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Abstract

This paper investigates the simultaneous optimization problem of routing and sailing speed in the context

of full-shipload tramp shipping. In this problem, a set of cargoes can be transported from their load

to discharge ports by a fleet of heterogeneous ships of different speed ranges and load-dependent fuel

consumption. The objective is to determine which orders to serve and to find the optimal route for

each ship and the optimal sailing speed on each leg of the route so that the total profit is maximized.

The problem originated from a real-life challenge faced by a Danish tramp shipping company in the

tanker business. To solve the problem, a three-index mixed integer linear programming formulation

as well as a set packing formulation are presented. A novel Branch-and-Price algorithm with efficient

data preprocessing and heuristic column generation is proposed. The computational results on the test

instances generated from real-life data show that the heuristic provides optimal solutions for small test

instances and near-optimal solutions for larger test instances in a short running time. The effects of speed

optimization and the sensitivity of the solutions to the fuel price change are analyzed. It is shown that

speed optimization can improve the total profit by 16% on average and the fuel price has a significant

effect on the average sailing speed and total profit.

Keywords: tramp shipping, speed optimization, heuristic column generation

1. Introduction1

Sea shipping is one of the most important transportation modes especially for large-volume goods2

between continents. It is estimated that sea cargo is responsible for around 80% of global trade by3

volume and over 70% by value, and these percentages are even higher in most developing countries4

(UNCTAD 2013). Among the various operational costs of sea shipping, fuel cost accounts for a large5

proportion. For example, in a liner shipping company, bunker cost can be around 50% (Notteboom 2006)6
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or even above 60% (Golias et al. 2009) of the total operational cost. In addition, the large consumption7

of fuel results in significant CO2 and NOx emissions, which have recently attracted media attention for8

their negative impacts on climate change and air pollution. According to the International Maritime9

Organization (Buhaug et al. 2009), CO2 emissions from the maritime sector in 2007 has increased by10

86% compared to 1990 and accounted for 3.3% of the world’s total emissions. These emissions are11

expected to continue to increase by 150-250% in 2050 if no action is taken.12

The fuel cost, and consequently CO2 emissions, are strongly dependent on the sailing speed. Ryder13

and Chappell (1980) and Ronen (1982) showed that a cubic function can describe the relationship between14

fuel consumption and speed. The ocean conservation group OCEANA states: “Reducing commercial ship15

speeds, by only a few knots, yields salutary results for both shipping companies and the environment.”16

(OCEANA 2008). Therefore optimizing sailing speed in order to reduce fuel cost and CO2 emissions is17

an important issue to investigate.18

Speed optimization for shipping routes has attracted some attention recently. For liner shipping, most19

of the previous work focuses on optimizing the speed for one or several fixed route(s) (Corbett et al. 2009,20

Ronen 2011, Lindstad et al. 2011 and Wang and Meng 2012). In these studies, the sailing speed is treated21

as a variable, which not only determines the fuel consumption but also determines the required ship22

and/or fleet size to maintain the given service frequency. The yearly profit is expressed as a function of23

sailing speed, and the optimal sailing speed is obtained when the marginal profit equals zero. Both Ronen24

(2011) and Corbett et al. (2009) concluded that when the fuel price is increased, the optimal speed is25

likely to be reduced when maximizing the profit. This reduction of speed also leads to a reduction of CO226

emissions. Wang and Meng (2012) dealt with the problem of finding the optimal route for containers and27

the optimal speed for the ships given fixed shipping routes and origin-destination pair of each container.28

They proposed an outer-approximation method, which uses piecewise-linear functions to approximate29

the fuel consumption as a function of speed within a predetermined tolerance level.30

In contrast to liner shipping, tramp shipping does not consider service frequency. A ship can sail at31

different speeds on different sailing legs of a route. The objective of tramp shipping is to minimize the32

total cost or maximize the total profit for transporting cargoes. Fagerholt et al. (2010) considered the33

problem of optimizing the speed on each leg of a single fixed route. Gatica and Miranda (2011) and34

Norstad et al. (2011) studied simultaneous routing and speed optimization for a full-shipload problem35

and a less-than-shipload problem respectively. In Fagerholt et al. (2010), the sequence of ports and the36

time window of visiting each port on a given route are fixed. Three models were presented for solving the37

problem. The first two models are non-linear models, where the speed is a continuous variable between38

a minimum and a maximum, and the fuel consumption per distance unit is expressed as a quadratic39
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function of speed. The third model discretizes the time window and converts the problem into a shortest40

path problem on an acyclic graph. These models were tested on data with up to 16 ports and 10-day41

time window. It was shown that, compared to the continuous model, the discrete model is able to provide42

quality solution within short computational time. Gatica and Miranda (2011) applied the same idea of43

discretized time window to the solution of a full-shipload routing and speed optimization problem. They44

tested their method on generated data instances with up to 15 discretized time-window points, 50 cargoes45

and 9 ships. Norstad et al. (2011) formulated the less-than-shipload routing and speed optimization46

problem as a pickup and delivery problem with an extra continuous decision variable for the speed on47

each leg. They proposed a recursive smoothing algorithm for determining the optimal speed for a given48

route, which is shown to be superior to the discretization of arrival time presented in Fagerholt et al.49

