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Abstract 

Marine eutrophication refers to an ecosystem response to the loading of nutrients, typically nitrogen (N), to 

coastal waters where several impacts may occur. The increase of planktonic growth due to N-enrichment 

fuels the organic carbon cycles and may lead to excessive oxygen depletion in benthic waters. Such hypoxic 

conditions may cause severe effects on exposed ecological communities. The biologic processes that 

determine production, sink, and aerobic respiration of organic material, as a function of available N, are 

coupled with the sensitivity of demersal species to hypoxia to derive an indicator of the Ecosystem Response 

(ER) to N-uptake. The loss of species richness expressed by the ER is further modelled to a marine 

eutrophication Ecosystem Damage (meED) indicator, as an absolute metric of time integrated number of 

species disappeared (species·yr), by applying a newly-proposed and spatially-explicit factor based on species 

density (SD). The meED indicator is calculated for 66 Large Marine Ecosystems and ranges from 1.6×10
-12

 

species·kgN
-1

 in the Central Arctic Ocean, to 4.8×10
-8

 species·kgN
-1

 in the Northeast U.S. Continental Shelf. 

The spatially explicit SDs contribute to the environmental relevance of meED scores and to the 

harmonization of marine eutrophication impacts with other ecosystem-damage Life Cycle Impact 

Assessment (LCIA) indicators. The novel features improve current methodologies and support the adoption 

of the meED indicator in LCIA for the characterization of anthropogenic-N emissions and thus contributing 

to the sustainability assessment of human activities. 

Keywords Exposure  Effect  Life Cycle Impact Assessment  Ecosystem damage  Large Marine 

Ecosystems  Potentially Affected Fraction of Species 
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List of abbreviations 

AoP, Area of Protection; EF, Effect Factor; ERPAF, ecosystem response (estimated from PAF-based effect 

factors); ERPDF, Ecosystem Response (estimated from PDF-based effect factors); LCIA, life cycle impact 

assessment; LME, large marine ecosystem; meDF, marine eutrophication damage factor; meED, marine 

eutrophication ecosystem damage; PAF, potentially affected fraction of species; PDF, potentially 

disappeared fraction of species; SD, species density; SDM, species distribution model; SR, species richness; 

SSD, species sensitivity distribution; XF, exposure factor 

1. Introduction 

 Marine eutrophication is an ecosystem response to an increased availability of a growth-limiting 

nutrient in the euphotic zone of coastal waters (Gray et al., 2002; Rabalais, 2002; Smith et al., 1999) and its 

consequences are among the most severe and widespread disturbances to marine environments (Diaz and 

Rosenberg, 2008; GESAMP, 2001). Nitrogen (N) is assumed to be the limiting nutrient in marine coastal 

waters (Howarth and Marino, 2006; Vitousek et al., 2002), acknowledging that spatial and seasonal 

limitation by phosphorus (P) or silicon (Si) and cases of co-limitation may occur (see e.g. Arrigo, 2005; Elser 

et al., 2007; Turner et al., 1998). The N-enrichment of coastal waters boosts planktonic growth, or primary 

production (PP) – the photosynthetic reduction of inorganic carbon into energy-rich organic carbon involving 

the assimilation of inorganic dissolved plant nutrients and the utilization of light energy by primary 

producers, mainly phytoplankton, in the well-lit upper layers of the ocean (euphotic zone) (Chavez et al., 

2011; Falkowski and Raven, 2007). The eventual aerobic respiration of this newly produced organic matter 

may result in oxygen depletion in bottom waters (Cosme et al., 2015; Graf et al., 1982; Ploug et al., 1999) 

and even in the occurrence of ‘dead zones’ (Diaz, 2001; Diaz and Rosenberg, 2008). Effects on exposed 

demersal species (e.g. fish, crustaceans, or bivalves) may then be expected as a function of their sensitivity to 

hypoxia (Cosme and Hauschild, 2016; Davis, 1975; Diaz and Rosenberg, 1995; Gray et al., 2002; Vaquer-

Sunyer and Duarte, 2008) and promote other impacts that may include habitat loss, water quality 

degradation, mass mortality, and fisheries decline (Diaz and Rosenberg, 1995; Levin et al., 2009; 

Middelburg and Levin, 2009; Wu, 2002; J. Zhang et al., 2010). 

 Globally, environmental N-emissions from human activities have increased more than 10-fold in the last 

150 years in large part due to the growing demand for reactive nitrogen in agriculture use and for energy 

production (Galloway et al., 2008). Considering the N emissions throughout the entire life cycle of products 

and services in the economy, Life Cycle Assessment (LCA) can be used as an environmental analysis tool 

designed to quantify the resulting potential impacts (Hauschild, 2005). Indicators of marine eutrophication 
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impacts are estimated in the Life Cycle Impact Assessment (LCIA) phase of LCA, typically at the midpoint 

between emission and damage (endpoint) in the cascade of N-enrichment effects in the marine compartment 

(Rabalais et al., 2009). This fact is reflected in widespread LCIA methods, like ReCiPe (Goedkoop et al., 

2012), EDIP 2003 (Hauschild and Potting, 2005), IMPACT 2002+ (Jolliet et al., 2003), and CML 2002 

(Guinée et al., 2002). Recent reviews of the state-of-the-art and research needs regarding marine 

eutrophication impacts modelling revealed the lack of a consistent link between existing midpoints and 

damage level (Hauschild et al., 2013; Henderson, 2015). While the midpoint indicator models nutrients fate 

in the environment, the endpoint indicator further requires exposure and effects modelling for consistency 

with the generic LCIA framework (Udo de Haes et al., 2002). Recent work has developed explicit ecosystem 

exposure factors (XF) (Cosme et al., 2015) and effect factors (EF) (Cosme and Hauschild, 2016). An XF×EF 

coupled indicator represents the ecosystem response to N-uptake by primary producers in coastal waters. 

