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Fracture Resistance Enhancement of Layered Structures

by Multiple Cracks

Stergios Goutianos, Bent F. Sørensen∗
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University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark

Abstract

A theoretical model is developed to test if the fracture resistance of a layered
structure can be increased by introducing weak layers changing the cracking
mechanism. An analytical model, based on the J integral, predicts a linear
dependency between the number of cracks and the steady state fracture resis-
tance. A finite element cohesive zone model, containing two cracking planes
for simplicity, is used to check the theoretical model and its predictions. It
is shown that for a wide range of cohesive law parameters, the numerical
predictions agree well quantitatively with the theoretical model. Thus, it
is possible to enhance considerably the fracture resistance of a structure by
adding weak layers.

Keywords: Multiple Cracks; Fracture Resistance; Delamination; J Integral;
Cohesive Law;

1. Introduction

Layered structures/materials often exhibit low interlaminar fracture resis-
tance and are therefore susceptible to delamination when loaded. Through-
thickness stresses, arising for example from manufacturing defects or geo-
metric discontinuities, can result in propagation of interlaminar cracks which
may lead to a substantial decrease in the structural integrity of a component
[1, 2].

∗Corresponding author
Email addresses: goutianos@gmail.com (Stergios Goutianos), bsqr@dtu.dk (Bent

F. Sørensen)

Preprint submitted to Engineering Fracture Mechanics June 21, 2015



As a result, many techniques have been developed to improve the through-
thickness fracture resistance of layered structures and materials e.g. fibre re-
inforced polymer composites. However, at the same time, the in-plane prop-
erties are usually adversely affected [3]. In the field of composite materials,
the research in developing damage tolerant composites can be categorized
into two directions: a) material improvements and b) modifications of the
fibre architecture.

Material improvements include modified/tougher matrices [4–7], effect of
fibre/matrix interface [8–11] and interleaving concepts [12–16]. The alter-
native approach of modification of the fibre architecture includes stitching
[17], knitting [18, 19], weaving and braiding [20, 21] of textiles laminates or
z-pinning [3] usually for prepreg laminates [22, 23].

All the above techniques aim, in general, to increase the fracture resis-
tance of damage prone areas by making the damage prone areas stronger or
tougher. In the present paper, an alternative approach is proposed, moti-
vated by recent experimental work of Rask and Sørensen [24]. Testing Double
Cantilever Beam (DCB) specimens, they observed that by changing the ply
thicknesses of glass fibre/polyester composite beams bonded together with a
thermoset adhesive, more delamination cracks could develop next to the ad-
hesive/laminate crack. The overall steady-state fracture resistance was found
to increase proportionally to the number of secondary cracks. These results
suggest that a linear relationship may exist between the number of crack
tips/fracture process zones and the overall steady state fracture resistance
values.

Thus, in the present work, we explore the possibility of increasing the
overall fracture resistance of a layered structure by introducing weak planes
that result in multiple delaminations next to the damage prone areas as
shown in Fig. 1. In many cases such as in fibre composite materials [11] or in
adhesive joints between composite laminates [25], crack growth/delamination
involves large scale fibre bridging, which is a large-scale fracture process zone
and thus it should not be characterised by linear elastic fracture mechanics.
The problem is analysed by an analytical model and by a numerical model
(cohesive zone modelling implemented in a finite element framework) using
a DCB specimen subjected to pure bending moments shown in Fig. 2. Both
the analytical and numerical model are valid for large-scale fracture process
zones. In Fig. 2, the secondary crack represents the potential crack path of
the weak plane introduced in the vicinity of the primary crack which may
represent for example an adhesive layer/joint. The cohesive zone parameters
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of the secondary crack that lead to overall fracture resistance enhancement
are determined. In order to keep the parameter study simple, the focus is
on only two delamination planes, a primary and a secondary crack plane as
shown in Fig. 1. In addition, it will be demonstrated that it is possible to
quantify the maximum possible increase in overall fracture resistance through
an analytical fracture mechanics model including n delaminations based on
the J integral [26]. Toughness increase induced by a crack jumping was also
recently reported by [27] using cohesive zone modelling, whereas toughen-
ing due to microcracks (microcrack shielding) under linear elastic fracture
mechanics conditions was extensively studied for brittle materials [28, 29].

2. Analysis

The mechanism of formation of multiple delaminations is analysed in this
Section using the specimen of Fig. 2.

2.1. Concept of cohesive laws

The fracture process zone of the primary and secondary cracks can be
modelled by a cohesive zone model [30–32]. The tractions transferred across
the crack faces of the fracture process zone can be described by cohesive laws
or traction-separation laws shown in Fig. 3 for pure Mode I and Mode II
(i = 1 for the primary crack and i = 2 for the secondary crack).

