find most appropriate. For ǫ11 > ǫu, Eq. 3 is not valid
i.e. the normal stress in the beam ends made of the tested material should
not exceed σu. Alternatively, a second function i.e. a constant function,
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σ#2
11 = σu, could be used for strains larger than ǫu. In the present work, this

was not necessary.
As shown below, in Section 3.2, only the normal stress in the direction

parallel to the specimen is needed to calculate the J integral along the exter-
nal boundaries of the specimen. Thus, it is not necessary to derive a complete
constitutive material law from the experimenal data; a one-dimensional ma-
terial description as in Eq. 3 suffices.

For the finite element (FE) simulations, material #2 is described with
an elastic-plastic stress-strain law that has an initial yield stress σy. When
the sandwich DCB specimen (Fig. 2) is modelled with the finite element
method (multiaxial stress state), the one-dimensional Eq. 3 is not enough.
A complete material constitutive law should be used. In the present work,
material #2 is modelled as an elastic-plastic material governed by the von
Mises J2 plasticity theory with isotropic hardening: the von Mises stress is
σe =

√

3SijSij/2 where Sij are the deviatoric stresses. The initial yield
stress is denoted σy and it is shown in Fig. 4. In the same figure the
unloading/reloading response in the finite element model is also shown. The
plastic response used in the finite element model was extracted from Eq. 3
with the following two differences: a) for stresses lower than σy the material
is linear elastic with a Young’s modulus Ẽ#2, and b) for strains larger than
ǫu, an ideal plastic response is assumed (see Fig. 4). In Fig. 4 the difference
between the stress-strain relationship of Eq. 3) and of the FE model for
σ < σy is exaggerated. In practise the difference between E#2 and Ẽ#2 is
less than 5%.

It should be noted, that although the normal strains in the beam ends
for the test material are lower than ǫu, much higher strains are expected
in the vicinity of the fracture process zone. By assuming an ideal-plastic
response for ǫ > ǫu, the finite element model can handle such large strains.
The assumption of ideal-plastic response is a simple approximation but it
approximates the plastic response of many materials for fairly large strains.

2.2. Cohesive law

The cohesive law parameters used in the finite element model define a
trapezoidal shaped cohesive law shown in Fig. 1. The area under the curve
is the work of separation per unit area, Jc. The peak traction σ̂ is attained
at an opening δ1, and the opening at complete failure is δc. The opening δ2
completes the description of the trapezoidal cohesive law. Four out of the
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five cohesive law parameters are independent. In the following, we take σ̂,
δ1, δ2, and δc as the primary parameters.

σ(δ) =































σ̂
δ

δ1
, for 0 ≤ δ < δ1,

σ̂, for δ1 ≤ δ < δ2,

σ̂
( δc − δ

δc − δ2

)

, for δ2 ≤ δ ≤ δc,

0, for δ > δc,

(5)

Jc can be expressed by these parameters, see Section 3.3.

2.3. Non-dimensional parameters

A parameter study is performed in this paper to assess the effect of the
various parameters in the fracture resistance and consequently on the com-
puted cohesive laws. The non-dimensional parameters describing the problem
of Fig. 2 are:

δ1
h
,

δ2
δc
,

δc
h
,

E#2

E#1
,

σ̂

σu

,
σ̂

E#2
,

σu

E#2
,

h

H
(6)

Some of these parameters were kept constant in all simulations, δ1/h =
2 × 10−4 and h/H = 1 (except Section 5.4). The critical opening for dam-
age initiation, δ1, is non-zero in the finite element calculations purely for
numerical reasons.

The additional parameters needed in the finite element model are the
initial yield stress, σy, which is set as a fraction of the Young’s modulus E#2:

σy

E#2
= 0.01 (7)

and the Young’s modulus Ẽ#2 which is calculated from Eq. 3 at σ#2
11 = σy

giving:

Ẽ#2 =
E#2

2

2σu

σy

1−
√

1− σy/σu

(8)
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3. J integral approach for determination of cohesive laws

3.1. Stress state in the beam ends

In this paper, J will be expressed in terms of ǫ̂, which is the maximum
strain in the top of the stiff, elastic beam, see Fig. 5. In the following,
ǫ̂ is determined as a function of the applied moment, ǫ̂ = ǫ̂(M). Since the
beam-ends are subjected to pure bending, the strain varies linearly across the
height of the specimen (due to symmetry only the upper half of the specimen
is considered):

ǫ11 =
ǫ̂

∆
y, for ∆−H − h ≤ y < ∆ (9)

where y is the distance from the neutral axis in a local coordinate system
with origin the neutral axis as can be seen in Fig. 5. The relationship between
this local coordinate system, x−y, and the global coordinate system, x1−x2,
defined in Fig. 5, is:

y = x2 +∆−H − h (10)

The neutral axis position (the distance from the top of the elastic beam
to the y position where ǫ11 = 0 under pure bending), ∆, is given by:

