

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 18, 2024

Algebraic Varieties and System Design

Aabrandt, Andreas

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Aabrandt, A. (2016). Algebraic Varieties and System Design. Technical University of Denmark, Department of
Electrical Engineering.

https://orbit.dtu.dk/en/publications/19933136-3253-455c-be54-4ea47da33945

Andreas Aabrandt

Algebraic Varieties and
System Design

PhD thesis, May 2016

Title: Algebraic Varieties and System Design
Titel: Algebraiske Varieteter og System Design

This dissertation was prepared by:
Andreas Aabrandt

Advisors:
Chresten Træholdt, Department of Electrical Engineering
Vagn Lundsgaard Hansen, Department of Applied Mathematics and Computer Science
Bjarne Poulsen, Department of Applied Mathematics and Computer Science

Center for Electric Power and Energy
Department of Electrical Engineering
Technical University of Denmark
Elektrovej, Building 325
2800 Kgs. Lyngby
Denmark

Abstract

Design and analysis of networks have many applications in the engineering sciences. This
dissertation seeks to contribute to the methods used in the analysis of networks with a
view towards assisting decision making processes. Networks are initially considered as
objects in the category of graphs and later as objects in the category of hypergraphs.
The connection with the category of simplicial pairs become apparent when the topology
is analyzed using homological algebra. A topological ranking is developed that measures
the ability of the network to stay path-connected. Combined with the analysis of cover
ideals of hypergraphs, the topological ranking demonstrates the non-trivial decisions
that needs to be considered in system design. All the methods developed here have an
underlying common structure, namely that they all appear at solution sets for systems
of polynomials. These solution sets are called algebraic varieties.

iii

Resumé

Design og analyse af netværk har mange anvendelser i ingeniørvidenskaberne. Denne
afhandling søger at bidrage til metoder til analysen af netværk og dermed til metoder der
kan bruges til at støtte beslutninger. Der startes med at betragte netværk som objekter i
kategorien af grafer, senere som objekter i kategorien af hypergrafer og deres samspil med
kategorien af simpliciale par. Topologien undersøges ved hjælp af homologisk algebra,
hvor der specielt udvikles en rangordning af elementer i netværk. Til sidst løses konkrete
problemer ved at betragte overlejringsidealer for hypergrafer. Alle disse metoder har en
underliggende struktur til fælles; de optræder alle som løsningsmængder for systemer af
polynomiale ligninger, og netop disse løsningsmængder kaldes for algebraiske varieteter.

v

Preface

This dissertation is the result of work carried out at the Technical University of Denmark
and supervised by Chresten Træholdt, Vagn Lundsgaard Hansen and Bjarne Poulsen.
The work is funded by the Technical University of Denmark.

The main purpose of this dissertation was to investigate connections between agents
acting in networks related to communication networks and power systems. The goal
was to come up with new methods for analyzing networks while retaining a very flex-
ible structure such that system ontologies were allowed to change over time. Another
important objective was to build methods which would not exclude existing successful
methodologies and frameworks.

Taking a view towards power systems, it became very clear that many different ar-
eas of mathematics and science are required and coexist in everything from design of
power systems, to the communication systems currently in use, and not least to work
within a political and sociological framework. These considerations were instrumental
in the choice of taking a broad viewpoint as opposed to considering only one or two
mathematical methodologies.

I owe special thanks and gratitude to Vagn, who has guided me through the world
of mathematics for many years. I am particularly grateful for the opportunity to work
closer with Vagn on projects of mutual interest in recent years; notably our discussions on
topics in algebraic geometry and topology have proven to be very useful. I feel fortunate
to have had the supervisor team consisting of Chresten, Vagn and Bjarne, who have all
supported my efforts (and my un-traditional viewpoints) in developing theoretical tools
for network analysis. Also, I am grateful to all my colleagues for making me feel right
at home during my time at the university. Thanks to Chresten for the many inspiring
conversations. Special thanks to Haoran for letting me use his LATEX files for the IEEE
bus systems.

Technical University of Denmark, May 2016

Andreas Aabrandt

vii

Contents

1. Introduction 1
1.1. Mathematical Modelling . 3
1.2. Control in Power Systems . 4
1.3. Equivalence Relations . 5
1.4. Vertex Covering of Hypergraphs . 5
1.5. Arithmetic in Finite Fields . 6

1.5.1. Finding Subfields of Finite Fields 8

2. Algebraic Varieties over Finite Fields 11
2.1. Elementary Diophantine Geometry . 11
2.2. Polynomial Rings over Finite Fields . 14
2.3. Monomial Ordering . 15
2.4. Polynomial Division in R[x1, . . . , xn] . 16
2.5. Affine Varieties over Finite Fields . 18

2.5.1. The Circle Equation over Finite Fields 19
2.5.2. Patterns in the Number of Solutions to the Circle Equation 23

3. Elements of Categorical Algebra 27
3.1. Categories . 27
3.2. Functors . 29
3.3. Natural Transformations . 30

3.3.1. Some Results Related to Determinants 32

4. Gröbner Bases and Their Applications 35
4.1. S-polynomials . 35
4.2. Gröbner Bases . 36

4.2.1. Computing Gröbner Bases . 37
4.3. Reduced Gröbner Bases . 37

4.3.1. The Circle Equation Revisited . 38
4.4. Computing Intersection Ideals . 42

4.4.1. Parallelized Intersection of Ideals 43
4.5. Future Research: Applications to Packing Problems 52

4.5.1. Example of Bin Packing . 52

ix

Contents

5. Applied Homology Theory 55
5.1. The Category of Simplicial Pairs . 55
5.2. The Category of Chain Complexes . 56
5.3. Relative Homology . 57
5.4. Modelling Networks with Simplicial Pairs 58
5.5. Topological Ranking . 59
5.6. Applications of Topological Ranking . 61
5.7. Future Research: Stanley-Reisner Rings and Koszul Complexes 64

5.7.1. Alternative Boundary Formula . 65

6. Optimization of Network Design 67
6.1. Edge and Cover Ideals of Hypergraphs . 68
6.2. Phasor Measurement Unit Placement . 70

6.2.1. Mandatory Placement . 73
6.2.2. Mutual Exclusion Zones . 74
6.2.3. IEEE 30 Bus System . 76

6.3. Concluding Remarks . 78

7. Discussion and Conclusion 79

A. Haskell Code for Working with the Circle Equation 81

B. Manuscript for Article: The Circle Equation over Finite Fields 83

C. Computing Homology 93

D. Code for Vertex Cover Calculations 95

x

List of Figures

1.1. Vertex cover of a graph . 6

2.1. The circle V(x2 + y2 − 1) . 20
2.2. Algebraic variety defined by x2 + y2 − 1 ∈ F19[x, y]. 23

4.1. Comparison of algorithms for computation of cover ideals 45
4.2. Comparison of memory usage for computation of cover ideals 46
4.3. Random graph with intersection order not shuffled, i.e. ordered 47
4.4. The same random graph with intersection order shuffled 48
4.5. Comparison of parallel algorithms for random graphs 50
4.6. Comparison of all algorithms for random graphs 51

5.1. F and the nine agents. 62
5.2. The nerve of F and the rank of all elements. 62
5.3. Simplicial Complex . 64

6.1. Hypergraph . 68
6.2. IEEE 14 Bus System . 70
6.3. IEEE 14 bus system topology . 71
6.4. IEEE 14 bus system topology with outage at 4 and 6 72
6.5. IEEE 14 bus system topology with outage at 4 and 6 72
6.6. IEEE 14 bus system topology with outage at buses 4 and 6 73
6.7. IEEE 14 bus system topology with mandatory placement 74
6.8. IEEE 14 bus system topology with mutual exclusion zone 75
6.9. IEEE 30 Bus System . 76
6.10. IEEE 30 Bus System with mandatory placement of PMUs 77

xi

List of Tables

6.1. Possible minimal coverings of IEEE 30 bus system 77
6.2. Minimal coverings of IEEE 30 bus system with mandatory placement . . 78

xiii

Chapter 1

Introduction

The problems tackled in this dissertation involves the scientific disciplines of electrical
engineering and algebraic geometry and topology. The main object of interest will be
networks in a very broad sense, e.g., power grid topology or communication networks.
Being both an electrical engineer and a very skilled mathematician, Solomon Lefschetz
did combine his interests in electrical engineering and geometry and topology, towards
the end of his life, and in a book [24] finished by his colleagues, Lefschetz describes the
connection between Kirchhoff’s laws and algebraic topology. As shall become apparent,
there are many similarities between topology and electrical engineering. Widening the
subject of topology to encompass geometry, will fully absorb theoretical methods used
in electrical engineering.

One of the interesting bi-products of the development of algebraic topology, was the
introduction of category theory. A theoretical framework for describing how theories
can be related. In topology it originally related topological spaces and continuous maps
between topological spaces to abelian groups and group homomorphisms; the relation
was a set of numbers, which in terms of topological spaces is very difficult to calculate,
while in terms of abelian groups and group homomorphisms, these numbers have become
tangible and they are called Betti numbers, named after Italian mathematician Enrico
Betti.

Category theory has become a subject with its own ontology and though we will not
consider a fully modern category theory in this dissertation, we will consider just enough
to make elementary use of it. The primary use in this dissertation will be to organize the
mathematical modelling process and develop methods for supporting decision making in
design of networked systems.

We focus on the theory of algebraic varieties over finite fields and homology theory
with finite fields as coefficients. The first belong to the study of algebraic geometry
and it is the study of roots of polynomials. Over finite fields, polynomials behave very
differently than over fields of characteristic zero, e.g., Q, R and C. One of the advantages
of doing calculations over finite fields, is the efficiency of representing such structures
on a computer as opposed to working with real numbers, which are uncountable. The
second subject that we shall cover is part of algebraic topology and it is essentially
concerned with studying the shape of mathematical objects. These methodologies will

1

Chapter 1. Introduction

be developed and prepared such that they can be applied to solve problems in the vaguely
defined notion of networks. By allowing for a class of ontologies rather than singling out
a discipline, our methods can be used to solve a wide variety of problems, ranging from
problems in pure mathematics to both well-known and undefined problems in power and
energy engineering.

The study of polynomial rings and their ideals have a long history. The use of polyno-
mials in geometry can be dated back to the time of old Mesopotamia, and polynomials
can be seen lurking in the background of ancient Greek geometry in Euclid’s Elements
[14] from about 300 BC. Jumping many years ahead, we have the birth of modern alge-
bra and with it, a structural way of working and organizing the theory of polynomials.
Many problems can efficiently be handled by studying polynomial ideals in polynomial
rings.

One of the problems when working with ideals in polynomial rings is that often it is not
exactly clear whether or not a given polynomial in a polynomial ring belongs to a given
ideal. This problem is called the ideal membership problem and it was not until Bruno
Buchberger in 1965, in his Ph.D. thesis [8], developed the theory of Gröbner bases, also
called standard bases, that it has become possible to solve this problem conveniently.
The idea of Gröbner bases was anticipated prior to Buchberger’s dissertation, but it was
Buchberger who gave it a formulation apt for computation.

In recent years, Gröbner bases have grown to be a useful tool in applied mathematics,
mainly stimulated by the development of modern personal computers. The abstract na-
ture of Gröbner bases have once again demonstrated that pure and applied mathematics
belong together. Many areas of science and engineering are now increasingly realizing
the positive results obtained by using computer algebra systems to solve problems in
their respective fields.

Among the very interesting applications of Gröbner bases we mention their successful
generalization of already established methods, such as Gaussian elimination in linear
algebra and the simplex method from operations research. Most strikingly is the po-
tential it has in connection with research in artificial intelligence, were Gröbner bases
and generalizations of them are being used in automatic theorem proving and reasoning
systems. For an introduction to automatic geometric theorem proving, see [9].

Lately there has been an increasing interest in the connection between suitably chosen
monomial ideals and their applications to graph theory. The concepts of edge ideals and
cover ideals have emerged and have given a new and interesting perspective to already
known problems in graph theory.

The introduction to homology theory given here is very classical and follows standard
introductions to the subject. We are interested in the connection it has with the structure
of networks and we develop a ranking of elements in a network at the end of Chapter
5. The ranking, which we call topological ranking, determines how “critical” a set of
elements in a network is, to the overall ability of the network to stay path connected,
i.e. in one piece. The information that this ranking yields is fundamental and cannot
be changed once a shape, i.e. topology, is fixed. For dynamic networks, the topological
ranking provides information about which collections of elements are most important
if we want the connectedness to stay intact. This is often sought in power grids or

2

1.1. Mathematical Modelling

communication networks and therefore we find the topological ranking interesting.
At the end of Chapter 4, a new algorithm is supplied for computing cover ideals, which

solves the (exact) graph covering problem adaquately and in a scalable way. In Chapter
6 the methods from Chapter 4 and Chapter 5 are combined to make analysis of some
basic IEEE bus systems.

1.1. Mathematical Modelling

Most of engineering relies on mathematical modelling techniques. The modelling process
is seldom rigorous and most often it is considered artistic rather than scientific. In order
to put the mathematical modelling process on a rigorous basis, we need to first consider
some of the typical methods used in modelling engineering systems. The most widely
applied areas of mathematics used in engineering today are functional analysis and global
analysis. The methods from the aforementioned areas of mathematics are extremely
effective for a large group of engineering problems. However as with most things there
are obvious limitations of the continuous methods when considering problems which
exhibit discrete phenomena.

Another very popular collection of mathematical methods are those solving mathe-
matical programming problems, e.g., linear programming and dynamic programming
etc. These methods are very effective at solving discrete optimization problems once the
correct formulation of a given problem is proposed. Also model predictive control is a
widely used, yet theoretically immature, approach often taken in control engineering.

Whenever it is necessary to count objects in a system, one often consider combinatorial
methods, with the modelling process very obscured. If one considers topological methods
to count objects, then the arithmetic is a priori defined by the Euler characteristic or
more generally by the Lefschetz trace formula. The advantage of using topology lies in
the flexibility to count more complicated or even specific objects.

Category theory, also an invention from algebraic topology, is instrumental in tackling
deep philosophical issues in modelling modern systems and it will serve at the foundation
of all modelling provided in this thesis.

Defining relationships is a common approach to modelling. These relationships are
frequently implicit and delicate assumptions often needs explanation. For instance, a
graph can be constructed to illustrate connections between certain objects. This could
be a social network where vertices are people and edges represent people being friends
or linked to each other.

The kind of model chosen is intimately linked with the problem whose solution is
sought. A common type of problem solving technique is to divide the original problem
into sub-problems and solving these while inferring the sub-solutions to back to a solution
of the original problem. Such methods are utilized in dynamic programming and many
other problem solving paradigms.

In pure mathematics many problems are solved by constructionist approaches. These
differ from the aforementioned approach by disguising the solution in an equivalence
between two seemingly different problems. One is the original problem and the other,

3

Chapter 1. Introduction

a much easier problem by some appropriate measure. For instance the case of vertex
covering of a graph. A vertex covering of a graph is a subset of vertices in a given graph
such that for each edge in the graph, at least one of the vertices that the edge connects,
is in this subset. Many algorithms exists that solves this rather difficult problem, and
the solution is usually found via optimization means, i.e. dividing the problem into sub-
problems, e.g., see [20] or for a general introduction to dynamic programming see [5, 6].
The problem can, however, be stated in another way, which does not directly relate to
graphs. The (minimum) vertex covering problem can be transformed into a problem
of calculating intersections of monomial ideals, also called cover ideals, which we shall
discuss in Chapter 6.

1.2. Control in Power Systems

Systems and control are particularly important in power systems, both in design and
operation. The stability of electric power systems have become crucial in our modern
society as there are today many systems depending on a steady supply of power for
their day-to-day operations. Control systems are employed on all levels in all power
stations, transformer stations etc. Most of these control systems are interconnected and
rely on feedback. The feedback systems must work together in order to meet demand by
regulating production. But also, there are perversions in the networks or local stations
in the form of equipment failure or similar disturbances; situations that must be dealt
with whether the systems are human in the loop or not.

Today, most if not all electricity is distributed using alternating current. The advan-
tage is that voltage levels can be changed without major power losses. This is done via
the transformer stations. The disadvantage is that generators must be synchronized to
the voltage variations and this in turn means synchronizing rotors in generators. It is
quite clear that synchronizing rotors across a large network is no small feat.

Among the control strategies are dividing a network into subnets, switching off parts
of the network, lowering voltage levels etc. Here topology of the network, e.g., power
grid, is very important and simulation-based methods can test if planned changes to the
topology effect the operation of the power grid. For these purposes there are a number
of available power grid topologies, which can be analyzed and used for testing, e.g., the
IEEE bus systems or using randomly generated topologies, see [34].

4

1.3. Equivalence Relations

1.3. Equivalence Relations

The theory of rings, modules and fields have become unavoidable in modern mathe-
matics and in most applied fields ranging from systems theory and control theory to
computational biology. Their applications range across all areas of mathematics and
electrical engineering. Some of the fundamentals which will prove very useful in many
applications will be briefly introduced in this section. We assume that the reader is
familiar with groups and rings.

The notion of equivalence relations is a very fundamental and important idea in math-
ematics. It serves as a means to define what is meant by equivalence of abstract mathe-
matical structures. Recently they have been shown to facilitate the mathematical mod-
elling process in engineering.

In short, an equivalence relation is a relation which defines when two or more elements
are the same according to some predefined criteria. An equivalence class then consists
of all the elements which are the same in the aforementioned sense.

More precisely,

Definition 1. A relation ∼ is called an equivalence relation if it is reflexive, symmetric
and transitive, i.e. for a given set S, a relation ∼ where, for all a, b, c ∈ S, it holds that

1. a ∼ a (reflexive)

2. a ∼ b if and only if b ∼ a (symmetric)

3. a ∼ b and b ∼ c implies a ∼ c (transitive).

An equivalence relation induces a collection of equivalence classes. When modelling
one often first identifies the desired equivalence classes and then look for an equivalence
relation which induces exactly these equivalence classes.

1.4. Vertex Covering of Hypergraphs

Graphs is one of the most useful tools in mathematics and we present only some very
elementary definitions which we shall use in this thesis.

Definition 2. A hypergraph H = (V,E) consists of a vertex set V = {v1, . . . , vs} and a
hyperedge set E = {e1, . . . , et}, where each hyperedge ei is a set of vertices from V .

Clearly a hypergraph is a generalization of a graph and we have

Definition 3. A graph G = (V,E) is a hypergraph, where for each e ∈ E there are
exactly 2 vertices in e, an initial vertex and a terminal vertex.

We shall later discuss the connection between graphs and hypergraphs, when we intro-
duce homology and also when we introduce square-free monomial ideals used to analyze
the phasor measurement unit placement problem.

5

Chapter 1. Introduction

Definition 4. Given a hypergraph H = (V,E), with vertex set V and hyperedge set E.
A vertex covering is a subset C ⊂ V where for each e ∈ E there exists a vertex v ∈ C
such that v belong to e.

A

B

C

D
E

Figure 1.1.: Vertex cover of a graph

Example 1. Consider Figure 1.1, which illustrates a graph and the shaded nodes cor-
respond to the vertex cover of the graph.

If we were to eliminate edges or vertices in a graph, we can observe that the vertex cover
obtained by eliminating the same vertices in a given vertex cover will yield a vertex cover
for the corresponding subgraph. This feature is important and we shall make implicit use
of it, when we consider the toplogical ranking to be defined in Chapter 5 in conjunction
with cover ideals which will be introduced in Chapter 6.

1.5. Arithmetic in Finite Fields

A monomial in x1, x2, . . . , xn is a product of the form
∏n
j=1 x

αj

j where all αj are non-
negative integers. The total degree of a monomial is the sum

∑n
j=1 αj . A polynomial

in variables x1, x2, . . . , xn with coefficients in the ring R is a finite linear combination of
monomials.

Let R be a ring and denote by R[x1, . . . , xn] the ring of polynomials with coefficients
in R. Any polynomial f ∈ R[x] where the degree of f is greater than zero and where
f cannot be factored into a product of smaller (non-trivial) polynomials is said to be
an irreducible polynomial. In other words if deg f > 0 and f cannot be written as
f = gh, g, h ∈ R[x], and g and h are not constant polynomials, then we say f is
irreducible. The irreducible polynomials are very useful for constructing finite field
extensions. We need the following

Definition 5. Let F be a non-trivial commutative ring. If every non-zero element in F
has an inverse, then F is a field.

In the engineering sciences, the most common and used fields, in the sense of Definition
5, are the rationals Q, the real numbers R and the complex numbers C. Other interesting

6

1.5. Arithmetic in Finite Fields

fields arise from a prime p when we consider the following set Fp = Z/pZ interpreted
as the set {0, 1, ..., p − 1} together with two compositions, namely addition modulo p
and multiplication modulo p. Then Fp is a field, since it is a commutative group with
respect to addition and the set F∗p = Fp \ {0} is a commutative group with respect to
multiplication.

A subfield is a subset of a field, which is itself a field, e.g., Q is a subfield of C. Among
the subfields we have

Definition 6. The prime subfield of a field F, is the intersection of all subfields of F.

The prime subfield is the smallest proper subfield of a field. A prime subfield is unique
in the following sense:

Theorem 1 ([33]). Every prime subfield is isomorphic to either Q or Zp, where p is a
prime.
We are now ready to define what is meant by the characteristic of a field.
Definition 7. The characteristic of a field is zero if the prime subfield is isomorphic to
Q and it is the prime number p if it is isomorphic to Zp.

A field F′ is said to be an extension field of a field F, denoted F ⊆ F′, if F is a subfield
of F′. Consider a polynomial f ∈ F[x] of degree d. Then f is said to split an extension
F ⊆ F′ if and only if f can be factored

f =
d∏
i=1

(x− αi)

into linear factors in F′[x]. Hence f splits in F′[x] when F′[x] contains the roots αi,
i = 1, . . . , d.

Definition 8. An extension field F ⊆ F′ is called a splitting field of the polynomial f
over F if f splits F′ but does not split any proper subfield containing F.

We call Fp a prime field and F∗p the multiplicative subgroup of Fp. In general we have

Definition 9. The finite field Fq with q = pn, p is a prime and n ≥ 1 an integer, is the
splitting field of f(x) = xq − x over Fp. The elements of Fq are the roots of f(x).

The following theorem is a basic and well-known result of finite fields.
Theorem 2. The multiplicative group of Fq is cyclic of order q − 1.

There exists many very different proofs of this theorem and here one of them is presented.

Proof. Let h be the maximal order of the elements in F∗q . This number divides the order
of the abelian group F∗q by Lagrange’s theorem. So h|(q − 1) since the order of F∗q is
q− 1. We therefore have that ah = 1 for all a ∈ F∗q . Since all elements in F∗q are roots in
xh−1 ∈ Fq[x] and the number of roots is at most the degree, it must hold that q−1 ≤ h.
However we also have that h divides q− 1 and thus h ≤ q− 1. Therefore, h = q− 1 and
since there exists an element, say g, in F∗q of order h, this element must generate all of
F∗q , i.e. 〈g〉 = F∗q .

7

Chapter 1. Introduction

A finite field can be constructed using irreducible polynomials. Given a prime field
Fp, we consider the polynomial ring Fp[x]. A finite field extension can be seen as a set
of equivalence classes of polynomials in Fp[x].

Definition 10. A finite field of characteristic p with pn elements is given by Fpn =
Fp[x]/f , where f ∈ Fp[x] is an irreducible polynomial of degree n.

A finite field, when viewed as a field extension, is a quotient ring. Every finite field
Fpn can be viewed as the set of all polynomials of degree less than or equal to n−1 with
coefficients in Fp.

Example 2. Consider the finite field F73 = F7[x]/(x3 + 6x2 + 4). This field contains all
polynomials of the form ax2 + bx+ c with a, b, c ∈ F7, i.e. ax2 + bx+ c ∈ F7[x].

Whenever xn − a ∈ Fp[x] is irreducible, we write Fpn = Fp[x]/(xn − a) = Fp(n
√
a).

Unfortunately it is not always possible to find an irreducible polynomial on the form
xn − a ∈ Fp[x].

Example 3. Consider the finite field F135 with 371293 elements. Suppose that there
exists an element a ∈ F13 such that x5 = a. Then x5 − a must divide x135 − x with
remainder zero. It is a necessary condition that the remainder of this division is zero.
The division is time consuming, even on a computer and in the next chapter we shall
present a result (Theorem 8) that solves this problem once and for all. In this case there
is no such a ∈ F13.

We will now state some well-known results which guarantees the existence and unique-
ness of finite fields. Both theorems can be found in [25].

Theorem 3. For any prime power pn, there exists a finite field Fpn.

The uniqueness (up to isomorphism) is well-known too, and we have

Theorem 4. Any two finite fields of equal order are isomorphic.