(2010). To solve the routing and speed optimization simultaneously, they proposed a multi-start local50

search heuristic and tested it on data with up to 10-day time windows.51

The problem of routing and scheduling for tramp shipping is very similar to the well-know vehicle52

routing problem (Eksioglu et al. (2009), Laporte et al. (2013)), which has been studied intensively in the53

literature. Christiansen et al. (2007) and Christiansen et al. (2013) gave a good overview of maritime54

transportation and present different models for routing and scheduling of both tramp and liner ships. A55

few variations of tramp shipping problems have also been addressed in the previous work. Gatica and56

Miranda (2011) studied a full-shipload problem, where each cargo corresponds to a full-shipload and a57

ship can only carry one cargo at a time as mentioned above. Brønmo et al. (2007a), Korsvik et al. (2010),58

Lin and Liu (2011) and Norstad et al. (2011) studied the less-than-shipload problem, in which several59

cargoes are allowed to be onboard at the same time. The cargo size is fixed in their studies. Brønmo60

et al. (2007b), Korsvik and Fagerholt (2010) and Brønmo et al. (2010) allowed the shipping company to61

choose the quantity of each cargo to be transported, and therefore the delivery quantity becomes a variable62

between given upper and lower bounds. In Henrik et al. (2011), Korsvik et al. (2011) and Stålhane et al.63

(2012), a single cargo can be split between multiple ships.64

The work described in this paper originated from a routing and scheduling problem encountered65

by a large Danish product tanker shipping operator, who transports oil products in full-shipload mode.66

The shipping operator has a fleet of heterogeneous ships with different sizes and fuel consumptions. It67

receives cargo orders from the customers, each of which has a specific pickup port, a delivery port and a68

time window within which the cargo should be picked up. The operater needs to decide whether to accept69

the cargo, which ship should pickup the cargo at what time, and at which speed each ship should sail70

on each leg in order to maximize the overall profit. This problem is similar to the full-shipload routing71

and speed optimization problem considered in Gatica and Miranda (2011). The difference is that, in72
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our problem, the fuel consumption of each ship depends individually on the sailing speed and the load73

of the ship, i.e., whether the ship is loaded (laden) or empty (ballast); whereas, in Gatica and Miranda74

(2011), the fuel consumption only depends on the speed. To the best of the authors’ knowledge, the load75

dependent fuel consumption has not been considered in the literature. In addition, Gatica and Miranda76

(2011) did not propose any tailored solution method but relied on solving the models using an IP solver.77

We have formulated two mathematical models for the problem, developed a Branch-and-Price (B&P)78

algorithm with heuristic column generation, and tested the proposed algorithm on instances generated79

from real-life data. The computational results show that the branch-and-price heuristic produces optimal80

or near-optimal solutions in relatively short time.81

The main contribution of this paper is the proposed heuristic. The heuristic is able to find high82

quality solutions in short computation time. It clearly outperforms a commercial IP solver when it comes83

to computation time and size of the instances that can be handled. In terms of modeling, the present84

paper is one of the first to consider variable speeds in a tramp shipping planning context and it is the85

first to consider a load dependent fuel consumption. Although the modeling is greatly simplified by the86

assumption of full-vessel loads, the assumption itself is realistic. The company used as a case in this87

project does not carry multiple orders simultaneously on a single ship.88

The remainder of the paper is organized as follows. Two mathematical formulations are presented in89

Section 2 and the heuristic B&P algorithm is described in Section 3. The computational results are given90

in Section 4, followed by conclusions in Section 5.91

2. Mathematical Model92

Our problem can be defined on the graph G = (N,A), where N is the set of all the nodes and A is the93

set of feasible arcs in the graph. Let S denote the set of ships. Each ship s ∈ S starts from node o(s) and94

ends at dummy node d(s). Let O and D denote the set of all origins and destinations of the ships. Let95

N0 denote the set of cargoes. As this is a full-shipload problem, each node i ∈ N0 corresponds to a cargo,96

which is transported directly from its load port to discharge port, and is associated with a sailing distance97

gi from the load port to the discharge port, a port service time ti for loading and unloading the cargo and a98

time window [ai,bi], within which the cargo should start being loaded. For i∈O∪D, we set gi = 0, ti = 0,99

ai = 0 and bi = max j∈N0{b j}. The set of all the nodes is N = N0∪O∪D. Let N+
i = { j : (i, j) ∈ A} and100

N−i = { j : ( j, i)∈ A} be the set of nodes that can be reached from node i and can reach node i respectively.101

The distance between two nodes i and j is denoted as di j, which is the distance from the discharge port102

of cargo i, or the location of i if i ∈ O, to the load port of cargo j. For the dummy nodes j ∈ D, we set103

di j = 0, since we do not decide in advance where the ship should end its journey. The ships can sail at104
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different speeds. Let V denote the set of speeds and lv the time of sailing one distance unit at speed v∈V .105

The fuel consumption depends on the ship, the sailing speed and the load of the ship. Let ev
s denote the106

ballast fuel cost of ship s sailing one distance unit at speed v. Let cv
is be the cost of ship s sailing one107

distance unit at speed v with cargo i. It should be noted that cv
is is determined by the light weight of the108

ship s, the weight of cargo i and the speed. Examples of approximation functions of cv
is can be found in109