Additional fate modelling may deliver the marine eutrophication impact potential of a unit mass of N emitted 

from anthropogenic sources. 

 Methodology-wise, other ecosystem-related LCIA indicators at the endpoint level, e.g. for ecotoxicity 

or acidification, can be aggregated into damage to the ecosystem, also known as an Area of Protection (AoP) 

(Udo de Haes et al., 1999), and be expressed as a time-integrated loss of species richness, i.e. species·yr. 

Such conversions currently adopt a site-generic marine species density (SD) value (Goedkoop et al., 2012) – 

an inherent model (rough) simplification. Recent work focusing on marine species distribution (Jones and 

Cheung, 2015) may provide the damage modelling with site-dependent SDs to estimate environmentally 

relevant damage factors (DF). The present approach derives the ecosystem response (ER) indicator from the 

cause-effect chain triggered by N-enrichment of coastal waters that leads to impacts on ecological 

communities affected by oxygen depletion. The spatial differentiation given by the exposure and effect 

components of the model work is further combined with the natural occurrence of the potentially affected 

species in coastal waters around the globe (i.e. their density, SD). Given the local to regional character of 

marine eutrophication and hypoxia events, this impact assessment approach seems useful for comparative 

purposes.  

 The goal of this study is to quantify spatially explicit damage potentials for N emissions that fuel 

primary production in coastal waters and thus contributing to marine eutrophication. This quantification 

requires (i) the derivation of an ecosystem response indicator, obtained by combining the ecosystem 

exposure to N and the effects on biota caused by hypoxia, and (ii) an additional conversion of the damage to 

ecosystem from relative to absolute metrics, based on site-dependent species density. The application of such 

method is discussed for the characterisation modelling of anthropogenic emissions of N with eutrophying 

impacts in a LCIA framework. 

2. Methodology 

 The approach used here is consistent with the LCIA framework for emission-related impact indicators. 

It estimates potential impacts to the ecosystem by combining environmental fate of substances emissions, 

exposure of the receiving ecosystem to these, and the effect caused on exposed species (Pennington et al., 

2004b; Udo de Haes et al., 2002) (Section 2.1). The present method proposes an indicator for the loss of 

species richness caused by hypoxia-based marine eutrophication expressed as a volume-integrated 

Potentially Affected Fraction (PAF) of species per unit mass of N uptaken (Sections 2.2–2.4). A metrics 

conversion to Potentially Disappeared Fraction (PDF) of species is proposed for harmonisation with other 

ecosystem-related endpoint indicators (Section 2.5). An additional conversion to an absolute metric is 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026
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proposed, based on site-dependent species density obtained from marine species distribution models 

(Sections 2.5–2.8). 

2.1 Framework 

 The LCIA factor, or Characterisation Factor (CF, (PAF)·m
3
·yr·kgN

-1
), that translates the quantity of an 

emission into its potential impact on the exposed environmental compartment (coastal marine ecosystem) is 

derived as summarised in Eq. (1): 

𝐶𝐹𝑖𝑗 = 𝐹𝐹𝑖𝑗 × 𝑋𝐹𝑗 × 𝐸𝐹𝑗          (1) 

where FFij (yr) is the fate factor for emission route i (N to air, from soil, to fresh-, or to marine water) to 

receiving ecosystem j (coastal marine), XFj (kgO2·kgN
-1

) is the exposure factor and EFj ((PAF)·m
3
·kgO2

-1
) 

the effect factor, both in ecosystem j. PAF is included for informative reasons as it is not an actual unit but a 

dimensionless quantity (fraction) (Heijungs, 2005). Acknowledging the meaning and application of CFs in 

impact assessment, the scope of the present method is limited to the estimation of the ecosystem response to 

N uptaken by phytoplankton, for which XF and EF are applied (see Figure 1). Spatial explicit fate modelling 

can however be adapted for waterborne (Cosme et al., 2016) and airborne N emissions (Dentener et al., 

2006; Roy et al., 2012). 

 

Figure 1 Schematic representation of the marine eutrophication impact pathway. Only the modelling components of 

ecosystem exposure and effects on biota (coloured box processes) are used to derive the ecosystem response (ER) to 

nitrogen uptake in the euphotic zone of coastal waters. Grey shaded boxes refer to emission-related and environmental 

fate processes (outside the scope of this work). The product of exposure factor (XF) and effect factor (EF) delivers an 

ecosystem response (ER) indicator, which is then multiplied by the spatially differentiated damage factor (DF) based on 

species density (SD) to derive the ecosystem damage (ED). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

2.2 Exposure factors 

 The XF comprises the assimilation of N that boosts planktonic growth, followed by the export of 

organic carbon to bottom strata where heterotrophic bacteria consume dissolved oxygen by aerobic 

respiration. The model work proposed by Cosme et al. (2015) describes the biological processes of N-limited 

primary production (PP), metazoan consumption, and bacterial degradation, in four distinct organic carbon 

sinking routes. The resulting XFs, nitrogen-to-oxygen ‘conversion’ potentials, are available at a 

recommended spatial resolution of Large Marine Ecosystems (LMEs) (Sherman and Alexander, 1986) and 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026
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range from 0.45 kgO2·kgN
-1

 in the Central Arctic Ocean to 16 kgO2·kgN
-1

 in the Baltic Sea (Figure S.1) 

(Cosme et al., 2015). 