The local normal tractions σi
n and the local shear tractions σi

t in the frac-
ture process zone are functions of the local crack openings in the normal and
tangential directions, denoted by δin and δit, respectively. The peak tractions
before damage develops and crack opening begins are denoted by σ̂i

n and σ̂i
t.

The cohesive tractions reduce to zero when the openings reach the critical
values, δc,in and δc,it , respectively.

2.2. Problem Statement

Fig. 4 shows the area ahead of the notch (at distance ℓ) of the specimen of
Fig. 2. Under monotonically increasing applied load (moment), the normal
traction (along x2 = 0) increases continuously. The shear tractions parallel
to the crack are ignored in this Section, as the problem of Fig. 2 is Mode I
dominated. As the normal stress at the tip of the notch reaches the normal
peak traction, σ̂1

n, as shown in Fig. 4a, the primary crack is begins to open i.e.

the fracture process zone forms. At distance h, where the potential secondary
crack lies, the normal stress, σ22, at any material point along this plane, is
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initially assumed to be lower than the peak traction for the secondary crack,
σ22 < σ̂2

n and thus there is no crack formation.
The fracture process zone of the primary crack evolves (see Fig. 4b)

with increasing applied load, increasing the tractions next to the primary
crack plane. The normal opening at the end of the fracture process zone is
denoted by δ∗,1n . If the normal stress at any point within the cohesive zone
of the secondary plane reaches the peak traction of the secondary crack,
σ22 = σ̂2

n, the secondary crack forms close to the current tip of the primary
crack. Upon further increase of the applied moment, both the primary and
secondary cracks grow, possibly at different rates, and eventually are fully
developed, δ∗,1n ≥ δc,1n and δ∗,2n ≥ δc,2n , and steady-state is reached as shown
in Fig. 5. A complication is that both the left hand and the right hand
crack tips can propagate. The left hand crack tip propagates in the negative
x1 - direction and the right hand crack tip propagates in the positive x1 -
direction. The combined work per unit area of the tractions behind the crack
tip is denoted by J i

ss with i = 1 for the primary crack and i = 2 for the
secondary crack.

2.3. J integral analysis

We now wish to investigate the effect of the secondary crack on the over-
all fracture resistance, JR. To derive the overall fracture resistance of the
problem depicted in Fig. 4, the path independent J integral [26] is used.
The J integral is defined as [26]:

J =

∫

Γ

Φdx2 + σijnj

∂ui

∂x1

dS (1)

where Φ is the strain energy density, σij the stress tensor, ui the displace-
ment vector, nj the normal unit vector to the integration path Γ. The J in-
tegral is path-independent, i.e. J takes the same value when evaluated along
a path along the external boundaries Γext and along a local path just outside
the fracture process zone Γloc. Fig. 6 shows the local path Γloc around the
fracture process zone than encloses both the primary and secondary crack.

First, we analyze the situation of a primary crack with no secondary crack
yet developed, as shown schematically in Fig. 6(a). The path-independent
J integral [26] is evaluated along an integration path, Γ1

loc, that runs locally
along the primary crack in a counter-clock-wise direction. The results is [26]:
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J1

loc =

∫ δ∗1n

0

σ1

n(δ
1

n)dδ
1

n, (2)

where δ∗1n is the end-opening of the cohesive zone. For the fully-developed
cohesive zone, δ∗1n = δc,1n so that:

J1

loc =

∫ δ
c,1
n

0

σ1

n(δ
1

n)dδ
1

n = J1

n,ss. (3)

In Eq. 3, the integral, the area under the traction-separation curves, is the
work of the cohesive traction and J1

n,ss is the steady-state fracture resistance
of the primary crack.

Next, we analyze the situation of having both a primary crack and a
secondary crack extending from x1 = x−

1 to x1 = x+

1 , as shown in Fig. 6(b).
We wish to use an integration path just outside the cracks and fracture
process zones, so that by path-independence we can set Jloc = Jext. The
chosen integration path consists of parts of Γ1

loc from x1 to xh
1 , where it cuts

across the ligament using the path Γ−

h (in the negative x2-direction), to path
Γ2−

loc, at the secondary crack. The path Γ2−

loc starts from (x1; x2) = (xh
1 ;−h)

and runs in the negative x1-direction to x1 = x−

1 , loops around the left
hand side crack tip and continues in the positive x1-direction to x1 = xh

1 .
Another integration path denoted Γ2+

loc continues from xh
1 to the right hand

side crack tip at x1 = x+

1 where it loops around the crack tip and continues
in the negative x1-direction to x1 = xh

1 . The integration path continues in
the positive x2-direction along Γ+

h up to the integration path of the primary
crack, Γ1

loc, and continues in the anti-clock direction along the rest of the
path Γ1

loc. Then, a J integral evaluation along the entire path can be written
as:

Jloc = J1

loc + J−

h + J2−

loc + J2+

loc + J+

h (4)

For a fully-developed primary crack the J integral equation for Γ1
loc is

identical to Eq. 3.
The integration paths Γ−

h and Γ+

h are identical except for the integration
path direction. Therefore, J−

h = −J+

h and therefore J−

h and J+

h cancel out in
Eq. 4.

