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Efficient Algorithms for Real-Life Instances of the

Variable Size Bin Packing Problem

Jørgen Bang-Jensen1, Rune Larsen1

aDepartment of Mathematics and Computer Science, University of Southern Denmark

Abstract

In this paper we present a local search heuristic for real-life instances of the
variable size bin packing problem, and an exact algorithm for small instances.
One important issue our heuristic is able to satisfy is that solutions must
be delivered within (milli)seconds and that the solution methods should be
robust to last minute changes in the data. Furthermore we show that we are
able to incorporate the concept of usable leftovers on a single bin, and the
implementation of many additional constraints should be supported by the
straightforward solution representation. The heuristic is compared to others
from the literature, and come out ahead on a large subset of the instances.

Keywords: Variable Size Bin Packing Problem, Cutting Stock, Real-Life
Application, Heuristics

1. Introduction

Several real-life problems can be formulated as packing or cutting prob-
lems or relaxed versions thereof. Therefore packing and cutting problems
has been studied extensively, and since Gilmore and Gomery published their
integer programming based approach [1], most methods have been based on
this idea. The method is based on solving an integer programming problem
with a reduced set of columns each corresponding to some packing patterns
of a single bin, and generating additional columns as necessary.

This method does not perform as well on bin packing problems where
the bin size might vary, as increasing the number of bin sizes, increases the
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number of columns that must be added to the basis set before an optimal
solution of the lp relaxation is reached. An overview of the literature on the
variable size bin packing problem (VSBPP) can be found in [2] and [3], and
most employed methods are based on Gilmore and Gomerys work.

The common approaches suffer form multiple potential drawbacks when
considering real-life instances coming from industrial companies:

• Some companies cannot guarantee a single bin size, but require the size
to vary from bin to bin, thus increasing the number of packing patterns
dramatically. For example, this situation can arise due to deformation
of the material during or after a casting process.

• Some companies require that the code can be run on embedded sys-
tems with very limited memory and sometimes even online memory
allocation, thus excluding the use of LP solvers.

• Some companies gain more knowledge about the problem data online,
and require this information to be taken into account immediately.
They might also require a solution within milliseconds while allowing
a possible negative impact on its quality.

• Some companies are capable of reusing unused capacity in the last bin
packed. This situation often arises when modeling a cutting problem,
where cutting can be resumed on the last used item, given that it is
large enough to warrant storage.

Motivated by these difficulties, our aim was to develop and implement a
construction heuristic and a local search heuristic, which could produce high
quality solutions very fast, when a large number of bin sizes are available and
at the same time the algorithms should adapt fast to online changes in data.

1.1. Two Real Life Problems

Our work is motivated by the following real-life problems which we have
encountered through collaboration with industrial companies.

1.1.1. An Anonymous Company

The first company produces machinery that uses a combination scale to
create packages of certain weights based on a number of smaller compart-
ments containing material of known weights. At any given point in time,
they can ask for a certain weight of material to be released, and the machine
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should open the combination of compartments creating the closest possible
weight that exceeds the requested amount. After this the compartments just
emptied are refilled and their new weight is determined.

A further complication arises when some compartments are not filled be-
fore the next release of material. When this can be predicted, we wish to
ensure that the compartments that are released leaves a set of filled compart-
ments with the best possible options for new compartments to release. This
corresponds to calculating a packing of two bins, where the wasted space in
the first is considered more important than that of the second. This problem
is relatively easy except for the fact that in one of the real-life applications
we consider it is extremely time-critical, and can never take in excess of 100
milliseconds even on an embedded processor.

The first problem is easily solvable, using an optimized version of the
dynamic programming heuristic described in [4] which is usually employed to
solve subset sum problems. While the second problem basically corresponds
to a bin packing problem.

1.1.2. Danfoam

The company Danfoam A/S produces high quality foam mattresses for
a world wide market. The first part of the production involves cutting pre-
scribed length foam blocks (typically from 110 to 230 cm) from larger blocks.
These larger blocks which reside in a storage are either previously unused
blocks whose lengths are around 30 m, or they are remainders from a previ-
ous cutting process in which case the length lies between 8 m and 29 m.

The exact data (available to us and used in some of the tests) cannot be
described here due to non-disclosure agreements, but the overall structure
of the daily cutting problem is as follows: A substantial number (several
hundreds) of items whose lengths are in the interval between 110 cm to
230 cm (about 10 different lengths) are to be cut from blocks residing in
the storage. These block lengths will vary due to setting after the casting
process, and possibly previous cuts taken of that block. The amount of waste
should be minimized with the additional condition that the last block used
may be returned to storage if it is at least a certain length, say 8 m (in which
case no waste is counted for this block).

A further complication arising when optimizing the cutting pattern is
that, due to the properties of the foam material, the length of a block might
change slightly as it is brought in for cutting. Furthermore some items might
be damaged during production and have to be rescheduled on the remaining
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blocks to be cut.
Thus overall we are faced with a variable sized bin packing problem with

a large number of different bin sizes which are typically much larger than the
item sizes (usually 10-15 items or more fit in a random bin) and where there
are relatively few item sizes (about 2-10 different in the range 110 cm to 230
cm). Due to the online changes in the data, the time requirements are strict.