2.3 Effect factors 

 The EF represents the average effect of hypoxia on an exposed demersal community. It is derived from 

the sensitivity of the composing individual species to hypoxia, with threshold values expressed as lowest-

observed-effect-concentrations (LOEC), integrated with a Species Sensitivity Distribution (SSD) 

methodology (Posthuma et al., 2002) to estimate a HC50LOEC value (Cosme and Hauschild, 2016). This 

represents the intensity of the stressor, i.e. a dissolved oxygen (DO) level, at which 50% of the species are 

affected above their individual threshold. The EF [(PAF)·m
3
·kgO2

-1
] is derived as the average variation of 

effect (ΔPAF, [dimensionless]) in the ecological community in ecosystem j due to a variation of the stressor 

intensity (ΔDO, [kgO2·m
-3

]) in the same ecosystem (Eq. 2), according to the current scientific consensus 

(Larsen and Hauschild, 2007; Pennington et al., 2004a): 

𝐸𝐹𝑐→𝑗 =
∆𝑃𝐴𝐹𝑐→𝑗

∆𝐷𝑂𝑐→𝑗
=

0.5

𝐻𝐶50𝐿𝑂𝐸𝐶𝑐→𝑗

          (2) 

 The EF, as defined and used in LCIA, reads as the ability of an environmental stressor to cause a 

potential loss of species richness in the exposed ecosystem (Cosme and Hauschild, 2016). EF values are 

available at a five climate zone (CZ) resolution (polar, subpolar, temperate, subtropical, and tropical) and 

range from 218 (PAF)·m
3
·kgO2

-1
 (polar CZ) to 306 (PAF)·m

3
·kgO2

-1
 (tropical CZ) (Figure S.2). A 

disaggregation into 66 LMEs (j) is possible by following the LME distribution per CZ (c) as a function of 

mean benthic water temperature (Cosme and Hauschild, 2016), and denoted in Eq. (2) as 𝑐 → 𝑗. 

2.4 Ecosystem response 

 The ecosystem response (ER, [(PAF)·m
3
·kgN

-1
]) indicator score was calculated for every LME by 

multiplying the exposure (XF) and effect (EF) factors of the corresponding LME (ecosystem j), as in Eq. (3): 

𝐸𝑅𝑃𝐴𝐹𝑗 = 𝑋𝐹𝑗 · 𝐸𝐹𝑗           (3) 

2.5 PAF- to PDF-integrated indicators 

 A marine eutrophication Damage Factor (meDF) (Eq. 4) was applied to ERPAF for the metrics 

conversion in each ecosystem j (LME) (Eq. 5) aimed at harmonisation of endpoint scores in the LCIA 

framework as a PDF-integrated unit (Udo de Haes et al., 1999). The aim here is meaningful comparisons and 

further aggregation with other indicators that also target the ecosystem AoP, designated  Ecosystem Quality  

in the Eco-indicator 99 method (Goedkoop and Spriensma, 2000) and Impact 2002+ (Jolliet et al., 2003) 

method, or Ecosystems in the ReCiPe method (Goedkoop et al., 2012). See justification and discussion of 

meDF quantification in Section 3.3 ahead. 

𝑚𝑒𝐷𝐹 =
0.5 (PDF)∙𝑚3∙𝑘𝑔𝑁−1

1 (PAF)∙𝑚3∙𝑘𝑔𝑁−1 = 0.5 (𝑃𝐷𝐹) · (𝑃𝐴𝐹)−1       (4) 

𝐸𝑅𝑃𝐷𝐹𝑗 = 𝑚𝑒𝐷𝐹 ∙ 𝐸𝑅𝑃𝐴𝐹𝑗          (5) 

2.6 Species richness 

 Three species distribution models (SDMs) were applied to predict distributions of exploited marine 

species – Maxent, AquaMaps and the Sea Around Us Project method. Generically, SDMs compare species 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026
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occurrence with physical and biological conditions of the occurring areas to infer the bioclimatic envelope 

for the species (Hutchinson, 1957). This was attained by Maxent and AquaMaps by means of generative 

statistical procedures only differing on the algorithms used (Jones et al., 2012). The Sea Around Us Project 

method algorithm (see Cheung et al. (2008); Close et al. (2006); www.seaaroundus.org; also named Dynamic 

Bioclimate Envelope Model (see Jones and Cheung (2015)) estimates the relative abundance of a set of 

species based on the species’ depth range, horizontal range, known Food and Agriculture Organization 

statistical areas and polygons encompassing their known occurrence regions. In this method, the distributions 

are further refined by assigning habitat preferences to each species, such as affinity to shelf (inner, outer), 

estuaries, and coral reef habitats, obtained from FishBase (www.fishbase.org) and SeaLifeBase 

(www.sealifebase.org). Detailed descriptions of the three SDMs are provided in the Supplementary 

Information of Jones and Cheung (2015) and references therein, and model validation work documented in 

Jones et al. (2012). Presence data were chosen to represent species occurrence for being considered more 

appropriate than absence data, which are likely to be inaccurate and only occasionally available for marine 

species (Jones and Cheung, 2015). 

 The SDMs were used to estimate a 20-year averaged distribution centred on 2000 (1991-2010), from 

presence-only occurrence data obtained from the Ocean Biogeographic System (OBIS, www.iobis.org/) on a 

0.5° latitude × 0.5° longitude grid. The dataset used comprises 626 exploited benthic, demersal, and 

benthopelagic fish and invertebrates species (Table S.1) in the world oceans. Averaged LME-dependent 

species richness (SR) values were calculated by spatial aggregation in each of the 66 LME spatial units. 

