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 

Abstract—Absence seizures are associated with generalized 

2.5-5 Hz spike-wave discharges in the EEG. Rarely are patients, 

parents or physicians aware of duration or incidence of seizures. 

Six patients were monitored with a portable EEG-device over 

four times 24 hours to evaluate how easily outpatients are 

monitored and how well an automatic seizure detection algorithm 

can identify the absences. Based on patient-specific modeling, we 

achieved a sensitivity of 98.4% with only 0.23 false detections per 

hour. This yields a clinically satisfying performance with a 

positive predictive value of 87.1%. Portable EEG-recorders 

identifying paroxystic events in epilepsy outpatients are a 

promising tool for patients and physicians dealing with absence 

epilepsy. Albeit the small size of the EEG-device, some children 

still complained about the obtrusive nature of the device. We aim 

at developing less obtrusive though still very efficient devices e.g. 

hidden in the ear canal or below the skin. 

 
Index Terms— Absence Seizures, Automatic Seizure Detection, 

Epilepsy, Single Channel EEG, SVM 

 

I. INTRODUCTION 

A dilemma when treating patients with epilepsy is that the 

attending physician does not know the number of seizures, and 

often the patient does not know it either [1]. The physician 

works with an otherwise normal patient with seizures 

happening elsewhere and the patient might be unaware of the 

episodes. Devices that record the seizures during normal 

everyday life conditions may reduce this problem. 

Use of outpatient ambulatory electroencephalogram (EEG) 
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began 50 years ago. At first the recording systems were large 

and heavy, the data quality poor and time to mount 

considerable. Since then the data quality has improved and the 

number of channels increased [2]. Now numerous portable 

recording systems of up to 36 channels with sampling rates of 

up to 400 Hz are commercially available. We currently work 

on unobtrusive solutions like a small earplug that 

communicates with a smartphone and is easily mounted by the 

patient in a few seconds [3]. This allows for access to real time 

registration as well as intervention and alarm systems.  

Clinical investigations have documented that ambulatory 

EEG can record focal and generalized epileptiform activity 

[4], [5]. Several studies of long term (up to a few days) EEG 

recording has proven useful when validating a diagnosis of 

epilepsy, do seizure classification or when identifying seizure 

onset zone in patients undergoing epilepsy surgery workup 

[6]. Several studies have also found that ambulatory EEG 

monitoring is a useful tool in patients with generalized 

discharges [7], [8]. Furthermore, the number and location of 

electrodes is likely to be less important than in focal epilepsies 

[9]. When EEG is performed in the clinic in a short time slot 

at a specific time of day, much clinical important information 

is likely to be lost compared to repeated 24-h measures in the 

natural environment. 

Especially within many idiopathic generalized epilepsies, 

there is a clear advantage of repeated EEG recordings. There 

exist a correlation between the amount of anti-epileptic drug 

intake and the number of seizures they have [10]. But the 

drugs entail considerable adverse effects [11] that should be 

minimized by optimization of treatment dosage.  

In order to explore this central schism in epilepsy treatment 

we chose to investigate patients with typical Absence Seizures 

with repeated 24-h EEG recording at home. Typical Absence 

Seizures are seen in childhood absence epilepsy (CAE) and 

juvenile absence epilepsy (JAE) which are relatively common 

epileptic syndromes. Absences are characterized by rhythmic 

generalized 2.5-5 Hz spike-polyspike-wave paroxysms in the 

EEG [12]. Clinically, absences are characterized by sudden 

loss of awareness, a blank stare often with upward eye 

deviation and cessation of normal activities. On average the 

ictal duration is 9.4 ± 7 s and due to their subtle nature they 

are often overlooked by the surroundings [13]. In a study with 

ambulatory cassette EEG it was found that parents only 
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registered 6% of paroxysms lasting more than 3 s [14] which 

is the generally believed threshold for minimum length of a 

paroxysm with a clinical correlate [15], [16]. 

The generalized paroxysms of absence epilepsy are usually 

not truly generalized, i.e. the signal is present with certain 

topographic preferences especially in the frontal lobes [17]. 