Psaraftis and Kontovas (2013). Due to the fact that the ships are different, not all the ships can serve all110

the cargoes. For example, a small ship cannot carry a large cargo, and a large ship with deep draft cannot111

serve a cargo with a shallow load or discharge port. Let binary variable pis be 1 if is feasible for ship s to112

serve cargo i and 0 otherwise. Let rv
i be the reward of cargo i when served at speed v.113

2.1. A Three-Index Formulation114

Let binary variable xv
i js be 1 iff ship s sails from cargo node i to cargo node j at speed v, and let binary115

variable yv
is be 1 iff ship s serves cargo i at speed v. Let variable zis denote the time when ship s starts116

loading cargo i, and auxiliary variable wi js denote the time span of ship s from arriving at the loading port117

of cargo i to arriving at the loading port of cargo j. The mathematical model can be presented as follows:118

119

min ∑
i∈N0

∑
s∈S

∑
v∈V

cv
isgiyv

is + ∑
(i, j)∈A

∑
s∈S

∑
v∈V

ev
sdi jxv

i js− ∑
i∈N0

∑
s∈S

∑
v∈V

rv
i yv

is (1)

120

subject to:121

∑
j∈N+

i

∑
s∈S

∑
v∈V

xv
i js ≤ 1 ∀i ∈ N0 (2)

∑
j∈N+

o(s)

∑
v∈V

xv
o(s) js = 1 ∀s ∈ S (3)

∑
j∈N+

i

∑
v∈V

xv
i js− ∑

j∈N−i

∑
v∈V

xv
jis = 0 ∀i ∈ N0,s ∈ S (4)

∑
j∈N−d(s)

∑
v∈V

xv
jd(s)s = 1 ∀s ∈ S (5)

ti + ∑
v∈V

gilvyv
is + ∑

v∈V
di jlvxv

i js = wi js ∀(i, j) ∈ A,s ∈ S (6)

zis +wi js−M(1−∑
v∈V

xv
i js)≤ z js ∀(i, j) ∈ A,s ∈ S (7)

ai ≤ zis ≤ bi ∀i ∈ N,s ∈ S (8)

∑
v∈V

yv
is ≤ pis ∀i ∈ N0,s ∈ S (9)
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∑
j∈N+

i

∑
v∈V

xv
i js = ∑

v∈V
yv

is ∀i ∈ N0,s ∈ S (10)

xv
i js,y

v
is ∈ {0,1} ∀i, j ∈ N,v ∈V,s ∈ S (11)

zis ≥ 0 ∀i ∈ N,s ∈ S (12)

wi js ≥ 0 ∀i, j ∈ N,s ∈ S (13)

122

The objective function (1) minimizes the sum of the transportation cost minus the total reward of the123

served cargoes. It can also be reformulated as maximization of the total profit. It should be noted that124

other ship costs, such as maintainance costs and crew salaries, are not considered in this work. Constraints125

(2) ensure that each cargo is served by at most one ship at one speed. If a subset of the cargoes is126

mandatory, we need to change the inequality in this constraint to an equality for those mandatory cargoes.127

Constraints (3) to (5) are flow conservation constraints. Constraints (6) calculate the time span wi js128

of ship s ∈ S from the arrival at the loading port of cargo i to the arrival at the loading port of cargo129

j, which is the sum of the loading and unloading time of cargo i, the sailing time between the load130

and discharge ports of cargo i and the sailing time from cargo i to cargo j. Constraint (7) imposes131

that if ship s sails from i to j, then z js ≥ zis +wi js. Parameter M is a sufficiently large number, and132

is set to bi + (ti + maxv∈V gilv + maxv∈V di jlv)− ai. Constraints (8) are the time window constraints.133

Constraints (9) ensure that each cargo can only be served by a compatible ship. Constraints (10) enforce134

the relationship between x and y variables. Constraints (11), (12) and (13) define the variables.135

In order to tighten and simplify the model, it is advantageous to only generate variables corresponding136

to arcs that are feasible. An arc (i, j) is infeasible, if b j < ai+ti+(gi+di j) · lvmax , where vmax corresponds137

to the highest possible speed.138

This model is solved by CPLEX 12.5. The tests show that removing infeasible arcs reduces compu-139

tational time significantly. For an instance with 100 cargoes, 20 ships and a 60-day planning horizon, the140

number of arcs in the graph and the computational time is reduced by 78% and 66% respectively. This141

is because our problem is a full-shipload problem and the service time of a cargo, including the loading142

time, transportation time from pickup to delivery and unloading time, is relatively long compared to the143

pickup time window. Further computational results will be presented in Section 4.144

2.2. Set Packing Formulation145

This problem can also be formulated as a Set Packing problem. Let Ps be the set of feasible routes for146

ship s∈ S. Let cs
p denote the cost of route p for ship s, calculated as the transportation cost minus the total147

reward of the cargoes served on the route. Let aip equal 1 if route p covers cargo i, and 0 otherwise. Let148
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the binary variable ys
p be 1 if route p is taken by ship s, and 0 otherwise. The problem can be formulated149

as follows:150

151

min ∑
s∈S

∑
p∈Ps

cs
pys

p (14)