With these two results, we are now certain, that the chosen representation of a finite field
is less important, in the sense that results obtained in a finite field can be transferred to
any other finite field of equal size. For computations there is a a very important choice
to be made in the representation; we seek to represent two fields of different sizes but
with equal characteristic using the same defining irreducible polynomial. This problem
is considered in the next section.

1.5.1. Finding Subfields of Finite Fields

We show by example, a method of finding subfields of finite fields. Consider

F24 = F2[x]/(1 + x+ x4).

It is clear that F22 is a subfield of F24 , however not so clear which elements in F24

actually yield the desired subfield. Remember that we need to use the addition and

8

1.5. Arithmetic in Finite Fields

multiplication from F24 and not any of the isomorphic counterparts. It is now used that
we know that the prime subfield of F24 is the same as for F22 . So we only need to find
a few more elements in F24 and we are done. A clever search will yield that

P = {0, 1, x+ x2, 1 + x+ x2}

is the desired set of elements. It is easy to see that P is a subfield of F24 of order 4, i.e.
P ∼= F22 .

We shall now develop a general algorithm for finding subfields in finite fields. The
key point to acknowledge here is that although we easily can find a finite field which
is isomorphic to some subfield of Fq, it may be more tedious to find a representation
which adheres to the irreducible polynomial used to define Fq. The naive algorithm for
finding a subfield of order q′ would consider every q′-tuple of elements in Fq and check the
axioms to determine if a given q′-tuple is a finite field. There is a much faster approach to
finding the representation of a given subfield Fq′ in Fq. We utilize the following theorem
which we state without proof, since it follows directly by using the division algorithm
on universal polynomials.

Theorem 5. Let Fq′ ⊂ Fq be a subfield of the finite field Fq of order q. An element
a ∈ Fq belongs to the subfield Fq′ if and only if aq′ = a.

This means we can settle for an algorithm which runs through every element in Fq \Fp
and determine if the element raised to the power of q′ is the element itself. This approach
has the advantage of not relying on the irreducible polynomial used to define Fq′ . It
is probably the most efficient algorithm for finding a given subfield Fq′ in Fq which
specifically adheres to the irreducible polynomial in Fq.

Example 4. As an example, consider the finite field

F26 = F2[x]/(1 + x+ x3 + x4 + x6).

Indeed F4 is a subfield and the elements

S = {0, 1, 1 + x+ x2 + x3, x+ x2 + x3}

form a subfield of order 4 in F64. Obviously we have F4 ∼= P ∼= S, where F4 has the
canonical polynomial basis representation, P and S borrows the irreducible polynomials
from F16 and F64, respectively.

The above analysis clearly shows that there must exist infinitely many equivalent ways
of representing a finite field. For this reason the adjective canonical, will be introduced
to distinguish between an irreducible polynomial of degree n when considering the finite
field Fpn and all the irreducible polynomials of finite fields for which Fpn is a subfield.
For instance, the irreducible polynomial 1 +x+x3 +x4 +x6 is canonical with respect to
F26 but not with respect to F22 . Note that canonical irreducible polynomials are a class
of polynomials.

9

Chapter 1. Introduction

There are situations where it is beneficial to consider non-canonical ways of represent-
ing a finite field. For instance if we want to represent a byte as an element in a finite
field, we would use F28 . Representing two bytes, also called a word, as an element in a
finite field can be done by considering F216 . Data compression is often concerned with
mapping elements of a larger field extension to a smaller subfield.

10

Chapter 2

Algebraic Varieties over Finite Fields

Algebraic geometry is roughly speaking, the study of algebraic varieties, i.e. the study of
the roots of multivariate polynomials, and more generally the study of so-called schemes.
While we will omit a discussion of scheme theory, it should be mentioned that everything
discussed in this chapter, can safely be formulated in terms from scheme theory, since
these theoretical frameworks can be seen as opposites.

We study the connection between algebraic varieties over finite fields and how they
relate to the finite field from which the variety is defined over. The viewpoint which will
be emphasized here, is to fix the defining polynomial(s) of a variety, and by varying the
base field, we see connections between geometry and classical number theory.

2.1. Elementary Diophantine Geometry

The following theorem was proved in [1] during the investigation of the connections
between Diophantine geometry and finite fields. Theorems which first appeared or was
developed in a separate article will be given a citation immediately after the theorem
number. This will indicate that either the result was originally developed in the article
in question or that it is taken directly from the cited source. If a result is well-known, we
will note that the result is well-known, but refrain from citing another source. Sometimes
we include a proof anyway.

Theorem 6 ([1]). Over the finite field Fpn corresponding to the prime p and the integer
n ≥ 1, the equation

xp
k + yp

k = 1

has exactly pn solutions of ordered pairs (x, y) of elements x, y ∈ Fpn for any integer
k ≥ 1.

Proof. Let k ≥ 1 be an arbitrary integer. By rewriting the binomial coefficient(
pk

r

)
= pk!
r!(pk − r)! , 1 ≤ r ≤ pk − 1,

11

Chapter 2. Algebraic Varieties over Finite Fields

we get

pk! =
(
pk

r

)
r!(pk − r)! .

Making use of the prime factorization theorem, it is easily seen that p divides
(pk

r

)
.

By the binomial formula we get then

(x+ y)pk = xp
k + yp

k
.

Together with the obvious relation

(xy)pk = xp
k
yp

k
,

this proves that the power map xp
k : Fpn → Fpn defines an isomorphism of the finite

field Fpn onto itself.
From this follows immediately that

(x+ y)pk = 1 if and only if x+ y = 1.

Clearly this implies that for every one of the pn elements x ∈ Fpn , there exists a unique
element y ∈ Fpn such that

xp
k + yp

k = (x+ y)pk = 1.

This proves that the equation xp
k + yp

k = 1 has exactly pn solutions.

The number of solutions to the circle equation over finite fields of even order can be
deduced as a special case of Theorem 6.

Corollary 1 ([1]). Over the finite field F2n corresponding to the prime 2 and the integer
n ≥ 1, the circle equation

x2 + y2 = 1

has exactly 2n solutions of ordered pairs (x, y) of elements x, y ∈ F2n .

The next result shows that solutions comes in multiples of four and this fact will later
be shown to extend to all finite fields of odd characteristic.

Theorem 7 ([1]). Solutions to the circle equation

x2 + y2 = 1

over the finite field Fp for p odd comes in multiples of four.

Proof. For any odd prime p, you always have the four solutions (1, 0), (0, 1), (p − 1, 0)
and (0, p− 1). Suppose now that (x, y) = (a, b), 1 ≤ a, b ≤ (p− 1)/2, is a solution. Then
(a,−b) = (a, p− b), (−a, b) = (p− a, b) and (−a,−b) = (p− a, p− b) are also solutions.
This completes the proof.

12

2.1. Elementary Diophantine Geometry

The following theorem extends and generalize a well-known result of Euler. A special
case of this theorem will be used later in this chapter, when we seek the number of
solutions to the circle equation over finite fields. The current form of the theorem is a
generalization and an extension of a classical result of Leonhard Euler, known as Euler’s
Criterion. This theorem is joint work with Vagn Lundsgaard Hansen in relation to [1, 2].

Theorem 8 (Extended Euler’s Criterion, [2]). Let q = pn for an odd prime p and an
arbitrary integer n ≥ 1. Suppose the number r is a proper divisor in q−1. Then it holds
that

1. An element a ∈ F∗q is an rth power in F∗q if and only if a(q−1)/r = 1.

2. There are exactly q−1
r different rth powers in F∗q .

Proof. We exploit that Fq is the splitting field for the polynomial f(x) = xq − x in Fp,
and is generated by the q roots of f(x); see [23].

The multiplicative group F∗q is a cyclic group of order q−1. Choose a generator γ ∈ F∗q .
Then the powers γi, i = 1, . . . , q − 1, runs through all the elements in F∗q .

Let r be a proper divisor in q − 1 and put k = q−1
r .

The rth power homomorphism xr : F∗q → F∗q maps γi into γir, showing that the k
elements aj = γjr, j = 1, . . . , k, are exactly the rth powers in F∗q . This proves part (2)
of the theorem.

For a ∈ F∗q , consider the polynomial g(x) = xr − a in Fq.
By polynomial division in Fq[x] we get

f(x) = xq − x = h(x)(xr − a) + (a(q−1)/r − 1)x,

where
h(x) = xq−r + axq−2r + a2xq−3r + · · ·+ a(q−3)/rx.

It follows that g(x) is a divisor in f(x) if and only if a(q−1)/r = 1.
Since

f(x) = xq − x = x(x− γ1)(x− γ2) . . . (x− γq−1),

it is clear that g(x) = xr − a is a divisor in f(x) if and only if it splits completely
into linear factors, or in other words, if and only if a ∈ F∗q is the rth power of r roots
γi1 , . . . , γir ∈ F∗q of f(x).

Combining information we conclude that a ∈ F∗q is an rth power in F∗q if and only if
a(q−1)/r = 1, thus proving part (1) of the theorem.

We return to an example from the previous chapter.

Example 5. In Example 3 we studied the finite field F135 and asked whether or not
there exists an element a ∈ F13 such that F135 = F13(5

√
a). We can now prove that there

exists no such element a ∈ F13. Start by noticing that 5 is not a proper divisor of 135−1.
By Theorem 8 it follows that x5 − a is not a divisor of x135 − x. Hence there exists no
a ∈ F13 such that F13(5

√
a) = F13[x]/(x5 − a) is a field.

13

Chapter 2. Algebraic Varieties over Finite Fields

The reasoning in Example 5 can be generalized by Theorem 8. We have

Corollary 2. If there exists no r’th powers in the prime field Fp, then there exists no
r’th powers in any extension of degree k where k is divisible by r.

This corollary can be used to determine if it is possible to find an irreducible polyno-
mial of the form xk − a ∈ Fp[x]. Since irreducible polynomials can be used to construct
finite fields, having polynomials of this form is very convenient.

Example 6. Consider the finite field extension

F1312 = F13[x]/(x12 + x8 + 5x7 + 8x6 + 11x5 + 3x4 + x3 + x2 + 4x+ 2).

It would be convenient to find another irreducible polynomial, which is not as long as
the one above. Consider

1312 − 1
12 = 23298085122480

12 = 1941507093540.

From this we conclude that there exists 12’th powers in F13. Guessing that 2 ∈ F13 is
a 12’th power, we consider x12 − 2 ∈ F13[x]. Provided that 2(1312−1)/12 = 1, which in
principle can be verified on a computer (caveat: do not try to do it directly), we get that

F1312 = F13[x]/(x12 − 2) = F13(12√2).

Remark. It is not practical to compute 2(1312−1)/12 directly. We can prove that F1312 =
F13(12√2) by verifying that 260 ≡ 1 (mod 13) and that 60 is a proper divisor of (1312 −
1)/12, which is easy to do on a computer.

2.2. Polynomial Rings over Finite Fields

Recall that an ideal I of a commutative ring R, is a subset of R, which is a group under
addition and for all x ∈ I and y ∈ R it holds that xy ∈ I. Since the multiplication in R
is defined to be commutative we call I a two-sided ideal or simply an ideal. We will not
be concerned with the cases where ideals are not two-sided. Non-commutative algebra,
plays a very important part when studying rings of differential operators. Most (if not
all) cases we consider in this thesis is modelled using commutative rings. We are content
with the following specialization of ideals to polynomial ideals.

Definition 11. A set I ⊂ F[x1, . . . , xn] is called an ideal if the following are satisfied

1. 0 ∈ I (Existence of neutral element).

2. f + g ∈ I , ∀f, g ∈ I (Closure).

3. f h ∈ I , f ∈ I, ∀h ∈ F[x1, . . . , xn] (Absorption).

14

2.3. Monomial Ordering

Ideals can be organized in different types. We will sum up a few of these. A proper ideal
of a polynomial ring is an ideal that is not the whole polynomial ring.

A prime ideal P of a commutative ring R is a non-trivial proper ideal with the addi-
tional property that for any x, y ∈ R : xy ∈ P =⇒ x ∈ P ∨y ∈ P . For the finite field Fq
itself it is clear by Lagrange’s theorem that the only additive subgroups are ones where
the order divides q. Since q = pn for p a prime and n ∈ N it must hold that any additive
subgroup of Fq will be a group of order q′ = pm and m ≤ n. Therefore finding ideals in
rings can be done by first considering the additive subgroups and then determine if any
of these are ideals. This is not the most efficient method, but will have to do for now.

A polynomial ideal which consists of monomial generators is called a monomial ideal.
A monomial xα1

1 . . . xαn
n ∈ F[x1, . . . , xn] is said to be square-free if αi ∈ {0, 1} for all i

such that 1 ≤ i ≤ n.

Definition 12. A monomial ideal J ∈ F[x1, . . . , xn] is called square-free if all generators
of J are square-free.

There is an almost trivial connection between subfields and subrings in the corresponding
univariate polynomial rings.

Proposition 1. Fq′ [x] is a subring of Fq[x] if and only if Fq′ is a subfield of Fq.

This can be generalized. The notion of a subfield induces a notion of a subgroup on
GLn(Fq), the general linear group with elements in Fq. That is, if Fq′ is a subfield of Fq,
then GLn(Fq′) is a subgroup of GLn(Fq).

There is a notion of dimension in polynomial rings, called the Krull dimension. This
notion becomes important when reviewing research related to phasor measurement unit
placement in Chapter 6.

Definition 13. Let R be a commutative ring with unit. For a polynomial ring
R[x1, . . . , xn], the Krull dimension is defined to be

dim(R) = sup{d > 0 | there is a chain of prime ideals P0 ⊂ · · · ⊂ Pn in R}.

For a polynomial ring F[x1, . . . , xn] over a field, we have that dim(F[x1, . . . , xn]) = n.

2.3. Monomial Ordering

Let R denote a commutative ring with unit. Many methods in the theory of polynomials
rely on an ordering of terms. One reason for introducing a monomial ordering, is to
enable a notion of division of multivariate polynomials. For instance we have ordered
terms according to the degree of the terms when using the univariate division algorithm.
We need a way to distinguish between monomials, e.g., xy2 and x2y have equal total
degrees.

15

Chapter 2. Algebraic Varieties over Finite Fields

Definition 14. A monomial ordering on R[x1, x2, . . . , xt] is a relation > on the set of
monomials xα, where α is an n-tuple of non-negative integers, such that

(i) > is a total ordering on Zn≥0.

(ii) For a, b, c ∈ Zn≥0, a > b =⇒ a+ c > b+ c.

(iii) > is a well-ordering on Zn≥0.

The most common orderings are the degree ordering and the lexicographic ordering. We
proceed to define both now.

The lexicographic ordering >lex is defined for every pair a, b ∈ Zn≥0 by considering the
point-wise difference a− b and if the leftmost non-zero entry is positive, we say a >lex b.
In turn the monomials are likewise considered as xa >lex xb. See [9] for a concise proof
that >lex is a monomial ordering.

Example 7. Consider the polynomial xy6 + x5 ∈ Q[x, y]. Fix the monomial ordering
to be x >lex y. Then we see that xy6 < x5.

There are n! different ways to define a lexicographic monomial orderings on a poly-
nomial ring R[x1, . . . , xn] with n variables. Example 7 showed one of the two possible
lexicographic orderings on Q[x, y].

We will primarily use a lexicographic monomial ordering, though it should be noted
that there exists many alternatives. One such alternative is the graded lexicographic
monomial ordering, where total degrees of monomials take precedence over the lexico-
graphic ordering.

Example 8. Consider the polynomial xy6 + x5 ∈ Q[x, y] again. Fix the monomial
ordering to be x >grlex y. Then we see that xy6 > x5. Precedence is given to the total
degree, but if the monomials are equal in total degree, the lexicographic ordering takes
over, e.g., x3y2 > x2y3.

2.4. Polynomial Division in R[x1, . . . , xn]

We give a very concise introduction to polynomial division of multivariate polynomials
and present a well-known algorithm for computing these divisions. Everything intro-
duced in this section, except for the examples, can be found in [9].

Theorem 9 ([9]). Fix a monomial ordering > on the polynomial ring R[x1, . . . , xn] over
a commutative ring R with unit. Let F = (f1, . . . , fs) be an ordered s-tuple of polynomials
in R[x1, . . . , xn]. Then every f ∈ R[x1, . . . , xn] can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ R[x1, . . . , xn], and either r = 0 or r is a linear combination, with
coefficients in R, of monomials, none of which is divisible by any of LT (f1), . . . , LT (fs).

16

2.4. Polynomial Division in R[x1, . . . , xn]

Just like in the polynomial division theorem for univariate polynomial rings, the r is
called the remainder of the division. This remainder for multivariate polynomial di-
vision is not unique, unlike in the univariate case, and the notion of Gröbner bases is
needed in order to adjust this lack of structure, see [9]. We postpone the introduction
to Gröbner bases to Chapter 4. The algorithm for computing divisions of multivariate
polynomials is the following.

Input: f1, . . . , fs, f
Output: a1, . . . , as, r
p := f ;
r := 0;
a1 := 0;
...
as := 0;

while p 6= 0 do
i := 1;
d := false;
while i ≤ s ∧ d = false do

if LT (fi) | p then
ai := ai + LT (p)/LT (fi);
p := p− fi LT (p)/LT (fi);
d := true;

i := i+ 1;
if d = true then

r := r + LT (p);
p := p− LT (p);

end
end

Algorithm 1: Division algorithm taken from [9]

To illustrate how to do this by hand we consider an example.
Example 9. We fix the monomial order to be x >lex y on F2n [x, y]. Consider the
polynomial f = y2n

x+ x2n
y ∈ F2n [x, y] and the set of polynomials

F = {x+ y + 1, y2n + y, x2n + y2n − 1} ⊂ F2n [x, y].

Suppose we want to see if f can be written as a linear combination of polynomials in F.
Start by dividing LT (f) by LT (x2n + y2n + 1) which yields a1 := y. Then subtract

y(x2n +y2n +1) from f which gives y2n+1 +xy2n +y. The resulting leading term is xy2n .
Dividing this by the LT (x+ y + 1) will give us a2 := y2n . Again by subtraction we are
left with y2n + y which is the only polynomial in F which we did not use. Therefore

f = y(x2n + y2n + 1) + y2n(x+ y + 1) + y2n + y.

17

Chapter 2. Algebraic Varieties over Finite Fields

Whenever we divide a polynomial f by a set F of polynomials, we write fF for the
remainder.

2.5. Affine Varieties over Finite Fields

The comprehensive introduction in [9] will be used as reference. We assume throughout
this section that F is an arbitrary field, e.g., Q, R, C or Fq. Many results hold for more
exotic fields, e.g., the field of rational functions, though they are not considered here.

Let f1, . . . , fj ∈ F[x1, . . . , xn] be polynomials in the polynomial ring F[x1, . . . , xn] over
the field F. Consider the set

V(f1, . . . , fj) = {(a1, . . . , an) ∈ Fn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ j}.

The set V is called the affine variety defined by the polynomials f1, . . . , fj . When there
is no chance of misleading the reader, we shall say that V is defined over F, to indicate
that the base field is F. We say that the variety is in Fn, because V ⊂ Fn, to indicate
that polynomials are in n variables.

Definition 15. Let V ⊂ Fn be an affine variety over F. Then we define

I(V) = {f ∈ F[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V}.

The following lemma is important, well-known and easy to prove.

Lemma 1. The set I(V) is an ideal in F[x1, . . . , xn].

Proof. First, we observe that the zero polynomial in F[x1, . . . , xn] is in I(V). Now
consider polynomials f, g ∈ I(V) and let h be an arbitrary polynomial in F[x1, . . . , xn].
Then for an arbitrary point a ∈ V, we get f(a) + g(a) = 0 + 0 = 0. Furthermore we have
h(a)f(a) = 0.

To see one of the major differences between algebraic varieties over algebraically closed
fields and varieties over general fields, we need

Definition 16. Let I ⊂ F[x1, . . . , xn] be a polynomial ideal. The set
√
I := {f | fm ∈ I for some integer m ≥ 1},

is called the radical of I.

For any ideal I ∈ F[x1, . . . , xn], the radical
√
I is an ideal containing I, see [9]. One im-

portant feature of the radical ideals are their connection with the ideals of affine varieties.
The connection however, is not shared whenever the field has positive characteristic.

Theorem 10 (Strong Nullstellensatz, [9]). Let F be an algebraically closed field. If J is
an ideal in F[x1, . . . , xn], then I(V(J)) =

√
J .

18

2.5. Affine Varieties over Finite Fields

There is an analogue result for finite fields. This result is well-known and is sometimes
referred to as the strong nullstellensatz in finite fields. The proof is easy and we state
the theorem here without proof.

Theorem 11. For an arbitrary finite field Fq and ideal J ⊆ Fq[x1, . . . , xn] it holds that

I(V(J)) = J + 〈xq1 − x1, . . . , x
q
n − xn〉.

As we shall see, once Gröbner bases are introduced, there are other ways to solve the
polynomials over finite fields, which does not require trying every combination of ele-
ments. For a computational point of view, the benefits of using more advanced methods
are greatest when we consider larger systems of polynomials over finite fields. For now,
we are content with exhaustive search.

Example 10. Consider the polynomial x2− y3 ∈ F43[x, y]. If we want to find the roots
of this polynomial, there are 432 possibilities to check, e.g., 392 − 253 ≡ 0 (mod 43).

We end this part of the section with a simple but important example of an affine
variety. The affine variety

V(x2 + y2 − 1) = {x, y ∈ R | x2 + y2 = 1}

is easily visualized in the plane R2 and we say that V is an affine variety over R.

2.5.1. The Circle Equation over Finite Fields

This section follows ideas first investigated by the author in collaboration with V. L.
Hansen in the paper [1]. Theorem 12, which is published in [1], is a result which is related
to the number of points on an affine variety over a finite field. The main contribution is
a shift of viewpoint from fixing the field and letting the polynomials vary, to fixing the
polynomials defining the variety and letting the field (in this case finite fields) vary. The
theorem can be seen as a way of calculating the number of points on the affine variety
V(x2 +y2−1) where the polynomial x2 +y2−1 ∈ Fq[x, y] is an element in the polynomial
ring Fq[x, y].

Theorem 12. For any finite field Fpn of characteristic p, the number of solutions to the
circle equation

x2 + y2 = 1

over Fpn is given by the formula

Npn = pn − sin
(
pn
π

2

)
.

Proof. For p = 2 the result follows by Corollary 1. Hence it only remains to consider
the case for an odd prime p. For convenience put q = pn.

19

Chapter 2. Algebraic Varieties over Finite Fields

x

y

Figure 2.1.: The circle V(x2 + y2 − 1)

The multiplicative group F∗q is a cyclic group of order q − 1, say generated by the
element g ∈ F∗q , see [23]. Every element in F∗q is then uniquely presented as a power gk
of g, where the exponent k is counted modulo q.

We define the multiplicative homomorphism η : F∗q → S of F∗q onto the multiplicative
group S = {−1, 1}, by setting η(c) = (−1)k, for c = gk ∈ F∗q .

In the literature η is known as the quadratic character of F∗q . For convenience we set
η(0) = 0.

The squaring homomorphism x2 : F∗q → F∗q maps the element a = gl ∈ F∗q into
c = g2l ∈ F∗q . From this we conclude that c = gk is a square in F∗q if and only if k is even
modulo q, or equivalently, if and only if η(c) = 1. Hence there are equally many squares
and non-squares in F∗q . From this follows immediately that

∑
c∈Fq

η(c) = 0.

The number of solutions Nq can be decomposed into a sum of products of the number
of solutions Nq(x2 = c1) and Nq(y2 = c2) to the equations x2 = c1 and y2 = c2, for
c1, c2 ∈ Fq with c1 + c2 = 1. Precisely

Nq =
∑

c1+c2=1
Nq(x2 = c1)Nq(y2 = c2).

20

2.5. Affine Varieties over Finite Fields

Observing that the equation z2 = c over F∗q has exactly two solutions if any, the expres-
sion for Nq can be rewritten as follows using the quadratic character

Nq =
∑

c1+c2=1
[1 + η(c1)] [1 + η(c2)]

=
∑

c1+c2=1
[1 + η(c1) + η(c2) + η(c1)η(c2)]

= q +
∑
c1∈Fq

η(c1) +
∑
c2∈Fq

η(c2) +
∑

c1+c2=1
η(c1c2)

= q +
∑
c∈Fq

η (c(1− c)) .

Now using that η(4) = η(22) = 1 we can further rewrite this as

Nq = q + η(−1)
∑
c∈Fq

η(4c2 − 4c)

= q + η(−1)
∑
c∈Fq

η
(
(2c− 1)2 − 1

)
= q + η(−1)

∑
c∈Fq

(
−1 +

[
1 + η

(
(2c− 1)2 − 1

)])
= q + η(−1)(−q) + η(−1)

∑
c∈Fq

[
1 + η

(
(2c− 1)2 − 1

)]
.