∆

h
=

1 + 2Σ̄η + Σ̄η2

2η(Σ̄η + 1)
(11)

where the non-dimensional constants η and Σ̄ (for plane stress), which
depend on the elastic properties and the geometry of the specimen, are:

η =
h

H
(12)

and

Σ̄ =
E#2

E#1
(13)

Eq. 11 is based on linear elasticity [24]. For the present problem, the neu-
tral axis may change position as the plasticity changes the stress distribution.
In the following, however, we assume that the change is small such that the
neutral axis position can be approximated by Eq. 11. With this assumption,
a closed form solution for the J integral along the external boundaries of the
DCB specimen can be obtained. In Appendix A the change in position of
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the neutral axis is calculated analytically (accounting for the non-linearity of
material #2) and it is shown that the change in ∆ is smaller than 1.5% in
the range of parameters examined in the present work.

The applied moment, M , is then given by:

M

B
=

∫ ∆−H

∆−H−h

σ#2
11 (y)ydy +

∫ ∆

∆−H

σ#1
11 (y)ydy (14)

where B is the specimen width (in x3 direction). The first integral refers
to the non-linear material and the second integral to the elastic beam. By
substituting the stress in the non-linear material with Eq. 3 and Eq. 9, Eq.
14 can be written as:

Aǫ̂2 + Cǫ̂+D(M) = 0. (15)

Solving Eq. 15 gives:

ǫ̂ = g(M) =
−C ±

√

C2 − 4AD(M)

2A
, (16)

where D(M) indicates that D is a function of the applied moment:

D = −
M

BH2E#1
(17)

In Eq. 16 the positive sign ahead of the square root is selected to ensure
that for M = 0, ǫ̂ = 0 and an increase of M results in an increase of ǫ̂. The
other non-dimensional parameters A and C are independent of M :

A =
E#22

16∆2H2E#1σu

[

(∆−H)4 − (∆−H − h)4
]

(18)

C =
E#2

3∆H2E#1

[

(∆−H)3 − (∆−H − h)3
]

+
1

3∆H2

[

∆3 − (∆−H)3
]

(19)

From Eq. 16, ǫ̂ can be obtained analytically as a function of M . For
different functions f(ǫ11) it may not be possible to obtain a closed form
solution. In such cases, Eq. 14 can be solved numerically. In Appendix
B, closed form solutions for homogeneous DCB specimens are given for two
different stress-strain relationships: a) power law, and b) elastic-ideal plastic,
respectively.
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3.2. J integral evaluated along the external boundaries, Jext

The J integral is calculated along a path along the external boundaries
of the specimen Γi with i = 1, 5 shown in Fig. 3. If the beams outside the
fracture process zone are longer than a few times the specimen (beam) height,
the J integral is independent of the crack length. This holds true since the
only non-zero contributions to the J integral come from the two loaded beam
ends, which are subjected to pure bending. The only stress component that
enters the analysis is the normal stress in the direction parallel to the crack,
σ11 (the x1 direction in Fig. 3), i.e. along Γ1 and Γ5.

The J integral is defined as [20]:

J =

∫

Γ

Φdx2 + σijnj
∂ui

∂x1

dS (20)

where Φ is the strain energy density, σij the stress tensor, ui the displace-
ment vector, nj is the outward normal unit vector to the integration path
Γ which should be evaluated in counter clockwise direction. Then, the J
integral along path Γ5 can be written as:

J5 =

∫ h

H+h

(Φ#1 − σ#1
11 ǫ11)dx2 +

∫ 0

h

(Φ#2 − σ#2
11 ǫ11)dx2 (21)

In this Equation the strain energy density function, Φ#1, for material #1
(linear elastic) is:

Φ#1 =
σ#1
11

2

2E#1
=

1

2
E#1ǫ211 (22)

whereas for the non-linear material #2, the strain energy density function,
Φ#2, using Eq. 3, is:

Φ#2 =

∫ ǫ11

0

σ#2
11 dǫ11 =

E#2ǫ211
2

−
E#2ǫ311
12σu

(23)

Using Eqs. 3, 9, 22, 23, Eq. 21 becomes:
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J5 =
E#1ǫ̂2

2∆2

(

∆2H −∆H2 +
H3

3

)

+
E#2ǫ̂2

2∆2

(

h3

3
+ h2(∆−H − h)

+h(∆−H − h)2
)

+
E#22ǫ̂3

6σu∆3

(

h4

4
+ h3(∆−H − h)

+
3h2

2
(∆−H − h)2 + h(∆−H − h)3

)

(24)

The J integral along the external boundaries for the DCB specimen (Fig.
3) is thus due to symmetry:

Jext = 2J5. (25)

3.3. J integral evaluated around the cohesive zone, Jloc

Next, the J integral is considered along an integration path locally around
the fracture process zone. In this case the J integral given by [7, 20]:

Jloc =

∫ δ∗

0

σ(δ)dδ (26)

where δ∗ is the normal opening at the end of the fracture process zone.
Differentation of Eq. 26 gives Eq. 1. When δ∗ = δc, Jloc is equal to Jc:

Jc =

∫ δc

0

σ(δ)dδ =
1

2
σ̂(δc + δ2 − δ1) (27)

Since the J integral is path independent and as long as there is no un-
loading, Jloc from Eq. 27 equals Jext from Eq. 25. Thus, by measuring the
applied moment and normal opening at the end of the cohesive zone (frac-
ture process zone), the cohesive laws including their shape can be derived
experimentally.