2. Results From the Literature

The literature concerning cutting and packing is split due to the difference
in characteristics of the problems considered, inferred by small variations in
the input data. Classification schemes were proposed in [5] naming the prob-
lem 1/V/D/R or 1/V/D/M, but the scheme was found lacking and expanded
upon in [3] naming the problem a Residual Bin Packing Problem or Residual
Cutting Stock Problem. This demonstrates a major problem when classify-
ing real life problem types and solvers efficiency: A real life problem might
well contain instances that are of widely different types, and a solver might
be usable on a wide array of different types of problems.

The following characteristics are significant when considering a problem:1

• Input minimization vs. output maximization.

• Objective function strongly correlated/equal to wasted residual objects
vs. objective function weakly correlated or independent from amount
of wasted residual objects.

• Homogeneous objects vs. heterogeneous objects.

• Homogeneous items vs. heterogeneous items.

• Low average number of items per object vs. a high number of items
per object in a good solution.

Besides this, real life problems usually contains side constraints such as:

• No waste can be reused later and thus ignored vs. a set number of
items with waste above a certain length can be ignored vs. all waste

1Objects are the bins or rolls, and items are the items or cuts in the packing and cutting
terminology respectively.
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above a certain length can be ignored. These concepts are often called
usable leftover in the literature such as [6] [7] etc.

• Short time available for solving vs. long time available for solving.

When considering real life problems one should specify what range the
above characteristics can occur in, and likewise when talking about a solution
method, it should be stated which ranges of the above characteristics it can
be brought to work on, and how it might influence performance.

The Danfoam problem is an input minimization problem with heteroge-
neous objects and instances with either heterogeneous or homogeneous items.
It has a relatively high number of average items per object (10-15), one can
ignore waste in one of the bins if the waste is large enough, and instances
must be solved in a very short time frame.

The exact heuristics have grown increasingly promising for similar prob-
lems as seen in [8], [9] and most recently [10], but as cuts and bounds become
more advanced, factoring in the possible waste on a single bin and similar
real-life constraints, become more intractable.

Recent work on heuristics for the variable size bin packing problem [11]
has shown some impressive results. Problems are solved extremely fast, and
often to optimality. However the problems considered in this paper do have
a few vital differences from the ones considered in [11] and other articles.

• Bins can contain a larger number of items, massively increasing the
number of columns a column generation based solver would have to
create. A genetic algorithm would have to increase population size
significantly, to make sure that all possible assignments of items to
bins can be created by crossovers.

• Bins are very unlikely to share size with other bins, creating problems
similar to the mentioned above.

• Any algorithm is required to be able to deliver an answer anytime after
a very short initialization time, thus preventing a lot of column gener-
ation approaches from producing solutions in time. This includes the
demand, that the algorithm must be able to resume optimization fast,
given any changes in either bin or item sizes.

• The number of item sizes are limited, which often requires a change of
assignments for a large number of items, before a better solution can
be reached.
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• In one of our applications, waste concentrated on the last bin can be
safely ignored, as long as it remains above a certain size.

Other recent work [12] [13] has been concerned with real life problems
where leftover was considered usable, but they allow waste on all bins, thus
enabling the integration of this side constraint into a column generation
scheme. The same problem is encountered when considering the paper [7].
The paper [6] does consider the case where the number of usable leftovers
is bounded, but it allows only a closed set of leftover lengths, and bounds
on the number of each of these separately to integrate them into an integer
program.

3. Notation and Problem Definition

The bin packing problem considered is as follows:
Given k bins B1 . . . Bk of sizes v1 . . . vk respectively, and n items x1, x2 . . .

xn of sizes a1 . . . an respectively: Find a partition of items x1 . . . xn into sets
S1, S2, . . . , Sk ∈ S such that

∑

xi∈Sj
ai ≤ vj for j = 1 . . . k.

Two variants of the problem are considered in this paper, and the objec-
tive function depends on the variant under consideration.

3.1. Classical Bin Packing

In the classical bin packing problem BPP, all bins are of the same size
v, thus v1 = v2 = . . . = vk = v. The wasted space, in any solution to this
problem, depends only on the number of bins utilized. Thus the objective
function normally just focuses on minimizing this number. Other papers
such as [14] have employed more advanced objective functions, to distinguish
between the attractiveness of solutions utilizing the same number of bins.

When using an algorithm that optimizes with respect to a different ob-
jective function fa that does not match the actual objective function f , some
properties can be helpful to maintain: Given two solutions A,B in a mini-
mization problem.

• f(A) < f(B) ⇐⇒ fa(A) < fa(B) preserving a strict preference for
better solutions.