By definition of the quadratic character η, the sum

S =
∑
c∈Fq

[
1 + η

(
(2c− 1)2 − 1

)]

is the number of solutions in Fq to the quadratic equation

(2c− 1)2 − 1 = a2,

which can be rewritten as

(2c− 1 + a)(2c− 1− a) = 1.

To solve this product of two linear equations, observe that the factor

2c− 1 + a = α

can be chosen arbitrarily in F∗q . Then necessarily

2c− 1− a = α−1.

By subtraction of equations and division by 2, we get a = 2−1 (α− α−1).

21

Chapter 2. Algebraic Varieties over Finite Fields

Inserting this value for a into the expression for α yields

c = 2−1
[
α+ 1− 2−1

(
α− α−1

)]
.

Since every solution to the quadratic equation in this way turns out to be uniquely de-
termined by a choice of α ∈ F∗q and since the order of F∗q is q − 1, we conclude that the
sum S has the value S = q − 1.

Collecting facts we get

Nq = q + η(−1)(−q) + η(−1)(q − 1) = q − η(−1).

Now it only remains to determine the value of η on −1 ∈ F∗q , i.e. to determine whether
−1 is a square, resp. a non-square in F∗q .

We can choose a generator g of F∗q for which g0 = 1, and g0, g1, . . . , gq−2 are all the
elements in F∗q , when counting exponents for g modulo q − 1.

The odd number q = pn has a unique representation either as q = 4k+1 or q = 4k+3,
for k a non-negative integer.

Suppose x = gl, 1 ≤ l ≤ (pn − 1)/2, is an element with x2 = g2l = −1. Then
g4l = g2lg2l = (−1)(−1) = 1 = g0. Consequently

4l ≡ 0 (mod q − 1).

Now suppose q = 4k + 1. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k).

We get a solution if k divides l, and hence solutions always exist. We conclude that −1
is a square in F∗q for q = 4k + 1.

Next suppose q = 4k + 3. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k + 2).

A solution exists only if 2k+ 1 divides 2l. Since an odd number can never be a factor in
an even number, we conclude that the congruence has no solutions and hence that −1
is a non-square in F∗q for q = 4k + 3.

It follows that −1 is a square in F∗q if and only if q ≡ 1 (mod 4), and hence

η(−1) =
{

1 if q ≡ 1 (mod 4),
−1 if q ≡ 3 (mod 4).

In conclusion we get
Nq = q − sin

(
q
π

2

)
,

for any prime p, integer n ∈ N and q = pn.

22

2.5. Affine Varieties over Finite Fields

An example of an algebraic variety over a finite field defined by the circle equation can
be visualized by points on a lattice. This works well for varieties over prime fields but it
needs some interpretation to work over arbitrary finite fields. Figure 2.2 illustrate a way
to visualize the varieties over prime fields and the established result that the solutions
come in multiples of four, see Theorem 7. The rectangles connect the corresponding
quadruples.

Figure 2.2.: Algebraic variety defined by x2 + y2 − 1 ∈ F19[x, y].

2.5.2. Patterns in the Number of Solutions to the Circle Equation

We briefly state some consequences to the result concerning the number of solutions to
the circle equation over arbitrary finite fields.

Theorem 13 ([1]). Let p be an odd prime and n ≥ 1 an arbitrary integer. Then the
number of solutions to the circle equation x2+y2 = 1 over the finite field Fpn is a multiple
of four.

23

Chapter 2. Algebraic Varieties over Finite Fields

Proof. The number of solutions is given by

Npn = pn − sin
(
pn
π

2

)
.

Since p is an odd prime, pn ≡ 1 (mod 4) or pn ≡ 3 (mod 4). On the other hand,
clearly

sin
(
pn
π

2

)
=
{

1, pn ≡ 1 (mod 4),
−1, pn ≡ 3 (mod 4).

It follows that
Npn ≡ 0 (mod 4).

The following theorem settles in which finite fields the circle equation has diagonal
solutions, i.e. solutions of the form (x, y) = (x, x). Note the connection with the
extended Euler’s criterion, i.e. Theorem 8.

Theorem 14 ([1]). Let p be an odd prime.

1. For an arbitrary integer n ≥ 1, the circle equation x2 + y2 = 1 has diagonal
solutions over the finite field Fpn if and only if

2(pn−1)/2 ≡ 1 (mod p).

2. There are diagonal solutions to the circle equation over the prime field Fp if and
only if p ≡ ± 1 (mod 8).

3. If there are diagonal solutions to the circle equation over a finite field Fpn, then
there are exactly two diagonal solutions.

4. If there are diagonal solutions to the circle equation over the prime field Fp, then
there are also diagonal solutions to the circle equation over Fpn for all n ≥ 1.

Proof. Set q = pn. First suppose that (x, y) = (a, a) is a diagonal solution to the circle
equation over the finite field Fq. Then 2a2 = 1 and hence (a−1)2 = 2, showing that 2 is
a square in Fq. Next suppose that 2 is a square in Fq. Then clearly 2−1 is also a square
in Fq. Therefore there exists an element a ∈ Fq such that a2 = 2−1, or equivalently,
a2 + a2 = 1. We conclude that the circle equation has diagonal solutions in the finite
field Fq if and only if 2 is a square in Fq. Notice further that the equation x2 = 2−1 has
exactly two solutions ± a, if any.

To finish the proof of the theorem it only remains to determine for which q = pn the
number 2 is a square in Fq. By Theorem 8, it follows that g(x) is a divisor in f(x) and
hence that 2 is a square in Fq if and only if

2(q−1)/2 ≡ 1 (mod p).

24

2.5. Affine Varieties over Finite Fields

For n = 1, i.e. for the prime field Fp, it was known to Gauss (with complete proof) that
2 is a square in Fp if and only if p ≡ ± 1 (mod 8), see e.g. Davenport ([10], page 70).

For an arbitrary integer n ≥ 1, the prime field Fp is a subfield of Fq. Since the squaring
map x2 : F∗q → F∗q is a multiplicative homomorphism mapping F∗p into itself, it follows
that 2 is a square in Fq if 2 is a square in Fp.

This completes the proof of the theorem.

The pattern which we have observed in twin primes modulo 4 makes the following
definition interesting.
Definition 17 ([1]). A pair of twin primes p and p′ for which p ≡ 3 (mod 4) and p′ ≡ 1
(mod 4) is called a pair of siamese twin primes.

Our main result on the number of solutions to the circle equation in a prime field as
a function of the prime can then be given the following concise formulation.

Theorem 15 ([1]). The number of solutions Np to the circle equation

x2 + y2 = 1

over Fp for odd primes, is a strictly increasing function of p in multiples of four, except
in pairs of siamese twin primes p and p′, where the function stagnates and Np = Np′.

Proof. Let p < p′ be a pair of odd prime numbers. It follows by Theorem 12 that
Np′ ≥ Np and by Theorem 13 that Np′ ≡ Np (mod 4).

Now suppose that Np′ = Np. Then necessarily p and p′ must be a pair of twin primes.
If p ≡ 1 (mod 4) then p′ ≡ 3 (mod 4) since p′ = p+ 2, and hence

Np′ −Np = p′ − p− sin
(
p′
π

2

)
+ sin

(
p
π

2

)
= 4,

which contradicts our assumption that Np = Np′ .
On the other hand if p ≡ 3 (mod 4) then p′ ≡ 1 (mod 4) and hence

Np′ −Np = p′ − p− sin
(
p′
π

2

)
+ sin

(
p
π

2

)
= 0.

Altogether we conclude that Np′ = Np if and only if p and p′ is a pair of siamese twin
primes.

Supported by computer experiments with primes below n = 2 · 109, there seems to be
a curious partition of twin primes into two sets of equal size, namely the siamese twin
primes and the non-siamese twin primes. We give
Conjecture 1 ([1]). If we denote by Sn the number of siamese twin primes below n and
denote by Tn the number of twin primes below n. Then

lim
n→∞

Tn
Sn

= 2.

The conducted computer experiments yield that there are 6388041 pairs of twin primes
and 3193559 pairs of siamese twin primes below n.

25

Chapter 3

Elements of Categorical Algebra

The purpose of category theory was, from its very beginning, to analyze so-called natural
transformations. These transformations were the main reason, why S. Eilenberg and S.
MacLane defined categories and functors, in other words they wanted to analyze natural
transformations, see [11].

Though it began as a theoretical framework in algebraic topology, it has since been
established as a research field in its own right. In the context of this thesis, it gives us a
way to deal with the modelling of physical systems and transforming them into elegant
models which are convenient to work with. This convenience comes from the purely
algebraic formulation of structures in our models. It is a powerful tool for modelling
systems and the methods introduced here can be considered elementary compared to
modern literature.

The subject has become a standard tool in many applied areas of mathematics, e.g.,
computer science and algebraic systems theory. It is not surprising that the mathematics
of structure, i.e. category theory, can be applied in a vast number of seemingly unrelated
disciplines.

We follow the modern formulation and notation described in [19] with a few exception,
where the foundational text [11] of S. Eilenberg and S. MacLane will be used as reference
instead.

3.1. Categories

The strength of categories comes not from the definition of a category but rather from
the idea that various structures are related by more than the concrete similarities that
might be between any given two objects. In other words, one of the important changes in
perspective, from set theory, is the idea that we need to analyze the relationship between
objects as well as the objects themselves. And more specifically the relationship between
objects is often more important than the objects themselves.

Definition 18. A category C consists of a collection of objects Obj C, a set Mor C of
mappings, also called morphisms, between any two objects and for any object, an identity
map, together with an associative composition of maps. A category C is said to be small
if Obj C is a set.

27

Chapter 3. Elements of Categorical Algebra

The category consisting of vector spaces over F as the set of objects and as maps, the
linear transformations between vector spaces is called the category of vector spaces. Let
idC denote the identity map in the category C. Similarly we can define the category of
rings K, which we define to consist of commutative rings (with unit) as the set of objects
and ring homomorphisms as the set of morphisms. In some areas of algebraic systems
theory, this category is too narrow as they often study differential rings, e.g., categories
with rings of differential operators; these are seldom commutative objects. We define
the category having polynomial rings as objects and all maps between these rings as
the set of morphisms. This category will be denoted by P and called the category of
polynomial rings.

Definition 19. Every category C has an opposite category Copp defined with the same
objects as C, i.e. Obj C = Obj Copp, and the arrows in Mor C are reversed in Mor Copp.

As mentioned in the beginning of Chapter 2, there is a connection between the category
of commutative rings and the category of affine schemes. Without going into details of
the geometry of schemes, we simply note that the connection is that the category of
affine schemes and the category of commutative rings are opposites of each other, see
[13].

Practically everything can be considered as a category in the sense that the objects
can be the elements of interest and the morphisms can be all morphisms between these
objects. For instance, electrical circuit diagrams can be taken as the set of objects and
we can choose the set of morphisms to be all maps that transform one circuit diagram
into another. This seemingly simple way of defining categories has proven to be a useful
entrance to mathematics and its applications. In computer science these categories are
used to model everything from types to functions, e.g., Haskell1 types together with
Haskell definable functions form a category.

A category which has as objects, the simplicial pairs, and as morphisms all maps
between such pairs, is called the category of simplicial pairs. This category is considered
in Chapter 5, where it is seen that the objects in this category, induce a ranking on every
element in any of the objects.

Several classical viewpoints of graphs in engineering prevail. In [27] among many other
studies, networks are analyzed using graphs and one of the features which is considered
is the so-called degree of nodes (vertices), which counts the number of edges connected
to a node. As we shall see in the Chapter 5, this is far from enough to consider actual
network failures etc. When considering graphs, e.g., modeling power system topology,
there exists networks where nodes with maximal degree is not the most “critical” nodes
in the sense that there exists other nodes of lower degree that yields more damage, when
removed. It is necessary to take a more categorical viewpoint on network analysis than
what classical graph theory provides.

This suggests that there is much structure that is not analyzed or considered, whenever
we model a phenomena by its appearance and not by its relationship to similar objects.
The hidden relations between objects of the same kind are of fundamental importance

1Haskell Programming Language

28

3.2. Functors

in complex networks. Indeed we are interested in relating structures to with other,
sometimes similar, structures. This leads us to the next section.

3.2. Functors

Functors are mappings between categories, which are sometimes different. One of the
most important (and defining) features of a functor, is that it maps morphisms between
objects in such a way that it preserves composition of mappings.

Definition 20. Given categories C,D, a covariant functor is a map F : C → D, such
that for each object A of C there is assigned an object F (A) of D and to each map f
in C there is assigned a map F (f) in D with the requirement that F (idC) = idF (A) and
F (f ◦ g) = F (f) ◦ F (g) whenever the composition f ◦ g in C makes sense.

Given the covariant functor F : C → D. A contravariant functor is the covariant
functor Copp → D. This trickery of words hides yet another functor, namely the opposite
functor opp : C → Copp. This functor is very important as it gives us a way to describe
contravariant functor as covariant functors.

A functor often used in algebraic topology and systems theory is the Hom functor.
We define this now. Let A and B be R-modules. The set

HomR(A,B) = {f | f : A→ B}

of all R-module homomorphisms f of A into B is an abelian group, under addition,
defined for f, g : A→ B by (f + g)a = fa+ ga. For a fixed left R-module B,

HomR(A,B) : RMod→ Ab

is a contravariant functor of A. Likewise if A is fixed, then HomR(A,B) is a covariant
functor of B. These functors are collectively called Hom functors. The Hom functors
are not only defined on RMod and ModR; trivially the category VecF of vector spaces
over the field F together with linear tranformations shares part of the domain of the
Hom functors. A functor F : C → C from a category C to itself, is called an endofunctor.

Among the many important functors, which are often encountered in mathematics are

• The general linear group functor, GLn : K → G.

• The multiplicative subgroup functor, (−)∗ : K → G.

A mathematical model is used to relate structures (or concepts). So it is clear that a
mathematical model can be represented as a functor. In Chapter 6 we model a problem
related to (hyper)graphs via cover ideals which belong to the category of polynomial
rings. There are many ways that the process of calculating vertex covers can be repre-
sented as a functor, and one such way is to consider the model as a functor from the
category of hypergraphs to the category of polynomial rings. It should be noted that
the category of graphs can be seen as a subcategory of the category of hypergraphs, yet

29

Chapter 3. Elements of Categorical Algebra

there are often used different methods for solving the vertex cover problem depending
on whether or not the problem is defined for graphs or hypergraphs. The functorial
approach of sending the vertex cover problem into the category of polynomial rings is
the same for the two types of categories.

Functors can, like categories, be defined for any kind of application. If we consider
the category Hask formed by taking Haskell types for objects and Haskell functions
between types as morphisms, we can define various functors on this category, e.g., so-
called Maybe and List functors etc. In order to realize this, it may be necessary to define
how morphisms are mapped.

Example 11. The List functor can be given the following definition.
instance Functor List where

fmap = map

Next, we consider the concept of Maybe in Haskell. It can be given the following defini-
tion.

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Notice that in most applications, the domain and target of a functor is implicit. In
this cas we work on Hask.

Example 12. Let List denote the sub-category of Hask with lists as objects and with all
morphisms taking lists to lists, e.g., “reverse” is a function which takes a list and reverses
the order and hence reverse ∈ Mor List. Consider the mapping [] : Haskn → List
from the n-fold Cartesian product of Hask to List defined by taking n equivalent types
(objects) in Hask and inserting them into a list in List. Then [] is a functor.

Remark. There is not a unique way of defining or viewing functors. The list functor []
can also be viewed as an endo-functor on the category of sets. The description depends
on the purpose of modelling and the setting in which the modelling takes place.

Example 13. Let List denote the category of lists as in the previous example. Then a
morphism rmdups : []→ [] in the category List that removes duplicates can be defined
in Haskell as

rmdups :: (Ord a) => [a] -> [a]
rmdups = map head . group . sort

3.3. Natural Transformations

Let C and D be two categories. In a very basic form, we consider natural transformations
as mappings of functors. More precisely we have

30

3.3. Natural Transformations

Definition 21. A natural transformation T : F → G between functors F,G : C → D, is
a map TX : F (X)→ G(X) for every X ∈ Obj C where the diagram

F (X) F (Y)

G(X) G(Y)

TX

F (f)

G(f)

TY

commutes for all morphisms f : X → Y in Mor C and X,Y ∈ Obj C.

Natural transformations can be used as morphisms in a category where the objects
are functors.

If a natural transformation T : F → G between functors F,G : C → D is an iso-
morphism, then we call T a natural equivalence and write F � G. Further we define
the equivalence of two categories C and D if there exists two functors F : C → D and
G : D → C such that F ◦ G � idD and G ◦ F � idC where idC and idD are identity
functors in C and D, respectively.

These natural transformations play an important role in homology theory, where they
often appear, e.g., relative homology is natural. The determinant is another example of
a natural transformation, see [22].

Given a commutative ring K and the group K∗ of invertible elements of K, i.e. con-
sider the functor (−)∗ : K → G from the category K of commutative rings to the category
G of groups. Now consider yet another functor, GLn : K → G, from the category of com-
mutative rings to the category of groups.

The determinant detK : GLn → K∗ is natural in the sense that the following diagram
commutes, whenever f : K → K ′ is a morphism of commutative rings, i.e. when
f : K → K ′ is a ring homomorphism.

GLnK GLnK ′

K∗ K ′∗.

detK

GLnf

f∗

detK′

Example 14. Consider the Frobenius automorphism φ : Fq → Fq, given by a 7→ ap,
where a ∈ Fq, q = pm, p is a prime and m is a positive integer. One might ask whether
it makes a difference to apply the Frobenius automorphism before or after calculating
the determinant?

The diagram

31

Chapter 3. Elements of Categorical Algebra

GLnFq GLnFq

F∗q F∗q

detFq

GLnφ

φ∗

detFq

is clearly a commutative diagram, and thus detFq is a natural transformation. Therefore
the answer is that it makes no difference whether the Frobenius automorphism is applied
before or after calculating the determinant. To illustrate this further, we consider a
simple finite field

F9 = F3[x]/(x2 + 2x+ 2).

Next we choose a 2× 2 matrix A with elements in F9, e.g.,

A =
(
x+ 2 x+ 1
x 2x

)
.

Obviously detF9(A) = 2x(x + 2) − x(x + 1) = 2 + x + 2 = x + 1. Applying Frobenius
to this value yields φ(x + 1) = 2x + 2. If we on the other hand consider the Frobenius
automorphism applied prior to calculating the determinant, we get the matrix

Ã =
(

2x 2x+ 2
2x+ 1 x+ 2

)
,

and detF9(Ã) = 2− x = 2x+ 2.

This simple example showed one kind of reasoning that natural transformations can
facilitate. In other words, if a map is natural, it will tell us much about the flexibility
of such a map with respect to the processes that it is related to. This is a very powerful
tool, not just from a mathematical point of view, but also from an engineering one. This
form of reasoning is important in designing algorithms, communication protocols etc.

3.3.1. Some Results Related to Determinants

Consider the determinant map det : GLn → (−)∗. As was established in the previous
section, this map is natural and we have

(det GLnf)A = (f∗ det)A,

for every A ∈ GLnK, where K is a commutative ring and f : K → K is a ring homo-
morphism on K. Furthermore the determinant is a homomorphism, and it holds that
for every k−fold product of a matrix A ∈ GLnK, we get

det(A)k = detAk.

32

3.3. Natural Transformations

Suppose that k = p, where p is a prime. Let q be a power of p and consider det :
GLnFq → F∗q together with the induced map GLnf : GLnFq → GLnFq, where f is
defined by x 7→ xp, x ∈ Fq. Let X ∈ GLnFq and consider

det(Xp) = det(X)p = (f∗ det)X.

It follows immediately that we have the following

Proposition 2. Given a homomorphism f : Fq → Fq of finite fields defined by x 7→ xp.
Then for any A ∈ GLnFq,

det(Ap) = det(GLnfA).

It is clear that det(A)k = detAk for all k ≥ 1, but most often an arbitrary k-fold
product of matrices will not yield the same determinant as (det GLnf)A, where f is the
k’th power map x 7→ xk.

One can establish how many matrices GLnFq contains, that is matrices with non-zero
determinant. Suppose we want to build an n× n matrix in GLnFq. The rows needs to
be linear independent and non-zero for the determinant to be non-zero. So choose the
first row to be any non-zero row; we can do so in qn − 1 different ways. Next choose
the second row such that it is linearly independent of the previous row; we can do so in
qn− q different ways since there exists q multiples of the first row. Proceeding with this
line of argument will yield the desired result. We have

Theorem 16. The group GLnFq has order (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1).

33

Chapter 4

Gröbner Bases and Their Applications

The theory of Gröbner bases will be introduced. The circle equation is revisited and
a few conjectures related to the circle equation are discussed. The relation between
graph theoretical concepts and Gröbner bases will be mentioned and we introduce a
fast method for computing intersection of ideals, which are relevant in graph theory, the
theory of hypergraphs and algebraic geometry. We show empirically that the ordering
of a sequence of ideals to be intersected is important. This is illustrated by proposing a
ordering algorithm, which we find to yield the fastest intersection of square-free monomial
ideals in a sequence. The main advantage of this ordering algorithm, is that we need not
develop a new sorting algorithm. Traditional sorting algorithms, like Bubble sort or the
more efficient Merge sort algorithms can be used. The ordering algorithm is invariant
with respect to the choice of sorting algorithm.

4.1. S-polynomials

Let F[x1, . . . , xn] be a polynomial ring over an arbitrary field. For a non-zero polynomial
f ∈ F[x1, . . . , xn], the multidegree of f with respect to the monomial ordering >, is given
by the maximum of exponents of non-zero terms in f with respect to the monomial
order. The multidegree is an n-tuple of non-negative integers. We write LT (f) for the
leading term of f and write LM(f) for the corresponding monic (leading coefficient 1)
monomial.

Definition 22. For polynomials f1, f2 ∈ F[x1, . . . , xn], the S-polynomial is defined by

S(f1, f2) = LCM(LM(f1), LM(f2))
LT (f1) f1 −

LCM(LM(f1), LM(f2))
LT (f2) f2.

Example 15. Fix the monomial order to be the lexicographic ordering in which x < y.

35

Chapter 4. Gröbner Bases and Their Applications

Consider the ideal 〈f1, f2〉 = 〈yx17 − yx, xy17 − xy〉. Then

S(f1, f2) = LCM(yx17, xy17)
yx17 (yx17 − yx)− LCM(yx17, xy17)

xy17 (xy17 − yx)

= x17y17

yx17 (yx17 − yx)− x17y17

xy17 (xy17 − yx)

= y16(yx17 − yx)− x16(xy17 − yx)
= yx17 − xy17.

There is an important feature of S-polynomials, which will serve as a delicate underpin-
ning of most algorithms using these polynomials. Utilizing the definition of polynomial
ideals over fields, it is clear that we have

Proposition 3. Let I ⊂ F[x1, . . . , xn] be a polynomial ideal. Then for any pair of
polynomials f, g ∈ I, it holds that S(f, g) ∈ I.

4.2. Gröbner Bases

We introduce the notion of Gröbner bases and show how they can be used to solve
problems in mathematics and engineering. The books [9, 32] are our general references.

Consider a polynomial ideal I = 〈f1, . . . , ft〉 ⊂ F[x1, . . . , xn]. Define the leading term
monomial ideal, denoted by 〈LT (I)〉, to be the ideal generated by the leading term of
every polynomial in I. The ideal 〈LT (I)〉 has an infinite number of generators and is
usually different from the ideal 〈LT (f1), . . . , LT (ft)〉 defined by the leading terms of the
generators of I.

Definition 23. A Gröbner basis is defined to be a subset {g1, . . . , gi} of an ideal I ⊂
F[x1, . . . , xn] for which

〈LT (g1), . . . , LT (gi)〉 = 〈LT (I)〉.

Example 16. Fix the monomial order to be the lexicographic ordering x < y. Consider
the variety V(x2 + y2 − 1) over F13. Suppose that

G = {x7 + 11x5 + 2x3 + 12x, x5y + 12x3y + xy, y2 + x2 + 12} ∈ I(V),

where I(V) = 〈x2 + y2 − 1, x13 − x, y13 − y〉 ⊂ F13[x, y]. For G to be a Gröbner basis,
it must hold that for every element f ∈ I(V), there exists an element g ∈ G such that
LT (f) is divisible by LT (g).

It is clear that there are some disadvantages to this definition since ideals have infinitely
many elements. Therefore a criterion is needed to determine if a set of polynomials form
a Gröbner basis. This is solved by the following

Theorem 17 (Buchberger’s criterion). Let I be a polynomial ideal in F[x1, . . . , xn]. A
basis G = {g1, . . . , gi} of I is a Gröbner basis for I if and only if for every pair of distinct
polynomials in G, the corresponding S-polynomial is divisible by G.