For J2+

loc , the integration path runs locally along the crack faces of right
hand side of the secondary crack in a counter-clock-wise direction, which is
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the conventional J-integral problem. The results for the fully-developed co-
hesive zone situation, where δ∗,1n = δc,1n and δ∗,2n = δc,2n , is - analogous to Eq.
3:

J2+

loc =

∫ δ
c,2
n

0

σ2

n(δ
2

n)dδ
2

n = J2

n,ss. (5)

In contrast, J2−

loc is a J-integral evaluation of a left hand side crack (i.e.,
pointing towards the negative x1 direction). Therefore we show more details
in this derivation. The integral consists of two parts, one from the upper
crack face and one for the lower crack face.

Since dS = −dx1 and n+

j = (0; 1; 0) for the upper crack face and dS = dx1

and n−

j = (0;−1; 0) for the lower crack face we get:

J2−

loc =

∫ x−

1

xh
1

−σ22n
+

2

∂u+

2

∂x1

(−dx1) +

∫ xh
1

x−

1

−σ22n
−

2

∂u−

2

∂x1

(dx1) (6)

With n+

2 = 1 and n−

2 = −1 and defining the opening displacement as
δ2n = u+

2 − u−

2 , where u+

2 is the displacement in the x2-direction of the upper
crack face of the secondary crack and u−

2 is the displacement in the x2-
direction of the lower crack face of the secondary crack we obtain:

J2−

loc =

∫ x−

1

xh
1

σ22

(

∂u+

2

∂x1

−
∂u−

2

∂x1

)

dx1 =

∫ x−

1

xh
1

σ22

∂δ2n
∂x1

dx1 (7)

Furthermore, by the Chain rule:

dδ2n =
∂δ2n
∂x1

dx1, (8)

we change integration variables and integration limits, noting that σ22 =
σ2
n and, for the fully developed cohesive law, the end-opening is equal to the

critical separation, δ∗2−n = δc,2n . Then we get:

J2−

loc =

∫

0

δ∗2−n

σ2

n(δ
2

n)dδ
2

n = −

∫ δ
c,2
n

0

σ2

n(δ
2

n)dδ
2

n (9)

Comparing the J integral terms, we note that J2−

loc from Eq. 9 and J2+

loc

from Eq. 5 cancel out when inserting into Eq. 4. Then:

Jloc = J1

loc. (10)
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Thus, in case the secondary crack propagates in both ends, the work of
separation along path Γ2−

loc of the secondary crack contributes negative to
the J integral and outbalances the toughness enhancement from path Γ2+

loc.
The overall fracture resistance JR is then equal to the fracture resistance
of the primary crack even though the secondary crack propagates (in both
directions). 1

In the above J integral analysis, it is assumed that the secondary crack
extends in both directions. An alternative situation is when the secondary
crack extends only to the right hand side. The left hand side does not grow
i.e. the crack does not open and the crack tip remains at its initial position.
In this case the J integral contribution from the bridging tractions at the left
hand side crack tip is zero (J2

n,ss = 0). Then, Eq. 9 becomes:

J2−

loc = 0 (11)

and Eq. 4 gives:

Jloc = J1

loc + J2+

loc = J1

n,ss + J2

n,ss (12)

Thus, in this case the overall steady-state fracture resistance, JR,ss, is
increased by J2

n,ss. Thus, if the left hand side crack tip of the secondary crack
remains closed, its right hand side crack tip provides a direct contribution to
the overall steady-state fracture resistance.

Eq. 12 can be generalised to N secondary (delamination) cracks:

Jloc = J1

n,ss +NJ2

n,ss (13)

Eq. 13 demonstrates that there is significant potential enhancement of the
overall fracture resistance by having multiple weak planes next to a damage
prone area. The overall steady-state fracture resistance, JR,ss, will increase
linearly with the number of secondary cracks which is in agreement with the
experimental observations [24].

1Eq. 9 should not be understood as the work (per unit area) of the cohesive traction
as the crack advances in the x1 direction (implying crack tip translation in that direction,
i.e. crack closure at the left hand side crack tip). For a left hand side crack tip advancing

in the negative x1 direction the J integral contribution J2−

loc should in fact be negative as
can be assessed by analysing any left hand side crack tip by the J integral.
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The assumption that the left hand side of the secondary crack does not
open can be relaxed and allow an initial opening, followed by unloading. Dur-
ing unloading, as the left hand side of the secondary crack unloads, the bridg-
ing tractions decrease, approaching zero for complete crack closure. Then,
Eq. 12 still holds true.

It is interesting to note that such a linear relationship (as upper bound)
was also predicted for one and two secondary cracks under linear elastic
fracture mechanics [29].