2.7 Species density 

 The benthic-demersal habitat was assumed as of 20 metres off the bottom on the neritic zone, 

corresponding to the bottom layer of the water column where demersal benthopelagic species are probable to 

occur (benthic species are necessarily included). This assumption is suggested by bottom trawl fisheries 

results, i.e. effective trawl fishing heights of 12-20 metres off the bottom for demersal species (Hjellvik et 

al., 2003) and 20 metres vertical trawl opening for benthopelagic species (Doray and Trenkel, 2010). This 

value was multiplied by the LME area to estimate the benthic-demersal habitat volume. Areal data per LME 

were compiled from the Sea Around Us Project (www.seaaroundus.org). The conversion of species richness 

(SR) values per LME j into species density (SD) followed Eq. (6): 

𝑆𝐷𝑗 = 𝑆𝑅𝑗 (𝐴𝑗 · ℎ)⁄            (6) 

where the species density (SD, [species·m-3
]) is obtained by dividing the number of occurring species, i.e. 

species richness (SR) per LME, by the corresponding benthic-demersal habitat volume [m
3
], i.e. LME area 

(A, [m
2
]) multiplied by the average height (h, [m]) of 20 metres (Table 1). 

2.8 Spatially explicit absolute metric of damage to ecosystems 

 As species composing coastal ecological communities vary geographically, a relative impact metric 

(based on PAF or PDF, i.e. fractions) of marine eutrophication impacts may therefore not be representative 

of the damage to local communities, for which an absolute metric would fit. Although using a site-generic 

SD, a relative-to-absolute conversion approach is already applied to ecosystem-related indicators in the 

ReCiPe LCIA method (Goedkoop et al., 2012). A similar metric conversion is proposed in the present 

context to an endpoint-like indicator, i.e. the ecosystem response indicator, as this is similar to an impact 

potential (like a CF) but missing the magnitude given by the fate factor – which scales the impact to the 

actual emission it tries to characterise, rather than scaling it to a unit mass uptaken by phytoplankton. 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026
http://www.seaaroundus.org/
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.iobis.org/
http://www.seaaroundus.org/
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Therefore, the relative endpoint score was converted to an absolute one by multiplying the ecosystem 

response (ERPDF, [(PDF)·m
3
·kgN

-1
]) indicator score with a spatially differentiated SD [species·m

-3
] in LME 

j, to deliver the marine eutrophication Ecosystem Damage (meED, [species·kgN
-1

]), as per eq. (7): 

𝑚𝑒𝐸𝐷𝑗 = 𝐸𝑅𝑃𝐷𝐹𝑗 · 𝑆𝐷𝑗           (7) 

 The meED expresses an absolute measure of the ecosystem damage potential per LME. Further 

aggregation is then possible into a damage category, i.e. AoP. Worth of mention here is the fact that, to the 

knowledge of the authors, there is no available and recommended method for endpoint modelling of a marine 

eutrophication indicator (Hauschild et al., 2013; Henderson, 2015), as also noted by the International 

Reference Life Cycle Data System (ILCD) (EC-JRC, 2010). 

3. Results and Discussion 

3.1 Ecosystem response 

Ecosystem response (ER) scores were calculated for the 66 LMEs according to Eq. (3) to represent the 

average impact of the uptake of a unit mass of N by phytoplankton in the LME’s euphotic zone – the results 

are given in the respective column in Table 1 and its distribution shown in Figure S.3. The ERPAF scores 

range from 98.16 (PAF)·m
3
·kgN

-1
 (in LME#64 Central Arctic Ocean) to 3,853 (PAF)·m

3
·kgN

-1
 (in LME#23 

Baltic Sea). The ERPAF variation per LME is correlated with XFLME (r=0.98), which in turn is strongly 

correlated to primary production (PP) rates (Cosme et al., 2015), both sharing a 66 LME spatial resolution. 

The lower spatial variability expressed by only 5 climate zones in the EFLME renders a smaller and inverse 

correlation (r=-0.20) to ERPAF. Such correlations do not alter the ranks of the lowest four and highest six 

scoring LMEs in both XF and ER indicators. As seen before, the ER is not an impact scaled to the 

anthropogenic emission of N, as no environmental fate is modelled, e.g. as removal in land or freshwater – 

rather, it expresses the ecosystem’s potential to respond to an increase in N availability that causes hypoxia-

related impacts on biota. Damage factors (meDF) were applied and ERPAF converted to ERPDF (results in 

Table 1 and Figure S.4). 

Table 1 Results of the ecosystem response (ER) scores per Large Marine Ecosystem (LME), calculated from the 

ecosystem eXposure Factor (XF) and Effect Factor (EF), in both PAF- and PDF-integrated metrics. Also, results of the 

marine eutrophication Ecosystem Damage (meED) scores calculated with species density (SD) derived from mean 

species richness (SR) per LME (standard deviation, σ, included). The LME area (A) was used to derive the benthic-

demersal habitat volume (assumed height = 20 m).  

Large Marine Ecosystem XF EF ERPAF ERPDF SR A SD meED 

 kgO2·kgN-1 (PAF)·m3·kgO2
-1 (PAF)·m3·kgN-1 (PDF)·m3·kgN-1 species σ km2 species·m-3 species·kgN-1 