152

subject to153

∑
s∈S

∑
p∈Ps

aipys
p ≤ 1 ∀i ∈ N0 (15)

∑
p∈Ps

ys
p ≤ 1 ∀s ∈ S (16)

ys
p ∈ {0,1} ∀p ∈ Ps,s ∈ S (17)

154

The objective is to minimize the cost of the selected routes in such way that each cargo is covered by155

at most one ship and each ship is assigned to at most one route.156

The LP relaxation of the set packing formulation will always provide the same or better lower bound157

compared to the LP relaxation of the three-index formulation.158

3. Solution Method159

Solving the set packing model (14)–(17) by listing all possible ship routes in Ps for all s ∈ S and160

passing this problem to an IP solver seems impossible given the many possible routes for each ship and161

the many choices of sailing speeds for a single route. As a consequence, the model is solved using a162

heuristic branch-and-price algorithm (see e.g. Barnhart et al. 1998). The branch-and-price algorithm163

solves the linear programming (LP) relaxation of the problem (denoted as LP-SP in the following text),164

where (17) is replaced by165

ys
p ≥ 0 ∀p ∈ Ps,s ∈ S.

This problem can be solved by column generation, where only a subset of the ship routes are firstly166

considered in the model and the rest of the routes that have the potential to improve the objective function167

are gradually generated and added to the model. Let P̄s be the restricted set of routes for ship s, which168

can be initialized by single-cargo routes. The restricted LP with the restricted sets P̄s is called the master169

problem. Solving the master problem gives dual variables πi and λ s corresponding to constraints (15) and170

(16), respectively. Using these dual variables, we can calculate the reduced cost of a path p for ship s as171
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ĉs
p = cs

p−∑i∈N0
aipπi−λ s. If ĉs

p ≥ 0 for all s ∈ S and all p ∈ Ps (that is, considering all feasible routes),172

then the current LP solution to the restricted problem is optimal for the full LP model. If there exist an173

s ∈ S and a p ∈ Ps such that ĉs
p < 0 then the corresponding variable has a chance of producing improved174

LP solution. It should be added to P̄s and the LP should be resolved to obtain new dual variables. Finding175

the s ∈ S and p ∈ Ps that results in the lowest ĉs
p is done by solving a pricing problem. In our case the176

pricing problem is an elementary shortest path problem with time windows and variable speeds. We solve177

a problem for each ship s ∈ S, aiming at finding the cheapest path from o(s) to d(s) satisfying the time178

windows. The information given by the dual variables is encoded in the arc costs of the shortest path179

problem. More precisely, in the shortest path problem related to ship s, the cost c̄v1v2
i j of an arc (i, j) with180

a traverse speed v1 on the laden part of the journey, i.e. the sailing distance between cargo i’s load and181

discharge ports, and speed v2 on the ballast part of the travel (from node i to node j) is set to182

c̄v1v2
i j =

cv1
is gi + ev2

s ·di j−πi if i ∈ N0

ev2
s ·di j−λ s if i = o(s)

183

By using these arc costs, it is easy to show that the cost of a path will equal the reduced cost of184

the corresponding variable. The resource constrained shortest path problem is usually solved by using185

labeling algorithms (Irnich and Desaulniers 2005). However, in this paper, we use a simple heuristic to186

ensure that the computational time of the pricing problem is short even for large instances. The heuristic187

is described in Section 3.2. Using a heuristic for solving the pricing problem implies that we do not know188

if the algorithm has solved LP-SP to optimality. Even if the heuristic cannot find a path with negative cost,189

we cannot rule out the existence of a path that could improve the current solution to LP-SP. However, the190

algorithm proceeds as if we had solved the LP to optimality. If the LP relaxation only takes integer values,191

the algorithm stops and outputs the solution. If some variables take fractional values, the algorithm will192

branch in order to find an integer solution. We choose to branch on the arcs used in the subproblem, i.e.,193

whether the ships should use an arc or not. From an implementation point of view, it is handled in the194

way described by Desrochers et al. (1992).195

The algorithm uses strong branching in order to decide which arc to branch on. A number, β , of196

branching candidates are evaluated by enforcing the branch and computing the resultant improvement in197

the lower bounds (∆1 and ∆2) in the two child nodes. Following Linderoth and Savelsbergh (1999), the198

algorithm chooses the branch that maximizes199

α min{∆1,∆2}+(1−α)max{∆1,∆2}

where 0≤ α ≤ 1 is a parameter.200
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If the pricing problem were solved to optimality and the branch-and-bound algorithm were allowed201

to run until all relevant nodes in the search tree had been explored, it would either return the optimal202

solution or state that no feasible solution exists. Since the implemented algorithm only solves the pricing203

problem using a heuristic, we cannot guarantee that the optimal solution is found, but the solution quality204

is in general good as will be seen in Section 4.2.205

After finishing the branch-and-bound search, the algorithm uses a generic IP solver to solve (14)–206

(17) using the generated columns. This can give improved solutions even when the branch-and-bound207

search has run to the end. This is because the heuristic branch-and-price algorithm can fathom a node208

erroneously due to the missing of an important column. If this column is generated at a later stage then209

solving the model with these additional generated columns may yield an improved solution.210