The J integral analysis presented in this Section sets an upper limit of
the overall fracture resistance enhancement, Eq. 12, and a lower limit, Eq.
10, depending on the behaviour of the left hand side of the secondary crack.
In the next Section, cohesive zone modelling is used to determine which case
is more realistic for the secondary crack i.e. fully developed or closed left
hand side crack tip. The real situation is likely to be somewhere between the
two bounds, depending on the openings details of the left hand crack tip of
the secondary crack. In the next Section, the cohesive zone modelling details
are presented.

3. Numerical model

3.1. Geometry and loading

The crack growth problem of Fig. 2 was modelled by the finite element
method using the commercial code Abaqus, version 6.11 [33] as a plane strain
problem (see Fig. 7).

The right hand side of the specimen is fully constrained (u1 = u2 = 0 at
x1 = L − ℓ). As long as the crack tip is far away from the right hand side
specimen end, the boundary conditions at the right hand side should not
affect the crack growth in the specimen. Pure bending moments (external
loading) are applied to left hand side beams by prescribing the rotational
displacements of two points, which are tied to two analytical rigid surfaces
tied to the beams [34]. The two beams are modelled as plane strain isotropic
linear-elastic solids. Four-node elements and triangular three-node reduced
integrations elements are used in order to control the mesh transition and to
keep the element number of low.

Convergence difficulties are commonly observed when modelling crack
growth with implicit finite element methods. A number of numerical stability
methods exist to overcome these difficulties, however an explicit FE method
is more robust [35]. In the present study, an explicit solver was used to solve
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the problem under quasi-static conditions using mass-scaling [25]. In the
solution procedure, viscous damping was also necessary for convergence. In
all simulations, it was ensured that the sum of the kinetic energy and the
energy dissipated by viscosity was less than 0.5% of the strain energy.

For the specimen of Fig. 7, following the analysis of [36] for pure Mode I
loading, the J integral evaluated along the external boundaries, under plane
strain conditions and mixed-mode loading, is [37]:

Jext = (1− ν2)
21(M2

1 +M2
2 )− 6M1M2

4B2H3E
(14)

where H and B are the height and width of the specimen respectively,
E and ν are the Youngs’ modulus and Poisson’s ratio of the beams and the
moments M1 and M2 applied to the left hand cracked ends are taken positive
in the same direction. This result is valid only as long as the secondary crack
remains away from the left hand end of the beam so that the beams ends are
subjected to pure bending. The specimen of Fig. 7 is not symmetric when
the secondary crack has developed/formed. Thus, magnitude of the reaction
moment,M1, in the upper beam is different from that of the reaction moment,
M2, in the lower beam of the specimen although the prescribed rotational
displacements are equal and of opposite sign. Since, M1 is not quite equal
to −M2 (the difference between |M1| and |M2| is typically less than 5%),
there is a tangential crack opening. However, it will be shown later that this
opening is negligible in comparison with the normal opening of the primary
and secondary cracks. As can be seen from Eq. 14 the J integral equation
is independent of the crack length. Thus, by extracting the moments from
the finite element solution, the overall fracture resistance, JR, given by the
J integral can be directly evaluated.

3.2. Cohesive Zone Modelling

In the finite element model, the entire potential planes for the primary
and secondary cracks are modelled with cohesive elements of finite thickness
corresponding to 0.1% of H to avoid interpenetration of the two surfaces ad-
jacent to the cohesive elements [25]. As can be seen from Fig. 7, the cohesive
zone of the potential secondary crack plane extends along the whole length
the specimen, L, allowing crack growth behind the initial notch (primary
crack).

The cohesive laws are taken to have a bilinear shape. Fig. 8 shows
the pure normal and shear cohesive laws for each crack where σn and σt
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are the normal and shear tractions, δn and δt the normal and tangential
openings. The cohesive laws have initial rising parts with stiffness Ki

n and
Ki

t for the primary and secondary cracks which are assigned high values
(Ki

nH/E = Ki
tH/E = 2.5×10−3) to practically have linear softening cohesive

laws with minimum opening prior to crack opening (see Fig. 3). In all
simulations the normal and shear peak tractions of the primary crack are
constant and equal to σ̂1

n/E = σ̂1
t /E = 5× 10−5.

In the analytical model of the previous Section only the normal opening
of the cracks is considered. In the finite element model, however, both the
normal and tangential openings of the cracks are taken into account (see
Fig. 8). Following the mixed-mode model of [38] and [39], it is assumed that
normal and shear cohesive laws are totally uncoupled, except being coupled
through a simple failure criterion of the form [40]:

Fcr =
W i

n

J i
n,ss

+
W i

t

J i
t,ss

= 1, i = 1 or 2 (15)

where J i
n,ss and J i

t,ss are the Mode I and Mode II steady-state fracture
resistances for the primary (i = 1) and for the secondary crack (i = 2) and
represent the total area under the cohesive laws for each mode (Fig. 8). The
work of the cohesive tractions (shaded area in Fig. 8) are denoted Wn and
Wt for the normal and shear tractions, respectively. With the uncoupled
cohesive laws chosen, Wn and Wt depend only on δ∗n and δ∗t , respectively.