4. Numerical model

In order to test the accuracy of the J integral approach presented in Sec-
tion 3, the finite element method was employed to model the DCB specimen
of Fig. 2 as a 2D plane stress problem. The commercial finite element code
Abaqus (version 6.11) [31] was used. Cohesive elements were used to model
crack initiation and growth.
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4.1. Finite element details

The length of the DCB specimen, L, was long enough (L/h = 24) to
ensure that when steady-state condition is reached, the position of the crack
tip is several times the specimen height far away from the right end of the
specimen (Fig. 2). In the following, the position of the crack-tip is defined as
the position within the active cohesive zone where the end-opening δ∗ equals
δc, i.e. where the cohesive traction decreases to zero (see Fig. 1) [9].

The initial crack-tip position was set to be at 8h from the position where
the applied moments were applied (Fig. 2). The position of the initial crack-
tip coincides with the origin of the x1 − x2 coordinate system of Fig. 3. In
the finite element model, applied rotations were prescribed at the beam ends
(as would be the case experimentally) and the resulting reaction moments
were extracted.

An implicit solver was used to solve the problem of Fig. 3 under plane
stress conditions. Four-noded quadrilateral and three-noded triangular lin-
ear, full-integration elements were used to model the linear and non-linear
materials. The Abaqus linear four-noded cohesive elements were used to
model the cohesive zone and the cohesive element length was equal to 5 ×
10−3h. The finite element mesh was deemed to be sufficiently fine, since the
correct fracture resistance and cohesive law were obtained in the case of van-
ishing plasticity (see below). The numner of elements in the cohesive zone
was larger than the size suggested by Turon et al. [32] and references therein
for elastic-plastic materials.

4.2. Method to check the J integral approach

The end-opening, δ∗, and the applied moment, M , were extracted from
the finite element model. Then, from the applied moment, the fracture re-
sistance, J , was calculated using the analytical stress-strain law, Eq. 3,
following the approach of Section 3 (J is given in terms of ǫ̂ by Eqs. 24 and
25 and ǫ̂ is obtained from M through Eqs. 16 - 19). With J and δ∗ known,
the cohesive law was derived using Eq. 1. The differentiation of the J − δ∗

was done directly on the data and not on a fitted curve using the following
simple equation:

σi =
Ji − Ji−i

δ∗i − δ∗i−1

(28)

where i represents the increment in applied moment. This direct differ-
entiation method inherently introduces noise to the predicted cohesive laws
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but it is chosen here because it does not manipulate the data in any form
(e.g. smoothing or filtering).

The obtained cohesive law is then compared with the cohesive law origi-
nally specified in the finite element model. If the effect of plasticity and local
unloading is small, the two cohesive laws will be very similar.

5. Results

Fig. 6 shows the development of the plastic zone in the DCB specimen
as a function of the end-opening, δ∗. In Fig. 6(a), the stress normal to the
crack plane has already reached the peak cohesive value, but the cohesive
zone is not fully developed. Next in Fig. 6(b) the end-opening is equal to
δc/2 and J is ∼ 80% of Jc. A large plastic zone has developed ahead of the
crack tip due to the stresses normal to the crack plane, and a plastic zone
has formed in the beam behind the crack due to the bending of the DCB
specimen (stresses parallel to the crack plane). The plastic zone ahead of the
crack tip has reached the interface between materials #1 and #2 (x2 = ±h).
In Fig. 6(c), where δ∗ equals δc, the plastic zone ahead of the crack tip has
extended in both the x1 and x2 directions. A further increase of the plastic
zone can be seen in Fig. 6(d) where the δ∗ ∼ 1.4 δc. At this instance the
crack has grown a distance ∆a = 0.1h.

Fig. 7 shows the corresponding active plastic zone (currently yielding
material points) contours of the equivalent plastic strain contours of Fig. 6.
Fig. 7(a) shows the active plastic zone at an instance where the cohesive zone
is not fully developed (δ1 < δ∗ < δc and J = 0.25Jc). The active plastic zone
is confined around the crack tip and behind the cohesive zone at x2 = 0.
With further increase of the applied moment, see Fig. 7(b), the yielding
zone extends both ahead and behind the crack tip (crack wake). Almost
all the material points of the non-linear material #2 are yielding except the
materials points that are far ahead from the crack tip. When δ∗ reaches δc
(see Fig. 7(c)), unloading takes place at a small region behind the crack tip
corresponding approximately to the length of the fully developed cohesive
zone. However, no unloading is observed in the materials points that are
subjected to bending - behind the fracture process zone. Furthermore, the
active plastic zone size increases ahead of the crack tip. In Fig. 7(d) the
crack has grown at a distance equal to 0.1h (δ∗ = 1.4δc). It can be seen that
although the unloading zone has grown, it is confined between two zones
where the materials points are currently yielding: a zone ahead of the crack
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tip, which is increased in size comparable to the corresponding zone shown
in Fig. 7(c) and a zone behind the fracture process zone where the is no
unloading of the material points due to bending of the beams of material
#2.