This suggests that electrode placement for EEG-monitoring 

influence signal detection. 

Multiple research groups have investigated the feasibility of 

ambulatory monitoring of absence epilepsy patients. 

Generally, the studies are small, aged and based on relatively 

short period (up to 12 hours) of EEG-recording. Early 

publication are based on combined analogue and digital 

analysis and demonstrate good agreement between visual 

inspection and the automated detection of sharp transients in 

one fronto-central EEG-channel [18], [19]. 

Later studies have used microcomputer based detectors of 

sharp transients with loose temporal coupling allowing for 

detection of spike-waves of varying frequencies [20]. It was 

found that automatic detection using a single channel did not 

perform as well as human specialists with the methods and 

signal quality available at that time. The authors state that 

multichannel EEG signal processing is required for 

comprehensive quantitative detection of clinical significant 

spike wave patterns. A similar microcomputer based study 

focused on the frequency of the wave component and found 

on the other hand acceptable level of detection with a single 

channel [21]. 

Recent studies have used comprehensive digital signal 

processing methods based on mixed spike and slow wave 

characteristics extracted by methods like wavelet analysis [9], 

[22]. However even the most recent of these studies have a 

limited amount of data with only few hours of recording in 

awake patients. Since delta activity during sleep shares some 

characteristics with the EEG during absences there is a 

pressing need for ultra-long term recording like the ones 

presented here. 

Based on 20 standard-EEG recordings, we have previously 

found that the Fp1-F7 channel is the most sensitive channel 

for reliable detection of seizures in a group of patients with 

absence seizures [9]. That study showed it was possible to 

detect 97.2% of all seizures lasting more than 2 seconds 

without any false detections. However, it was limited to data 

recorded in the outpatient clinic of the hospital, thus not 

showing the type and extends of artifacts expected in 

ambulatory measurements of children. Furthermore, this 

location aligns well with an EEG monitoring application 

where parents can mount pre-gelled disposable electrodes 

themselves whenever there is indication for a prolonged 

ambulatory EEG. We thus set up an experiment with multiple 

day ambulatory EEG recordings with electrodes at Fp1 and 

F7. 

 

 

 

II. METHODS 

A. Participants 

Children aged 5-18 years with suspected or diagnosed 

absence epilepsy were enrolled after informed consent by the 

custody holder (approved by the local ethics committee, H-3-

2011-054). Two pediatric outpatient clinics (Rigshospitalet 

and Northzealand Hospital) screened for participants by the 

attending physicians (SG, CRP). The selection of patients is 

probably biased towards cases that are more complicated since 

simple cases are handled out of hospital and the motivation for 

enrollment was based on suspicion of unrecognized epileptic 

episodes.  

15 children aged 5-16 were monitored in this protocol. Six 

patients were suspected of having epilepsy based on teacher or 

parent observations but turned out not to have epilepsy. Two 

patients had epilepsy but not typical absences. One patient had 

previously had juvenile absence epilepsy and participated 

successfully to unmount the diagnosis. Therefore, we present 

data on six patients with absence seizures, see Table I. Five of 

the six patients were tapered up in antiepileptic drug (AED) 

during the trial. In only one patient (#5) the increase was 

partly founded in the EEG-monitoring-results during this 

study. The therapeutic approach to the rest of the patients did 

not consider the EEG-monitoring-results. 

Data from the two first patients have previously been 

mentioned in [23] although without the extensive analysis 

done in this paper. 

B. Study Protocol 

The study protocol is schematized in Fig. 1. At the first 

experimental day, patients came sleep deprived to the 

department of clinical neurophysiology to have a standard-

EEG performed as part of normal workup. 

Three electrodes (Ambu® Neuroline 700, Ballerup, 

Denmark) were placed near Fp1 (Ref), F7 (Active 1) and TP7 

(Active 2), see Fig. 2. Electrodes were connected to a tiny, 

portable EEG-recorder (Actiwave, CamNtech Ltd., 

Cambridge, UK) measuring only 3.7x2.7x8.5 cm and 

 
Fig. 1.  Study protocol overview. Patients are monitored 24 hours on four 

independent days. At the first recording day, a standard scalp-EEG is 

performed at the hospital. 