3.1. Preprocessing211

The purpose of the preprocessing is to reduce the solution space by identifying incompatibilities212

between the cargoes. Two cargoes are incompatible if it is infeasible to serve them on the same route213

without violating their time windows, i.e., ai + T min
i j > b j or a j + T min

ji > bi, where T min
i j denotes the214

minimum time required to serve cargo i and to travel from cargo i to cargo j. The first inequality states215

that cargo j can not be reached before the end of its time window even if a ship starts serving cargo i216

at the beginning of its time window, uses the minimum time to service cargo i and sail to cargo j. The217

second inequality describes the opposite. Any route that contains two incompatible cargoes is infeasible.218

219

Let NINF
i denote the set of cargoes that are incompatible with cargo i and |NINF

i | the number of cargoes220

incompatible with i. Figure 1 shows
∣∣NINF

i

∣∣ for each cargo in an instance with 160 cargoes in a 90-day221

planning horizon. The cargoes (x-axis) are sorted by their |NINF
i | in a non-decreasing order. As can be222

seen from the figure, for most of the cargoes, the number of incompatible cargoes is larger than 60, and223

there are 11 cargoes, with more than 100 incompatible cargoes. These cargoes are characterized by a224

long distance between the load and discharge port and long service time, which makes it difficult for225

other cargoes to fit in the same route.226

The result of the preprocessing is used in solving the pricing problem. The pricing heuristic will227

never try to put two incompatible cargoes into the same route. This helps to reduce the solution space and228

shorten the computational time of solving the pricing problem. The tests show that, for an instance with229

100 cargoes and 20 ships within a 60-day planning horizon, the proposed preprocessing can reduce the230

computational time by more than 80% (from 46 seconds to 9 seconds).231

232

9



Figure 1: The number of incompatible cargoes for each cargo.

3.2. Heuristic algorithm for solving the pricing problem233

Our pricing heuristic method is described in Algorithm 1. It initially makes a random permutation of234

the ships, which determines the order of processing.235

For each ship s, the algorithm tries to find a list of routes, R, with negative reduced cost by means236

of an insertion heuristic. The insertion heuristic first initializes the route r with a seed cargo i (every237

cargo is treated as a seed node). Let the set of nodes N′ denote the remaining candidate cargoes to be238

inserted, N′ = N0\{{i}∪NINF
i }. At each iteration, the algorithm attempts to insert every cargo j ∈N

′
into239

every possible position on route r at every possible speed on the sailing legs from the precedent cargo240

to j, between the load and discharge ports of j, and from j to the successor cargo. The best cargo j∗241

with the minimun insertion cost is selected for insertion and N′ is updated by removing cargo j∗ and its242

incompatible cargoes. Whenever a node is inserted, the reduced cost of the resultant route r is updated.243

If it is negative, then the route is added to R. Node insertion and updating of N′ and R are repeated until244

there are no nodes left in N′. The same insertion heuristic is repeated for every feasible seed cargo. If245

the resultant route list R for ship s is not empty, the pricing heuristic stops, filters R by removing the246

dominated routes in a heuristic way. Otherwise, the algorithm proceeds with the next ship, and repeats247

the same procedure until it finds a ship, for which the route list R is not empty, or until all ships have been248

tried.249
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Algorithm 1 Heuristic algorithm for the pricing problem.
1: S: the set of ships sorted in a random order;

2: R: the list of routes to be added into the master problem;

3: N0: the set of all the cargoes

4: NINF
i : the set of cargoes that are incompatible with cargo i;

5: R← /0

6: for (ship s ∈ S) do

7: for (seed cargo i ∈ N0) do

8: Create an empty route r for ship s

9: N′← N0;

10: if (i can be inserted to r) then

11: Insert i into route r;

12: N′← N′\{{i}∪NINF
i };

13: if (r has negative reduced cost) then

14: Update R;

15: while N′ is not empty do

16: j∗← Find the best node in N′ that can be inserted into r

17: if j∗ is empty then

18: N′← /0

19: else

20: Insert j into route r;

21: N′← N′\{{ j∗}∪NINF
j∗ }

22: if (r has negative reduced cost) then

23: Update R;

24: if R is not empty then

25: Return R;

26: Return R;
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4. Computational experiments250

Our algorithm is implemented in C++ and executed on a computer with a 2.90GHz Intel Core i7-251

3520M processor that has two cores (and doubles the amount of virtual cores through the hyper threading252

feature). The computer has 8 GB of RAM. The model (1)–(13) is solved by CPLEX 12.5 on the same253

computer. CPLEX takes advantage of all available cores while our heuristic only uses one core. The data254

used for testing the algorithm is described in Section 4.1 and the computational results are presented in255

Section 4.2. The parameters α and β in strong branching were set to 3
4 and 15, respectively, the same256

values as in Dabia et al. (2013) and Ropke (2013).257

4.1. Data258

The test instances are generated from real-life data provided by the tanker shipping operator. The259

distributions of the generated cargoes in the test instances approximate the observed distributions in the260

real-life dataset in terms of traveling distance, geographical location of the load and discharge ports, load261

and discharge times, and time windows. In practice, a preferred service (laden) speed, at which the cargo262

should be shipped, and the corresponding reward are fixed after a business negotiation between the cargo263

owner and the shipping company. In this work, in order to investigate the effect of variable speeds, we264

allow the cargoes to be served at different speeds and the corresponding rewards to be dependent on the265

selected sailing speeds. Let vpref
i ∈V denote the preferred service speed of cargo i. The reward of cargo i at266

speed v ∈V , rv
i , is determined by the fuel consumption over the total sailing distance of the cargo and the267

deviation from the cargo’s preferred speed, i.e. |v− vpref
i |, multiplied by a random element for variation.268