5.1. Derivation of cohesive laws

Fig. 8 depicts the applied moment vs the end-opening extracted directly
from the finite element calculations for three different cohesive laws. The
peak cohesive traction, σ̂, and the opening δc are the same, whereas the
opening δ2 and thus the work of separation, Jc, differ for each cohesive law
in accordance with Eq. 27. The fracture resistances, calculated from the
moments, are depicted (solid lines) as function of the end-opening in Fig. 9.
The dotted lines in Fig. 9 represent the fracture resistance curves obtained
by analytical integration of the corresponding cohesive laws according to Eq.
26, i.e. the theoretically correct work of the cohesive traction. It can be seen
that the steady-state fracture resistance, Jss for each cohesive law is slightly
higher than the corresponding work of separation, Jc, and that the steady-
state is attained at an end-opening larger than δc. As mentioned in Section
1, a higher Jss is expected as there is a region where the material unloads
behind the crack tip (see Fig. 7). The difference in the steady-state fracture
resistance is less than 10% for the three cohesive laws.

The cohesive laws extracted from the data of Fig. 9 are given in Fig. 10.
The extracted cohesive laws are shown with solid lines, whereas the dashed
lines represent the cohesive laws originally specified in the finite element
model. Despite the noise, the extracted cohesive laws agree well with the
specified cohesive laws. In particular, the extracted cohesive laws capture
the shape of the input cohesive laws well. For the examples shown, the
values of δ2 and δc can readilly be identified. The extracted peak traction
is slightly higher than the specified parameter. This is a direct result of a
higher computed fracture resistance (Fig. 9). However, similar to the results
of Fig. 9, the difference between the extracted and specified cohesive law
parameters is less than 10%.

The difference between the obtained fracture resistance curves and the
expected curves increases with increasing end-opening. It is interesting to
observe (Fig. 9) that as δ2/δc increases, the difference decreases.

In the next Sections, the results are presented for Jss (and not for σ− δ),
since it is expected that when Jss ≈ Jc, the computed cohesive law will be
similar to the specified.
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5.2. Effect of cohesive law parameters

In this Section the effect of the cohesive law parameters is examined. The
elastic-plastic stress-strain relationship for material #2 and the geometry of
the DCB specimen are kept constant.

Fig. 11 shows the effect of the opening δ2 (see Fig. 1) on the steady-state
fracture resistance for different ratios between the peak cohesive traction, σ̂,
and σu. As it can be seen, for σ̂/σu < 1, the steady-state fracture resistance
is only slightly larger than Jc. The difference between Jss and Jc is less than
15%. The difference decreases as the opening δ2 increases relatively to δc. It
should be noted that for constant δc, Jc increases as δ2 increases, see Eq. 27.
A larger value of δ2 results in a larger region where the traction in the cohesive
zone is equal to peak traction σ̂. Furthermore, a larger value of δ2 means a
smaller region where the traction in the cohesive zone gradually reduces to
zero, leading to a smaller unloading region along the active cohesive zone.

Jss increases sharply for σ̂/σu
∼= 1.0− 1.1 (σ̂/σy ≥ 5) due to formation of

a much larger plastic zone. For σ̂/σu ≥ 1.2 the material yields and no crack
growth takes place (Jss → ∞). These results are in qualitative agreement
with the results of Tvergaard and Hutchinson [9] who used a elastic-plastic
stress-strain relationship different from the one used in the present paper.

In Fig. 11 the dotted line represents the linearly extrapolated steady-
state fracture resistance in the absence of plasticity (σ̂/σu → 0). In this case
the steady-state fracture resistance, Jss is equal to Jc.

Fig. 12 depicts the extracted cohesive laws for large values of σ̂/σu. It can
be seen that for the same end-opening, δ∗, the extracted tractions are larger
than the specified traction and that the difference increases with increasing
σ̂/σu. For δ

∗ > δc, the derived tractions do not drop to zero. This is especially
clear for σ̂/σu = 1.2.

In the results presented in the rest of the paper, the maximum value of
σ̂ considered is σu.

Next in Fig. 13, the effect of the critical opening δc relative to the height
h is examined. For a fixed value of σ̂/σu, a higher value of δc/h leads to
a higher Jss value. Futhermore, a larger value of δc/h gives a larger active
cohesive zone size. As a result, when δc increases, the extend of the plastic
zone increases and thus the size of the unloading region becomes larger.