Informed consent

24 h registration, at home

Standard EEG, in hospital

Day 1    Day 4     Day 8     Day 30

24 h seizure diary

Start and finish questionnaire 
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weighing 8.5 g which was taped to their neck for the following 

24 hours of recording. Then Ag/AgCl cup electrodes (Ambu® 

Neuroline Cup) for the standard-EEG were mounted with 

Ten20 conductive paste (Weaver and Company, Aurora, CO, 

USA) without interfering with the ambulatory electrodes. 

Patients were examined for 30 minutes in supine position with 

subdued light and eyes closed. Provocations with 

hyperventilation and photo-stimulation were performed. Half 

of the subjects dozed or fell asleep. 

When the standard-EEG was completed, participants left 

the department with the portable EEG device still recording. 

They kept this device on for the following 24 hours until the 

parents dismounted it as the recording period was over. At 

approximately day 4, 8, and 30, JDH came to the patients’ 

home to mount the EEG device for another 24 hours of 

recording. To accommodate the plans for the families, we 

were very unrestricted on the exact timing of when to do the 

recordings. 

If electrodes became loose, parents and children were 

instructed to simply push them back on, and perhaps apply 

extra tape over the electrodes if they found that necessary. 

After each 24 hours recording the EEG was visually 

inspected and scored for paroxysms by an expert trained 

technician and the number was reported immediately to the 

treating physician, who could choose to include the 

information in decision on medical action or not. 

Parents were asked for some time during the four 24 hours 

recording sessions to be 100% attentive to whether their child 

had clinical episodes and note any of them on a report sheet. 

Before and after the experiments parents and children 

underwent a semi-structured interview regarding the effect of 

the absences on their child and how obtruded the children had 

felt wearing the portable EEG device. 

C. Data Acquisition 

The portable EEG device sampled with a frequency of 128 

Hz. The hardware frequency band spans from 0.3 to 50 Hz and 

the dynamic range of the EEG-signal in the portable recorder 

was 400 µV peak to peak. Initial measurements showed this 

was inadequate so a voltage divider was constructed to double 

the maximum amplitude. It was based on 220 kΩ resistors. 

This level of resistance is much lower than the input 

impedance of 10 MΩ and much higher than usual skin 

impedance of approximately 5 kΩ [23]. The voltage division 

will thus only occur over the resistors. In [23] it was found 

that the thermal noise from the resistors only amounted to 0.30 

µVrms which is well below the discrete voltage resolution of 

0.78 µV meaning that the resistor noise contribution is small. 

As the portable device was only able to store 14 hours and 

33 minutes of EEG, the parents had to change devices after 

approximately 12 hours. 

D. Feature Extraction and Transformation 

Special attention has been paid towards development of 

features that were descriptive of the spike-wave pattern as well 

as using state-of-the-art digital signal processing methods. The 

signal processing diagram can be seen in Fig. 3. 

The EEG signal was divided into 2 s windows with an 

overlap of 1 s. Each window was weighted with a Tukey 

tapered cosine window with a ratio of taper to constant 

sections of 1/3 [24]. Based on a previous study [9] multiple 

features were extracted for each window using MATLAB 

 
Fig. 2. Experimental setup. Three electrodes were attached to the skin at 
approximate location of Fp1 (Ref), F7 and TP7. VD is the voltage divider 

that doubles the dynamic input range to 800 µVpp. 