01. East Bering Sea 9.86 242 2.38E+03 1.19E+03 13.5 12.2 601,920 5.84E-13 6.96E-10 

02. Gulf of Alaska 11.1 242 2.70E+03 1.35E+03 17.4 2.40 329,528 6.17E-13 8.32E-10 

03. California Current 6.09 278 1.69E+03 8.46E+02 10.2 0.470 112,754 2.32E-13 1.97E-10 

04. Gulf of California 7.97 242 1.93E+03 9.63E+02 47.0 11.7 75,484 1.25E-11 1.21E-08 

05. Gulf of Mexico 4.49 306 1.37E+03 6.85E+02 49.4 5.59 567,620 1.66E-12 1.14E-09 

06. Southeast U.S. Continental Shelf 5.26 306 1.61E+03 8.03E+02 75.0 14.6 131,057 1.37E-11 1.10E-08 

07. Northeast U.S. Continental Shelf 12.2 278 3.40E+03 1.70E+03 89.3 25.5 279,681 1.60E-11 2.72E-08 

08. Scotian Shelf 11.6 242 2.80E+03 1.40E+03 66.1 17.1 224,439 9.17E-12 1.28E-08 

09. Newfoundland-Labrador Shelf 10.3 242 2.49E+03 1.24E+03 49.5 17.8 486,595 3.84E-12 4.77E-09 

10. Insular Pacific-Hawaiian 1.33 306 4.05E+02 2.03E+02 12.0 0.000 20,432 6.19E-13 1.25E-10 

11. Pacific Central-American 3.33 306 1.02E+03 5.09E+02 14.8 1.00 208,530 3.80E-13 1.94E-10 

12. Caribbean Sea 2.51 306 7.67E+02 3.83E+02 34.0 1.85 518,460 5.39E-13 2.07E-10 

13. Humboldt Current 8.38 278 2.33E+03 1.17E+03 9.65 0.983 302,712 1.95E-13 2.28E-10 

14. Patagonian Shelf 11.5 242 2.78E+03 1.39E+03 37.5 2.92 1,004,605 1.66E-12 2.31E-09 

15. South Brazil Shelf 5.84 242 1.41E+03 7.06E+02 56.9 6.51 282,944 5.20E-12 3.67E-09 

16. East Brazil Shelf 1.94 306 5.94E+02 2.97E+02 22.8 1.04 168,245 1.10E-12 3.25E-10 

17. North Brazil Shelf 5.26 306 1.61E+03 8.04E+02 46.5 4.73 466,907 2.34E-12 1.88E-09 

18. Canadian Eastern Arctic - West Greenland 6.80 218 1.48E+03 7.42E+02 9.60 3.63 398,787 1.52E-12 1.13E-09 

19. Greenland Sea 7.25 218 1.58E+03 7.91E+02 6.72 4.45 90,224 6.73E-13 5.32E-10 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026


Cosme, N., et al. / Ecological Indicators 73 (2017) 676–685 

http://dx.doi.org/10.1016/j.ecolind.2016.10.026  

8 

 