36

4.3. Reduced Gröbner Bases

For a proof of Theorem 17, see [8] or [9]. Based on this criterion, it is easy to see
that the basis for the ideal in Example 15 is in fact a Gröbner basis, since dividing the
S-polynomial by the basis will leave a remainder of zero.

Notice the assumption in Buchberger’s criterion where the candidate set of polynomials
are a basis for the ideal in question. Any algorithm proposed to construct a Gröbner
basis must, if using this criterion, assert or ensure that the Gröbner basis is in fact a
basis for the original ideal.

4.2.1. Computing Gröbner Bases

Consider an ideal I ⊂ F[x1, . . . , xn] in the polynomial ring F[x1, . . . , xn] over the field
F. Choose a monomial ordering > on F[x1, . . . , xn]. A Gröbner basis for I with respect
to > is a finite collection of polynomials G = {g1, . . . , gi} ⊂ I where for every non-zero
polynomial f ∈ I the leading term of f is divisible by the leading term of at least one
g ∈ G.

The following algorithm will produce a Gröbner basis upon inputting the generators
of an ideal. We omit the proof of this here and only present the algorithm itself.

Let I = 〈f1, . . . , ft〉 ⊂ F[x1, . . . , xn] be a non-trivial polynomial ideal in the polyno-
mial ring on n variables over the field F. Then the following algorithm will produce a
Gröbner basis for I, see [9].

Input: F = (f1, . . . , ft)
Output: Gröbner basis for I, with F ⊂ G
G := F ;
repeat

G′ := G;
foreach pair {p, q}, p 6= q in G′ do

S := S(p, q)G
′
;

if S(p, q) 6= 0 then
G = G ∪ {S};

end
end

until G′ = G;
Algorithm 2: Buchberger’s algorithm

For our purposes it will suffice to state the above algorithm, though many computer al-
gebra systems will use faster algorithms. We will mention explicitly if another algorithm
is used for computing Gröbner bases.

4.3. Reduced Gröbner Bases

Recall that the leading coefficient of a monomial is considered with respect to the mul-
tidegree.

37

Chapter 4. Gröbner Bases and Their Applications

Definition 24. Given an ideal I in the polynomial ring F[x1, . . . , xn] over the field F.
Let G be a Gröbner bases for I. Then we say that G is reduced if for all generators f in
G, no monomial of f lies in the ideal 〈LT (G − {f})〉 and for every f in G the leading
coefficient is the multiplicative identity.

For each monomial ordering and a fixed non-trivial polynomial ideal, the reduced
Gröbner basis is unique, see [9]. As mentioned in [9], putting matrices into reduced row
echelon form in linear algebra is a special case of the uniqueness of reduced Gröbner
bases.

Theorem 18. There exists only finitely many reduced Gröbner bases for a given poly-
nomial ideal I ⊂ F[x1, . . . , xn].

In practice, we can find a reduced Gröbner basis from any Gröbner basis G =
{g1, . . . , gi}, by removing any generator gj , that reduces to zero via 〈G− {gj}〉.

4.3.1. The Circle Equation Revisited

We return to the algebraic variety over finite fields defined by the circle equation. The
following conjecture seems true but difficult to prove.

Conjecture 2. Let I(V) = 〈x2 + y2 − 1, xq − x, yq − y〉 ⊂ Fq[x, y] be a polynomial ideal
and denote by {gi} the reduced Gröbner basis for I(V) with respect to the lexicographic
monomial ordering. Then there exists an i such that

LT (gi) =

y(q+1)/2, for q ≡ 1 (mod 4),
y(q+3)/2, for q ≡ 3 (mod 4),
yq, for q ≡ 0 (mod 2).

The following example show the conjecture in a special case.

Example 17. Consider V(x2+y2−1) over F13. Then I(V) = 〈x2+y2−1, x13−x, y13−y〉.
The leading monomial ideal of I(V) is then given by

〈LT (I(V))〉 = 〈x2, y(13+1)/2, xy(13+1)/2−2〉 = 〈x2, y7, xy5〉.

In the next example we show how the conjecture looks over a specific finite field
extension of F2.

Example 18. Again, we consider V(x2 + y2 − 1), now over F28 . It holds that I(V) =
〈x2+y2−1, x256−x, y256−y〉. Trivially we find the Gröbner basis to be {x+y+1, y256+y}
from which it is clear that 〈LT (I(V))〉 = 〈x, y256〉.

More generally, the conjecture is true for all q = 2n. This is a consequence of the fact
that the reduced Gröbner bases follows the general form given in

Proposition 4. Let I(V) = 〈x2 + y2 − 1, x2n − x, y2n − y〉 ⊂ F2n [x, y] be a polynomial
ideal with respect to the lexicographic monomial ordering. The reduced Gröbner basis for
I(V) is given by {x+ y + 1, yq + y}.

38

4.3. Reduced Gröbner Bases

Proof. We observe that x2 + y2 − 1 = x+ y + 1 in F2n [x, y]. Thus we get

I = 〈x2 + y2 − 1, x2n − x, y2n − y〉 = 〈x+ y − 1, x2n − x, y2n − y〉.

The last ideal is generated by a Gröbner basis, which can be seen by applying Buch-
berger’s criterion. Now consider the monomial ideal J = 〈x, y2n〉. Since at least one
monomial in x2n − x is divisible by a generator in J , it can be concluded that

{x+ y − 1, x2n − x, y2n − y},

is not a reduced Gröbner basis. We will now apply an effective trick. Since any power of
any generator of a polynomial ideal is part of that ideal, we can consider this augmented
ideal

F = 〈x+ y − 1, x2n − x, y2n − y, x2n + y2n − 1〉,

where {x+ y− 1, x2n −x, y2n − y, x2n + y2n − 1} is a Gröbner basis for I. By polynomial
division we immediately get that x2n − xF = 0. Thus we can remove x2n − x from the
list of generators for I, and since x2n + y2n − 1 is a power of another generator in I, we
get that I = 〈x+ y − 1, y2n − y〉.

Remark. We have now given an alternative proof of Theorem 6 for the case where
p = 2. What makes the above proof possible is the fact that we are working with
an algebraic variety over a field of characteristic 2. This means that we do not get
complicated coefficients during the multivariate polynomial division. Another reason for
the simplicity is that all coefficients in the original variety have coefficients in the prime
subfield of F2n . Therefore no polynomial division can produce coefficients outside the
prime subfield.
Obviously we have

Corollary 3. Finding the reduced Gröbner basis with respect to the lexicographic or-
dering for I(V) = 〈x2 + y2 − 1, x2n − x, y2n − y〉 ⊂ F2n [x, y] can be done in polynomial
time.

The computational complexity of the algorithms used to calculate Gröbner bases, e.g.,
Buchberger’s algorithm, Faugères F4 and F5 algorithms etc. is very difficult to ascertain.
The monomial ordering, the number of variables and the number of generators of the
ideal in question, all affect the algorithms dramatically. For most engineering purposes,
it will suffice to make computational experiments to determine which parameters and
approaches one needs to solve a given problem.

Returning to the above conjecture and in an effort to justify its presence here, we start
by considering the case F3, i.e.

F1 = 〈x2 + y2 − 1, x3 − x, y3 − y〉 ⊂ F3[x, y].

Using Buchberger’s algorithm we consider

S(x2 + y2 − 1, x3 − x) = y2x,

39

Chapter 4. Gröbner Bases and Their Applications

which is not divisible by any leading term in F1. Thus we add y2x to the list of generators
for F1, i.e.

F2 = 〈x2 + y2 − 1, x3 − x, y3 − y, y2x〉 ⊂ F3[x, y].

By definition we now have that S(x2 + y2 − 1, x3 − x)F2 = 0. More fortunate, we get
that S(x2 + y2 − 1, y3 − y)F2 = x2y + y5 − y3F2 = 0. However

S(x2 + y2 − 1, y2x)F2 = y4 − y2.

We add this polynomial to the list of generators and get

F3 = 〈x2 + y2 − 1, x3 − x, y3 − y, y2x, y4 − y2〉 ⊂ F3[x, y].

Next we consider S(y2x, y3 − y) = xy. This polynomial cannot be reduced and as usual
we add it to the generators. Finally we get a Gröbner basis for F1, i.e.

G := F1 = 〈x2 + y2 − 1, x3 − x, y3 − y, y2x, xy, y4 − y2〉 ⊂ F3[x, y].

The reduced Gröbner basis G̃ is found by removing any basis polynomial which is reduced
to zero by the other basis polynomials. For instance, we see that x(x2 + y2− 1) + y2x =
x3 − x and thus we remove x3 − x from the list of generators. Doing this exhaustively
yields

G̃ = 〈x2 + y2 − 1, xy, y3 − y〉 ⊂ F3[x, y].
It is left to the reader to check that this actually constitute a Gröbner basis.

The more general situation is much more difficult and while the author does not believe
that it is impossible solve, it is at least a very hard problem. The main issue arises when
we let the degree of a polynomial vary. This introduces a difficulty that the division
algorithm has trouble dealing with. We now give pointers to its solution in the form of
a conjecture that deals with the structure of the solution to the problem.

Conjecture 3. Let I(V) = 〈x2 + y2 − 1, xq − x, yq − y〉 ⊂ Fq[x, y] be a polynomial ideal
with respect to the lexicographic monomial ordering. The reduced Gröbner basis for I(V)
is considered in two separate versions.

1. If q ≡ 1 (mod 4), we have

G =
〈
x2 + y2 − 1,

(q−1)/4∑
n=0

any
(q+1)/2−2n,

(q−5)/4∑
n=0

bnxy
(q+1)/2−2n−2

〉
⊂ Fq[x, y],

where an, bn ∈ Fp, a0 = b0 = 1 and a(q−1)/4 = −1.

2. If q ≡ 3 (mod 4), we have

G =
〈
x2 + y2 − 1,

(q+1)/4∑
n=0

cn y
(q+3)/2−2n,

(q−3)/4∑
n=0

dnxy
(q+3)/2−2n−2

〉
⊂ Fq[x, y],

where cn, dn ∈ Fp, c0 = d0 = 1 and c(q+1)/4 = −1.

40

4.3. Reduced Gröbner Bases

Since many problems that can be solved using Gröbner bases are part of the com-
plexity class NP, and some are proven to be NP-complete or possibly EXPSPACE, we
can suspect the worst case complexity of computing Gröbner bases to be “exponential”.
It is still unclear what complexity is required for computing Gröbner bases, because
the underlying problem has a major impact on the computation of Gröbner bases, e.g.,
proposition 4 shows how easy it is to find all Gröbner bases for the ideals of the vari-
eties defined by the circle equation over finite fields of characteristic 2, while the above
conjecture is much more difficult to resolve. The decision problems of finding and veri-
fying Gröbner bases of polynomial ideals is heavily dependent on the polynomial ideal
in question and the polynomial ring in which the ideal resides.

Conjecture 3 proposes two types of computational problems in order to find a resolu-
tion. The first is to find the coefficients for the sums in one of the ideals. The second
problem is to decide whether or not it is a Gröbner basis. A resolution of this conjecture
in the form of expressions for the coefficients could very well be a major step towards
determining the complexity of computing Gröbner bases and maybe towards resolving
the unsolved problem P vs. NP. The last of these problems is so important that the
Clay Mathematics Institute has made it one of its millennium problems, which awards a
million US dollars for a formal proof that settles the problem. Of these seven millennium
prize problems only one has been solved (at the time of writing). This is the Poincaré
conjecture and it was solved by Perelman in a series of articles posted on arXiv.org, see
[28, 30, 29].

To put this discussion into perspective, it can be enlightening to consider an example.
It might be easier to find a series of coefficients such that the generators in conjecture 3
is a Gröbner basis, but it should be a Gröbner basis for the variety defined by the circle
equation over Fq of odd characteristic.

Example 19. Consider I = 〈x2 + y2 − 1, x25 − x, y25 − y〉 ⊂ F25[x, y]. Since q ≡ 1
(mod 4), we suspect that the reduced Gröbner basis will take the form

G =
〈
x2 + y2 − 1,

6∑
n=0

any
13−2n,

5∑
n=0

bnxy
13−2n−2

〉
.

By verification on a computer, choosing (for increasing n)

an = {1,−1, 1, 0,−1, 1,−1},
bn = {1, 0, 1, 1, 0, 1},

will yield a reduced Gröbner basis of I. There are 9765625 ways of choosing sequences
an and bn in this example. If the first coefficients of an and bn and the last coefficient of
an were not fixed, we would have over a billion possible ways of choosing the sequences.

In general, there are
p(q−1)/4−1p(q−5)/4 = p(2q−6)/4−1,

ways of choosing sequences an and bn. Similar observations can be made for sequences
cn and dn.

41

Chapter 4. Gröbner Bases and Their Applications

The just considered example shows that exhaustive search might be a bad idea and
we must hope for a solution which expresses the coefficients in terms of initially known
quantities such as q.

Working over the prime fields, we observe that there is a sequence of primes for which
exactly one of the coefficients an (or cn) is zero. The first primes of this sequence are
17, 41, 89, 97, 113, 137.

These observations serve as an interesting starting point for further study.

4.4. Computing Intersection Ideals

The computation of intersections of two or more ideals, can be achieved by using Gröbner
bases. The approach is very classical and by using so-called elimination theory in the
correct way, we can compute the desired intersections. This section will primarily focus
on a couple of key aspects which can be used to speed up the computation for ideals with
a large number of generating polynomials. In particularly we are interested in deriving
a parallel algorithm for computing these intersections. This will help make these types
of computations more accessible to engineering problems.

Definition 25. The intersection of two ideals I, J ∈ F[x1, . . . , xn] is the set of polyno-
mials in F[x1, . . . , xn] that belong to both I and J , i.e.

I ∩ J = {f | f ∈ I and f ∈ J}.

It is easy to see that 0 ∈ I ∩ J for any pair of polynomial ideals I and J . Since both
ideals I and J in Definition 25 are (abelian) groups under addition, we see that I ∩ J is
closed under addition. If a polynomial in F[x1, . . . , xn] is multiplied with an element of
I ∩ J , then the product belong to I ∩ J , because every element in I ∩ J belong to I and
J , both of which are ideals. We have

Proposition 5. For polynomial ideals I, J ∈ F[x1, . . . , xn], the intersection I ∩ J of I
and J is a polynomial ideal.

The basic approach for computing the intersection of ideals is to use so-called elim-
ination theory, see [9]. Given two polynomial ideals I, J ∈ F[x1, . . . , xn], consider the
ideal L = tI + (1− t)J ∈ F[x1, . . . , xn, t]. Then

I ∩ J = L ∩ F[x1, . . . , xn].

It is a very beautiful and well-known result that if G is a Gröbner basis for L, then
G ∩ F[x1, . . . , xn] is a Gröbner basis for I ∩ J , see [9].

Example 20. Consider two ideals I, J ⊂ F13(
√

8)[x, y], given by I = 〈xy + y, x2 − y〉
and J = 〈y2, x2 + y2〉. We now compute the intersection I ∩ J . Introduce a new ideal

L = tI + (1− t)J ∈ F13(
√

8)[x, y, t],

42

4.4. Computing Intersection Ideals

more explicitly,

L = 〈t(xy + y), t(x2 − y), y2 − ty2, x2 + y2 − x2t− y2t〉.

A Gröbner basis for L is given by {x2 − yt, xyt+ yt, y2 − yt, yt2 − yt}. Denote by G the
ideal generated by the Gröbner basis for L, just mentioned. Then

G ∩ F13(
√

8)[x, y] = 〈y3 − y2, xy2 + y2, x2 − y2〉.

This ideal is the intersection of I and J .

4.4.1. Parallelized Intersection of Ideals

Let k be a commutative ring with unit. A polynomial ideal is by definition an additive
group. The intersection I ∩ J of two polynomial ideals I, J ∈ k[x1, . . . , xn] is another
polynomial ideal, see Proposition 5, hence it is the group containing all elements which
are both in I and J . From this, it is clear that I ∩ J is associative under the addition of
ideals.

Now we assume that we have four ideals I1, I2, I3, I4 ⊂ Fq[x1, . . . , xn] and we want to
compute the intersection of these. Denote by Ii,j the intersection of the ideals Ii and Ij .
In this case it holds that

I1,2 ∩ I3,4 = I1,3 ∩ I2,4 = I1,4 ∩ I2,3.

More generally it is clear that for any number of ideals in F[x1, . . . , xn] we get that
the ordering of intersection is insignificant with respect to the final result. There will,
however, be a small delay in performance if one seeks to fully parallelize this task, since
results needs to be joined at a certain point. As we shall see later, a number of obstacles
needs to be passed in order to get better results from a parallel computation of the
intersection of a sequence of polynomial ideals. The main obstacle that we shall find a
way around is to determine a proper partial ordering of the intersections. This is done
by introducing a natural sorting algorithm.

In practice, parallelizing the intersection of polynomial ideals is a very difficult task.
While most libraries can handle accumulative intersections of ideals, many of the freely
available libraries are not thread safe, which is needed for computing ideals in parallel.

Another issue may arise, since we do not know if computing I1,4 ∩ I2,3 will take the
same amount of time as computing I1,2 ∩ I3,4 or I1,3 ∩ I2,4. These issues are most easily
settled by implementing a parallel algorithm and then simulate the situation.

The quite simple definition of the intersection of two ideals, paves the way for the
natural parallelization that can be done with respect to computing these intersections.
While it is very easy to theoretically observe that this parallelization can be done, it is not
always so easy to actually implement it on a computer. Many computer algebra systems
exist, that can calculate intersections of polynomial ideals. Most of these are suitable
for toying around with, but they all seem to lack one very important feature; scaling
computations to a massive amount. While some deliver C++ or Python interfaces, they
tend to be optimized for computing a small amount of possibly complicated operations.

43

Chapter 4. Gröbner Bases and Their Applications

We need a system for feeding a very large amount of information to one of these algebra
systems. The quickest but not necessarily the best way to do this, was to develop a
C++ application that can generate Sage1 scripts on demand. It is possible that there
are more enterprise ready ways of doing this if one uses commercial software. Otherwise
one will have to develop all the frameworks from scratch. We focus on special square-free
monomial ideals called cover ideals.

Definition 26. The cover ideal J ⊂ F[x1, . . . , xn] of a graph G with vertex set V =
{v1, . . . , vn} and edge set E = {e1, . . . , et}, is given by

JG =
⋂
e∈E
〈x | x ∈ e〉.

We develop an algorithm which is not necessarily fully optimized but yields very
promising results. All calculations are done in Sage, however we generate the Sage/Python
scripts in order to make calculations in polynomial rings with a very large number of
variables. The scripts are generated from basic C++ code which can be found in the
appendix, along with descriptions for building the software.

The algorithm that the author has developed is very concise. It works for any number
of ideals and not only monomial ideals, though performance is only measured on square-
free monomial ideals due to their relationship with (hyper)graph theory.

It is assumed that the variable ideals is a list of ideals in the data type of ideal in Sage.
We start by introducing a small function which we map our subdivided ideals onto.

def idealIntersection (A):
return A[0]. intersection (A[1])

Naturally we need a way to map ideals from a list of small ideals into a set of partitioned
ideals. Here we group them two-and-two.

def mapIdeals (ideals):
ideals_par = []
for t in range (0, len(ideals) -1):

if (len(ideals) >=2):
I = ideals .pop ()
J = ideals .pop ()
ideals_par . append ([I,J])

return ideals_par

The last thing we need is to consider the overall algorithm, which will continually map
ideals and reduce via intersection until there is only a single ideal left.

if __name__ == ’__main__ ’:
while (len(ideals)!=1):

p = mp.Pool ()
results = []
ideals_par = mapIdeals (ideals)
p. map_async (idealIntersection , ideals_par , \\

callback = results . append)

1http://www.sagemath.org

44

http://www.sagemath.org

4.4. Computing Intersection Ideals

p.close ()
p.join ()
for I in results [0]:

ideals . append (I)

coverIdeal = ideals [0]
print coverIdeal

The following results will illustrate the performance of the algorithm. This is done
using a quad core Intel Xeon E3 1225, with 24GB memory running Fedora Linux 23,
with kernel version 4.4.4-301. The compiler used is GCC 5.3.1. The SageMath version
used here is 7.0, and Sage was used to compute the intersection of ideals. Sage uses
Python version 2.7.10. As the figures will show, the algorithm more than compensates
for the overhead of passing calculations to Sage. This overhead was minimized by doing
parallelization in the Sage built-in Python, rather than doing this in C++.

50 100 150 200 250 300 350 400
Number of vertices of a complete graph

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m
e
 [
s]

Single threaded algorithm
Parallel algorithm

Figure 4.1.: Comparison of algorithms for computation of cover ideals

Figure 4.1 clearly shows the advantages of using a parallel algorithm for computing
the intersection of ideals. In terms of speed we get the speedup that we could hope for.
How well this parallel algorithm scales on CPU’s with alot more cores is unknown at
this point. However we can say something meaningful about the memory usage of the
current implementations.

Based on the plot in figure 4.2, we see how the parallel implementation scales with
the number of threads. In our test setup, we used a quad core Xeon processor and we

45

Chapter 4. Gröbner Bases and Their Applications

50 100 150 200 250 300 350 400
Number of vertices of a complete graph

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

M
e
m

o
ry

 [
ki

lo
 b

y
te

s]

Single threaded algorithm
Parallel algorithm

Figure 4.2.: Comparison of memory usage for computation of cover ideals

see that memory usage is roughly 4 times that of the single threaded algorithm. We do
see an accumulated memory build-up, meaning that the parallel algorithm uses memory
at a slightly faster rate than the single threaded algorithm. Fortunately this problem is
minor in our setting.

The real issue arise when we consider random graphs or more specifically, when the
random graphs do not provide a structure that makes individual intersection calcula-
tions equal. This means that the parallel algorithm would eventually have a worse
running time than the single threaded version. We will discuss the reasons for this in
the following.

First of all, we must consider if the intersection of a large polynomial ideal with a small
polynomial ideal is easier to calculate than that of two medium sized ideals. Secondly
it would be interesting to know if the order of the intersection of ideals is of significant
importance.

Our initial results are that the order by which the intersections are calculated have
a huge impact on the calculation time, no matter which of the algorithms are used, i.e.
parallel or single threaded. This was observed because the parallel algorithm performed
poorly on random graphs, prompting the author to investigate the reason for this. As a
baseline we do 100 calculations each of which is exactly the same. The variation observed
is introduced by the operating system of the machine. Figure 4.3 will show the results.

Figure 4.4 shows the same calculation on the same random graph, except the order of
the intersection is shuffled at each iteration.

There two things that are important of observe from figures 4.3 and 4.4. The first is

46

4.4. Computing Intersection Ideals

Figure 4.3.: Random graph with intersection order not shuffled, i.e. ordered

that the ordering used in the calculations for Figure 4.3 is much faster than those used in
almost all shuffles in the calculations for Figure 4.4. The second important observation
is that the variance of the times in Figure 4.4 is very high and comparing with Figure 4.3
it is clear that this variance is a consequence of the order of intersection. So a natural
question is: What is the order of intersection in the baseline example?

To answer this question we introduce an algorithm, which orders a sequence of ideals
in such a way that taking successive intersection is fast. Sorting will take place at two
different levels. First, generators of each ideal will be sorted according to the monomial
ordering. Secondly, each ideal is sorted according to the first generator, then the second
generator etc. again using the monomial ordering as comparator. The following code
illustrates a concise implementation of this algorithm and it is optimized for computing
cover ideals of random graphs. The lambda function expresses that we sort with respect
to first generator and then with respect to the second generator. The lexicographic
monomial ordering is a natural part of most modern programming languages and it is
utilized in this case. The sorting algorithm utilized in Python’s sorted function is called
Timsort, which is a hybrid of the Merge sort and Insertion sort algorithms, and it has
a worst-case running time of O(n logn). Indeed it may be advantageous to sort a list of
ideals in parallel, but as we have established, both the single threaded algorithm and the
parallel version suffers under random ordering of intersections. Since both algorithms
require this sorting to take place, we omit a discussion of parallelizing sorting algorithms.
If, one were to compare this parallel algorithm with other well-known algorithms for

47

Chapter 4. Gröbner Bases and Their Applications

Figure 4.4.: The same random graph with intersection order shuffled

computing vertex covering of (hyper)graphs, then a parallel sorting algorithm should be
considered; a parallel version of Merge sort is known to exist.

for i,I in enumerate (ideals):
I = ideal(sorted (I.gens (), reverse =True))
ideals [i] = I

ideals = sorted (ideals ,key= lambda I: (str(I.gens ()[0]). lower () ,\\
str(I.gens ()[1]). lower ()))

Remark. It was a fortunate event that turned the author’s attention to the connection
between the order of intersection and the overall computation time. First of all the
above ordering is natural when generating Python scripts, where for loops often lead to
generating the ideals in an sequence, adhering to the lexicographic ordering of monomials.
Random graphs were generated by randomly removing edges of a complete graph. This
approach often yields graphs with resulting monomial ideals in a random ordering.