The sailing speed is discretized in the real-life data and the set of speeds is V = {10,10.5, ...,16} knots269

(1 knot equals 1.852 km per hour). As the fleet of ships is heterogeneous, the feasible sailing speeds and270

the corresponding fuel consumptions vary between ships. For example, a heavy and slow ships can sail271

between 12 and 15.5 knots, with a fuel consumption at 14 knots of 39.5 and 41.5 tons per day for ballast272

and laden sailing respectively, while a lighter ship consumes 29.5 and 34 tons per day at the same speed.273

Thus, the test data are generated by approximating the long-term statistics of the cargoes and using the274

same practical sailing speed options and fuel consumption functions as in the real-life data. The dataset275

consists of twenty instances involving up to 250 cargoes and 32 ships in a 135-day planning horizon. The276

number of cargoes, the number of ships and the length of the planning horizon of each instance are given277

in Table 1.278
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Table 1: The ten instances generated from real-life data.

Number of cargoes Planning horizon (days) Number of ships

c40 d30 s20 40 30 20

c40 d30 s32 40 30 32

c70 d45 s20 70 45 20

c70 d45 s32 70 45 32

c100 d60 s20 100 60 20

c100 d60 s32 100 60 32

c130 d75 s20 130 75 20

c130 d75 s32 130 75 32

c160 d90 s20 160 90 20

c160 d90 s32 160 90 32

4.2. Results279

We test our algorithm on the generated instances, and compare the heuristic solutions to the optimal280

solutions. We also investigate the effects of allowing variable speeds and analyze how the fuel price281

affects the solutions.282

The performance of the proposed heuristic method283

The problem of simultaneously optimizing routing and sailing speed is solved by the proposed heuris-284

tic approach and by solving model (1)–(13) using CPLEX 12.5. A comparison between the two solution285

approaches is given in Table 2. Columns ZH and Z∗ are the profits obtained by the heuristic method and286

CPLEX respectively. The computational time in seconds and the number of served cargoes are given287

in columns T and ns. The last column shows the optimality gap in percentage, which is calculated as288

ZH−Z∗
Z∗ · 100. The instances of which CPLEX runs out of memory are indicated by “–” in the table. The289

limit on the computational time for the heursitc is set to 3600 seconds and for CPLEX 24 hours.290

As can be seen from the table, CPLEX managed to find the optimal solutions for all the instances with291

up to 160 cargoes. Larger instances can be solved directly by CPLEX for our problem than for the vehicle292

routing problems. This is because, as mentioned earlier, our problem is a full-shipload shipping problem293

and the service time of a cargo, including the loading time, transportation time from pickup to delivery294

and unloading time, is relatively long compared to the pickup time window. Therefore the solution space295

is not as large as for a vehicle routing problem of the same size.296

Our heuristic is able to find optimal solutions to three small instances and near-optimal solutions to297

the remaining instances. The optimality gap is consistently below 4.08% for the instances that CPLEX298

succeeded in finding the optimal solutions. In terms of computational time, the heuristic approach out-299
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performs the exact method significantly. The average running time of the heuristic is less than 5% of300

that of CPLEX, and the heuristic managed to find solutions to all the instances. The numbers of served301

cargoes given by the two solution approaches are very close. In both heuristic and exact solutions, the302

ship’s waiting time is approximately 15% of the entire planning horizon on average.303

Table 2: The results obtained by the heuristic method and CPLEX for the ten test instances.

Heuristic solution Exact solution

ZH T (s) ns Z∗ T (s) ns Gap (%)

c40 d30 s20 5,497,357 0.2 20 5,497,357 3.0 20 0.00

c40 d30 s32 7,455,752 0.5 31 7,455,752 7.9 31 0.00

c70 d45 s20 8,222,284 2.5 33 8,222,892 52.8 33 -0.01

c70 d45 s32 11,735,410 3.3 49 11,735,410 117.6 49 0.00

c100 d60 s20 13,132,563 9.0 43 13,135,308 34.2 43 -0.02

c100 d60 s32 15,706,468 41.6 58 15,746,738 176.7 57 -0.26

c130 d75 s20 15,615,057 25.0 53 15,651,603 131.9 53 -0.23

c130 d75 s32 16,876,775 74.8 77 16,905,159 502.6 78 -0.17

c160 d90 s20 16,683,846 303.3 56 16,765,250 2,958.6 57 -0.49

c160 d90 s32 24,237,644 843.0 92 24,366,858 53,509.7 91 -0.53

Average 13,516,315 130.3 51.2 13,548,232 5,747.5 51.2 -0.17

In Table 3, we show detailed statistics for the heuristic. The first column shows the instance name.304