The uncoupled, path-independent mixed-mode model of Eq. 15 is pre-
ferred since the Abaqus [33] implemented mixed-mode model is a truss-like
cohesive law (the traction vector is specified to follow the direction of the
crack opening displacement vector) which is path dependent, i.e. the com-
bined work of the cohesive tractions depends on the opening path history
except for the cases that the mixed mode cohesive law is the same in all
directions [41]. Thus, a user defined material subroutine was implemented
for the model of Eq. 15 used with the Abaqus cohesive elements. Since one
basic assumption of the analytical model is that the left hand side of the
secondary crack can unload, it is important that unloading is implemented
in the subroutine. In the present study, we use a linear unloading to zero, as
shown with dotted lines in Fig. 8.
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4. Numerical results

4.1. Effect of the peak traction of the secondary crack

Fig. 9 shows some typical overall fracture resistance curves, JR, as a
function of the end-opening ∆n for h/H equal to 0.01 and 0.1, predicted by
the finite element method. JR is calculated from Eq. 14 using the moments
M1 and M2 extracted from the FE model. ∆n is the displacement difference
between the upper crack face of the primary crack and the lower surface of
the secondary crack at the end of the notch (points a and b in Fig. 7). ∆n is
thus approximately equal to the end-opening recorded in experiments [24, 25].
For both curves, the ratio σ̂2

n/σ̂
1
n is equal to 0.5. For both simulations, JR

increases to a steady-state value, denoted JR,ss. For both curves, JR,ss ex-
ceeds the fracture energy of the primary crack J1

n,ss. The steady-state value
for h/H = 0.01 is higher than for h/H = 0.1 The numbers in circles are
referred to in subsequent figures.

In Fig. 10 the primary and secondary crack openings are shown for four
different loading history points (see Fig. 9). It can be seen that the right side
secondary crack front lies ahead the crack front of the primary crack although
the primary crack is the crack that opens first. Both the primary crack and
the right hand side crack tip of the secondary crack open continuously. The
left hand side of the secondary crack opens initially but as the crack grows
to the right it closes/unloads again. This will be elaborated further in the
next Section.

The computational results of Fig. 10 capture the salient features of ex-
perimental observations of [24].

Fig. 11 shows the overall steady-state fracture resistance, JR,ss, for dif-
ferent peak tractions of the secondary crack at various distances h between
the planes of the primary and secondary crack paths. For both cracks, the
cohesive law for the normal traction is identical to the cohesive law for the
shear traction (σ̂i

n = σ̂i
t and δc,in = δc,it ). The cohesive stiffnesses of the pri-

mary and secondary cracks are equal i.e. K1
n = K2

n and K1
t = K2

t and the
steady-state fracture resistances are equal i.e. J1

n,ss = J2
n,ss and J1

t,ss = J2
t,ss.

Since the peak tractions of the secondary crack, σ̂2
n and σ̂2

t , vary and J1
n,ss and

J2
n,ss are held fixed, both characteristic cohesive law openings (Fig. 8) are

different between the primary and secondary crack i.e. δo,1n 6= δo,2n , δo,1t 6= δo,2t ,
δc,1n 6= δc,2n and δc,1t 6= δc,2t .

The computed overall steady-state fracture resistance values, JR,ss, are
within the theoretical lower and upper limits derived in previous Section (see
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Eqs. 10 and 12).
From Fig. 11 we note that as expected, when the peak traction of the

secondary crack is larger than the peak traction of the primary crack the
secondary crack does not form. Only the primary crack opens and grows
and as consequence the overall steady-state fracture resistance, JR,ss, is equal
to the steady-state fracture resistance of the primary crack, J1

n,ss, for any
distance h.

When the peak traction of the secondary crack is smaller that the peak
traction of the primary crack (σ̂2

n/σ̂
1
n < 1), then both the primary and the

secondary crack open and grow simultaneously. With increasing h, the overall
steady-state fracture resistance decreases for all σ̂2

n/σ̂
1
n ratios. In all cases,

the overall steady-state fracture resistance, JR,ss, is larger than the steady-
state fracture resistance of the primary crack, J1

n,ss. More interestingly, JR,ss

approaches the upper bound (Eq. 12) for a large range of σ̂2
n/σ̂

1
n ratios and

small h. When the peak traction of the secondary crack is much smaller than
the peak traction of the primary crack (σ̂2

n/σ̂
1
n < 0.3), the overall steady-state

fracture resistance approaches approximately the same value for all distances
h and it is closer to the lower limit (Eq. 10). Of the two non-dimensional
parameters, σ̂2

n/σ̂
1
n and h/H, the later is the most important in the sense

that for h/H sufficiently small, JR,ss is close to the upper bound for a wide
range of σ̂2

n/σ̂
1
n values.