5.3. Effect of elastic-plastic stress-strain law

The effect of the material parameters of the non-linear test material on
the steady-state fracture resistance is examined in this Section. First, the
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effect of the magnitude of the Young’s modulus, E#2, relative to E#1 is
investigated. Fig. 14 shows stress-strain curves, Eq. 3, with varying E#2.
For all four curves, the ratio E#2/σo is constant and equal to 0.2.

Steady-state fracture resistance results are given in Fig. 15. With other
parameters fixed, an increase in E#2/E#1 increases Jss, but the effect is small.
It can be seen that, for the range of E#2 examined, the difference between
Jss and Jc is small (less than 15%) except the case of E#2/E#1 = 0.1 and
for σ̂/σu = 1. For this case the difference is 16%.

Next in Figs. 16 and 17 the effect of varying σo is examined. However, in
order to have the same plateau stress, σu, in the stress-strain response it is
necessary to change E#2 at the same time, see Fig. 16. The strain at which
the non-linear material #2 becomes fully-plastic ranges from 5 to 20%. The
results for the steady-state fracture resistance are given in Fig. 17. It is
interesting to observe that the difference between the steady-state fracture
resistance, Jss and Jc decreases with increasing σo. The difference is less than
15% in all cases except for the case of E#2/E#2 = 0.02 and σ̂/σo = 1.

In the same graph, the dashed lines represent the steady-state fracture
resistance calculated from Eq. 25 by setting σo equal to zero (corresponding
to σu → ∞) in Eq. 24. This is equivalent to ignoring the non-linearity of
material #2 in the analytical calculation of J . In this case Eq. 24 is identical
to the closed form solution of Bao et al. [24]. Thus, by setting σo = 0 in the
analytical model, the effect of not taking the non-linearity of material #2
into account can be assessed. As expected, when σo is set equal to zero, the
difference between Jss and Jc is higher than when the material non-linearity
is taken into account (solid lines) for all σ̂ values. The difference is larger for
larger values of σ̂. However, the difference in Jss between σo = 0 and σo 6= 0
is relatively small.

5.4. Effect of DCB geometry

In the results presented above, the geometry of the DCB specimen was
constant with h = H. Fig. 18 shows the difference between the steady-state
fracture resistance, Jss and Jc for different h/H values as a function of σ̂.
It is seen that the difference between Jss and Jc increases when the beam
thickness of the non-linear material increases relatively to the beam thickness
of the stiff, linear elastic material. However, the effect is relative small (less
than 15%). As a practical guidance, h can be decreased for materials where
σ̂ ≈ σu in order to reduce the difference between Jss and Jc. The effect of
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decreasing Jss with decreasing thickness of a plastic layer was also noted by
Tvergaard and Hutchinson [33].

6. Discussion

6.1. Assessment of proposed method

The use of the J integral to describe the fracture resistance during crack
growth with plastic unloading is not theoretical sound as pointed out by
Hutchinson [34]. A more rigorous correct analysis involving energy account-
ing for both the cohesive zone and the bulk plasticity under steady-state
could be made by the use of the I integral [34, 35]. However, from an engi-
neering point of view, the approach proposed here may still be useful, when
used in a proper context, since the J integral attains a steady-state value
that in most cases examined is less than 15% of Jc. In practise this opens
the possibility of determining cohesive laws using the J integral approach
(Eq. 1) with fairly high accuracy.

Tvergaard and Hutchinson [9] found that for small scale yielding (plas-
ticity occuring within a K-dominated region), the toughening due to plastic
unloading could be more than 500% higher than Jc for σ̂/σy in the range of
3-4. The results of the current work, using a different plasticity law, show
that for the proposed specimen that exhibits large scale yielding without
significant unloading, the J integral attains a steady-state value that is less
than 15% higher than Jc for σ̂/σu ≤ 1 (σ̂/σy = 5). This is a quite remark-
able feature of the proposed specimen and it is mainly due to the stiff, elastic
beams attached to the non-linear material preventing significant unloading
as shown below.

Examining the terms in Eq. 24, we note that the stiff, elastic beam ac-
tually gives a contribution that is significantly larger than that of the test
material that deforms plastically. Although Eq. 24 does not account for the
crack tip plasticity, it suggests that the presence of the stiff layer helps reduc-
ing the amount of crack tip plasticity and unloading. For instance, in com-
parison with a specimen without a stiff, elastic beam, the strain ǫ11 which -
due to compatibility in displacements - must approximately follow the strain
variation of Eq. 9, so that it is likely to be smaller in a specimen with a
stiff beam and thus the amount of plastic deformation will be smaller. This
hypothesis is consistent with the findings of Tvergaard and Hutchinson [33].