The second column shows the total time spent by the heuristic. The third column shows if the branch305

and bound search finished (X) or if it was stopped prematurely (-). The fourth column shows the number306

of branch-and-bound nodes explored. The fifth column shows the number of columns generated. And307

the last column shows the time spent in the pricing heuristic. It is obvious that most of the time is spent308

on the pricing problem, which means that only a small fraction of time is spent on solving LP and the309

necessary bookkeeping within the algorithm. It is also interesting to note that only a small number of310

branch-and-bound nodes have been searched.311

The effect of speed optimization312

In order to evaluate the effects of speed optimization, we compared the solutions to the multiple-speed313

case with those to the single-speed case. In the single-speed case, the laden sailing speed of a ship is equal314

to the preferred service speed of the cargo, and the ballast sailing speed is set to a constant speed, which315

is the smaller value of 12 knots (a realistic choice according to the company’s statistic) and the ship’s316
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Table 3: Detailed results for the heuristic

Instance Ttot (s) Fin. #BB Nodes #Columns Tpricing (s)

c40 d30 w1 s20 0.2 X 0 235 0.2

c40 d30 w1 s32 0.5 X 0 339 0.4

c70 d45 w1 s20 2.3 X 0 550 2.3

c70 d45 w1 s32 3.3 X 0 946 3.2

c100 d60 w1 s20 9.0 X 0 1112 8.9

c100 d60 w1 s32 41.6 X 2 1734 41.3

c130 d75 w1 s20 25.0 X 0 1810 24.9

c130 d75 w1 s32 74.8 X 0 2690 74.5

c160 d90 w1 s20 303.3 X 2 2185 302.8

c160 d90 w1 s32 843.0 X 2 3542 841.7

lowest feasible ballast speed, whereas in the multiple-speed case, both the laden and ballast speeds are317

variables. The profit, computational time and number of served cargoes for both cases are provided in318

Table 4.319

For the multiple-speed case, column vdiff shows the average difference in knots between the actual320

service speed and the preferred speed over all the served cargoes. It is calculated as
∑i∈NS

|vi−vpref
i |

ns
, where321

NS is the set of served cargoes, ns is the number of served cargoes, and vi is the actual service speed of322

cargo i. The column Gap1 presents the optimality gap of the single-speed case, which is calculated as323

ZH
S −Z∗S
Z∗S
· 100. The column Gap2 shows the gap between the heuristic solution to the multiple-speed case324

and that to the single-speed case, which is calculated as ZH
M−ZH

S
ZH

S
·100.325

For the single-speed case, the heuristic finds the optimal solution for ten instances using on average326

7% of the computational time used by CPLEX. By allowing speed variation, we gained a profit improve-327

ment ranging from 9.82% to 21.80% and an average improvement of 16%. We can also see that adding328

multiple speeds makes the problem significantly harder both for the MIP model and the heuristic branch-329

and-price method. Although the running time of the multi-speed heuristic approach increases compared330

to the single-speed heuristic method, it is still within an acceptable range, and shorter than that of CPLEX331

for the single-speed case for almost all the instances. In addition, the multiple-speed solutions yield on332

average 13% more served cargoes.333
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Table 4: A comparison between the multiple-speed case and the single-speed case.

Heuristic solution Heuristic solution Exact solution

(multiple-speed) (single-speed) (single-speed)

ZH
M T (s) ns vdiff ZH

S T (s) ns Z∗S T (s) ns Gap1 Gap2

c40 d30 s20 5,497,357 0.2 20 1.35 4,636,034 0.03 18 4,636,034 2.4 18 0.00 18.58

c40 d30 s32 7,455,752 0.5 31 1.13 6,789,020 0.03 28 6,789,020 6.3 28 0.00 9.82

c70 d45 s20 8,222,284 2.5 33 2.00 6,750,725 0.05 26 6,750,725 22.1 26 0.00 21.80

c70 d45 s32 11,735,410 3.3 49 1.40 9,796,283 0.08 43 9,796,283 25.0 43 0.00 19.79

c100 d60 s20 13,132,563 9.0 43 1.30 11,438,435 0.09 40 11,438,435 31.7 40 0.00 14.81

c100 d60 s32 15,706,468 41.6 58 1.46 13,640,487 0.41 51 13,640,487 84.4 51 0.00 15.15

c130 d75 s20 15,615,057 25.0 53 1.35 13,554,505 0.19 49 13,554,505 167.9 49 0.00 15.20

c130 d75 s32 16,876,775 74.8 77 1.19 14,762,244 3.74 69 14,762,244 371.1 69 0.00 14.32

c160 d90 s20 16,683,846 303.3 56 1.46 14,139,457 0.44 51 14,139,457 372.4 51 0.00 18.00

c160 d90 s32 24,237,644 843.0 92 1.51 20,752,350 5.66 79 20,769,526 1,188.5 80 -0.08 16.79

Average 13,516,315 130.3 51.2 1.41 11,625,953 1.07 45.4 11,627,671 227.1 45.5 -0.01 16.43

Sensitivity to the fuel price334

The price of fuel oil fluctuates in real life. Here we investigate how this affects the speed selection335

and profit by running the instance c130 d75 s32 with different fuel prices, ranging from 50% to 200% of336

the current price. The detailed results are illustrated in Table 5. The first column shows the price factor in337

percentage relative to the price used in the previous simulations. Column n>s gives the number of cargoes338

served at a higher speed than preferred and column n<s provides the number of cargoes served at a lower339

speed than preferred. The last column v is the average speed in knots for all served cargoes.340