As a beneficial consequence of this sorting algorithm, doing intersections in parallel
provides advantageous results. It is now investigated if there are improvements to be
made if we divide the sequence of ideals into a finite number, e.g., the number of hardware
threads, and then compute each collection separately on each thread. Of course the
remaining number of ideals from each hardware thread shall be intersected in the end.

The parallel algorithm is updated in the following sense. Instead of mapping the list
of sorted ideals two-and-two and passing them to a new thread, we divide the list into a

48

4.4. Computing Intersection Ideals

number of smaller lists, namely the number of cores on the CPU, which in our case is 4
sets.

def mappingIdeals (ideals):
idealer = []
N = len(ideals)
for w in range (0 ,4):

idealer_tmp = []
for t in range (0,(N)/4):

if (len(ideals) >0):
idealer_tmp . append (ideals .pop ())

if (idealer_tmp != None):
idealer . append (idealer_tmp)

return idealer

Before we can distribute the mapped lists to each of the cores on the CPU, we need to
update the function for computing the actual intersection of ideals, such that it can take
a list of many ideals.

def idealsIntersection (A):
cover = A.pop ()
for a in A:

cover = cover. intersection (a)
return cover

We then pass each of these 4 sets to a separate core and collect the 4 resulting ideals
which we then compute in a linear fashion.

if __name__ == ’__main__ ’:
p = mp.Pool ()
results = []
ideals_pairs = mappingIdeals (ideals)
p. map_async (idealsIntersection , ideals_pairs , callback = results . append)
p.close ()
p.join ()
coverideal = results [0]. pop ()
for I in results [0]:

coverideal = coverideal . intersection (I)
print coverideal

Contrary to the original hypothesis, this turned out to be worse, when working with
random graphs. This can be seen by considering Figure 4.5.

49

Chapter 4. Gröbner Bases and Their Applications

20 40 60 80 100 120 140 160 180
Number of vertices of a random graph

0

10

20

30

40

50

60

Ti
m
e
 [
s]

Parallel V1
Parallel V2

Figure 4.5.: Comparison of parallel algorithms for random graphs

Partitioning the sequence of ideals into a fixed number of subsequences and processing
each subsequence separately on a hardware thread seems to be less efficient than com-
puting intersections more refined as the initial version of the parallel algorithm suggests.

All three algorithms, i.e. the single threaded version and the two parallel versions are
compared in Figure 4.6.

We end the section by noting, that it seems to be faster to continually map two ideals
to a thread for computing intersections than to bulk partition the sequence of ideals into
a fixed number of threads. This viewpoint is supported by Figure 4.5. Although we
expected a performance increase, when doing intersections in parallel, it was surprising
that the ordering was so important, see Figures 4.4, 4.3. Another surprising outcome,
was the performance increase gained by doing computations in parallel, see Figure 4.6.
In conclusion, the results obtained by doing intersections in parallel have exceeded the
authors expectations.

50

4.4. Computing Intersection Ideals

20 40 60 80 100 120 140 160 180
Number of vertices of a random graph

0

1000

2000

3000

4000

5000

6000

7000

Ti
m
e
 [
s]

Single
Parallel
Parallel V2

Figure 4.6.: Comparison of all algorithms for random graphs

51

Chapter 4. Gröbner Bases and Their Applications

4.5. Future Research: Applications to Packing Problems

An interesting area of research which was not considered here, is the so-called packing
problems and more specifically the bin packing problem. The basic setting is to consider
a finite space consisting of so-called bins all which are all equal in size. We want to put
a set of objects into these bins such that the least number of bins are utilized. This can
be demonstrated via a way to model these problems using polynomial ideals and then
illustrate the relationship between solutions and normal forms.

The bins are defined as an interval B = [0; r] ⊂ R. Suppose we have a finite collection
of objects C = {x ∈ R |x ≤ r}. We seek the minimum number of bins needed to contain
every element in our collection C. Consider the following naive algorithm for modelling
the problem as a polynomial ideal.

Input: B and C
Output: Polynomial ideal model of packing problem
P := The power set of elements in C.
I := ideal generated by 0 in F[x1, . . . , xn, w].
foreach p in P do

Denote by pi ∈ C the i’th element in p.
if
∑
pi ≤ r then

I := 〈(
∏
pi)− w〉+ I.

end
end
return I

Algorithm 3: Bin model algorithm

Now imagine that we are interested in determining the minimal number of bins which
can contain all objects in C. Consider the polynomial ideal I generated by the algorithm
above. Use the graded lexicographic ordering <grlex. Then the normal form of any
feasible solution will have multidegree that is minimal among all equivalent reductions.
Further such a normal form is unique, see [9].

4.5.1. Example of Bin Packing

In 2004, Joseph Malkevitch wrote a series of articles for the American Mathematical So-
cieties feature column. In this series, Malkevitch describes the problem of 1-dimensional
bin packing. The example used in one of these articles was as follows: Given bins of size
10. How few are needed to store weights {3, 6, 2, 1, 5, 7, 2, 4, 1, 9}?

Let w correspond to a bin and p = {3, 6, 2, 1, 5, 7, 2, 4, 1, 9}. Let us denote by a the
smallest object in the sequence p and by h the largest number in p.

The power set contains 1024 sets and upon removal of trivial duplicates only 976
remains. Only 95 (including the empty set) sets remain once the restriction of the bin
capacity is taken into account. We can however make do with far less. In fact it is

52

4.5. Future Research: Applications to Packing Problems

sufficient to consider the following polynomial ideal.

I = 〈a10 − w, b5 − w, ac3 − w, bd2 − w, e2 − w, df − w, cg − w, ah− w, ab2 − e〉.

Now calculate the normal form of the polynomial F = a2b2cdefgh, which yields w4

showing that no less than 4 bins are needed to pack all objects/weights. This compu-
tation is easily done on a computer, however not so by hand. The Gröbner basis of I
consists of 54 generating polynomials, showing that doing these calculations by hand is
not a trivial task.

53

Chapter 5

Applied Homology Theory

The most elementary notion which shall underline most analysis in this chapter is that of
connectedness. A homology theory is a sequence of functors Hn which measures (among
other things) the shape, such as connectedness, of the underlying objects. There exists
many homology theories and in this text, we follow the homology functors from the
category of simplicial pairs to the category of abelian groups. More specifically we define
simplicial homology to be the relative homology of simplicial complexes. We follow [31]
very closely and draw upon formulations made in [18].

We begin by introducing the categories that we will be working with. Of these cate-
gories, the most neglected but often most useful category is the category with a single
object and all possible morphisms between this object. This type of category will be
used to model engineering objects and relate their inherent topological strengths and
weakness in the form of a ranking which we will introduce later in this chapter. The
results were first published in [3] and later in a refined version in [4].

5.1. The Category of Simplicial Pairs

Simplicial complexes are very important in computational topology and they are one of
the core objects used in computational homology theories. We opt for a combinatorial
definition, which is slightly more general than geometric simplicial complexes. The
combinatorial version is called abstract simplicial complexes. We give

Definition 27. Let D be a discrete set. An abstract simplicial complex with 0-simplices
from D is a collection X of finite subsets of D, such that for each σ ∈ X all subsets of
σ are also in X. A subset σ ∈ X with k + 1 elements is called a k-simplex.

A subcomplex of an abstract simplicial complex X is an abstract simplicial complex A
such that every simplex in A is a simplex in X. A pair of abstract simplicial complexes
is understood as a pair (X,A) where X is an abstract simplicial complex and A is a
subcomplex of X. A pair of abstract simplicial complexes will be termed an abstract
simplicial pair. Abstract simplicial pairs form a category with the abstract simplicial
pairs as objects and all set maps between such pairs as morphisms.

55

Chapter 5. Applied Homology Theory

5.2. The Category of Chain Complexes

Most homology theories factor through the category of chain complexes. This is in fact
what we intend to do. Therefore we define this important category.

Definition 28. A chain complex is a sequence of abelian groups, indexed by the integers,
connected by homomorphisms such that the composition of two such morphisms is zero.

A chain complex, when seen as an object, can be transformed into another (or the same)
chain complex. A map transforming one chain complex into another (or the same) chain
complex is called a chain map. More precisely we have

Definition 29. A chain map is a homomorphism between chain complexes such that
the boundary operators commute, i.e. a chain map is a collection of homomorphisms
{τ : Cq → C ′q} such that each square

Cq Cq−1

C ′q C ′q−1.

∂q

τ τ

∂′q

commutes.

Like simplicial pairs, chain complexes form a category with chain complexes as objects
and chain maps as morphisms.

For instance, consider the following sequences of commutative groups

0 −→ F28 −→ F24 −→ 0,

and
0 −→ Z× Z −→ Z −→ Z× Z× Z −→ Z× Z −→ 0.

Whether these sequences constitutes chain complexes, depends on the morphisms. How-
ever as long as the composition of two (consecutive) morphisms is zero, they belong to
the category of chain complexes.

Consider a chain complex of abelian groups Ak,

. . . −−→ Ak+1
∂k+1−−−→ Ak

∂k−→ Ak−1 −−→ . . .

Definition 30. The k’th homology group is given by

Hk(Ak) = ker ∂k/im ∂k+1.

The operator ∂k : Ak → Ak−1 is called the boundary operator. By definition ∂∂ = 0, and
so whatever boundary operator one desires to use, one must ensure that this assumption
is true. Since the boundary of a boundary is zero, it is clear that im ∂k+1 ⊂ ker ∂k for
all k ∈ Z.

56

5.3. Relative Homology

5.3. Relative Homology

We note that relative homology of chain complexes can be defined whenever the chain
groups are objects in a suitably chosen category. These categories were introduced in
its correct form by Grothendieck [16] and are called abelian categories, see [21] for an
explanation. It is sufficient for our purposes here, to note that the category of vector
spaces over a fixed field is an abelian category.

Relative homology in the category of simplicial pairs will be explained. Since a sim-
plicial pair consists of a simplicial complex and a subcomplex, the chain groups needs
to take this relationship into account. The most natural way of doing this is nicely
illustrated in [31], by introducing the notion of relative chain groups. Define the relative
chain group of a pair (X,A) as

Cq(X,A) := Cq(X)/Cq(A).

The chain group Cq(A) must be a normal subgroup of Cq(X) for this quotient to make
sense. When using homology with coefficients in an abelian group, then all subgroups
are in fact normal and thus we can take quotients.

Relative homology with coefficients in the field F in the category of simplicial pairs is
defined by the homology Hq(X,A;F) of the chain complex

Cq(X)/Cq(A) ∂q−→ Cq−1(X)/Cq−1(A),

where q is a natural number (including zero) called the index in the chain complex. By
definition ∂0 := 0.

Definition 31. The k’th relative homology of a simplicial pair (X,A) is given by

Hk(X,A;F) = ker ∂k/im ∂k+1.

Whenever A = ∅, the pair (X,A) is said to be absolute and the homology theory
will coincide with the absolute homology theories used in applied topology; note the
relationship with Definition 30. When using homology with field coefficients, the chain
group Ck(X) is defined as the vector space spanned by the k-simplices of X over the
field F.

The dual version of homology, called cohomology, is defined by dualizing the chain
complex, i.e.

Cq(X)/Cq(A)
∂∗q =δq−1

←−−−−− Cq−1(X)/Cq−1(A),
where q is the index as before.

Definition 32. The k’th relative cohomology is defined as

Hk(X,A;F) = ker δk/im δk−1.

Note that δδ = 0 holds since ∂∂ = 0. Recall that homology in the category of chain
complexes (this includes cochain complexes) requires ∂∂ = 0. In the category of abstract
simplicial pairs can be achieved by using

57

Chapter 5. Applied Homology Theory

Definition 33. The boundary operator ∂q : Cq → Cq−1 is defined by

∂kσ =
k∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vk], (5.1)

where v̂i indicates the removal of the i’th vertex and σ|[v0, . . . , v̂i, . . . , vk] is the restriction
of σ to the corresponding face of the simplex.

See [17, pp. 105-106] for a proof that ∂∂ = 0.
Homology and cohomology are composite functors from the category of simplicial

pairs, factoring through the category of chain complexes, to the category of vector spaces;
more generally to the category of abelian groups. It should be remarked that the mod-
elling of a network via abstract simplicial complexes is itself a functor. This functor
depends on the object we are modelling.

For example in the case of modeling a communication network, a category is defined
as the category with one communication network as object and the identity map as
morphism. The functor from this category to the category of simplicial pairs defines
how to represent the communication network as an abstract simplicial complex. We
could have modelled anything with an interesting topology, e.g., power grid topology
etc.

In a 1-dimensional abstract simplicial complex, removing a 0-simplex corresponds to
removing a row i in the matrix for ∂1, and every column which has a non-zero element in
row i. For an abstract simplicial complex X, any subset of 0-simplices is a subcomplex
A ⊂ X. The following version of Lefschetz duality theorem can be found in [31, p. 297]
or [18, p. 178].

Theorem 19 (Lefschetz Duality). Given an n-dimensional abstract simplicial complex
X with a subcomplex A, the following holds

1. Hk(X,A) ∼= Hn−k(X −A).

2. Hn−k(X −A) ∼= Hk(X,A).

As can be seen in Theorem 19, there is a correspondence between homology and
cohomology of simplicial pairs, which relates the k’th homology of a simplicial pair (X,A)
with the (n − k)’th cohomology of the difference set X − A. Likewise the (n − k)’th
homology of a difference set X −A is related to the k’th homology of a pair (X,A).

5.4. Modelling Networks with Simplicial Pairs

Networks and in particularly communication networks, can be modelled as either being
static or dynamic networks. The static networks can most often be modelled via graphs.
Obvious examples of static networks would be a transmission grid in power systems or
a computer network. These networks are not supposed to change topology in a short
time frame under normal operation. Sometimes, however, we need more structure than

58

5.5. Topological Ranking

a graph can provide and this is where simplicial models are helpful. These models can
take an arbitrary but finite dimensionality into account. Unfortunately, simplicial com-
plexes lack one basic flexibility, which is to model more than a single relation between
entities in networks, which is not inherited throughout the simplicial structure. Towards
solving this issue, we recall that a hypergraph consists of a set of points, called vertices
and a collection of sets of points called hyperedges. The category of hypergraphs have
a well-known homology theory called Čech homology. It is not as well-behaved as sim-
plicial homology, but luckily there is a nice relation between such a Čech homology and
simplicial homology. For a comprehensive introduction to Čech homology, see [12].

Translating a hypergraph to a simplicial complex will be done by considering the so-
called nerve of the hypergraph. Note that this in itself can be done because we consider
a hypergraph as a special case of a covering.

Definition 34. Let S = (Si)i∈I be a family of sets where I is an arbitary index set.
Then the nerve of S = (Si)i∈I is the simplicial complex N (S) whose simplices are finite
collections of non-empty sets from S with non-empty intersections. Thus the vertices of
N (S) are the non-empty sets from S = (Si)i∈I .

There is one vertex in N (S) for each set in S. The edges in N (S) corresponds
to pairs (Si, Sj) in S such that Si ∩ Sj 6= ∅. Finally the face in N (S) correspond
to the triple (Si, Sj , Sk) in S such that Si ∩ Sj ∩ Sk 6= ∅. When modelling higher
dimensional phenomena where there is an underlying topological space X and the family
S = (Si)i∈I is a family of subsets of X, then it is often easier to consider relations by finite
intersections of the subsets rather than directly modelling with simplicial complexes (or
even pairs). The corresponding homology theories, however, requires more machinery,
which often can be avoided, by applying a relatively simple but powerful lemma, called
the Nerve lemma, see e.g., [17] for a proof.

Lemma 2 (Nerve lemma). Let N (S) be the nerve of some family of subsets S = (Si)i∈I
in a topological space X where all non-empty intersections of subsets from S are con-
tractible. Then N (S) is homotopy equivalent to X.

5.5. Topological Ranking

Very often, ranking systems are used to organize and structure systems such that new
information can be inferred from already known information. Ranking systems appear in
many places and in many variants, see for instance the PageRank algorithm [15]. Unlike
many well-known ranking systems, we show that there exists a ranking of objects, which
is induced by the shape of the object. This ranking is what we call topological ranking.

The main idea is that elements (or sets of elements) which break connectedness, when
removed, shall be given a higher ranking. For simplicity, consider a graph X as a one
dimensional abstract simplicial complex. The k-simplices of X have varying degrees of
importance, in the sense that a given k-simplex α may not have a high rank itself, but
combined with other k-simplices, it may achieve a high ranking.

59

Chapter 5. Applied Homology Theory

A set of k-simplices A ⊂ Xk is said to be barrier significant if rank H0(X) <
rank H0(X − A). Computation of H1(X,A) is straight forward by the associated rel-
ative chain complex described in previous sections. Since for a d-dimensional abstract
simplicial complex it holds that H0(X −A) ∼= Hd(X,A) by Lefschetz duality, the choice
of computing H0(X−A) or Hd(X,A) is a matter of convenience. Note that the inclusion
map

i : (X −A) ↪→ X

induces an injective map on homology

i∗ : H0(X −A)→ H0(X),

if and only if X −A and X have the same number of path components, see e.g. [31] or
[17]. With this in mind we make a definition.

The subcomplex A of the abstract simplicial complex X is called a barrier if the
induced inclusion map i∗ : H0(X −A)→ H0(X) is not injective.

Let X be a 1-dimensional abstract simplicial complex and let A be a 0-dimensional
subcomplex. By Lefschetz duality theorem we get that H0(X−A) ∼= H1(X,A). Consider
the diagram

H0(X −A) H0(X)

H1(X,A) H1(X).

i∗

∼= ∼=
j∗

The induced inclusion map i∗ reveals whether A constitutes a barrier or not. The dual
analog j∗ is induced by the inclusion map j : (X, ∅) ↪→ (X,A). Since we calculate
homology with field coefficients, the homology groups are actually vector spaces. Hence
the induced inclusion map i∗ is a linear map between vector spaces. From this it is clear
that A is a barrier if and only if the codimension of the kernel of i∗ in H0(X − A) is
nonzero. In linear algebra, the map i∗ may be more tricky than the map j∗, since in the
latter case removing rows and columns yield smaller matrices and hence in general faster
algorithms. Therefore it may be useful to consider the dual analog j∗ in cohomology
rather than the induced inclusion map i∗ in homology.

In cohomology context, A is a barrier if and only if the codimension of the kernel of
j∗ in H1(X) is nonzero.

Definition 35. A preorder of a set S is a relation in S which is reflexive and transitive,
i.e. a relation ∼ in a set S such that

1. a ∼ a, for all a ∈ S (reflexivity).

2. a ∼ b ∧ b ∼ c =⇒ a ∼ c, for a, b, c ∈ S (transitivity).

A preorder on S is total if for every a, b ∈ S it holds that a ∼ b or b ∼ a. It is now
possible to define what is meant by a ranking of a set.

60

5.6. Applications of Topological Ranking

Definition 36 (Ranking). A ranking of a set S is a total preorder ∼ on the set S.

Let X be a 1-dimensional abstract simplicial complex. A ranking of the 0-skeleton X0

of X, called a 0-ranking, is an assignment of numbers to the 0-simplices according to
their barrier significance together with the relation α ∼ β iff. aα ≤ bβ where aα, bβ are
the ranks associated to the 0-simplices α and β respectively. Precisely, to each 0-simplex
γ of X0, we associate the rank aγ given as the difference

aγ := dim H0(X − {γ})− dim H0(X). (5.2)

More generally if X is an n-dimensional abstract simplicial complex, then a ranking of
the simplices in the s-skeleton Xs of X can be defined, called an s-ranking.

If the cardinality of the finite set of simplices we remove is greater than one, say k > 1,
then the s-ranking is said to be of order k. In other words, an s-ranking of order k is a
ranking of the s-skeleton Xs where the rank associated with each k-tuple {γ0, . . . , γk−1}
of simplices in Xs, is given by the difference

dim H0(X − {γ0, . . . , γk−1})− dim H0(X).

We get

Proposition 6. Given an n-dimensional abstract simplicial complex X. Then there
exists a topological s-ranking of order k of X, for all k less than the number of simplices
in Xs.

The order of an s-ranking thus defines the number of s-simplices that are removed.
The ranking described here will be called topological ranking.

5.6. Applications of Topological Ranking

The ranking introduced in this chapter have so many applications, that we can only
hope to scratch the surface in this section. In Chapter 6 we consider some more real-life
applications. For this section, we consider an example of how to compute topological
rankings.

The gossiping problem in information theory is a problem which seeks to decide
whether a group of agents, each knowing a unique piece of information, can commu-
nicate the accumulated knowledge to everyone in the network, according to a given set
of rules. It is more often than not of interest to find the least number of communication
instances needed to solve the problem, e.g., the number of packets sent etc. In this
section we study in a concrete example the connection between the notion of gossiping
in information theory and the topological ranking as introduced in previous sections.

One of the main assumptions underlying the gossiping problem, and other communica-
tion problems, is that the communication graph is connected, i.e. all agents are modelled
as vertices in the same path-connected component. Topological rankings describes the
degree of which this path-connectedness holds, when considering breakage or outage in
the communication paths.

61

Chapter 5. Applied Homology Theory

Figure 5.1 is interpreted as a model for a gossiping problem of a network with nine
agents. The communication protocol is described via a family F of four sets S1, S2, S3, S4
together with the rule that agents can communicate if and only if they belong to the
same set. In this case, it is clear that agents in set S1 can communicate with each
other but none of them can communicate with agents in set S4. For this they need to
communicate via agents in S3 which in turn leads to an elevated connection problem
since removing set S3 will eliminate the possibility to communicate with agents in S4
altogether.

S1

S2

S3
S4

Figure 5.1.: F and the nine agents.

For each set in F we set make a vertex in a graph. An edge is drawn between two
such nodes if the intersection of the corresponding sets is non-empty. A 2-dimensional
simplex is drawn if the intersection of a triple of sets in F is non-empty. For instance
the sets S1, S2, S3 have a common point and thus S1 ∩ S2 ∩ S3 6= ∅.

A

B

C

D

Figure 5.2.: The nerve of F and the rank of all elements.

Following the terminology introduced here, whenever two agents belonging to the same
set in F stop being able to communicate, then the result is that one of them is excluded
from the set. When the possibility of communication between two agents from distinct
sets in F cease to exist it means that the finite intersection of the sets is empty.

62

5.6. Applications of Topological Ranking

For the nerve of the family F shown in Figure 5.2, the 0-simplex denoted by B is the
only 0-simplex with a non-trivial 0-ranking. The 1-simplex between B and C is the only
1-simplex with a non-trivial 1-ranking.

Let N (F) denote the simplicial complex in Figure 5.2. Then the chain complex for
N (S) with coefficient field Z2 is given by

0 Z2 (Z2)4 (Z2)4 0,∂3=0 ∂2 ∂1 ∂0=0

where ∂2 and ∂1 are non-trivial maps. Since homology in dimension zero only depends
on the 1-skeleton of N (F), the linear map ∂2 is not relevant with respect to the barrier
ranking.

The boundary operator ∂1 is a linear map between vector spaces over Z2. After row
operations the boundary operator ∂1 is equivalent to

∂1 =

1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0

 .
The homology group H0(N (F)) can then be calculated as

H0(N (F)) = ker ∂0/im ∂1 = (Z2)4/(Z2)3 ∼= Z2,

which reflects that the communication graph is connected.
There is only one non-trivial 0-ranking which occurs when we remove the vertex γ in

the nerve N (F). The rank αγ of γ is computed by considering the chain complex for the
nerve Nγ of the family F with the set S3 corresponding to γ removed. We get the chain
complex

0 Z2 (Z2)3 0,∂2=0 ∂1 ∂0=0

in which the boundary operator ∂1 is given by

∂1 =

 1
1
0

 .
From this we find

H0(Nγ) = Z2 ⊕ Z2,

giving the rank of γ

αγ = rank H0(Nγ)− rank H0(N (F)) = 1.

63

Chapter 5. Applied Homology Theory

5.7. Future Research: Stanley-Reisner Rings and Koszul Complexes

One of the consequences of the inherent topological ranking underlying all simplicial
structures in network theory, is that once we settle for a topology, then our networks
have fixed induced weaknesses. While these weaknesses can be minimized, it is unknown
(at least to the author) if there exists a way to determine these weaknesses in a reasonable
amount of time for it to be practical. It is very unlikely that faster algorithms can be
found without introducing minimal free resolutions and so-called Koszul complexes.