F7

Fp1 (Ref)

TP7

TABLE I 

PARTICIPANTS 

# Gender 
Age 

[yr] 

Body weight 

[kg] 

Epileptic 

syndrome 
AED at day 1 AED at day 30 

# of 

paroxysms 

Paroxysm 

length [s] 

Time 

analyzed [h] 

1 M 11 44 JAE Nihil VPA 600 mg 26 10.9±11.13 40.3 

2 F 11 43 Complex CAE 

VPA 900 mg 

LTG 150 mg 

ZNS 200 mg 

VPA 900 mg 

LTG 150 mg 

ZNS 200 mg 

56 9.8±5.5 65.1 

3 F 12 40 JAE Nihil VPA 400 mg 26 4.8±1.5 45.0 

4 F 8 31 CAE LTG 20 mg LTG 75 mg 301 4.2±1.1 94.5 

5 F 11 29 CAE Nihil LTG 400 mg 13 4.8±2.4 43.4 

6 F 7 31 CAE LTG 25 mg LTG 75 mg 171 8.7±6.7 93.2 

M is male and F is female. JAE is Juvenile Absence Epilepcy and CAE is Childhood Absence Epilepsy. AED is Anti-Epileptic Drug, VPA is Valproate, LTG 

is Lamotrigine and ZNS is Zonisamide. 

# of paroxysms are only those lasting more than three seconds and only included on days with at least five paroxysms recorded. Time analyzed is also based 
on days with at least five paroxysms. 
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R2011a. With use of the Mahalanobis distance criterion, the 

10 most orthogonal features were selected for further analysis 

[25]. Only the method of extraction of these features will be 

presented here.  

 

Log-sum of Wavelet Transform 

The popular wavelet transform has previously proved to be 

a strong method for EEG characterization [26], [27] especially 

using the Daubechies 4 mother wavelet. With a sampling 

frequency of 128 Hz, the multilevel wavelet detail 

decompositions contain the following frequencies: d1: 32-64 

Hz, d2: 16-32 Hz, d3: 8-16 Hz, d4: 4-8 Hz and d5: 2-4 Hz. For 

each band the absolute sum was calculated for all windows 

[9]. The features were finally log-transformed to obtain 

normal distribution. Only d1, d2, d3 and d5 showed to be most 

valuable for the automatic seizure detection based on the 

feature selection criterion. 

Power Measures 

During an absence seizure, the EEG amplitude is greatly 

increased. From an background activity of ±15µV the 

amplitude can easily increase to ±200µV depending on the 

electrode positions [7]. The high amplitudes are especially 

pronounced in the frontal channels. Two power measures were 

thus used as features: One that computed the power in the 

signal in a frequency band of 1 to 30 Hz, representing most of 

the physiological EEG power in normal EEG, and one that 

computed the relative power between the 3 to 12 Hz band and 

1 to 30 Hz, being close to 1 if signal is paroxystic and lower if 

signal is due to wide band artifact. The pass-bands were 

computed by filtering with a FIR equiripple design of order 

467. 

The first feature was transformed by an exponentiation of 

1/10 to ensure normal distribution. The latter needed no 

transformation. 

Cross-correlation Measures 

As a typical absence seizure is highly regular with its 

characteristic spike-wave pattern, two cross-correlation 

measures were developed. The first calculated the cross-

correlation between two on each other following windows and 

the second was the cross-correlation between the same time 

signal filtered in the frequency band of 3-12 Hz and 1-30 Hz 

based on the same filtering as above. Both features were 

normalized to lag 0 and the features were extracted as the 

highest absolute value at any lag. To obtain normal 

distribution the exponentiation was set to ½ and 2 

respectively. 

Mean Phase Variance 

A typical absence seizure consists of a spike and a wave 

repeatedly. This might imply that the phase variation is higher 

than normal background EEG. To measure the phase variance 

we removed the offset from each window and calculated the 

imaginary part of the Hilbert transform. The relative phase 

between the signal window and the Hilbert transformed signal 

was then calculated and finally the variance constituted the 

mean phase variance and the feature. No transformation was 

needed to obtain normal distribution. 

Mahalanobis Variance 

Another way to compare the similarity of two signals is by 

the Mahalanobis distance. With the same filters as previously 

described, the signal was split into a 3-12 Hz frequency band 

and a 1-30 Hz band. The Mahalanobis distance was then 

calculated for each point in the 3-12 Hz band to the 

distribution of the 1-30 Hz band [25]. The variance of this 

result constituted the feature. To obtain normal distribution the 

exponentiation was set to ¼. 