Fig. 19 shows schematically a material point in the non-linear material
that is far-ahead from the initial notch. Upon loading of the DCB specimen,
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crack growth takes place and the active cohesive law approaches the material
point. With further increasing the applied moment, the active cohesive zone
moves past the material point (or equivalently, as shown in Fig. 19, a material
point moving past the active cohesive zone). Thus, by examining the stress
history in the material point as the active cohesive zone moves past, the
unloading can be examined. Fig. 20 shows the stress component σ11 in
material points that are located at x1 = 0.08h i.e. ahead of the crack tip
(the position of the initial crack tip is x1 = 0) and different distances from the
crack line in x2 direction. Significant unloading takes place in the material
points that are less than 0.03h far from the crack line as the crack tip passes
by. However, for x2 > 0.045h there is almost no unloading of the material
points. Fig. 21 shows the corresponding stress component σ22 for the same
material points. As can be seen, σ22 decreases for all material points when
they move behind the crack tip, irrespective of their distance to the crack
plane (x2 = 0). Behind the active cohesive zone, the beams of the non-linear
material are subjected to nearly pure bending induced by the stiff, elastic
beams. The elastic beams are loaded in pure bending without unloading.

As mentioned in Section 3, the present analytical solution is based on the
assumption that the neutral axis of the DCB speciment does not move with
the development of plasticity. In Appendix A a method is presented to calcu-
late the change in position of the neutral axis numerically, accounting for the
material non-linearity. It is shown that for the range of parameters examined
in the present work, the error introduced by neglecting the translation of the
neutral axis is small. Thus, Eq. 11 provides a good approximation of the
neutral axis position and is computationally significantly less costly.

For the range of material and specimen parameters examined in Section 5,
the error of the J integral method is below 15% in most cases (for σ̂/σu < 1).
The variation of the experimentally measured fracture resistance values is
usually much higher than 15%, see for example the experimental results of
Sørensen and Jacobsen [16] and De Souza et al. [36]. Thus, it can be argued
that the error of the proposed J integral method is so small that it allows
the method to be used with confidence in practise.

6.2. Implication for experiments

The steady-state fracture resistance values, Jss, (Section 5) were taken
from the part of the curve of Fig. 9 where there is a plateau in the J integral.
This corresponds to openings larger than the critical opening for complete
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failure (δ∗/δc = 1). If there was no toughening due to plasticity, Jss would
be reached for δ∗ = δc.

It is possible to monitor the end-opening during loading using a camera,
an optical microscope or by performing the experiment inside the chamber
of an Environmental Scanning Electron Microscope (ESEM) [36]. In this
case, it is possible to identify the critical opening for complete failure δc
experimentally. The corresponding J value will then be close to Jc since
the amount of unloading will be small. In the cohesive law determination,
Eq. 1, only data up to δc should be used. Consequently, the cohesive law
parameters could be extracted more accurately.

As mentioned in Section 5, the noise in the computed cohesive laws (see
Figs. 10 and 12) is an artifact related to the differentiation method used (Eq.
28) and the number of increments of the finite element solution. In practice
the experimental data, J vs δ∗, can be fitted with polynomial functions e.g.
splines or Chebyshev polynomials [29]. With the use of polynomials or other
differentiable functions [37], smooth cohesive laws can be extracted.

The parameter study in the present paper covers many realistic engineer-
ing materials. If the linear elastic material is steel (E#1=200 GPa), then the
curve E#2/E#1=0.01 corresponds to non-linear materials such as polymers
(E#2 ∼ 2-4 GPa), whereas for E#2/E#1 = 0.1 the non-linear material can
represent e.g. fibre reinforced composite materials (E#2 ∼ 20-40 GPa).

7. Summary and Conclusions

A test procedure for extracting mode I cohesive laws (peak traction, criti-
cal openings and shape) for materials with non-linear stress-strain behaviour
is developed. The method uses a J integral specimen (Double Cantilever
Beam sandwich specimen loaded with pure bending moments) subjected to
monotonically increasing moments. The requirement that there is no un-
loading at any material point is not strictly fulfilled in a small region at the
wake of the crack tip, but the beams of the DCB specimen does not unload
macroscopically during crack opening and crack propagation. It is shown
that the difference between the steady-state fracture resistance, Jss, and Jc
is below 16% in the range of material and specimen parameters examined.
This is smaller than the usual scatter in experimental fracture resistance
data. Thus, it can be concluded that the method can be used in practise for
cohesive law determination of materials undergoing large-scale yielding.
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Appendix A. Neutral axis change in position with plasticity

In Sub-section 3.1, it was assumed that the neutral axis does not change
position as plasticity develops in the beams of the material #2. With this
assumption, the neutral axis position is given by Eq. 11. In this Appendix,
the neutral axis position is calculated analytically, accounting for the non-
linear stress-strain law of material #2 in order to assess the accuracy of Eq.
11.