4.2. Effect of the steady-state fracture resistance of the secondary crack

In this Section we present results from simulations for which the steady-
state fracture resistance of the secondary crack differs from the steady-state
fracture resistance of the primary crack. As in the previous Section the Mode
II cohesive law is identical to the Mode I cohesive law for each crack. Fig.
12 shows the overall steady-state fracture resistance, JR,ss, as a function of
the ratio of Mode I steady-state fracture resistance of the secondary crack,
J2
n,ss, over the Mode I steady-state fracture resistance of the primary crack,

J1
n,ss, for h/H = 0.01 and two σ̂2

n/σ̂
1
n ratios. It can be seen that as in

Fig. 11, the predicted overall steady-state fracture resistance is between
the limits defined by Eqs. 10 and 12. For J2

n,ss/J
1
n,ss / 1.5, the overall

steady-state fracture resistance increases linearly with increasing J2
n,ss. For

J2
n,ss/J

1
n,ss > 1.5, the overall steady-state fracture resistance first decreases

rapidly, then more slowly approaching a value that is 40%-60% higher than
if the secondary crack was absent.
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It is interesting to note, from Fig. 12, that it is possible to obtain crack
propagation of the secondary crack also for J2

n,ss/J
1
n,ss > 1, i.e. when the

steady-state fracture resistance of the secondary crack is higher than that of
the primary crack.

Fig. 13 shows the overall fracture resistance curve for J2
n,ss/J

1
n,ss = 1.4

(σ̂2
n/σ̂

1
n = 0.9). At this J2

n,ss/J
1
n,ss ratio, the overall steady-state fracture

resistance reaches its maximum value (see Fig. 12), JR,ss/J
1
n,ss ≈ 2.2.

5. Discussion

5.1. Fracture resistance and the openings of the secondary crack

The crack growth mechanism depicted in Fig. 10 shows that the left hand
side of the secondary crack does not fully develop but unloads/closes as the
secondary crack grows. To further examine the cracking mechanism, the
normal crack opening profiles are plotted at different history loading points
(see Fig. 9) in Fig. 14 (primary crack) and Fig. 15 (secondary crack) for
h/H = 0.01, σ̂2

n/σ̂
1
n = 0.5 and J2

n,ss = J1
n,ss (same parameters as for the results

shown by the red curve in Fig. 9). It can be seen that the primary crack opens
monotonically with increasing the applied rotational displacements (Fig. 14).
On the other hand, as the secondary crack grows (right hand crack tip), its
left hand crack tip initially opens but later unloads/closes (Fig. 15). As
a result, the overall steady-state fracture resistance, JR,ss, approaches the
value predicted from Eq. 12. The overall steady-state fracture resistance
is approximately 5% lower than Eq. 12 prediction’s. This slight difference
can be explained by the fact that part of the left hand side of the secondary
crack is still open and not completely closed (Fig. 15). The right hand sides
of both the primary and the secondary cracks are fully developed; as can be
seen from Figs. 14 and 15 the crack openings are larger than the openings
at complete failure δc,1n (primary crack) and δc,2n (secondary crack).

Furthermore, the secondary crack growth rate is higher than of the pri-
mary crack. At point 10, the crack front of the primary crack is at x1/L < 0.3
(see Fig. 14), whereas the crack tip of the secondary crack is at x1/L > 0.5
(see Fig. 15). This is in agreement with the experimental observations of
[24].

As mentioned in Section 3, due to the presence of the secondary crack, the
moments in the beam ends of the specimen are not equal. As a consequence,
some tangential crack opening is anticipated, mainly for the secondary crack,
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and it is plotted in Fig. 16. The tangential crack opening profile for the sec-
ondary crack, at different history loading points, displays the same behaviour
with the normal opening i.e. as the right hand crack tip advances to the right,
the left hand side crack tip unloads and closes. However, the magnitude of
the opening is much smaller than the tangential opening at complete failure,
δc,2t . Thus, it can be concluded, that the results presented in the present
work correspond to almost pure normal opening.

5.2. Effect of distance h between primary and secondary crack

From Figs. 11 and 12 we note that the overall steady-state fracture
resistance approaches its maximum theoretical value (Eq. 12) for small values
of h. With increasing h/H the overall steady-state fracture resistance, JR,ss,
decreases more from its maximum value. The underlying reason for the effect
of changing h/H will be discussed next.