E. Train/Test Data Split 

As new electrodes where mounted on every new recording 

day in the trial, data from different days had to be analyzed 

separately. This requires a stringent split of data into train and 

test sets. Only days with at least 5 recorded paroxysms were 

included to ensure a robust 5-fold cross-validation with 4/5 of 

data used for training and the last 1/5 for testing. As EEG is 

non-stationary, the non-paroxystic EEG was split into 10 min 

epochs, each representing five 2min epochs that were either 

considered as training or test data. This ensured that data from 

all EEG states were included in the model without overfitting 

the model. To create a random stratified division, cvpartion 

was used in MATLAB for both the paroxysms and non-

paroxystic data. 

Data
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Transform 
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Fig. 3. Data and signal processing diagram. The processes within the 

dashed line are repeated in a 5-fold cross-validation scheme. 
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F. Normalization, Subset Selection and Modelling 

To ensure equal weight between the features in the 

classifier, they were normalized to zero mean, unit standard 

deviation based on the training data. 

Data were strongly unbalanced with huge amounts of 

normal EEG even in patients with many paroxysms. There 

was typically up to 1.000 times more normal data than 

paroxystic. Therefore, before modelling the training set the 

amount of normal data had to be limited. It was chosen to do 

this by random under-sampling where the number of normal 

training windows is chosen as a factor of the number of 

paroxystic windows. This factor was set to 25 as a reasonable 

choice to ensure a broad representation of the heterogeneous 

background EEG without dismissing the rather homogeneous 

paroxystic windows. More advanced alternatives to under-

sampling has been suggested [28] which would most likely 

lower the factor 25 and still represent the normal EEG 

satisfactory, but this was not investigated in the present study.   

Design of the classifier was based on modelling of data 

using a support vector machine (SVM) from the LibSVM 

package, vers. 3.18 [29] as a toolbox for MATLAB R2011a. 

SVM is a supervised, binary, quadratic minimization problem. 

It is applied in combination with a radial basis kernel to 

formulate nonlinear extensions of the linear algorithm 

whenever nonlinear trends in the data are present. By mapping 

of data into a high-dimensional kernel induced feature space, 

it is possible to obtain a global optimum with respect to 

classification performance. 

To find the optimal settings of the SVM, gamma (the 

parameter deciding the width of the kernel) and C (the 

parameter deciding the cost of choosing normal samples over 

paroxystic) were varied. 

A radial basis kernel was used with a gamma varying between 

0.005, 0.01, 0.02, 0.05, 0.1, and 0.2 and C was varied between 

0.5 1, 2, 4, and 8. 

G. Performance Calculation 

Four measures were found suitable for this study; 

sensitivity, Se, false detection rate, FDR, Specificity, Sp, and 

positive predictive ration, PPV. All measures are based on the 

test data only. Se was calculated as the number of truly 

detected paroxysms divided by the number of all registered 

paroxysms longer than 3 s. FDR was calculated as the number 

of detected continuous windows in groups of at least two 

(corresponding to three seconds) divided by the number of 

hours of normal data tested upon. Sp was calculated as the 

number of false positive windows divided by the total number 

of normal windows. PPV was calculated as the number of 

truly detected paroxysms divided by the total number of 

detected windows in groups of at least two. 

H. Model Selection 

With gamma taking 6 different values and C taking 5, a 

total of 30 models were generated. To choose the optimal 

model a performance measure, P, weighting the tradeoff 

between false detections and sensitivity was developed. The 

optimization was treated as a minimization problem as the 

sensitivity was subtracted from 101. As the goal was to obtain 

a sensitivity of at least 90% and a FDR below 1/h the (101-Se) 

would have a dynamic range of 11 while the FDR would only 

have a dynamic range of 1. To obtain an approximate equal 

weight we added the value of five to the FDR to reach 

equivalent means. This resulted in the following metric: 

 

𝑃 = (𝐹𝐷𝑅 + 5) ∙ (101 − 𝑆𝑒)           (1) 

III. RESULTS 

A. Patient Compliance 

Six highly compliant subjects were identified for this study. 