Since the specimen is symmetric, the analysis is restricted to one of the
bimaterial beams. If we consider the upper-half of the DCB specimen (see
Fig. 5), the axial force in the beam-end, N , is given by (plane stress):

N

B
=

∫ ∆−H

∆−H−h

σ#2
11 (y)dy +

∫ ∆

∆−H

σ#1
11 (y)dy (A-1)

where σ#2
11 is given in Eq. 3 and σ#1

11 = E#1ǫ11 (see Eq. 22). Since the
beam ends are subjected to pure bending moments, the axial force, N , is
equal to zero. Using Eq. 9 and performing the integration, we obtain:

N

B
=

E#2ǫ̂

2∆

(

2∆h− h2 − 2Hh

)

−
σoǫ̂

2

3∆2

(

(∆−H)3

−(∆−H − h)3
)

+
E#1ǫ̂

2∆
H(2∆−H) = 0 (A-2)

Eq. A-2 is a second order equation in ǫ̂ which together with Eq. 14
form a system of two second order equations with two unknowns ǫ̂ and ∆.
This system can be solved numerically giving ∆ as a function of M using
Mathematica [38].

Fig. A.1 shows the change in position of the neutral axis for six different
ratios of σ̂/σu as a function of the applied moment for values of M up to
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the point of steady-state for each σ̂/σu ratio. At steady-state, the neutral
axis has moved by 0.17% for σ̂/σu=0.35, whereas for σ̂/σu=1.0, the change
in position is 0.33%.

Next in Fig. A.2, the change of the neutral axis position is examined as
a function of the Young’s modulus of the non-linear material for σ̂/σu=0.9.
The change in position is less than 1.5 % for E#2/E#1 =0.1. For this case
the corresponding difference in the steady-state fracture resistance is 0.45%.
Thus, the change in position is relatively small.

Appendix B. Examples of closed form solutions for homogeneous

DCB specimens

For a homogeneous (i.e. consisted of one material only) DCB specimen
loaded with pure bending moments it is possible for certain case to obtain the
J integral equation in closed form when the material is not linear elastic. The
closed form J integral solutions are given below for two non-linear material
laws: a power law and an elastic-ideal plastic law, shown schematically in
Fig. B.1.

Appendix B.1. Power law stress-strain behaviour

If the stress-strain behaviour of the non-linear material can be described
by a power law constitutive equation:

σ11 = f(ǫ11) = σoǫ
n
11 (B-1)

where σo is a constant and n is a strain-hardening exponent, then Eq. 14
can be solved analytically for ǫ̂:

ǫ̂ = n

√

2(n+ 2)
M

σoBh2
(B-2)

and the strain energy density function, Φ is given by:

Φ =

∫ ǫ11

0

σoǫ
n
11dǫ11 =

1

n+ 1
σoǫ

n+1
11 (B-3)

With Eqs. B-1, B-2 and B-3, J5 (Eq. 24) can be obtained in closed form,
and through Eq. 25, the J integral along the external boundaries of the
specimen is given by:
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Jext =
4n

n+ 1

M

Bh

[

2(n+ 2)
M

σoBh2

]1/n

(B-4)

where h is the thickness of each beam (the total thickness of the DCB
specimen is 2h). Eq. B-4 is identical to the I integral solution of Thouless
et al. [27].

Appendix B.2. Elastic-ideal plastic stress-strain behaviour

For an elastic-ideal plastic material having a Young’s modulus E and a
yield stress σu (see Fig. B.1), the stress-strain relationship is:

σ11 =







Eǫ11, for 0 < |ǫ11| ≤
σu

E
,

σu, for |ǫ11| >
σu

E
,

(B-5)

It can be shown that the strain energy density function (under uniaxial
tension), Φ, is given by:

Φ = σu

(

ǫ11 −
1

2

σu

E

)

(B-6)

Following a similar procedure as above (Section Appendix B.1), it can be
shown that the J integral along the external boundaries of the DCB specimen
is given by:

Jext =
σ2
uh

2E

[

1−
4

3

h̃

h

]

=
σ2
uh

2E

[

1−
2

3

√

3−
48M

σuBh2

]

(B-7)

where the ratio h̃/h describes the region of large scale plasticity (see Fig.
B.2).

The beams become fully plastic (h̃ = h/2), when:

M =
σuBh2

24
. (B-8)

Then, Eq. B-7 becomes:

Jext =
σ2
uh

6E
. (B-9)