20. Barents Sea 7.05 242 1.71E+03 8.53E+02 11.4 3.25 919,627 3.26E-13 2.78E-10 

21. Norwegian Sea 6.35 242 1.54E+03 7.68E+02 18.7 3.11 54,020 8.66E-13 6.65E-10 

22. North Sea 9.11 242 2.20E+03 1.10E+03 87.8 8.37 591,135 6.70E-12 7.38E-09 

23. Baltic Sea 15.9 242 3.85E+03 1.93E+03 24.7 3.91 387,139 3.60E-12 6.93E-09 

24. Celtic-Biscay Shelf 8.15 278 2.26E+03 1.13E+03 95.9 14.1 528,284 6.71E-12 7.60E-09 

25. Iberian Coastal 7.38 278 2.05E+03 1.03E+03 56.9 6.78 55,069 1.01E-11 1.04E-08 

26. Mediterranean 3.45 278 9.60E+02 4.80E+02 55.1 7.27 530,429 1.17E-12 5.60E-10 

27. Canary Current 7.73 242 1.87E+03 9.34E+02 42.9 3.44 195,439 1.97E-12 1.84E-09 

28. Guinea Current 4.31 242 1.04E+03 5.21E+02 25.2 1.95 287,606 6.64E-13 3.46E-10 

29. Benguela Current 9.09 242 2.20E+03 1.10E+03 32.3 2.21 199,456 1.11E-12 1.22E-09 

30. Agulhas Current 4.76 306 1.46E+03 7.28E+02 22.6 2.46 316,710 4.43E-13 3.22E-10 

31. Somali Coastal Current 3.36 306 1.03E+03 5.13E+02 21.0 1.51 61,885 1.28E-12 6.59E-10 

32. Arabian Sea 4.99 306 1.53E+03 7.63E+02 25.2 1.59 686,547 3.28E-13 2.50E-10 

33. Red Sea 3.89 306 1.19E+03 5.94E+02 48.5 11.0 198,827 5.92E-12 3.52E-09 

34. Bay of Bengal 3.71 306 1.13E+03 5.67E+02 28.0 2.01 657,300 3.90E-13 2.21E-10 

35. Gulf of Thailand 4.17 306 1.27E+03 6.37E+02 77.8 11.5 385,957 1.07E-11 6.84E-09 

36. South China Sea 2.70 306 8.26E+02 4.13E+02 58.6 4.82 1,884,304 9.46E-13 3.90E-10 

37. Sulu-Celebes Sea 3.18 306 9.72E+02 4.86E+02 37.5 6.60 224,667 1.99E-12 9.69E-10 

38. Indonesian Sea 3.69 306 1.13E+03 5.64E+02 48.8 5.85 829,346 1.15E-12 6.46E-10 

39. North Australian Shelf 4.26 306 1.30E+03 6.51E+02 84.3 8.77 778,294 5.73E-12 3.73E-09 

40. Northeast Australian Shelf 1.93 306 5.90E+02 2.95E+02 37.1 2.45 303,792 1.47E-12 4.33E-10 

41. East-Central Australian Shelf 3.51 242 8.48E+02 4.24E+02 18.1 0.949 67,670 1.40E-12 5.92E-10 

42. Southeast Australian Shelf 5.41 278 1.51E+03 7.53E+02 17.3 0.615 219,772 7.33E-13 5.52E-10 

43. Southwest Australian Shelf 5.28 278 1.47E+03 7.34E+02 27.0 2.06 296,112 1.33E-12 9.75E-10 

44. West-Central Australian Shelf 3.85 242 9.30E+02 4.65E+02 28.8 0.380 110,129 2.66E-12 1.24E-09 

45. Northwest Australian Shelf 2.66 306 8.13E+02 4.07E+02 53.1 5.12 366,857 2.99E-12 1.22E-09 

46. New Zealand Shelf 5.69 278 1.58E+03 7.91E+02 46.7 3.71 224,510 2.48E-12 1.96E-09 

47. East China Sea 6.45 306 1.97E+03 9.85E+02 83.4 14.0 567,923 5.60E-12 5.52E-09 

48. Yellow Sea 12.0 278 3.34E+03 1.67E+03 56.4 6.93 434,234 6.88E-12 1.15E-08 

49. Kuroshio Current 3.37 242 8.16E+02 4.08E+02 22.4 2.10 102,224 8.63E-13 3.52E-10 

50. Sea of Japan/East Sea 5.92 278 1.65E+03 8.24E+02 26.7 2.27 205,882 1.42E-12 1.17E-09 

51. Oyashio Current 9.25 242 2.24E+03 1.12E+03 13.7 1.05 44,327 1.32E-12 1.47E-09 

52. Sea of Okhotsk 10.0 242 2.42E+03 1.21E+03 21.1 1.62 600,353 7.04E-13 8.52E-10 

53. West Bering Sea 7.80 242 1.89E+03 9.43E+02 1.20 0.144 113,202 2.80E-14 2.64E-11 

54. Northern Bering - Chukchi Seas 4.57 218 9.97E+02 4.99E+02 7.10 6.55 994,363 4.72E-13 2.35E-10 

55. Beaufort Sea 5.87 218 1.28E+03 6.41E+02 3.43 2.05 401,019 2.76E-13 1.77E-10 

56. East Siberian Sea 2.81 218 6.12E+02 3.06E+02 4.05 0.586 518,845 2.07E-13 6.34E-11 

57. Laptev Sea 7.54 218 1.65E+03 8.23E+02 5.13 1.44 783,341 5.17E-13 4.25E-10 

58. Kara Sea 6.22 218 1.36E+03 6.78E+02 5.02 1.35 802,720 2.83E-13 1.92E-10 

59. Iceland Shelf and Sea 7.34 242 1.78E+03 8.88E+02 22.8 6.44 113,019 1.04E-12 9.24E-10 

60. Faroe Plateau 5.58 242 1.35E+03 6.74E+02 51.0 27.2 27,119 1.70E-11 1.15E-08 

61. Antarctic 4.91 218 1.07E+03 5.35E+02 3.36 0.003 491,798 4.24E-14 2.27E-11 

62. Black Sea 8.83 278 2.45E+03 1.23E+03 21.8 3.41 150,185 2.59E-12 3.18E-09 

63. Hudson Bay Complex 6.96 218 1.52E+03 7.60E+02 9.46 0.885 1,099,739 4.17E-13 3.17E-10 

64. Central Arctic Ocean 0.450 218 9.82E+01 4.91E+01 1.25 0.512 1,535 1.79E-14 8.81E-13 

65. Aleutian Islands 9.96 242 2.41E+03 1.20E+03 9.79 11.7 37,737 4.98E-13 6.00E-10 

66. Canadian High Arctic - North Greenland 2.99 218 6.53E+02 3.27E+02 5.21 1.85 172,572 3.77E-13 1.23E-10 

 Maximum = 15.9 306 3.85E+03 1.93E+03 95.9 -- -- 1.70E-11 2.72E-08 

 Minimum = 0.450 218 9.82E+01 4.91E+01 1.25 -- -- 1.79E-14 8.81E-13 

 

3.2 Spatially explicit damage scores 

 Species densities (SDs, Figure 2) were derived from species richness (SR, Figure S.5) and benthic-

demersal habitat volumes per LME (Table 1). SD values vary from 1.8×10
-14

 species·m
-3

 (in LME#64 

Central Arctic Ocean) to 1.7×10
-11

 species·m
-3

 (in LME#60 Faroe Plateau) – i.e. 3 orders of magnitude of 

spatial differentiation. 

 The calculated marine eutrophication Ecosystem Damage (meED) indicators are also compiled in Table 

1 and their distribution shown in Figure 3. Results for meED vary from 8.8×10
-13

 species·kgN
-1

 (in LME#64 

Central Arctic Ocean) to 2.7×10
-8

 species·kgN
-1

 (in LME#7 Northeast U.S. Continental Shelf) – i.e. more 

than 4 orders of magnitude of spatial differentiation. The distribution pattern of the SDs (Figure 2) is 

determinant for the meED scores distribution, showing the same high-scoring LMEs, which is explained by 

the lower variation range of the ER scores (factor ca. 39) when compared to the SD variation (factor ca. 

948). As the meED is merely an indicator of a potential impact in the receiving LME these results show the 

relevance of managing anthropogenic emissions to these water masses, possibly at a river basin scale. It also 

points out the need to further include environmental fate modelling to ensure completeness of the impact 
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pathway and link (human-driven) causes to (environmental) effects through the ecosystem response 

dimension.  

 

Figure 2 Distribution of species density (SD) values estimated from a set of 626 exploited demersal (benthic and 

benthopelagic) fish and invertebrates species, per Large Marine Ecosystem (LME). Note the non-linear scale. Figure 

available online in colour. 
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Figure 3 Global distribution of the marine eutrophication Ecosystem Damage scores (meED, [species·kgN
-1

]) per Large 

Marine Ecosystem (LME). Note the non-linear scale. Figure available online in colour. 

3.3 PAF to PDF – the relative metrics 

 The majority of ecosystem-damage indicators report the environmental disturbance as a loss of species 

richness for its modelling feasibility and data availability. International databases of species distributions, 

e.g. Ocean Biogeographic Information System (OBIS, www.iobis.org), FishBase (www.fishbase.org), 

SeaLifeBase (www.sealifebase.org), World Register of Marine Species (WoRMS, www.marinespecies.org), 

may provide modellers with spatially explicit data relevant for e.g. ecotoxicity, ocean acidification, and 

marine eutrophication (Cosme and Hauschild, 2016). On a methodological perspective, different taxonomic 

groups (e.g. marine invertebrates, terrestrial mammals) and biological endpoints (e.g. ventilation rate, death) 

are widely used to estimate average or marginal responses in species richness, thus adding harmonisation 

issues as questions arise: is the species richness dimension of the impacts built on species-area relationships 

equivalent to that of SSD-based indicators? And within these, does NOEC-, LOEC-, EC50-, LC50-based 

sensitivity indicators contribute equally to an AoP-aggregated damage dimension? And should PAF to PDF 

conversions be spatially differentiated too or is a global generic relationship conceptually acceptable? 