They exhibited between 8 and 84 paroxysms on the first day 

of recording, but all were having fewer paroxysms on the last 

day of recording, most likely due to increase in AED during 

the experiment for five of the patients, see Fig. 4 and Table I. 

Two of the subjects experienced more than 40% of their 

maximum number of paroxysms at the final recording day. 

They could most likely have benefitted from continued 

monitoring to improve their treatment. 

B. Automatic Paroxysm Detection 

Based on the optimal setup we were able to detect 98.4% of 

all paroxysms with only 0.23 false detections per hour 

corresponding to 5.5 false detections per 24 hours, see Table 

II. The double inter-electrode distance TP7-Fp1 performed 

with a sensitivity of 96.0% and FDR of 0.33/h corresponding 

to 7.9 per 24 hours. Due to the large amount of data and only 

few windows being classified as false positives; the specificity 

was 100.0% for all patients on both channels. 

An analysis of the false detection showed various artifacts 

primarily with low frequency contents. These were rather 

simple for a trained expert to distinguish from true paroxysms 

in a visual evaluation. 

 
Fig. 4. Relative number of paroxysms per 24-hours (normalized by 

maximum day) in relation to study day. The number of paroxysms 
decline during the study for all subject. For five out of six patients this 

is most likely explained by an increase in AED during the trial. By 

multiple recordings on the patients, the physician has a better chance of 

getting the AED dosage right. 
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C. Patient and Parent Perception 

For every hour of the four 24h-EEG-recording parents were 

asked to note the number of minutes they were attentive to a 

degree which would let them detect all seizures. According to 

these estimates parents should have observed a median of 8.75 

seizures (range: 2-22) in each patient. The fraction they 

actually observed was only 4.7% of the possible (range: 0-

100%). The patient in which all seizures were detected was 

only observed intensely for 30 minutes in which 2 out of 2 

seizures were observed.  

The semi structured interviews revealed a number of issues. 

One parent wanted to know if the child had seizures the 

parents did not see. Another parent reported that she was 

concerned about how seizures affected the brain. One family 

stated "Seizures are associated with many conflicts and 

emotions. Our child has lost all self-confidence due to the 

diagnosis". A mother said "I lost my husband in a traffic 

accident 5 years ago. The fear of losing again is huge". 

Generally, patients and parents were happy that they chose to 

participate and felt they had obtained a better understanding of 

their child’s condition during the study. Some patients were 

uncomfortable wearing the device in public places free for 

everyone to watch. One parent told us that now the child is 

doing much better and does not have any seizures (which was 

only partly true). 

IV. DISCUSSION 

We have acquired a novel dataset of EEG from six children 

with typical absence epilepsy with four 24-h recordings over 

one month. Both the duration of the whole period of 

investigation and the duration of the individual recordings are 

much longer than what is normally used in the clinic. 

When patients, relatives, and healthcare personnel choose a 

device for seizure detection a number of issues matter. Size, 

obtrusiveness, ease of use and price are what usually matters 

most to the patient when acquiring the device. However, the 

sensitivity and false detection rate are paramount. Parameters 

of 100% sensitivity and false detection rate of 0/h are difficult 

to obtain. What is acceptable depends on the clinical situation. 

If the application is a system made for alarming relatives or 

health care personal, a system giving more false alarms than 

true would be annoying and the patient would probably stop 

using it. On the other hand, if the system is made as a decision 

support system, where the physician is pointed to important 

parts of the signal where there might be ictal activity, it is of 

no worry that there are some false positives as long as the 

sensitivity is also high. In discussion with two pediatricians 

(SG and CRP), we agreed that a sensitivity of 90% and false 

detection rate of 1/h seems clinically acceptable. 