There exists a functor from the category of simplicial complexes to the category of
commutative rings, which we shall call the Stanley-Reisner construction. The main
idea is to transform a simplicial complex into a polynomial ideal (over a field) in such
a way that certain topological information is retained in the polynomial ring. The
construction is reversible in the sense that we can construct a simplicial complex from
certain polynomial ideals. The construction gives rise to a ring which is called the
Stanley-Reisner ring or the face ring.

Definition 37. Given a finite dimensional simplicial complex X with zero simplices
V = {x0, . . . , xt}. The Stanley-Reisner ring (or face ring) is defined to be the quotient
ring F[X] = F[x0, . . . , xt]/IX , where

IX = 〈xi1xi2 . . . xir | i1 < i2 < · · · < ir , {x0, . . . , xir} /∈ X〉.

Consider the simplicial complex X shown in Figure 5.3.

A

B

C

D

E

Figure 5.3.: Simplicial Complex

The Stanley-Reisner ring is the quotient R = F[A,B,C,D,E]/IX , where

IX = 〈AC,AD,CD〉
= 〈A,C〉 ∩ 〈A,D〉 ∩ 〈C,D〉.

The main advantage that the author hopes for is that instead of finding the collections
of simplices which constitute a barrier, it would be very useful to find a construction,
which gives some indication as to where to look for barriers.

64

5.7. Future Research: Stanley-Reisner Rings and Koszul Complexes

5.7.1. Alternative Boundary Formula

One of the main building blocks for designing a homology theory via the category of chain
complexes, is the definition of boundary operators used in each object of the category of
chain complexes. We used a well-known boundary operator for the simplicial homology,
but if we consider more complicated structures such as free resolutions, we need to
redefine this operator. There is not a well-known unique way of doing this. We show
one way of defining a boundary operator for polynomial rings.

We define a derivation D : F2[x1, . . . , xn]→ F2[x1, . . . , xn] that is suitable as a bound-
ary operator in homology theory. Since we are in the case of polynomials with binary
coefficients, we define D to be the the sum of partial differentials, known from calculus,
i.e.,

Df =
n∑
i=1

∂ f

∂xi
, f ∈ F2[x1, . . . , xn].

Lemma 3. Let D : F2[x1, . . . , xn] → F2[x1, . . . , xn] be defined as above. The boundary
of a boundary is zero in F2[x1, . . . , xn], i.e. D2 = 0.

Proof. It is clear that D2(xti) = 0 for xti ∈ F2[x1, . . . , xn], t ∈ N. Furthermore, D is a
linear map. For consider

D(f + g) =
n∑
i=1

∂

∂xi
(f + g) =

n∑
i=1

(
∂

∂xi
f + ∂

∂xi
g

)
=

n∑
i=1

∂

∂xi
f +

n∑
i=1

∂

∂xi
g.

Therefore it will suffice to consider monomials in F2[x1, . . . , xn]. Consider

D2(xt11 · · ·xtnn) = D
n∑
i=1

∂

∂xi
(xt11 · · ·xtnn)

=
n∑
j=1

n∑
i=1

∂2

∂xj∂xi
(xt11 · · ·xtnn).

Since we can consider the polynomial f ∈ F2[x1, ..., xn] as a differentiable function of
class C2 in Rn, it is well known that

∂2f

∂xj∂xi
= ∂2f

∂xi∂xj
.

Thus all monomials in D2(xt11 · · ·xtnn) are either zero or present in the sum, twice. There-
fore D2 = 0.

In order to make this boundary operator useful for homology, we would need to choose
the chain complexes appropriately.

65

Chapter 6

Optimization of Network Design

From the previous chapters it can be argued that homology theory and the theory of
Gröbner bases can be applied in a wide area of disciplines both within mathematics
and in the engineering sciences. While graph vertex covering can be approximated, say
by the greedy algorithm, it is sometimes required that we find the exact solutions and
maybe not just a solution but all solutions. For instance, the well-known problem of
assigning frequencies to GSM networks, the Global System for Mobile Communications,
involves using four frequency bands and assign these into each area, i.e. tower, such
that no two adjacent areas have the same frequency; thereby avoiding interference. In
this example it will not suffice to approximate a solution since it would be unacceptable
to have interference in any region. The interesting questions from an engineering point
of view, is not whether there exists an efficient solution, which is unlikely, but rather
how many regions can we solve this problem for. The performance is the key indicator
for applying a methodology to solve a problem. While from the purely theoretical
perspective, the economics may not always be important. In real-life applications, such
as building research facilities or operating power grids, the economics is a key factor.
Again, the exactness of a solution may help save cost by finding minimum installations
needed to achieve a certain goal.

Recent studies have considered the connection between the minimal phasor measure-
ment unit (PMU) placement and commutative algebra by stating bounds on the minimal
PMU covers via calculating the Krull dimension of quotient rings, see [7, 26]. These
methods are very useful, and would be a great place to start mixing methods developed
in this thesis with classical methods from both electrical engineering and graph theory.

This chapter will focus on applying the topological ranking algorithm developed in
Chapter 5 and the parallel algorithm for computing the intersection of square-free mono-
mial ideals, developed in Chapter 4. We use these methods to illustrate how interesting
questions can be posed for bus systems in power grids. All networks considered here can
be substituted with other networks in order to find different applications.

67

Chapter 6. Optimization of Network Design

6.1. Edge and Cover Ideals of Hypergraphs

We shall introduce the two definitions which makes our study of parallel intersection of
monomial ideals useful in the context of PMU placement. For hypergraphs (and thus
graphs) we can introduce square-free monomial ideals which contain much information
known from graph theory.

Definition 38. Given a hypergraph H, the path (edge) ideal is defined as

IH =
〈
xe =

∏
x∈e
| e ∈ E

〉
.

There is nothing difficult in constructing edge ideals, since the process of constructing
them is deterministic. This is in contrast to the cover ideals of hypergraphs, which we
shall define shortly.

v1

v2
v3

v5

v4

e1

e2 e3

Figure 6.1.: Hypergraph

Example 21. Consider the hypergraph in Figure 6.1 and denote it by H. Let the
variables x1, . . . , x5 correspond to the vertices. Fix the monomial order to be the lexi-
cographic ordering x1 > · · · > x5. Then define the edge ideal IH ⊂ F2[x1, . . . , x5] over
the polynomial ring with coefficients in F2 by

IH = 〈x1x2x3, x1x5, x3x4x5〉.

Our main interest here is the notion of a cover ideal, which contains information
about the vertex covers for hypergraphs (and thus graphs). We see that cover ideals are
computed using intersections, which we know an algorithm for computing in parallel.

Definition 39. The cover ideal J ⊂ F[x1, . . . , xn] of a hypergraph H with vertex set
V = {v1, . . . , vn} and edge set E = {e1, . . . , et}, is given by

JH =
⋂
e∈E
〈x | x ∈ e〉.

68

6.1. Edge and Cover Ideals of Hypergraphs

Example 22. Again, we model the hypergraph in Figure 6.1 as in Example 21. The
cover ideal is given by

JH = 〈x1, x2, x3〉 ∩ 〈x1, x5〉 ∩ 〈x3, x4, x5〉
= 〈x1, x3x5, x2x5〉 ∩ 〈x3, x4, x5〉
= 〈x3x5, x2x5, x1x5, x1x4, x1x3〉.

Notice that the generators of JH correspond exactly to the minimal vertex covers of the
hypergraph H. Each generator is a vertex cover.

Remark. The cover ideal will sometimes contain generators which are not “minimal”,
in the sense that the corresponding vertex cover is not a minimal vertex cover. However,
the cover ideal will always contain all minimal vertex covers.

The size of the minimal vertex cover of a graph can be stated in terms of the Krull
dimension.

Theorem 20 ([26]). Let G = (V,E) be a graph, with vertex set V = {v1, . . . , vn}. Then
the Krull dimension is given by

dim(Fq[x1, . . . , xn]/IG) = n− d,

where IG is the edge ideal of G, and d is the size of the smallest vertex cover for G.

It seems that this theorem can be generalized to include hypergraphs.

Conjecture 4. Let H be a hypergraph, with vertex set V = {v1, . . . , vn}. Then the Krull
dimension is given by

dim(Fq[x1, . . . , xn]/IH) = n− d,

where IH is the edge ideal of H, and d is the size of the smallest vertex cover for H.

In support of this conjecture we give

Example 23. Define the hypergraph H and corresponding edge and cover ideal, IH and
JH resp., to be the same as in Examples 21 and 22. Consider R = F2[x1, . . . , x5]/IH .

By considering JH it is easy to see that the size of the minimal vertex cover is 2 and
if Conjecture 4 is true, then the Krull dimension of R is

dim(F2[x1, . . . , x5]/IH) = 5− 2 = 3.

Verifying on a computer, e.g., using Macaulay2 yields the same result.

Remark. It has not been tested, how efficient the algorithms are, for computing quotient
rings and their Krull dimension using Macaulay2 (or any other software). Therefore it
is currently not known to the author, if this can be used for determining a bound for
the size of the minimal vertex cover.

69

Chapter 6. Optimization of Network Design

6.2. Phasor Measurement Unit Placement

A phasor measurement unit (PMU) is a device that can be placed at a bus to measure
voltage at the bus and the current of all transmission lines connected to that bus. Placing
these PMUs is known at the PMU placement problem. This problem has been studied
using many methods such as integer programming, graph theory, heuristic methods
and Gröbner bases. We apply Gröbner bases to find minimal vertex covers and use
topological ranking to choose minimal vertex covers such that grid normalization, after
outages, can be done in a way that makes the normalized grid observable.

A bus is said to be observable if the voltage at the bus is known. A PMU cover is a
placement of PMUs such that every bus in the electrical bus system is observed. This
notion is almost indistinguishable from that of a vertex cover in graph theory. A PMU
cover is said to be minimal if it is impossible to observe the power system with fewer
PMUs.

1

2
3

4

5

6

7

8

9

10

11
12

13

14

Three-winding
transformer equivalent

9

4

8

Figure 6.2.: IEEE 14 Bus System

With reference to Figure 6.2, the buses 1, 2, 3, 6, 8 are connected to generators. There
are 11 loads, which are located at buses 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14. The bus system
can be described, via a forgetful functor, as an object in the category of graphs (note
that morphisms must be treated separately for vertices and edges).

In order to observe the IEEE 14 bus system, one could among different choices, place
PMUs at the buses,

Bus 1, Bus 2, Bus 4, Bus 6, Bus 7, Bus 9, Bus 10, Bus 13.

The added PMUs in Figure 6.3 represent a minimal vertex cover in the graph model of
the bus system. The number of required PMUs is obviously lower than placing PMUs

70

6.2. Phasor Measurement Unit Placement

1

2 3

4

5

6

7

891011

12 13 14

Figure 6.3.: IEEE 14 bus system topology

at every bus. Some authors have found other methods which could complement this
approach to reduce the number of required PMUs even further.

By utilizing square-free monomial ideals to solve the PMU placement problem, we are
in the situation where, sometimes, a partition of graphs can be used to induce a covering
of each partition such that the addition of new connections, e.g., backup connections,
the resulting graph has a minimal vertex cover without adding new PMUs. This idea
can be applied when designing contingency plans for power grid operation failures or
planned maintenance shutdown procedures.

One interesting partition that can be applied on a bus system, is via the topological
ranking defined in Chapter 5. For instance if we consider the maximum topological
0-ranking of order 2 of the IEEE 14 bus system, we get the following critical sets,

{4, 6}, {6, 9}, {4, 5}, {5, 9}.

We quickly observe that buses 4, 5, 6, 9 are, from a purely topological perspective, among
the most critical. It is noted that most of these sets overlap with the cover chosen in
Figure 6.3. If needed we can choose a different vertex cover (and thus PMU placement)
in order to reduce this overlap. The advantage of not overlapping the PMU placement
and the “critical” nodes, we can get a network design which, in case of outages, is able to
retain more of its observable features when backup lines are taken into account. Figure
6.4 show the consequence of choosing the vertex cover in Figure 6.3. The problems that
may arise, are seen in the choice of backup connections. For instance we may want to
place a backup line between buses 5 and 11. With the current vertex cover, namely
at buses 1, 2, 4, 6, 7, 9, 10, 13, we see that the backup line between 5 and 11 will yield a
network were the observability is questionable, see Figure 6.4.

71

Chapter 6. Optimization of Network Design

1

2 3

5

7

891011

12 13 14

Figure 6.4.: IEEE 14 bus system topology with outage at 4 and 6

The vertex cover shown in Figure 6.5 illustrates a minimal cover, which given backup
lines between 5 and 11 and between 3 and 7 will be fully observable, see Figure 6.6.

1

2 3

4

5

6

7

891011

12 13 14

Figure 6.5.: IEEE 14 bus system topology with outage at 4 and 6

Choosing the vertex cover in Figure 6.5 instead of that in Figure 6.3, we see that the
0-ranking of order 2, does not interfere in the same way. In particular, it can be observed
that the number of operational PMUs can be maximized if we choose a proper minimal
vertex cover. If for instance we have failures at buses 4 and 5. Then the bus system is
separated and we are left with two disjoint graphs.

While we can see that no matter how we remove a set of vertices (or edges) in a graph,
a vertex cover of the original graph will still be covering the graph after removal, possibly
by yielding a covering for each path-connected component.

72

6.2. Phasor Measurement Unit Placement

1

2 3

5

7

891011

12 13 14

Figure 6.6.: IEEE 14 bus system topology with outage at buses 4 and 6

6.2.1. Mandatory Placement

It is often the case, when working with the development of network systems that some
structure is already known or required. In the case of electrical bus systems and more
specifically for PMU placement, we might already know that a given set of buses should
hold PMUs or they may already have PMUs installed.

In such a situtation, we are not interested in all the coverings which do not adhere to
this reality. Working with monomial ideals as models for vertex covering, we are able
to model this very efficiently. Given a cover ideal J , e.g., for the IEEE 14 bus system,
we can choose only the coverings correpsonding to those which place some of the PMUs
at very specific locations. For the IEEE 14 bus system, we can for instance require that
bus 6 gets a PMU by considering J ∩ 〈x6〉 ∈ F[x1, . . . , x14], where J is the cover ideal of
the bus system and the index of xi corresponds to the bus number in the 14 bus system.
The result is a set of vertex coverings which contain x6, equivalently places a PMU at
bus 6.

If we have a set of buses that either have a PMU installed already or there are plans
for installing a PMU, it is possible to restrict or intersect even further. If the set S =
{xi1 , . . . , xit} is a set of mandatory placements, then we need to consider successive
intersections of principal ideals 〈xis〉 with the original cover ideal. We get the following
cover ideal with mandatory placements

J ∩ 〈xi1〉 ∩ · · · ∩ 〈xit〉.

Since intersections of ideals is associative, it is possible to define these very strict rules
in the beginning of the calculation of the cover ideal. It is unknown if this will yield
improvements of the computations; the author suspects that improvements can be made
by computing intersections with principal ideals as part of the initial calculations. It is
however speculation at this point.

73

Chapter 6. Optimization of Network Design

Figure 6.7 show the IEEE 14 bus system where the vertex covering has mandatory
placement at vertices 1, 3, 12 and 14. The minimal number of PMUs is no longer 8 but
9 PMUs are required to satisfy this constraint.

1

2 3

4

5

6

7

891011

12 13 14

Figure 6.7.: IEEE 14 bus system topology with mandatory placement

6.2.2. Mutual Exclusion Zones

Imagine that we define an area of a network, e.g., a set of nodes, which only a single
PMU is required among each set of nodes. This can be modelled using a hypergraph and
thus hyperedges encode information about exclusivity rules. For instance in the IEEE
14 bus system, we might make an additional requirement that only one of the buses
3, 11, 12, 14 needs to have a PMU installed. This will make the analysis more flexible in
the sense that more sophisticated rules can be made. Such a set of buses will be called
a matual exclusion zone.

These rules will be presented by constructing a hyperedge containing the set of buses,
i.e. a mutual exclusion zone is a hyperedge. In the IEEE 14 bus system, assume that
{3, 11, 12, 14} is a mutual exclusion zone. The hyperedge representing this mutual ex-
clusion zone is then mapped to a monomial ideal in the following way: For each bus in
the mutual exclusion zone, equivalently for each vertex in the hyperedge corresponding
to the mutual exclusion zone, define a principal monomial ideal containing the variable
representing the particular bus. We then add the principal monomial ideals and the
resulting monomial ideal is added to the sequence of ideals used to calculate the cover
ideal. If J ⊂ F[x1, . . . , xn] is the cover ideal of the IEEE 14 bus system topology. Then
taking the mutual exclusion zone {3, 11, 12, 14} into account yields

J ∩ 〈x3, x11, x12, x14〉.

One of the minimal vertex covers taking the mentioned mutual exclusion zone into
account is x2x4x5x6x8x9x11x13. Note that bus 11 is the only bus from the mutual
exclusion zone.

74

6.2. Phasor Measurement Unit Placement

1

2 3

4

5

6

7

891011

12 13 14

Figure 6.8.: IEEE 14 bus system topology with mutual exclusion zone

Figure 6.8 shows a minimal covering for the IEEE 14 bus system with a mutual
exclusion zone defined to be {3, 11, 12, 14}. Mutual exclusion zones guarantees that at
least on bus in the zone will get a PMU. Furthermore the calculation of the cover ideal
will seek to minimize the number of PMUs to be placed in the mutual exclusion zone.

75

Chapter 6. Optimization of Network Design

6.2.3. IEEE 30 Bus System

For larger bus systems, it will inevitably become less obvious where to place PMUs in
order to achieve a minimal coverage. The methods developed in this thesis, will be used
to calculate all minimal vertex coverings for the IEEE 30 bus system and list some of
them in a table. There are 368 distinct minimal vertex coverings for the IEEE 30 bus
system and it is required to use at least 16 PMUs to cover the system topologically.

1

2

3 4

5

6

7

8

9

10

1112
13

14

15

16

17

18 19
20

21 22

23
24

25

26

27 28

30

29Bus
Load

Generator

Figure 6.9.: IEEE 30 Bus System

We highlight some possible minimal PMU placements for the IEEE 30 bus system in
table 6.1. Though there are locations which are contained in all of the shown placements,
this is merely a result of showing only a subset of the possible placements.

If we for example choose to have mandatory PMU placement at buses 2, 13, 22 and
27, then there are 96 minimal coverings using at least 17 PMUs. The increase in the
number of required PMUs can be seen on Figure 6.10 at the connection between buses
12 and 13, where PMUs are placed redundantly which is enforced by the mandatory
placement at bus 13. The thickness of the buses indicate a PMU is placed at the bus,
e.g., bus 13 is modelled using a thick line to indicate placement of a PMU.

76

6.2. Phasor Measurement Unit Placement

PMU bus locations
3,4,5,6,8,10,11,12,15,17,19,22,24,25,27,29
1,4,5,6,8,10,11,12,15,17,19,22,24,25,27,29
2,3,5,6,8,10,11,12,15,17,19,22,24,25,27,29
2,3,6,7,8,9,10,12,15,17,19,22,24,25,27,29
3,4,5,6,8,9,10,12,15,17,19,22,24,25,27,29
1,4,5,6,8,9,10,12,15,17,19,22,24,25,27,29
2,3,5,6,8,9,10,12,15,17,19,22,24,25,27,29
2,3,6,7,8,10,11,12,15,16,19,22,24,25,27,29
3,4,5,6,8,10,11,12,15,16,19,22,24,25,27,29
1,4,5,6,8,10,11,12,15,16,19,22,24,25,27,29
2,3,5,6,8,10,11,12,15,16,19,22,24,25,27,29

Table 6.1.: Possible minimal coverings of IEEE 30 bus system

1

2

3 4

5

6

7

8

9

10

1112
13

14

15

16

17

18 19
20

21 22

23
24

25

26

27 28

30

29Bus
Load

Generator

Figure 6.10.: IEEE 30 Bus System with mandatory placement of PMUs

77

Chapter 6. Optimization of Network Design

PMU bus locations with mandatory placement
2,3,6,7,8,9,10,12,13,15,17,19,22,24,26,27,29
2,3,5,6,8,9,10,12,13,15,17,19,22,24,26,27,29
2,3,6,7,8,10,11,12,13,15,16,19,22,24,26,27,29
2,3,5,6,8,10,11,12,13,15,16,19,22,24,26,27,29
2,3,6,7,8,9,10,12,13,15,16,19,22,24,26,27,29
2,3,5,6,8,9,10,12,13,15,16,19,22,24,26,27,29
2,3,6,7,8,10,11,12,13,15,17,19,22,24,25,27,29
2,3,5,6,8,10,11,12,13,15,17,19,22,24,25,27,29
2,3,6,7,8,9,10,12,13,15,17,19,22,24,25,27,29
2,3,5,6,8,9,10,12,13,15,17,19,22,24,25,27,29
2,3,6,7,8,10,11,12,13,15,16,19,22,24,25,27,29

Table 6.2.: Minimal coverings of IEEE 30 bus system with mandatory placement

Table 6.2 shows a small number of placements associated with the mandatory place-
ment at buses 12 and 13.

6.3. Concluding Remarks

Combining topological rankings and cover ideals, can be useful when designing grid
topology or other network related design. Great care must be taken whenever decisions
are made, which influence the topology or the derived characteristics. Some decisions
can have far reaching consequences for the operation of the system. By considering
mandatory placement, we are restricting the set of generators of the initial cover ideal,
e.g., the IEEE 14 bus system have 16 minimal vertex coverings, placing only 8 PMUs,
and mandatory placement of PMUs on buses 4, 5, 6 and 9, yields only 4 minimal cov-
erings using 8 PMUs. Likewise considering mutual exclusion zones we can get more
choices for minimal vertex covers. For instance if we consider the mutual exclusion zone
{3, 11, 12, 14}, then there are 18 choices for minimal vertex covering using 8 PMUs. This
is in contrast to the original 16 distinct minimal coverings.

If we combine the mandatory placement, mentioned above, and the mutual exclusion
zone, also mentioned above, we get that there are 6 minimal vertex coverings using
8 PMUs. Combining methods developed in this dissertation together with methods
already published in this area may yield interesting new results and insights.

In the same spirit as the development of the topological ranking, it is suspected that
we can define another kind of ranking based on minimal vertex coverings via mandatory
placement. If a mandatory labelled vertex increases the minimal number of PMUs
required to cover the graph, then we can define the rank of that vertex to be the difference
in the minimal number of PMUs, before and after.

78

Chapter 7

Discussion and Conclusion

In this dissertation, contributions have been made to algebraic geometry and mathe-
matical modelling of problems arising in network theory. The underlying theme has
been algebraic varieties and though not all chapters seem to be directly related to these
objects, it is possible to conceive everything in this dissertation as problems involving
algebraic varieties in the category of commutative rings or its opposite counterpart, the
category of schemes. The (co)homology theory discussed in Chapter 5 is calculated using
the category of vector spaces and linear maps, and this can be seen as a full sub-category
of the category of commutative rings. Moreover the homology classes (and cohomology
classes) are thus algebraic varieties. When we compute homology with coefficients in
a finite field, the algebraic varieties are considered over these finite fields. For instance
when calculating homology with coefficients in the finite field Fq, we functorially transfer
the problem to a problem of solving a set of linear equations over Fq in the category
of vector spaces. Every equation in such a system can be viewed as a generator of a
polynomial ideal in a suitably chosen polynomial ring Fq[x1, . . . , xn]. We intentionally
refrained from taking this latter viewpoint in favor of using the traditional approach
using classical linear algebra. The reasons for this was merely that it was unclear if any
benefit would come from taking a more abstract approach.

The well-known Euler’s criterion was generalized and extended. It was given a for-
mulation which makes it possible to use it, in the construction and analysis of finite
field extensions. The original Euler’s criterion is already heavily used in many areas
of mathematics and engineering and it is likely that the formulation given here will be
useful in some of these areas of application.

The circle equation over finite fields was studied extensively and has served as a model
example for analyzing algebraic varieties over finite fields. It became apparent during the
study of this canonical equation, that studying algebraic varieties over finite fields have
far reaching connections with number theory. This led to the definition of what Vagn
and I call siameese twin primes and a conjecture that all twin primes can be divided
into two equally large sets, partitioned into siameese twin primes and non-siameese twin
primes. The conjecture is supported for an incredibly large number of twin primes and
the conjecture depends on and extends the famous twin prime conjecture.

An algorithm for computing the intersection of monomial ideals have been developed

79

Chapter 7. Discussion and Conclusion

and implemented. While it comes as a surprise to no one that taking a sequence of any
kind of intersection can be done in parallel, it was peculiar to observe that the order of
which these intersections were done greatly impacted the performance. Fortunately we
were able to resolve this problem by defining a means of sorting the sequence prior to
computing the intersections. The result was a scalable and performance efficient parallel
algorithm for computing vertex covers of hypergraphs.