 Implicitly in this method, the derived LOEC values tend to define a PAF-like metric, which does not 

necessarily lead to a non-occurrence of species characteristic of PDF. Persistent or recurrent sublethal stress 

in PAF-like environmental conditions, i.e. in which species are affected but still occur, may however bring 

costly metabolic, physiological, or reproductive consequences for the exposed species, and avoidance 

behaviour (a disappearance nonetheless). In the long run, these would qualify as an impact beyond what PAF 

http://dx.doi.org/10.​1016/​j.​ecolind.​2016.​10.​026
http://www.iobis.org/
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.marinespecies.org/
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is able to express, due to the incompatibility given by time integration in LCIA modelling, and be closer to 

represent a true PDF. At the other end, brief PAF-like exposure events may easily be compensated by 

physiological or ecological feedbacks and have no long-term impacts. 

  Assuming a continuum between what PAF- and PDF-based indicators mean, a metrics conversion may 

find ground for application. Approaches to quantify a PAF-to-PDF conversion and derive a damage factor 

are briefly discussed elsewhere (Jolliet et al., 2003; Larsen and Hauschild, 2007). Based on a time-integrated 

modelling approach, the exposure to environmental conditions between sublethal and lethal levels, the 

seasonality of the stressor, and for moderate intensity and duration between the PAF and PDF extremes (as 

mentioned earlier), the assumption that one half of the species affected (as PAF) would tend to not occur 

(and be expressed as PDF), i.e. a conversion factor of 0.5 (see Eq. 4), was chosen. 

 For ecosystem-related LCIA indicators, the probability of non-occurrence of species is modelled with a 

‘media recovery’ assumption, i.e. species reappear when the stressor intensity falls below a sensitivity 

threshold, assuming a reversible cause-effect link (Larsen and Hauschild, 2007). Such assumption verifies 

when vulnerability and recoverability are weighted equally across species and no cumulative effects based 

on stressor persistence are modelled. In any case, modelling species’ or communities’ differentiated capacity 

to recover shows high environmental relevance. In this line, adding vulnerability indices to richness 

assessments (e.g. Curran et al., 2011; Verones et al., 2015, 2013), or Mean Extinction Time as discussed in 

Larsen and Hauschild (2007), along with spatial differentiation as shown here, may represent valuable 

methodological improvements. Similarly, ‘media recovery’ does not verify also if endemism is involved – 

meaning that the extirpation of exposed endemic species necessarily leads to their disappearance and so 

failing the otherwise assumed reappearance. Future generations of ecosystem-damage assessment methods 

may add to the multitude of factors built on biological attributes, for which structure and function are still 

missing to a large extent (Curran et al., 2011; Souza et al., 2013), and others on the disturbance on delivering 

ecological services (Othoniel et al., 2016; Y. Zhang et al., 2010). However, ecosystem services as a metric 

can only succeed when spatially explicit valuations are produced and databases made available. 

 The occurrence of eutrophication impacts is correlated with the seasonality of e.g. nutrients emission 

flows, biological response, water temperature, stratification, and hypoxia (Behrenfeld and Boss, 2014; 

Cushing, 1959; Diaz, 2001; Justić et al., 1993; Lutz et al., 2007; Michael Beman et al., 2005; Rabalais, 2002; 

Rabalais et al., 2010; Rosenberg, 1985; Smith et al., 1992). Emissions are not evenly distributed over the 

year, planktonic productivity varies with latitude and season, and so do the conditions for the onset of 

stratification and hypoxia. These may suggest a useful inclusion of temporal modelling of effects, 

considering that stressors’ timing, duration, intensity, and recurrence are factors contributing to species 

disappearance (Pickett and White, 1985) that reduce the habitat suitability or hinder reproductive success, i.e. 

pushing PAF closer to PDF. 

3.4 Harmonization of damage indicators – the absolute metrics 

 The terms endpoint and damage are usually applied interchangeably in LCIA. However, a distinction is 

made here for clarity reasons – endpoint refers to the relative metric (PAF- or PDF-integrated) whereas 

damage is used to refer to the absolute metric (species-integrated). The indicators at both level can be useful 

for coastal, ecological, or water quality management. However, an endpoint unit is less transparent and 

informative to managers and decision makers (or to other non-technical audiences) for 3 reasons: (1) it 

misses the differentiated potential impacts to individual LMEs, when local or regional impacts are to be 

modelled, as only spatially explicit SDs can discriminate the number of species exposed – the EF is focused 

on (available) species composition data and sensitivity, suggesting that each LME is quantitatively and 
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qualitatively distinct – still, an increase of spatial resolution of the EF model work can be seen as a method 

improvement here; (2) the decoupling of the indicator from the community makes PAF- and PDF-integrated 

units (fractions) less communicable, in opposition to an easier to grasp absolute number of species in the 

damage unit; and (3) it misses the ability to match the dimension of other indicators and the aggregation into 

a common damage category. 