Data were analyzed retrospectively in a patient-specific 

manner only possible offline. This means that the procedure is 

not directly applicable to the clinic. However, with this study 

we have demonstrated that automatic paroxysm detection is 

feasible. We furthermore believe that it generalizes well as the 

amount of data is exceptionally high. As the pathological 

topography is quite well defined for absence seizures and the 

patient group is in a confined age group, the inter-subject 

variability is expected to be relatively low. Before it can be 

used as a decision support system in the clinic a more generic 

method has to be developed. This can either be done by 

development of a one-fits-all algorithm, or by development of 

a patient-specific algorithm generic across time. The latter 

would require the expert reviewer to score a certain amount of 

EEG and number of paroxysms before the algorithm fits the 

specific patient. For future work we will obtain a much larger 

dataset to investigate the possibility to train a generic 

algorithm as well as focus on the performance if only the first 

day is used for training in a patient-specific setting.  

Clinically satisfying sensitivity and false detection rate 

could be obtained in 5 out of 6 patients. This implies that for 

the majority of patients the method could be useful as a 

clinical tool. 

Thirty different models were constructed for each patient to 

find the optimal balance between sensitivity and FDR. A large 

proportion of the models showed similar performance levels. 

This makes us confident that the optimized model is robust. 

When comparing the performance to that of similar models in 

the literature our models seem quite promising [9], [22]. 

At first glance, 5.5 false detections per 24 hours might 

sound like a lot, but considering the high frequency of the 

absences; the positive predictive value is 87.1%. This means 

that the vast majority of detections are true. If a clinician 

should use the algorithm as a decision support system, it 

would be possible to present all the detected paroxysms while 

only 12.9% of displays would show false detections which 

could be rejected manually. 

When the distance between two EEG-electrodes is 

increased, the amplitude of the recorded signal is generally 

increased; however, the noise level may also be affected. We 

therefore recorded two bipolar channels allowing for normal 

and double inter-electrode distance within the left fronto-

temporal region based on the 10-20 system.  

Sensitivity and FDR of the short inter-electrode distance 

channel, F7-Fp1, were superior to the long inter-electrode 

distance of TP7-Fp1. This might be due to multiple reasons: 

First of all, the TP7 electrode is placed near the temporalis 

TABLE II 

RESULTS 

Chan Pt. # 
Sensitivity 

% 

FDR 

/h 

Specificity 

% 

PPV 

% 

F
7

-F
p
1
 

1 96.2 0.225 100.0 81.4 

2 96.4 0.015 100.0 98.3 
3 87.5 0.000 100.0 100.0 

4 98.7 0.203 100.0 94.3 

5 100.0 0.139 100.0 71.7 
6 99.4 0.509 100.0 76.7 

 Mean 98.4 0.230 100.0 87.1 

T
P

7
-F

p
1
 

1 88.5 0.225 100.0 82.0 

2 98.2 0.278 100.0 78.5 

3 87.5 0.000 100.0 100.0 
4 98.0 0.544 100.0 85.6 

5 100.0 0.232 100.0 72.9 

6 93.0 0.324 100.0 81.9 

 Mean 96.0 0.330 100.0 83.5 

FDR: False Detection Rate 

PPV: Positive Predictive Value 
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muscle which generates EMG artifacts. Chewing artifacts are 

noticeable in the temporal region showing a high frequency 

burst followed by a slow frequency pattern resembling the 

spike-wave pattern of the absences. Furthermore, it was 

observed on channel TP7-Fp1 that some of the absence 

paroxysms actually showed amplitudes above the 800 µVpp 

dynamic range of the recording system. This resulted in signal 

cutting with a putative effect on the computed features. 

The quality of single channel EEG-recordings has improved 

significantly in recent years. Several researchers have looked 

into the use of single channel EEG-devices for various clinical 

purposes. Generally there are positive results both in sleep 

monitoring with detection of sleep stages [30] and in seizure 

detection [9]. Thus development of less obtrusive single-

channel EEG monitoring devices for clinical use seems 

realistic. 

Clinical epileptologists often state "we treat the patient not 

the EEG". However in some syndromes like CAE and JAE it 

probably does make sense to reduce the number and duration 

of paroxysms, i.e. treating the EEG. We have demonstrated a 

strong correlation between level of AED and the number of 

paroxysms. Furthermore, when the number of paroxysms 

decreased, parents also reported that the child was doing 

better. Thus treating the EEG in this case may be beneficial. 
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