This is the maximum J integral value of the specimen. If the work of
separation per unit area Jc exceeds this value, the specimen will yield but
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not fracture. Fracture can be obtained for specimens having larger beam
height, i.e. by increasing h.
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Figure Captions
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Figure 1: Schematic illustration of the idealised cohesive law used in this study. Jc is the
mode I work of separation, δc, the critical separation, the opening at complete failure, and
σ̂ is the peak traction.
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Figure 2: Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending
moments.
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Figure 3: Two-dimensional specimen representation and J integral path Γi with i = 1, 5
along the external boundaries. #1: elastic material, #2 non-linear elastic material.
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Figure 4: Stress-strain behaviour described by a monotonically increasing function f as
long there is no unloading. The material can be e.g. elastic-plastic.
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Figure 5: Definition of a local coordinate system (x − y) with origin the position of the
neutral axis (only half of the specimen, x2 > 0, of Fig. 3 is considered).
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Figure 6: Equivalent plastic strain contours as a function of the end-opening, δ∗ for
σ̂/σu = 1, E#2/E#1 = 0.02 and E#2/σo = 0.1 (see Fig. 16): a) J/Jc = 0.25, b)
J/Jc = 0.80, c) J/Jc = 1.13, and d) J/Jc = 1.16.
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Figure 7: Active plastic zone contours as a function of the end-opening, δ∗ for σ̂/σu = 1,
E#2/E#1 = 0.02 and E#2/σo = 0.1 (see Fig. 16): a) J/Jc = 0.25, b) J/Jc = 0.80, c)
J/Jc = 1.13, and d) J/Jc = 1.16.
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Figure 8: Extracted, M , versus end-opening, δ∗, with both variables extracted from the
FE model (h/H = 1, δ1/h = 2 × 10−4, δc/h = 2 × 10−2, σ̂/σu = 0.75, σy/E

#2 = 0.01,
E#2/σo = 0.2, and E#2/E#1 = 0.01).
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Figure 9: J versus δ∗ where J is computed from M (Fig. 8) using the analytical method
of Section 3. The dotted lines represent the theoretical fracture resistance curves, Eq. 27.
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Figure 10: Extracted cohesive laws from J and δ∗ (Fig. 9) using Eq. 28 (solid lines). The
dashed lines represent the cohesive laws specified as input in the finite element model.
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Figure 11: Steady-state fracture resistance as a function of the cohesive peak stress, σ̂,
for three δ2/δc ratios (h/H = 1, δc/h = 2 × 10−2, σy/E

#2 = 0.01, E#2/σo = 0.2, and
E#2/E#1 = 0.01).
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Figure 12: Extracted cohesive laws using Eq. 28 (solid lines) for δ2/δc = 0.1 (see Fig. 11).
The dashed line represent the cohesive law specified as input in the finite element model.
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Figure 13: Steady-state fracture resistance as a function of the cohesive peak stress, σ̂, for
three δc/h ratios (h/H = 1, δ2/h = 0.01, σu/E

#2 = 0.05, E#2/σo = 0.2, and E#2/E#1 =
0.01).
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Figure 14: Normalised stress-strain curves, Eq. 3, for the non-linear test material (material
#2) with different E#2 values. The ratio E#2/σo is constant, E#2/σo = 0.2.
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Figure 15: Normalised steady-state fracture resistance as a function of the cohesive peak
stress, σ̂ for four E#2/E#1 ratios (h/H = 1, δ1/h = 2× 10−4, δ2/h = 2× 10−21, δc/h =
0.02, σu/E

#2 = 0.05, and E#2/σo = 0.2).
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Figure 16: Normalised stress-strain curves, Eq. 3, for the non-linear test material (material
#2) with different σo and E#2 values to keep σu constant.
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Figure 17: Normalised steady-state fracture resistance as a function of the cohesive peak
stress, σ̂, for the three different stress-strain curves of Fig. 16 (h/H = 1, δ1/h = 2× 10−4,
δ2/δc = 0.1, δc/h = 2× 10−1).
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Figure 18: Normalised steady-state fracture resistance as a function of the cohesive peak
stress, σ̂, for different h/H ratios (δ1/h = 2 × 10−4, δ2/h = 2 × 10−3, δc/h = 2 × 10−1,
σu/E

#1 = 0.05, E#2/E#1 = 0.01, and E#2/σo = 0.2).
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Figure 19: Illustration of the history of stress as a point approaching and moving past the
active, fully developed cohesive zone under steady-state cracking. (a) Schematics of the
point relative to the active cohesive zone: (A) ahead of the active plastic zone, (B) within
the active plastic zone and (c) behind the active plastic zone, (b) the associated loading-
and unloading history.
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Figure 20: Stress component σ11 in material points in material #2 located at x1 = 0.08h
and different x2 values, see Fig. 19. The solid line represents the x1 coordinate of the
material points relative to the initial notch.
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Figure 21: Stress component σ22 in material points in material #2 located at x1 = 0.08h
and different x2 values, see Fig. 19. The solid line represents the x1 coordinate of the
material points relative to the initial notch.
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Figure A.1: Neutral axis position as a function of applied moment, M , for six different
ratios of σ̂/σu. E

#2/E#1=0.02 and E#2/σo = 0.1 (see Fig. 17).
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Figure A.2: Neutral axis position as a function of applied moment, M , for four different
of E#2/E#1. σ̂/σu=0.9 (see Fig. 15).
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Figure B.1: a) power law, and b) elastic-ideal plastic law.
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Figure B.2: DCB specimen loaded with pure bending moments for an elastic-perfectly
plastic material (Due to symmetry only half of the specimen is shown).
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