Figure 2 shows how the number of served cargoes, the number of cargoes served at a higher speed341

than preferred, and the number of cargoes served at a lower speed than preferred change as the fuel price342

increases from 50% to 200% of the current price. It can be seen that, as fuel price goes up, the number of343

served cargoes ns generally drops because some cargoes are no longer profitable given the high fuel price.344

The tendency of serving the cargoes at lower speeds, as fuel price increases, is also clearly seen in the345

figure. The number of served cargoes is especially sensitive when the fuel price goes beyond the current346

price, whereas the number of cargoes served at a higher speed is very sensitive to fuel price throughout347

the whole range. The number of cargoes served at a lower speed keeps increasing until the fuel price348

reaches 160% of the current price and then drops. This is because in the beginning, it is preferred to serve349
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the cargoes at lower speeds but when the fuel price reaches a high level, it is more desirable to ignore350

the unprofitable cargoes. The results in Table 5 show that when the price increases from 50% to 200%351

of the current price, the number of served cargoes drops by 72.6%, the percentage of cargoes served at a352

higher-than-preferred speed decreases from 86.90% to 8.70% and the percentage of cargoes served at a353

lower-than-preferred speed increases from 0 to 86.93%.354

Figure 3 depicts the profit and the average speed as a function of fuel price. The average speed355

decreases approximately linearly as a function of the fuel price increases. The profit decreases very fast356

as the fuel price increases and the decrease rate gradually slows down. When the price increases from357

50% to 200% of the current price, the profit is decreased by 96.8% and the average speed is decreased by358

30.1%.359

In summary, the fuel price has significant effects on the profit and the average sailing speed, which360

shows the importance and benefit of applying speed optimization in a market with changing fuel prices.361

However, in practice, if the fuel price increases significantly, the reward for serving each cargo is expected362

to increase as well, and thus, the increased cost will be shared with the cargo owners.363

Table 5: The results of instance c130 d75 s32 with different fuel prices.

Price factor (%) ZH ns n>s
n>s
ns
·100 n<s

n<s
ns
·100 v (knot)

50 34,375,102 84 73 86.90 0 0.00 15.23

60 30,418,937 84 66 78.57 0 0.00 14.79

70 26,691,163 83 63 75.90 1 1.20 14.47

80 23,193,509 81 50 61.73 5 6.17 14.04

90 19,976,088 80 49 61.25 7 8.75 13.93

100 16,876,775 77 45 58.44 12 15.58 13.66

110 14,119,083 68 33 48.53 19 27.94 13.39

120 11,887,260 63 25 39.68 22 34.92 13.12

130 9,901,069 57 22 38.60 22 38.60 12.85

140 8,059,775 54 19 35.19 25 46.30 12.42

150 6,339,031 55 19 34.55 27 49.09 12.31

160 4,823,284 47 12 25.53 30 63.83 11.93

170 3,594,923 41 10 24.39 27 65.85 11.50

180 2,591,039 33 7 21.21 24 72.73 11.29

190 1,785,860 30 4 13.33 23 76.67 11.07

200 1,090,434 23 2 8.70 20 86.96 10.64
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Figure 2: The number of served cargoes, the number of cargoes served at a higher-than-preferred speed and the number of cargoes

served at a lower-than-preferred speed for different fuel prices.
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Figure 3: The profit and average speed in knots for different fuel prices.
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5. Conclusion364

In this paper, we have considered the simultaneous optimization of routing and sailing speed in the365

context of full-shipload tramp shipping encountered by a large Danish product tanker shipping operator.366

A number of cargoes with specified pick-up time windows can be transported from load to discharge ports367

using a fleet of heterogeneous ships of different speed ranges and fuel consumption. The ships can sail at368

certain discretized speeds. For each ship, the fuel consumption depends on the shipload and sailing speed,369

and is obtained from real-life data. This practical consideration is different from previous studies, where370

fuel consumption is load independent. The objective of the problem is to find the optimal route for each371

ship and the optimal sailing speed for each leg on the route to maximize the total profit of transportation.372

We have presented a three-index formulation and a set packing formulation for this problem, and pro-373

posed a B&P algorithm with heuristic column generation and efficient data preprocessing. The algorithm374

is implemented and tested on instances generated by approximating long-term statistics and using the375

practical speed options and fuel consumption functions from real-life data. The computational results376

show that our heuristic algorithm is able to find optimal solutions to the small instances and near-optimal377

solutions to the large instances with optimality gaps consistently below 4.08%. The running time of the378

heuristic method is significantly shorter than that of CPLEX (on average around 5% of the latter). We379

have compared the solutions with speed optimization to those to a single-speed case, in which the cargoes380

can only be served at individual fixed speeds, and found that by allowing speed variation, we can gain on381

average 16% more profit and serve on average 13% more cargoes. We have also tested the algorithm with382

different fuel prices, ranging from 50% to 200% of the current fuel price, and observed that the solution is383

sensitive to fuel price changes. A higher fuel price leads to lower profit, fewer served cargoes and slower384

average sailing speed.385
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