Figs. 17 and 18 show the crack opening profile at different history load-
ing points for the primary and secondary crack, respectively, shown in Fig.
9 corresponding to h/H = 0.1. The normal crack opening profiles of the
primary crack are similar to the normal crack opening profiles for the case
of h/H = 0.01 (see Fig. 14). The normal crack opening profiles of the sec-
ondary crack are also similar to the case of h/H = 0.01 but the magnitude
of the opening is significantly smaller. As can be seen the normal openings
are smaller than the normal opening at complete failure, δc,2n and thus the
secondary crack is not fully developed. As a result, the overall steady-state
fracture resistance cannot reach the value predicted from Eq. 12. The dif-
ference in behaviour for h/H = 0.01 and h/H = 0.1 can be attributed to the
difference in the bending stiffness (the moment of inertia) of the ligament
between the two cracking planes (cohesive zones). For h/H = 0.01 (Figs. 14
and 15), the bending stiffness is low so that the ligament acts like a slender
beam and can easily deform elastically due to the cohesive tractions acting
along the ligaments length. As a result, the secondary crack can undergo
significant normal opening. In contrast, for h/H = 0.1 (Figs. 17 and 18),
the bending stiffness of the ligament is so high that the cohesive tractions
cannot induce much bending in the ligament. Then, the normal opening of
the secondary crack is limited.

5.3. Closure of the left hand crack tip of secondary crack

Fig. 18 also shows that the left hand end of secondary crack initially
opens behind the primary crack tip, at negative values of x1.
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Figs. 19 and 20 show the primary and secondary normal crack opening
profiles for the history loading points shown in Fig. 13. As mentioned above,
this case corresponds approximately to the steady-state fracture resistance
of the secondary crack for which the overall steady-state fracture resistance,
JR,ss, reaches its maximum value following Eq. 12. The normal crack opening
profiles for both the primary and secondary crack are similar to the crack
opening profiles shown in Figs. 14 and 15 except that the left hand crack
tip of the secondary crack (Fig. 20) is now clearly closed. This observation
corroborates the theoretical model: Eq. 12 is only realised when the left
hand crack tip of the secondary crack is closed.

5.4. Smoothness of fracture resistance curves

The overall fracture resistance curve, see Fig. 13, is smooth up to point
3, which corresponds approximately to the time history where the secondary
crack is fully open (δ2n = δc,2n (see Fig. 20)). Beyond this point, the overall
fracture resistance, JR, curve is non-smooth and this is associated with the
discontinuous propagation of two fully developed cracks. The same can be
seen in Fig. 9 for h/H = 0.01 where the overall fracture resistance curve
becomes non-smooth between points 3 and 4. Fig. 15 shows that the sec-
ondary crack becomes fully developed between these points. On the other
hand, the overall fracture resistance in Fig. 9 for h/H = 0.1 is smooth since
the normal crack opening of the secondary crack does not reach its critical
value δc,2n as can be seen in Fig. 18.

5.5. Factors limiting the maximum attainable fracture resistance

As mentioned, it is possible to obtain propagation of the right hand crack
tip of the secondary crack also when J2

n,ss > J1
n,ss, providing that h is suffi-

ciently small. However, as shown in Fig. 12, for J2
n,ss/J

1
n,ss > 1.5, the result-

ing overall steady-state fracture resistance, JR,ss, decreases with increasing
J2
n,ss. This decrease can be understood as follows: With σ̂2

n fixed, an increase
in J2

n,ss is (in the finite element model) obtained by increasing δc,2n . Then,
for high values of J2

n,ss, the critical separation, δc,2n , may be higher than the
opening of the secondary crack, so that the cohesive zone may never be fully
developed (δ∗,2n < δc,2n , see Fig. 8) and the work of the normal traction of the
right hand crack tip never reaches J2

n,ss.
The results presented in Section 4 show that it is possible for a wide

range of cohesive law parameters of the secondary crack to obtain close to
85% of the maximum increase in overall steady-state fracture resistance,
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given by Eq. 12, if the weak layer (secondary crack) is sufficiently close to
the primary crack. The value of the peak stress of the secondary crack is
of less importance providing σ̂2

n < σ̂1
n. The proposed approach of increasing

the overall fracture resistance by the formation of a secondary crack is thus
quite robust.

5.6. Multiple weak layers

The analysis of Section 2 is general for N weak layers. The, the numerical
model could be extended to include more weak layers/secondary cracks. In
case each new interface crack gives a toughnening increase corresponding to a
linear increase of the overall steady-state fracture resistance, JR,ss. Therefore,
this toughnening approach holds great potential. The approach of using weak
layers to increase the overall fracture resistance could be useful in particular
to increase the fracture resistance of adhesive joints. Using the results of the
present work to carefully design the weak layers, with primary focus on thin
layers, damage tolerant adhesive joints could be manufactured.

5.7. Mixed mode cracking

In layered structures, e.g. adhesive joints, crack growth often takes place
under mixed mode [25]. It will be interesting to extend the current work
to mixed mode loading and investigate if the linear dependency between
the number of crack tips/fracture process zones and the overall steady state
fracture resistance values, Eq. 12, still holds.