 Endpoint indicators for ecosystem impacts are a quantifiable representation of the changes in the quality 

status, or damages, in this entity (Jolliet et al., 2004). Marine eutrophication typically falls in this 

classification and its indicator assigned to the AoP Ecosystems. Various other indicators also contribute to 

the same AoP, e.g. terrestrial ecotoxicity, freshwater eutrophication, marine acidification. Such indicators are 

ideally expressed in a common unit to facilitate their comparison and aggregation, if desired. However, 

available endpoint-oriented and combined midpoint-endpoint LCIA methods differ in the units representing 

such damage to ecosystem – one can find e.g. (PDF)·m2 or 3·yr (respectively for area or volume and time 

integrated PDF), Expected Increase in Number of Extinct Species (EINES) (Itsubo and Inaba, 2012), or 

normalized extinction of species (NEX, dimensionless) (Steen, 1999). More importantly, the PDF-integrated 

units do not necessarily refer to a comparable biotic component of the ecosystem, thus failing to express a 

joint measure of biodiversity change. Taking the mentioned impact categories, terrestrial ecotoxicity 

necessarily affects land-based species that may not coincide with freshwater systems species (and covered by 

eutrophication impact models there), which in turn differ from marine species (used to model ocean 

acidification impacts) – despite all three indicators are expressed in PDF-integrated units. Finally, within 

non-global impact indicators, such as eutrophication, the naturally occurring variability of species in distinct 

geographic locations is not entirely accounted for in current LCIA methods at the damage level. The absolute 

number of species in a certain area, that a relative PDF-integrated unit represents (a fraction all the same), 

may not necessarily match the same amount of species elsewhere for the same quantified anthropogenic 

pressure. Harmonisation of the ecological meaning of PDF-integrated units by means of spatial 

differentiation in both impacts modelling (endpoint level) and SD (damage level) seems essential to deliver a 

common and truly comparable species·yr unit. In that line, aggregation of damage-like units is justifiable. On 

the downside, further uncertainty is added by the extra modelling of SD applied in the damage indicator. 

However, the trade-off between the environmental relevance given by the spatial differentiation and the 

added uncertainty seems to favour the former when addressing local to regional impacts, such as hypoxia-

driven marine eutrophication. The loss of information on specific indicators after damage aggregation is an 

unavoidable feature of the LCA methodology itself and not really a caveat of the specific impact indicator 

modelling. 

3.5 Spatial resolution and LME biogeographical classification system 

 Considering the scale at which the marine eutrophication impacts and relevant species occur, the 

adopted LME biogeographical classification system seems adequate. Alternatively, any other coastal spatial 

zonation can be used, as long as the necessary data for the exposure/effect models and species density are 

available at such resolution, e.g. PP rates (for XF), benthic water temperature (for EF), species occurrence 

(for EF and SD), and area (for SD). 

3.6 Species density estimation methods 

 Species density estimates are largely based on the predicted occurrence from SDMs, and thus will be 

affected by the uncertainties of the predictions. Here, the multiple model ensemble approach used increases 

the robustness of the predictions, as also noted by Araújo and New (2007). Previous assessment on the skills 

of the three SDMs employed demonstrated the difficulty of identifying a single optimal model; instead, the 
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multi-model approach was preferred (Jones et al., 2012). However, the predicted species occurrence may still 

be affected by a number of uncertainties inherent of SDMs. Firstly, the SDMs assume that species’ 

distribution was in equilibrium with the environmental conditions in the last few decades, which may not be 

valid particularly under climate change (Pörtner et al., 2014). Secondly, the SDMs do not explicitly account 

for biotic interactions. Also, the predicted SDs may be biased by the sample of modelled species. Species 

were included in the study when they were reported in the fisheries catch statistics. Thus, area may be under- 

or over-represented because of differences in taxonomic resolution of their catch statistics. For example, the 

high SD in Northeast and Northwest Atlantic is partly because of the high taxonomic resolution of catch 

statistics of countries in these regions. Acknowledging possible species representativeness concerns due to 

data availability, the use of the present dataset is considered a best estimate. 

3.7 Implications for LCIA modelling 

 The characterisation of environmental emissions from anthropogenic sources is at the core of LCA 

methodologies. The inclusion of spatial differentiation in marine eutrophication damage modelling seems a 

valuable contribution to the LCIA phase of life cycle assessment as an improvement to current, site-generic, 

methodologies. Complementing the fate modelling of waterborne emissions with deposition of airborne N-

forms to soils, fresh- and marine waters, is essential to compose meaningful CFs. This is clearly a 

methodological need and further work is recommended to close this gap. The present work introduces 

methodology developments in spatial differentiation on both the impact assessment and the damage 

assessment, which is an important feature considering the local to regional character of marine 

eutrophication impacts. 

 The application of this approach to characterise the response to N-enrichment can be extended to P-

enrichment, if relevant, e.g. for P-limited marine waters. In such cases, a simple Redfield ratio-based 

stoichiometric conversion of the XF indicator would be required, since the remaining of the impact pathway 

is independent of the nutrient. 

4. Conclusions 

 This study describes the damage potential of nitrogen uptake by phytoplankton in a cascade of effects 

typical of marine eutrophication. Relevant applications of the damage indicator, obtained with the proposed 

methodology, include impacts assessment and ecosystem management in areas affected by riverine discharge 

of N forms, particularly if the respective watershed has a significant contribution from agriculture runoff. An 

endpoint-to-damage conversion is discussed and applied to deliver spatially explicit damage scores of the 

ecosystem response to N inputs in a metric that is consistent and harmonised with other endpoint ecosystem-

related indicators in life cycle impact assessment. 

 A 4-order magnitude of spatial differentiation of the resulting LME-dependent indicators is not only 

justified by spatially distinct exposure and effect models, but also by the differentiation of the impacts 

significance to the ecological community at its occurrence location. The introduced method shows important 

and novel features when compared to available current methodologies. As such, the adaptation of the 

described marine eutrophication ecosystem damage (meED) indicator is suggested for LCIA application. Its 

adoption in characterisation modelling of anthropogenic-N emissions in a life cycle perspective may 

contribute with essential components to an already proven tool for sustainability assessment of human 

activities. 
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