We have utilized a well-known homology theory to show that the choice of (simplicial)
topology induces a ranking of all entities (simplices) in the simplicial structure. We term
this total ordering the topological ranking of the simplicial complex in question. The
ranking is induced by removing a set of simplices.

The last part of the dissertation discussed how to combine the topological ranking
with the calculation of vertex covers of a 1-dimensional simplicial complex (possibly the
nerve of a hypergraph) to highlight certain problems in power grid topology design. One
of the strengths of using square-free monomial ideals to calculate the vertex covers was
that all minimal vertex covers were calculated at the same time; one vertex cover for each
generator in the cover ideal with lowest total degree. Similar considerations could have
been made for the calculation of the topological ranking but time did not permit the
development of such a framework for calculating the ranking. Nevertheless combining the
ranking with the minimal vertex covers reveals alternative ways to construct contingency
plans for operating power grids. The proposed methodology is very flexible and can
accomodate many real-life problems such as PMUs already installed in possibly sub-
optimal locations in the system etc.

Among the various problems that the author will be interested in considering in the
future are studying the siameese twin primes which may yield more insight into the twin
prime conjecture. Further the computation of (reduced) Gröbner bases of specific poly-
nomial ideals may provide new results on the complexity of Gröbner basis computation,
while varying the base field. We can only hope that this will give us extended insights
into the millennium problem, P = NP ; a problem which the majority of the scientific
community believes to be false. The author remains agnostic on the truthfulness of this
statement.

Probably the most accessible future research will be the computation of the topological
ranking, possibly by introducing a specialized homology theory. The author conjectures
that there exists a homology theory which combines both the topological ranking and the
vertex cover problem into a single and highly optimized framework. Such a framework
requires clearly defined ontologies to be described and it is very much possible that such
a homology theory will be a variant of the highly abstract, but extremely useful l-adic
cohomology. This cohomology theory was pioneered by Alexander Grothendieck with
the help of Jean-Pierre Serre and Michael Artin. It was introduced in an effort to prove
the famous Weil conjectures, the last of which was proved by Pierre Deligne using l-adic
cohomology.

The author hopes to further develop a unifying methodology for calculating topological
rankings and computing cover ideals.

80

Appendix A

Haskell Code for Working with the
Circle Equation

Several functions and programs were developed during the investigation of the circle
equation over finite fields. Some of the most useful programs will be printed in this
appendix.

To start with, we work over positive characteristic and thus we need to be able to find
many prime numbers. The fastest methods use a so-called sieve and in Haskell this can
be implemented like this.

-- prime number generator
primes :: [Integer]
primes = 2: 3: sieve (tail primes) [5 ,7..]

where
sieve (p:ps) xs = h ++ sieve ps [x | x <- t, x ‘rem ‘ p /= 0]

where (h ,˜(_:t)) = span (< p*p) xs

Another elementary functionality which is often needed, is to determine if a given positive
integer is a prime number.

divides :: Integral a => a -> a -> Bool
divides d n = rem n d == 0

ldf :: Integral a => a -> a -> a
ldf k n | divides k n = k

| k*k > n = n
| otherwise = ldf(k+1) n

ld :: Integral a => a -> a
ld n = ldf 2 n

prime0 :: Integral a => a -> Bool
prime0 n | n < 1 = error "not a positive integer "

| n == 1 = False
| otherwise = ld n == n

In our numerical investigation of the number of solutions to the circle equation over
finite fields, it was needed to remove duplicates in a list, for evident reasons. Note that
this function requires the package Data.List.

81

Appendix A. Haskell Code for Working with the Circle Equation

-- remove dublicates in list
rmdups :: (Ord a) => [a] -> [a]
rmdups = map head . group . sort

One of the very nice features of Haskell is the set comprehension. We used for, among
other things, finding primes in a given integer interval [n;m] or in the sieve method for
finding primes illustrated above.

-- find primes in an interval
findPrimes n m = [x | x<-[n..m], prime0 x == True]

Finding twin primes can be done using set comprehension as well. The following function
returns the n first twin primes utilizing the sieve method for finding primes.

-- grab the first n twin primes
twinPrimes :: Int -> [(Integer , Integer)]
twinPrimes n = [(x,y) | x <- (take n primes),

y<-(take n (tail primes)), x+2==y, x<y]

One of the very useful tools that we have used was the quadratic character homomor-
phism. In the following we assume that the input is an appropriately defined finite field
type in the category of Haskell types.

-- quadratic character map
qf :: Num t => [t] -> Integer -> [t]
qf gf r = [xˆr | x <- gf]

eta :: (Num a1 , Num a, Eq a1) => [a1] -> a1 -> Integer -> a
eta gf c r = if (c /= 0 && any (c==) (qf gf r)) then 1

else if (c==0) then 0 else -1

Notice that the function qf and eta can easily be changed such that it computes the
extended Euler’s criterion.

82

Appendix B

Manuscript for Article: The Circle
Equation over Finite Fields

The article titled The Circle Equation over Finite Fields co-authored with Vagn Lunds-
gaard Hansen is a manuscript in preparation.

83

THE CIRCLE EQUATION OVER FINITE FIELDS

ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

Abstract. Interesting patterns in the geometry of a plane algebraic
curve C can be observed when the defining polynomial equation is solved
over the family of finite fields. In this paper, we examine the case of C
the classical unit circle defined by the circle equation x2 + y2 = 1. As a
main result, we establish a concise formula for the number of solutions to
the circle equation over an arbitrary finite field. We also provide criteria
for the existence of diagonal solutions to the circle equation. Finally, we
give a precise description of how the number of solutions to the circle
equation over a prime field grows as a function of the prime.

Subject class: 11G20, 11D45, 11A07, 14G15

Keywords: Diophantine geometry, prime numbers, siamese twin primes

1. Introduction

From ancient time, shapes and numbers have been fundamental objects
for organizing any kind of civilization, and the birth of mathematics is in-
timately related to exploring these objects. In the Greek culture, studies
of shapes and numbers went hand in hand and culminated in work of Dio-
phantus in the third century. Diophantus has lent his name to diophantine
geometry, which is the study of geometrical properties of the set of solutions
to polynomial equations over integers, rational numbers and more general
number fields.

The fundamental work Disquisitiones Aritmeticae published by Gauss in
1801 marked a new era for the theory of numbers; see Kline [4]. Gauss intro-
duced and made systematically use of the notion of congruence of numbers
to solve algebraic equations modulo a prime number, i.e. solving the equa-
tions over a prime field. With the path breaking work of Abel and Galois in
the 1820s on solutions to polynomial equations, permutation groups and fi-
nite fields composed of roots to such equations came into focus. Out of this,
diophantine geometry over finite fields emerged as an important research
area. In the second half of the twentieth century the subject flourished. It
began with the inspired survey paper on the number of solutions of equa-
tions in finite fields published 1949 by André Weil [7], in which the four
famous conjectures, known as the Weil conjectures, were formulated. The
last one of the Weil conjectures was resolved in 1973 by Pierre Deligne [1],
a merit rewarded with the Abel Prize in 2013.

In this paper we address some questions in diophantine geometry over
finite fields which appear not to have been fully explored.

Consider a plane algebraic curve C over the real numbers given as the
solution set to a polynomial equation in two real variables x and y with
integer coefficients.

1

Appendix B. Manuscript for Article: The Circle Equation over Finite Fields

84

2 ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

The questions concern what remains of C, when we solve the equation over
a finite field. Specifically, we study among others the following questions:

• How does the solution set change when the underlying equation is
solved over a finite field?
• How does the number of solutions change with the order of the finite

field?

The questions can be posed for any choice of C. To obtain specific results
we need, however, to make a specific choice. In this paper we shall examine
the case of C being the unit circle defined by the circle equation

x2 + y2 = 1.

The paper opens with a detailed study of the circle equation over the
finite field Fp of prime order p, and more generally over the finite field Fpn

of order pn for any natural number n ∈ N. In the main Theorem 3.1 we
prove that the number of solutions Npn to the circle equation over the finite
field Fpn is given by the formula

Npn = pn − sin
(
pn
π

2

)
.

We are aware that our formula for the number of solutions to the circle
equation over finite fields can be extracted from results in [6] after some
nontrivial work.

Using the formula for the number of solutions to the circle equation over
a finite field Fpn , we next make a study of how the number of solutions
behave as a function of pn. In Theorem 4.2 we settle the question when the
circle equation over any finite field has diagonal solutions, i.e. solutions of
the form (x, y) = (x, x). For the prime fields Fp we obtain in Theorem 4.3
a very precise answer to the question how the number Np of solutions to
the circle equation over Fp grows as a function of p. Certain pairs of twin
primes, which we term siamese twin primes, play a surprising role.

2. Some basic results

Since a finite field of characteristic p has order pn for some n ∈ N, only
finite fields of characteristic 2 can have even order. The following theorem
contains therefore, in particular, the complete answer to the question about
the number of solutions to the circle equation over a finite field of even order.

Theorem 2.1. Over the finite field Fpn corresponding to the prime p and
the integer n ≥ 1, the equation

xp
k

+ yp
k

= 1

has exactly pn solutions of ordered pairs (x, y) of elements x, y ∈ Fpn for
any integer k ≥ 1.

Proof. Let k ≥ 1 be an arbitrary integer. By rewriting the binomial coeffi-
cient (

pk

r

)
=

pk!

r!(pk − r)! , 1 ≤ r ≤ pk − 1,

85

THE CIRCLE EQUATION OVER FINITE FIELDS 3

we get

pk! =

(
pk

r

)
r!(pk − r)! .

Making use of the prime factorization theorem, it is easily seen that p

divides
(
pk

r

)
. By the binomial formula we get then

(x+ y)p
k

= xp
k

+ yp
k
.

Together with the obvious relation

(xy)p
k

= xp
k
yp

k
,

this proves that the power map xp
k

: Fpn → Fpn defines an isomorphism of
the finite field Fpn onto itself.

From this follows immediately that

(x+ y)p
k

= 1 if and only if x+ y = 1.

Clearly this implies that for every one of the pn elements x ∈ Fpn , there
exists a unique element y ∈ Fpn such that

xp
k

+ yp
k

= (x+ y)p
k

= 1.

This proves that the equation xp
k

+ yp
k

= 1 has exactly pn solutions. �

Remark. There are p2n ordered pairs (x, y) of elements in Fpn and of these
only pn satisfy the equation xp + yp = 1.

The following special case of Theorem 2.1 provides as mentioned the num-
ber of solutions to the circle equation over all finite fields of even order.

Corollary 2.1. Over the finite field F2n corresponding to the prime 2 and
the integer n ≥ 1, the circle equation

x2 + y2 = 1

has exactly 2n solutions of ordered pairs (x, y) of elements x, y ∈ F2n.

Further on the number of solutions to the circle equation over Fp we have
the following result.

Theorem 2.2. Solutions to the circle equation

x2 + y2 = 1

over the finite field Fp for p odd comes in multiples of four.

Proof. For any odd prime p, you always have the four solutions (1, 0), (0, 1),
(p−1, 0) and (0, p−1). Suppose now that (x, y) = (a, b), 1 ≤ a, b ≤ (p−1)/2,
is a solution. Then (a,−b) = (a, p− b), (−a, b) = (p− a, b) and (−a,−b) =
(p− a, p− b) are also solutions. This completes the proof. �

In the table below, we display for each of the primes p = 2, 3, 5, 7, 11, 13,
the set of all ordered pairs (x, y) of elements in the prime field Fp that
constitutes the set of solutions and the number Np of solutions to the circle
equation over Fp.

Appendix B. Manuscript for Article: The Circle Equation over Finite Fields

86

4 ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

Table 1. Solutions for p = 2, 3, 5, 7, 11, 13.

p Solutions to x2 + y2 = 1 Np

2 (0, 1), (1, 0) 2

3 (0, 1), (1, 0), (0, 2), (2, 0) 4

5 (0, 1), (1, 0), (0, 4), (4, 0) 4

7 (0, 1),(0, 6),(1, 0),(2, 2),(2, 5),(5, 2),(5, 5),(6, 0) 8

11
(0, 1), (0, 10), (1, 0),(3, 5), (3, 6), (5, 3),
(5, 8),(6, 3), (6, 8), (8, 5), (8, 6), (10, 0)

12

13
(0, 1), (0, 12), (1, 0), (2, 6), (2, 7), (6, 2),
(6, 11), (7, 2), (7, 11), (11, 6), (11, 7), (12, 0)

12

3. Solutions to the circle equation over a finite field

In this section we extend the result for the prime 2 in Corollary 2.1 to
include also the odd primes. The formula we present in Theorem 3.1 for the
number of solutions to the circle equation over a finite field of odd character-
istic can with some work be deduced from more general results on solutions
to quadratic forms over finite fields developed by Lidl and Niederreiter in
[6]. We offer, however, a self-contained direct proof of the formula.

Theorem 3.1. For any finite field Fpn of characteristic p, the number of
solutions to the circle equation

x2 + y2 = 1

over Fpn is given by the formula

Npn = pn − sin
(
pn
π

2

)
.

Proof. For p = 2 the result follows by Corollary 2.1. Hence it only remains
to consider the case for an odd prime p. For convenience put q = pn.

The multiplicative group F∗q is a cyclic group of order q−1, say generated
by the element g ∈ F∗q , see [5]. Every element in F∗q is then uniquely presented

as a power gk of g, where the exponent k is counted modulo q.
We define the multiplicative homomorphism η : F∗q → S of F∗q onto the

multiplicative group S = {−1, 1}, by setting η(c) = (−1)k, for c = gk ∈ F∗q .
In the literature η is known as the quadratic character of F∗q . For conve-

nience we set η(0) = 0.
The squaring homomorphism x2 : F∗q → F∗q maps the element a = gl ∈ F∗q

into c = g2l ∈ F∗q . From this we conclude that c = gk is a square in F∗q if and
only if k is even modulo q, or equivalently, if and only if η(c) = 1. Hence
there are equally many squares and non-squares in F∗q . From this follows
immediately that ∑

c∈Fq

η(c) = 0.

87

THE CIRCLE EQUATION OVER FINITE FIELDS 5

The number of solutions Nq can be decomposed into a sum of products
of the number of solutions Nq(x

2 = c1) and Nq(y
2 = c2) to the equations

x2 = c1 and y2 = c2, for c1, c2 ∈ Fq with c1 + c2 = 1. Precisely

Nq =
∑

c1+c2=1

Nq(x
2 = c1)Nq(y

2 = c2).

Observing that the equation z2 = c over F∗q has exactly two solutions if
any, the expression for Nq can be rewritten as follows using the quadratic
character

Nq =
∑

c1+c2=1

[1 + η(c1)] [1 + η(c2)]

=
∑

c1+c2=1

[1 + η(c1) + η(c2) + η(c1)η(c2)]

= q +
∑

c1∈Fq

η(c1) +
∑

c2∈Fq

η(c2) +
∑

c1+c2=1

η(c1c2)

= q +
∑

c∈Fq

η (c(1− c)) .

Now using that η(4) = η(22) = 1 we can further rewrite this as

Nq = q + η(−1)
∑

c∈Fq

η(4c2 − 4c)

= q + η(−1)
∑

c∈Fq

η
(
(2c− 1)2 − 1

)

= q + η(−1)
∑

c∈Fq

(
−1 +

[
1 + η

(
(2c− 1)2 − 1

)])

= q + η(−1)(−q) + η(−1)
∑

c∈Fq

[
1 + η

(
(2c− 1)2 − 1

)]
.

By definition of the quadratic character η, the sum

S =
∑

c∈Fq

[
1 + η

(
(2c− 1)2 − 1

)]

is the number of solutions in Fq to the quadratic equation

(2c− 1)2 − 1 = a2,

which can be rewritten as

(2c− 1 + a)(2c− 1− a) = 1.

To solve this product of two linear equations, observe that the factor

2c− 1 + a = α

can be chosen arbitrarily in F∗q . Then necessarily

2c− 1− a = α−1.

By subtraction of equations and division by 2, we get a = 2−1
(
α− α−1

)
.

Inserting this value for a into the expression for α yields

c = 2−1
[
α+ 1− 2−1

(
α− α−1

)]
.

Appendix B. Manuscript for Article: The Circle Equation over Finite Fields

88

6 ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

Since every solution to the quadratic equation in this way turns out to be
uniquely determined by a choice of α ∈ F∗q and since the order of F∗q is q−1,
we conclude that the sum S has the value S = q − 1.

Collecting facts we get

Nq = q + η(−1)(−q) + η(−1)(q − 1) = q − η(−1).

Now it only remains to determine the value of η on−1 ∈ F∗q , i.e. to determine
whether −1 is a square, resp. a non-square in F∗q .

We can choose a generator g of F∗q for which g0 = 1, and g0, g1, . . . , gq−2

are all the elements in F∗q , when counting exponents for g modulo q − 1.
The odd number q = pn has a unique representation either as q = 4k + 1

or q = 4k + 3, for k a non-negative integer.
Suppose x = gl, 1 ≤ l ≤ (pn − 1)/2, is an element with x2 = g2l = −1.

Then g4l = g2lg2l = (−1)(−1) = 1 = g0. Consequently

4l ≡ 0 (mod q − 1).

Now suppose q = 4k + 1. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k).

We get a solution if k divides l, and hence solutions always exist. We
conclude that −1 is a square in F∗q for q = 4k + 1.

Next suppose q = 4k + 3. Then we look for solutions to the congruence

4l ≡ 0 (mod 4k + 2).

A solution exists only if 2k + 1 divides 2l. Since an odd number can never
be a factor in an even number, we conclude that the congruence has no
solutions and hence that −1 is a non-square in F∗q for q = 4k + 3.

It follows that −1 is a square in F∗q if and only if q ≡ 1 (mod 4), and
hence

η(−1) =

{
1 if q ≡ 1 (mod 4),
−1 if q ≡ 3 (mod 4).

In conclusion we get

Nq = q − sin
(
q
π

2

)
,

for any prime p, integer n ∈ N and q = pn. �

4. Patterns in the number of solutions to the circle equation

Since we now have the precise number of solutions to the circle equation
over Fpn , we can generalize Theorem 2.2 and prove the following

Theorem 4.1. Let p be an odd prime and n ≥ 1 an arbitrary integer. Then
the number of solutions to the circle equation x2+y2 = 1 over the finite field
Fpn is a multiple of four.

Proof. The number of solutions is given by

Npn = pn − sin
(
pn
π

2

)
.

89

THE CIRCLE EQUATION OVER FINITE FIELDS 7

Since p is an odd prime, pn ≡ 1 (mod 4) or pn ≡ 3 (mod 4). On the other
hand, clearly

sin
(
pn
π

2

)
=

{
1, pn ≡ 1 (mod 4),
−1, pn ≡ 3 (mod 4).

It follows that

Npn ≡ 0 (mod 4).

�

The following theorem settles in which finite fields the circle equation has
diagonal solutions, i.e. solutions of the form (x, y) = (x, x).

Theorem 4.2. Let p be an odd prime.

(1) For an arbitrary integer n ≥ 1, the circle equation x2 + y2 = 1 has
diagonal solutions over the finite field Fpn if and only if

2(p
n−1)/2 ≡ 1 (mod p).

(2) There are diagonal solutions to the circle equation over the prime
field Fp if and only if p ≡ ± 1 (mod 8).

(3) If there are diagonal solutions to the circle equation over a finite field
Fpn, then there are exactly two diagonal solutions.

(4) If there are diagonal solutions to the circle equation over the prime
field Fp, then there are also diagonal solutions to the circle equation
over Fpn for all n ≥ 1.

Proof. Set q = pn.
First suppose that (x, y) = (a, a) is a diagonal solution to the circle equa-

tion over the finite field Fq. Then 2a2 = 1 and hence (a−1)2 = 2, showing
that 2 is a square in Fq. Next suppose that 2 is a square in Fq. Then clearly
2−1 is also a square in Fq. Therefore there exists an element a ∈ Fq such
that a2 = 2−1, or equivalently, a2 + a2 = 1. We conclude that the circle
equation has diagonal solutions in the finite field Fq if and only if 2 is a
square in Fq. Notice further that the equation x2 = 2−1 has exactly two
solutions ± a, if any.

To finish the proof of the theorem it only remains to determine for which
q = pn the number 2 is a square in Fq.

The finite field Fq is uniquely determined up to an isomorphism as the
splitting field for the polynomial f(x) = xq − x in the polynomial ring Fp[x]
over Fp, see [5].

From this description follows easily that 2 is a square in Fq if and only if
the polynomial g(x) = x2 − 2 is a divisor in f(x) = xq − x.

By polynomial division in Fp[x] we get

f(x) = xq − x = h(x)(x2 − 2) + (2(q−1)/2 − 1)x,

where

h(x) = xq−2 + 2xq−4 + 22xq−6 + · · ·+ 2(q−3)/2x.

From the above follows immediately that g(x) is a divisor in f(x) and
hence that 2 is a square in Fq if and only if

2(q−1)/2 ≡ 1 (mod p).

Appendix B. Manuscript for Article: The Circle Equation over Finite Fields

90

8 ANDREAS AABRANDT AND VAGN LUNDSGAARD HANSEN

For n = 1, i.e. for the prime field Fp, it was known to Gauss (with
complete proof) that 2 is a square in Fp if and only if p ≡ ± 1 (mod 8), see
e.g. Davenport ([3], page 70).

For an arbitrary integer n ≥ 1, the prime field Fp is a subfield of Fq. Since
the squaring map x2 : F∗q → F∗q is a multiplicative homomorphism mapping
F∗p into itself, it follows that 2 is a square in Fq if 2 is a square in Fp.

This completes the proof of the theorem. �
Examples. With reference to Table 1, there are no diagonal solutions to
the circle equation over the prime field Fp, for the odd primes p = 3, 5, 11, 13,
whereas the are two diagonal solutions for the prime p = 7.

The finite field F32 can be described as the polynomial ring F3[t] modulo
the irreducible polynomial t2+1. The nine elements in F32 are then uniquely
described by the nine polynomials x = a0 + a1t, for a0, a1 ∈ F3. Simple
calculations show that (x, y) = (t, t) and (x, y) = (2t, 2t) are the two diagonal
solutions to the circle equation over F32 .

For the number of solutions to the circle equation over a prime field Fp

we can do much better. As we shall see, certain pairs of twin primes, which
we term siamese twin primes, turn out to play a special role.

Definition 4.1. A pair of twin primes p and p′ for which p ≡ 3 (mod 4)
and p′ ≡ 1 (mod 4) is called a pair of siamese twin primes.

Our main result on the number of solutions to the circle equation in a
prime field as a function of the prime can then be given the following concise
formulation.

Theorem 4.3. The number of solutions Np to the circle equation

x2 + y2 = 1

over Fp for odd primes, is a strictly increasing function of p in multiples of
four, except in pairs of siamese twin primes p and p′, where the function
stagnates and Np = Np′.

Proof. Let p < p′ be a pair of odd prime numbers. It follows by Theorem
3.1 that Np′ ≥ Np and by Theorem 4.1 that Np′ ≡ Np (mod 4).

Now suppose that Np′ = Np. Then necessarily p and p′ must be a pair of
twin primes.

If p ≡ 1 (mod 4) then p′ ≡ 3 (mod 4) since p′ = p+ 2, and hence

Np′ −Np = p′ − p− sin
(
p′
π

2

)
+ sin

(
p
π

2

)
= 4,

which contradicts our assumption that Np = Np′ .
On the other hand if p ≡ 3 (mod 4) then p′ ≡ 1 (mod 4) and hence

Np′ −Np = p′ − p− sin
(
p′
π

2

)
+ sin

(
p
π

2

)
= 0.

Altogether we conclude that Np′ = Np if and only if p and p′ is a pair of
siamese twin primes. �

It is a famous open question whether there are infinitely many pairs of
twin primes. Promising progress has recently been made, e.g., [8] and [2],
to settle the question in the affirmative.

91

THE CIRCLE EQUATION OVER FINITE FIELDS 9

If in the end it turns out that there are infinitely many pairs of twin
primes, there may, however, still not be infinitely many pairs of siamese
twin primes.

Based on computer tests, the present authors believe that there exist an
infinite number of pairs of siamese twin primes.

In favour of this conjecture speaks that it is well known, see e.g. [3], that
there are infinitely many prime numbers p and p′ of each of the two types
mentioned in Definition 4.1:

p ≡ 3 (mod 4) and p′ ≡ 1 (mod 4).

The conjecture is also supported by the fact that the largest known1 (at the
time of writing) pair of twin primes

3756801695685 · 2666669 − 1 and 3756801695685 · 2666669 + 1

is also a pair of siamese twin primes, i.e.