5.8. Use of J integral for cohesive laws undergoing closure

Finally, a remark concerning the use of the J integral for the analysis of
a cohesive zone that has undergone closure and thus unloading, as shown
in Figs. 15, 18 and 20. In analysis of crack growth involving plasticity, the
use of J integral is only valid for situations where there is no unloading,
so that the non-linear stress-strain relationship of a plastically deforming
material is indistinguishable from a non-linear elastic stress-strain law. In
the present study, we consider unloading of the left hand side of the secondary
crack tip, so that the cohesive law, upon unloading, behaves differently from
the opening, which is analogous to unloading during crack growth in an
elastic-plastic material. It is therefore relevant to consider if the use of the
J integral is still valid under these conditions. It is worth recalling, however,
that we analyse cohesive tractions in precisely the same way as any applied
tractions. That is, at a given time in the loading history, the analysis uses
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the external tractions and cohesive tractions that are present in the specimen
at that instance, irrespective of the evolution history. Consequently, the way
the cohesive traction has evolved is unimportant. The derived J integral
approach is still valid as long as there is no non-elastic unloading in the bulk
material.

6. Concluding Remarks

A theoretical model, based on the J integral, predicts that a linear depen-
dency exists between the number of cracks/fracture process zones and the
overall steady state fracture resistance. Cohesive zone modelling, consisting
of a primary and a secondary crack, was used to identify the cohesive law
parameters of the secondary crack for which the linear dependency is approx-
imately valid. It was found that the overall steady state fracture resistance
was almost double for a wide range of cohesive law parameters as long as
the secondary crack lies close to the primary crack. Thus, it is feasible to
increase the fracture resistance of a layered structure significantly by simply
adding weak layers. The results of the present work could be used as a guide
to select the fracture properties of the weak layers.
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Figure 1: Cracking in a weak layer (secondary crack) located at distance h from the
primary crack. δ∗,1n is the normal end-opening of the primary crack and δ∗,2−n and δ∗,2+n

the normal end-openings of the right and left hand side crack tips of the secondary crack.
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Figure 2: Double Cantilever Beam (DCB) specimen subjected to pure bending moments,
M . A notch of length ℓ is used to initiate the primary crack. A second, potential, crack
is defined at a distance h from the primary crack.
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Figure 4: Local J integral path enclosing the primary and secondary crack.
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Figure 5: Schematic of fracture resistance curve.
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Figure 6: Local J integral path enclosing the primary and secondary crack.

24



x2

x1

q

q

l

L

H

H

h
primary cracking plane

potential secondary
cracking plane

Dn

a

b

Figure 7: Geometry, loads and boundary conditions of the finite element model. The
potential cracking planes, which are modeled by cohesive zones, are indicated.
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Figure 8: Mode I and mode II linear softening cohesive laws, respectively, for the primary
(i = 1) and secondary crack (i = 2).
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Figure 9: Overall fracture resistance, JR, as a function of the end-opening, ∆n, comprising
the end-openings of the primary crack, δ1n, the secondary crack, δ2n, and the deformation
of the ligament between the two cracks (see Fig. 7: distance between points a and b).
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(a) Point 1

(b) Point 2

(c) Point 3

(d) Point 4

Figure 10: Contour plots of the failure criterion (Eq. 15) for σ̂2
n/σ̂

1
n = 0.5 and h/H = 0.01.

The points correspond to the loading history points of Fig. 9. The colour code indicates
the magnitude of the openings within the cohesive zone, blue (contour level 0.00) indicates
a completely closed state; red (contour level 1.00) fully open.
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of the secondary crack, σ̂2

n for both the primary and secondary crack. The cohesive law of
the shear traction is identical to the cohesive law of the normal traction, respectively.
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n,ss. The Mode II cohesive law
is identical to the Mode I cohesive law for the primary and secondary crack, respectively.
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Figure 13: Overall fracture resistance, JR, as a function of the end-opening, ∆n, comprising
the end-openings of the primary crack, δ1n, the secondary crack, δ2n, and the deformation
of the material between the two cracks (see Fig. 7: distance between points a and b).
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Figure 14: Normal crack opening profiles of the primary crack for the history loading
points (1-10) shown in Fig. 9 (h/H = 0.01).
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Figure 15: Normal crack opening profile of the secondary crack for the history loading
points (1-10) shown in Fig. 9 (h/H = 0.01).
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Figure 16: Tangential crack opening profile of the secondary crack for the history loading
points (1-10) shown in Fig. 9 (h/H = 0.01).
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Figure 17: Normal crack opening profile of the primary crack for the history loading points
(1-8) shown in Fig. 9 (h/H = 0.1).
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Figure 18: Normal crack opening profile of the secondary crack for the history loading
points (1-8) shown in Fig. 9 (h/H = 0.1).
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Figure 19: Normal crack opening profile of the primary crack for the history loading points
(1-8) shown in Fig. 13.
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Figure 20: Normal crack opening profile of the secondary crack for the history loading
points (1-8) shown in Fig. 13.
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