N3756801695685·2666669−1 = N3756801695685·2666669+1.

Although it is fairly easy on a modern computer to determine if a given pair
of twin primes is a pair of siamese primes, it is not easy to determine how
many pairs of siamese twins there exist below a given large number, say
below

3756801695685 · 2666669 + 1.

Denote by Sn the number of siamese twin primes below n. Likewise denote
by Tn the number of twin primes below n. Then we conjecture that

lim
n→∞

Tn
Sn

= 2.

The conjecture is supported by computer experiments with primes below
n = 2 · 109, for which number there are 6388041 pairs of twin primes and
3193559 pairs of siamese twin primes below n.

References

[1] Pierre Deligne. La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci., 43:273–
307, 1973.

[2] Daniel Alan Goldston, János Pintz, and Cem Yalçin Yildirim. Primes in tuples iv:
Density of small gaps between consecutive primes. Acta Arithmetica, 160(1):37–53,
2013.

[3] H.Davenport. The Higher Arithmetic. An Introduction to the Theory of Numbers.
Dover Publications, Inc., New York, 1983.

[4] Morris Kline. Mathematical Thought from Ancient to Modern Times. Oxford Univer-
sity Press, 1972.

[5] Serge Lang. Algebra. Springer, 2005.
[6] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1997.
[7] André Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc.,

55:497–508, 1949.
[8] Yitang Zhang. Bounded gaps between primes. Annals of Mathematics, 179(3):1121–

1174, 2014.

Technical University of Denmark

1http://primes.utm.edu/top20/page.php?id=1#records

Appendix B. Manuscript for Article: The Circle Equation over Finite Fields

92

Appendix C

Computing Homology

Since we were using Sage to calculate Gröbner bases, we can mention that it is rather
easy to calculate the homology using Sage as well. Note that Sage implements calculation
of reduced homology. Therefore the calculation

S = SimplicialComplex ([[1 ,2] , [2,3], [3 ,1]])
S. homology ()

yields the following reduced homology groups,

H̃0(S;Z) = 0, H̃1(S;Z) = Z.

We have not considered reduced homology in this dissertation, but it is introduced in
almost any textbook on homology theory, e.g., see [17] or [21]. Note that the augmen-
tation of doing reduced homology is important to take into account when working with
topological ranking. This is because, path connectedness is essential for the ranking.
Everything still works, since the ranking considers codimensions and this is still counted
when considered relative reduced pairs. Working with coefficients in a field instead of
the ring of integers, we can use any linear algebra library that supports the field chosen.
So if we choose either R or C, then Matlab can be used. Maple works well for the fields
Q , R, C and Fp where p is a prime.

There is a notion of persistent homology, introduced by Herbert Edelsbrunner among
others. The main difference is that in persistent homology one considers a filtration of
simplicial complexes. This yields a homology theory which is more robust with respect to
noise. Since the topology of power grids etc. is usually well-known it was not necessary
to consider persistent homology here.

93

Appendix D

Code for Vertex Cover Calculations

For the calculations of the minimal vertex covers we used SageMath and thus Python.
However, the scripts can be rather large and thus it was decided that a C++14 program
should generate the scripts. Here we include a prototype of the C++14 program used
to generate the scripts. First we present the output of using the C++ code to generate
the Sage script for computing the cover ideal of the IEEE 14 bus system in parallel.

#! / usr / bin /env sage
import sys
from sage . all import ∗
import multiprocessing as mp
variableNames = [x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10←↩

, x11 , x12 , x13 , x14]

g = PolynomialRing (GF (2) , variableNames , order= lex)
(x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 , x12 , x13 , x14) = g . _first_ngens←↩

(14)

ideals = []
ideals . append (ideal (x1 , x2))
ideals . append (ideal (x1 , x5))
ideals . append (ideal (x1 , x6))
ideals . append (ideal (x3 , x4))
ideals . append (ideal (x2 , x3))
ideals . append (ideal (x4 , x5))
ideals . append (ideal (x2 , x4))
ideals . append (ideal (x2 , x5))
ideals . append (ideal (x4 , x9))
ideals . append (ideal (x4 , x7))
ideals . append (ideal (x7 , x8))
ideals . append (ideal (x7 , x9))
ideals . append (ideal (x9 , x10))
ideals . append (ideal (x9 , x14))
ideals . append (ideal (x14 , x13))
ideals . append (ideal (x10 , x11))

95

Appendix D. Code for Vertex Cover Calculations

ideals . append (ideal (x11 , x6))
ideals . append (ideal (x13 , x12))
ideals . append (ideal (x6 , x13))
ideals . append (ideal (x12 , x6))

def idealsIntersection (A) :
cover = A . pop ()
for a in A :

cover = cover . intersection (a)
return cover

def mappingIdeals (ideals) :
idealer = []
N = len (ideals)
for w in range (0 , 4) :

idealer_tmp = []
for t in range (0 , (N) /4) :

if (len (ideals)>0) :
idealer_tmp . append (ideals . pop ())

if (idealer_tmp != None) :
idealer . append (idealer_tmp)

return idealer

if __name__ == __main__ :
p = mp . Pool ()
results = []
ideals_pairs = mappingIdeals (ideals)
p . map_async (idealsIntersection , ideals_pairs , callback=results .←↩

append)
p . close ()
p . join ()
coverideal = results [0] . pop ()
for I in results [0] :

coverideal = coverideal . intersection (I)
for I in coverideal . gens () :

print I

The following is the CMakeLists.txt file used to compile the code.

cmake_minimum_required (VERSION 3 . 3)
project (SageGenerator)
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -w")
set (SOURCE_FILES main . cpp)
add_executable (SageGenerator ${SOURCE_FILES })

96

The main.cpp file is given below.

1 #include <iostream>
2 #include <s t d i o . h>
3 #include <vector>
4 #include <u t i l i t y >
5 #include <algor ithm>
6 #include < i t e r a t o r>
7 #include <ctime>
8 #include <future>
9 #include <thread>

10 #include <f stream>
11
12 using namespace std ;
13
14 struct Vertex {
15 string name ;
16 } ;
17
18 struct Edge {
19 vector<Vertex> vertices ;
20 } ;
21
22 struct Hypergraph {
23 vector<Vertex> vertices ;
24 vector<Edge> edges ;
25 } ;
26
27 Hypergraph generateHypergraph (int num_vertices) {
28 Hypergraph hg ;
29
30 for (int i=0; i<num_vertices ; i++) {
31 Vertex v ; v . name = "x" + to_string (i) + "" ;
32 // cout << v . name << endl ;
33 hg . vertices . push_back (v) ;
34 }
35
36 for (int i = 0 ; i<num_vertices ; i++) {
37 int num_j ;
38 if (num_vertices % 2 == 0) {
39 num_j = num_vertices /2 ;
40 } else {
41 num_j = (num_vertices−1) /2 ;
42 }
43 for (int j=0; j<num_j ; j++) {
44 if (i !=j) {
45 Edge e ;
46 e . vertices . push_back (hg . vertices [i]) ;
47 e . vertices . push_back (hg . vertices [j]) ;

97

Appendix D. Code for Vertex Cover Calculations

48 hg . edges . push_back (e) ;
49 }
50 }
51 }
52 return hg ;
53 }
54
55 template <typename T>
56 T randomFrom (const T min , const T max)
57 {
58 static std : : random_device rdev ;
59 static std : : default_random_engine re (rdev ()) ;
60 typedef typename std : : conditional<
61 std : : is_floating_point<T> : : value ,
62 std : : uniform_real_distribution<T>,
63 std : : uniform_int_distribution<T>>::type dist_type ;
64 dist_type uni (min , max) ;
65 return static_cast<T>(uni (re)) ;
66 }
67
68 Hypergraph generateRandomHypergraph (int num_vertices) {
69 Hypergraph hg ;
70 int kounter = 0 ;
71 for (int i=0; i<num_vertices ; i++) {
72 Vertex v ; v . name = "x" + to_string (i) + "" ;
73 hg . vertices . push_back (v) ;
74 }
75
76 for (int i = 0 ; i<num_vertices ; i++) {
77 int num_j ;
78 if (num_vertices % 2 == 0) {
79 num_j = num_vertices /2 ;
80 } else {
81 num_j = (num_vertices−1) /2 ;
82 }
83 for (int j=0; j<num_j ; j++) {
84 if (i !=j) {
85 Edge e ;
86 e . vertices . push_back (hg . vertices [i]) ;
87 e . vertices . push_back (hg . vertices [j]) ;
88 if (randomFrom (0 , 1) == 1) {
89 hg . edges . push_back (e) ;
90 } else {
91 kounter++;
92 }
93 }
94 }
95 }

98

96 cout << "Number of edges removed from complete graph: " << ←↩
kounter << endl ;

97 return hg ;
98 }
99

100 /∗∗
101 Build sage s c r i p t s to run .
102 ∗/
103 string Sage () {
104 string sage = "#!/usr/bin/env sage\nimport sys\nfrom sage.all ←↩

import *\n" ;
105 sage += "import multiprocessing as mp\n" ;
106 return sage ;
107 }
108
109 string SageIdealSort () {
110 string sage = "\n\n" ;
111 sage += "for i,id in enumerate(ideals):\n\t" ;
112 sage += "id = ideal(sorted(id.gens(), reverse=True))\n\t" ;
113 sage += "ideals[i] = id\n" ;
114
115 // update t h i s to work on any number o f g ene ra to r s .
116 sage += "ideals = sorted(ideals ,key=lambda I: (str(I.gens()←↩

[0]).lower(),str(I.gens()[1]).lower()))\n" ;
117
118 return sage ;
119 }
120
121 string SageSingle () {
122 string sage = "coverideal = ideals.pop()\n" ;
123 sage += "for I in ideals:\n\tcoverideal = coverideal.←↩

intersection(I)\nprint coverideal" ;
124 return sage ;
125 }
126
127 string SageParallel () {
128 string sage = "def idealsIntersection(A):\n\t" ;
129 sage += "cover = A.pop()\n\t" ;
130 sage += "for a in A:\n\t\t" ;
131 sage += "cover = cover.intersection(a)\n\t" ;
132 sage += "return cover\n\n" ;
133
134 sage += "def mappingIdeals(ideals):\n\t" ;
135 sage += "idealer = []\n\t" ;
136 sage += "N = len(ideals)\n\t" ;
137 sage += "for w in range(0,4):\n\t\t" ;
138 sage += "idealer_tmp = []\n\t\t" ;
139 sage += "for t in range(0,(N)/4):\n\t\t\t" ;
140 sage += "if (len(ideals)>0):\n\t\t\t\t" ;

99

Appendix D. Code for Vertex Cover Calculations

141 sage += "idealer_tmp.append(ideals.pop())\n\t\t" ;
142 sage += "if (idealer_tmp != None):\n\t\t\t" ;
143 sage += "idealer.append(idealer_tmp)\n\t" ;
144 sage += "return idealer\n\n\n" ;
145
146 sage += "if __name__ == __main__ : \ n\t" ;
147 sage += "p = mp.Pool()\n\t" ;
148 sage += "results = []\n\t" ;
149 sage += "ideals_pairs = mappingIdeals(ideals)\n\t" ;
150 sage += "p.map_async(idealsIntersection , ideals_pairs , ←↩

callback=results.append)\n\t" ;
151 sage += "p.close()\n\t" ;
152 sage += "p.join()\n\t" ;
153
154 sage += "coverideal = results[0].pop()\n\t" ;
155 sage += "for I in results[0]:\n\t\t" ;
156 sage += "coverideal = coverideal.intersection(I)\n\t" ;
157 return sage ;
158 }
159
160 string SageRandomListOfIdeals () {
161 string sage = "" ;
162 int N = 10 ;
163 vector<string> list_variables ;
164
165 sage += "variableNames = [" ;
166 string variables = "" ;
167 for (int i = 0 ; i < N ; i++) {
168 string name = "x" + to_string (i) + "" ;
169 list_variables . push_back (name) ;
170 variables += name + "," ;
171 sage += " " + name + " , " ;
172 }
173
174 sage . pop_back () ;
175 variables . pop_back () ;
176
177 sage += "]\n\n" ;
178 sage += "g = PolynomialRing(GF(2), variableNames , order = lex)←↩

\n" ;
179 sage += "(" ;
180 sage += variables ;
181 sage += ") = g._first_ngens(" + to_string (list_variables . size←↩

()) + ")\n\n" ;
182 sage += "ideals = []\n" ;
183
184 int num_polys = 10 ;
185 for (int i=0; i<num_polys ; i++) {
186 int degree = randomFrom (2 , 5) ;

100

187 int num_terms = randomFrom (2 , 4) ;
188 sage += "ideals.append(ideal(g.random_element(" + ←↩

to_string (degree) + ", " + to_string (num_terms) + "), " ;
189 sage += "g.random_element(" + to_string (degree) + ", " + ←↩

to_string (num_terms) + ")))\n" ;
190 }
191 return sage ;
192 }
193
194 string SageRandomIdeals () {
195 string sage = Sage () ;
196 sage += SageRandomListOfIdeals () ;
197 sage += "\n\n" ;
198 sage += SageIdealSort () ;
199 sage += "\n\n\n" ;
200 sage += SageParallel () ;
201 return sage ;
202 }
203
204 string SageRandomIdealsSingle () {
205 string sage = Sage () ;
206 sage += SageRandomListOfIdeals () ;
207 sage += "\n\n" ;
208 sage += SageIdealSort () ;
209 sage += "\n\n\n" ;
210 sage += SageSingle () ;
211 return sage ;
212 }
213
214 string SageBasic (Hypergraph hg) {
215 string sage = Sage () ;
216
217 // Build v a r i a b l e names .
218 sage += "variableNames = [" ;
219 string variables = "" ;
220 for (Vertex v : hg . vertices) {
221 // cout << v . name << endl ;
222 variables += v . name + "," ;
223 sage += " " + v . name + " , " ;
224 }
225
226 sage . pop_back () ;
227 variables . pop_back () ;
228 sage += "]\n\n" ;
229 // Construct polynomial r i ng F 2 [x0 , x1 , . . . , xn] and v a r i a b l e s
230 sage += "g = PolynomialRing(GF(2), variableNames , order = lex)←↩

\n" ;
231 sage += "(" ;
232 sage += variables ;

101

Appendix D. Code for Vertex Cover Calculations

233 sage += ") = g._first_ngens(" + to_string (hg . vertices . size ()) ←↩
+ ")\n\n" ;

234 sage += "ideals = []\n" ;
235 for (Edge e : hg . edges) {
236 sage += "ideals.append(ideal(" + e . vertices [0] . name + ", "←↩

+ e . vertices [1] . name + "))\n" ;
237 }
238
239 sage += "\n\n" ;
240 sage += SageIdealSort () ;
241 return sage ;
242 }
243
244 string SageMathBuilderParallel (Hypergraph hg) {
245 string sage = SageBasic (hg) ;
246 sage += "def idealIntersection(A):\n\t" ;
247 sage += "return A[0].intersection(A[1])\n\t\n" ;
248 sage += "def mapIdeals(ideals):\n\t" ;
249 sage += "ideals_par = []\n\t" ;
250 // sage += ” whi l e (l en (i d e a l s) >= 1) :\n\ t \ t ” ;
251 sage += "for t in range(0,len(ideals)-1):\n\t\t" ;
252 sage += "if (len(ideals)>=2):\n\t\t\t" ;
253 sage += "I = ideals.pop()\n\t\t\t" ;
254 sage += "J = ideals.pop()\n\t\t\t" ;
255 sage += "ideals_par.append([I,J])\n\t" ;
256 //#i d e a l s . append (p . apply async (i d e a l I n t e r s e c t i o n , [I , J]))
257 sage += "return ideals_par\n" ;
258 sage += "\n\n" ;
259
260 sage += "if __name__ == __main__ : \ n\t" ;
261 sage += "while (len(ideals)!=1):\n\t\t" ;
262 sage += "p = mp.Pool()\n\t\t" ;
263 sage += "results = []\n\t\t" ;
264 sage += "ideals_par = mapIdeals(ideals)\n\t\t" ;
265 sage += "p.map_async(idealIntersection , ideals_par , callback=←↩

results.append)\n\t\t" ;
266 sage += "p.close()\n\t\t" ;
267 sage += "p.join()\n\t\t" ;
268
269 // sage += ” i d e a l s = r e s u l t s [1] \ n\n\ t ” ;
270 sage += "for I in results[0]:\n\t\t\t" ;
271 sage += "ideals.append(I)\n\t\t\t" ;
272
273 sage += "\n\t" ;
274
275 sage += "coverIdeal = ideals[0]\n\t" ;
276 // sage += ” f o r c i in c o v e r I d e a l . gens () :\n\ t \ t ” ;
277 // sage += ” p r in t c i \n ” ;
278 sage += "print coverIdeal\n" ;

102

279 // sage += ” f o r I in i d e a l s :\n\ t c o v e r i d e a l = c o v e r i d e a l .←↩
i n t e r s e c t i o n (I) \ npr int c o v e r i d e a l ” ;

280 return sage ;
281 }
282
283 string SageMathBuilderParallelVersion2 (Hypergraph hg) {
284 string sage = SageBasic (hg) ;
285 sage += "def idealsIntersection(A):\n\t" ;
286 sage += "cover = A.pop()\n\t" ;
287 sage += "for a in A:\n\t\t" ;
288 sage += "cover = cover.intersection(a)\n\t" ;
289 sage += "return cover\n\n" ;
290
291 sage += "def mappingIdeals(ideals):\n\t" ;
292 sage += "idealer = []\n\t" ;
293 sage += "N = len(ideals)\n\t" ;
294 sage += "for w in range(0,4):\n\t\t" ;
295 sage += "idealer_tmp = []\n\t\t" ;
296 sage += "for t in range(0,(N)/4):\n\t\t\t" ;
297 sage += "if (len(ideals)>0):\n\t\t\t\t" ;
298 sage += "idealer_tmp.append(ideals.pop())\n\t\t" ;
299 sage += "if (idealer_tmp != None):\n\t\t\t" ;
300 sage += "idealer.append(idealer_tmp)\n\t" ;
301 sage += "return idealer\n\n\n" ;
302
303 sage += "if __name__ == __main__ : \ n\t" ;
304 sage += "p = mp.Pool()\n\t" ;
305 sage += "results = []\n\t" ;
306 sage += "ideals_pairs = mappingIdeals(ideals)\n\t" ;
307 sage += "p.map_async(idealsIntersection , ideals_pairs , ←↩

callback=results.append)\n\t" ;
308 sage += "p.close()\n\t" ;
309 sage += "p.join()\n\t" ;
310
311 sage += "coverideal = results[0].pop()\n\t" ;
312 sage += "for I in results[0]:\n\t\t" ;
313 sage += "coverideal = coverideal.intersection(I)\n\t" ;
314 sage += "print coverideal\n\t" ;
315
316 return sage ;
317 }
318
319 string SageMathBuilder (Hypergraph hg) {
320
321 string sage = SageBasic (hg) ;
322 sage += SageSingle () ;
323 // cout << sage << endl ;
324 return sage ;
325 }

103

Appendix D. Code for Vertex Cover Calculations

326
327
328
329 int main (int argc , char∗ argv []) {
330
331 int num = 20 ;
332 if (argc > 1)
333 num = atoi (argv [1]) ;
334 cout << "Argument: " << num << endl ;
335
336 auto hg = generateRandomHypergraph (num) ;
337 // auto hg = generateHypergraph (num) ;
338
339 string sage = SageMathBuilderParallel (hg) ;
340 // s t r i n g sage = SageMathBui lderPara l l e lVers ion2 (hg) ;
341 // s t r i n g sage = SageRandomIdeals () ;
342
343 ofstream myfile ;
344 myfile . open ("parallel.sage") ;
345 myfile << sage ;
346 myfile . close () ;
347
348 std : : system ("chmod +x parallel.sage") ;
349
350 ofstream parV2file ;
351 parV2file . open ("parV2.sage") ;
352 parV2file << SageMathBuilderParallelVersion2 (hg) ;
353 parV2file . close () ;
354 std : : system ("chmod +x parV2.sage") ;
355
356
357 ofstream singlefile ;
358 singlefile . open ("single.sage") ;
359 singlefile << SageMathBuilder (hg) ;
360 // s i n g l e f i l e << SageRandomIdealsSingle () ;
361 singlefile . close () ;
362 std : : system ("chmod +x single.sage") ;
363
364 return 0 ;
365 }

104

Bibliography

[1] Andreas Aabrandt and Vagn Lundsgaard Hansen. The circle equation over finite
fields. Manuscript in preparation, 2015.

[2] Andreas Aabrandt and Vagn Lundsgaard Hansen. A note on powers in finite fields.
International Journal of Mathematical Education in Science and Technology, to
appear.

[3] Andreas Aabrandt, Vagn Lundsgaard Hansen, Bjarne Poulsen, and Chresten
Træholt. Ranking entities in networks via lefschetz duality. In IEEE European
Modelling Symposium (EMS), pages 71–76, Oct 2014.

[4] Andreas Aabrandt, Vagn Lundsgaard Hansen, and Chresten Træholt. Topological
rankings in communication networks. International Journal of Simulation Systems,
Science and Technology, 16, 2016.

[5] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[6] Richard Bellman and Robert Kalaba. Dynamic Programming and Modern Control
Theory. Academic Press, 1965.

[7] Dennis J. Brueni and Lenwood S. Heath. The pmu placement problem. SIAM
Journal on Discrete Mathematics, 19(3):744–761, 2005.

[8] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, Universität
Innsbruck, 1965.

[9] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Algebra.
Springer, 3rd edition, 2007.

[10] Harold Davenport. The Higher Arithmetic. An Introduction to the Theory of Num-
bers. Dover Publications, Inc., New York, 1983.

[11] Samuel Eilenberg and Saunders Mac Lane. General theory of natural equivalences.
Transactions of the American Mathematical Society, 58:231–294, 1945.

105

Bibliography

[12] Samuel Eilenberg and Norman Steenrod. Foundations of Algebraic Topology. Prince-
ton University Press, 1952.

[13] David Eisenbud and Joe Harris. The Geometry of Schemes. Springer, 2000.

[14] Euclid and Thomas L. Heath. The Thirteen Books of Euclid’s Elements, Vol. 1, 2
and 3. Dover Publications, Incorporated, 1956.

[15] Massimo Franceschet. Pagerank: Standing on the shoulders of giants. Commun.
ACM, 54(6):92–101, June 2011.

[16] Alexander Grothendieck. Sur quelques points d’algèbre homologique, i. Tohoku
Math. J. (2), 9(2):119–221, 1957.

[17] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2000.

[18] Jean-Claude Hausmann. Mod Two Homology and Cohomology. Online copy, 2016.

[19] Peter J. Hilton and Urs Stammbach. Homological algebra. Springer, 1997.

[20] Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A.
Wolsey. 50 Years of Integer Programming 1958-2008. Springer, 2010.

[21] Saunders Mac Lane. Homology. Springer, 1963.

[22] Saunders Mac Lane. Categories for the working mathematician. Springer, 1998.

[23] Serge Lang. Algebra. Springer, 2002.

[24] Solomon Lefschetz. Applications of Algebraic Topology. Springer-Verlag, 1975.

[25] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press,
1997.

[26] W. Frank Moore, Mark Rogers, and Sean Sather-Wagstaff. Monomial ideals and
their decompositions. Unpublished Manuscript, Jan 2015.

[27] Cameron Nowzari, Victor M. Preciado, and George J. Pappas. IEEE Control Sys-
tems Magazine, 36(1):26–46, February 2016.

[28] Grisha Perelman. The entropy formula for the ricci flow and its geometric applica-
tions. arXiv:math/0211159, 2002.

[29] Grisha Perelman. Finite extinction time for the solutions to the ricci flow on certain
three-manifolds. arXiv:math/0307245, 2002.

[30] Grisha Perelman. Ricci flow with surgery on three-manifolds. arXiv:math/0303109,
2003.

[31] E. Spanier. Algebraic Topology. McGraw-Hill, 1966.

106

Bibliography

[32] Bernd Sturmfels. Solving Systems of Polynomial Equations. American Mathemati-
cal Society, 2002.

[33] Ian Stweart. Galois Theory. Chapman & Hall/CRC, 2004.

[34] Zhifang Wang, Robert J. Thomas, and Anna Scaglione. Generating random topol-
ogy power grids. In Hawaii International Conference on System Sciences, Proceed-
ings of the 41st Annual, pages 183–183, Jan 2008.

107

www.elektro.dtu.dk
Department of Electrical Engineering

Center for Electric Power and Energy

Technical University of Denmark

Ørsteds Plads

Building 348

DK-2800 Kgs. Lyngby

Denmark

Tel: (+45) 45 25 38 00

Fax: (+45) 45 93 16 34

Email: info@elektro.dtu.dk