• If f(A) = f(B) and fa(A) < fa(B) A should contain characteristics
that are considered preferable or likely to lead to an improving solution.
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• Evaluation of the contribution of each bin to fa should be possible,
thus allowing for ∆-evaluations.

In this paper, the quality of a solution is considered to be the sum of
the waste in the solution, and ties are broken favoring the solution having
the largest sum when summing up the waste per bin squared. This creates
a situation where solutions with an equal amount of waste, are considered
better the more the waste is concentrated. Experiments have verified this
strategy to improve the local search.

3.2. A Generalization Allowing Varying Bin Sizes

In many real life instances such as the ones treated in this paper, the as-
sumption that the bin size is constant does not hold. In that case v1, v2, . . . , vk
might differ, and the number of bins used fail to express the space wasted
by an assignment of items to bins. In these cases the objective is often to
reduce the sum of the unused capacity in the used bins.

Minimize
∑

Sj∈S
wj

where wj =

{

vj −
∑

xi∈Sj
ai if |Sj| > 0

0 otherwise
For some real life instances, that arise from cutting stock like problems

such as the one mentioned from Danfoam, the last bin packed can contain
spare room, that is not considered waste, as it can be used in the next packing.
This is not trivial to model when using the standard column generation based
techniques, but as we will show later, it is achievable using the developed local
search heuristic.

4. Subproblems

The bin packing problem can be seen as several interdependent subset
sum problems. Several efficient methods, as described in [4], [15] and [16],
exist for solving these given sufficiently small bins or items. As this is typ-
ically the case for bin packing problems, these methods can be used for
exploration of neighborhoods and for construction heuristics, by providing
optimal packings of a single bin.

4.1. A Single Bin

The simplest subproblem consists of assigning items to a single bin, with-
out concern for subsequent assignments. This can be achieved by using
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dynamic programming to compute all possible sums of item sizes. The sum
closest to but no higher than the bin size is now chosen, and the items giving
the sum is then found by backtracking in the dynamic programming table.
This corresponds to construction heuristics used in [11], [17] and analyzed in
depth in [18] and [19]. Our implementation differs from theirs, allowing for
subsequent use in an exact solver.

Sum \ Item size 3 2 4 . . . 1

0 1 1 1 . . . 1
1 0 0 0 . . . 1
2 0 1 1 . . . 1
3 1 1 1 . . . 1
4 0 0 1 . . . 1
5 0 1 1 . . . 1
...

...
...

...
. . .

...
s 0 0 0 . . . ?

Table 1: Dynamic programming table. s is the maximum sum that is computed, which is
usually the size of the bin to fill.

Table 1 demonstrates the concept. The first column signifies that the
sums 0 and 3 can be made with the item seen so far. The second column
that the sums {0, 2, 3, 5} can be made with the two items seen so far.2

A sum can be achieved by combining a subset the items seen so far, if
and only if the number in the corresponding row and the last column is 1.
The sum can be achieved without the item at the head of the column if and
only if the previous column has a one in the same row. Likewise the sum can
be achieved by using the item corresponding to the column if and only if the
preceding column has a 1 in the row x places above, where x is the size of the
item corresponding to the column. Using this method recursively as shown
in Algorithm 1 on page 10, all combinations of items yielding a given sum
can be enumerated. Its worth noting that an exponential number of these
might exist.

2The size of the item is shown above each column.
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4.1.1. Favoring Use of Large Items

Larger items often makes fitting items into bins harder.3 To favor com-
binations using these large items the following strategy has been employed:

Before construction of the dynamic programming table, the items are
sorted according to size in increasing order. During backtracking, items are
thus encountered in decreasing order, and the algorithm simply chooses an
item, if it can be part of the desired sum. Similar preferential treatment for
larger items has been suggested in [11], [17] and [20] amongst others.

4.1.2. Avoiding Duplicate Subsets

A common problem encountered when working with sets of numbers, is
that the number of representations of the same set can explode when multiple
items have the same size.

Lets say we have 5 items with the size a. If a set of items fills out a
bin, and contains exactly one item of size a, we know that 4 more such sets
exists that uses the other items of size a. From a bin packing point of view,
these sets are no different from the one we have already seen, and we would
like to generate only one of these sets. This is done by sorting items before
the dynamic programming table is created, and enforcing that once an item
of a certain size is skipped during backtracking, all subsequent items with
the same size must also be skipped. This ensures that if k items of size a is
chosen, it will always be the first k in the ordering thus eliminating generation
of equivalent solutions.

4.1.3. Optimizations

It should be noted that the dynamic programming table conceptually
consists of boolean values, and that the operations computing a new column
are the same for all its boolean entries. Namely bi,j = bi−1,j ∨ bi−1,j−x where i
indexes columns, j indexes rows, and x is the size of the item corresponding
to the i’th column.4

The columns in the table can thus be represented by sets of integers
corresponding to the value of each column interpreted as a bitstring, and
all operations can be performed as bitwise boolean operations between the
integers. This yields a significantly improved though asymtotical equivalent

3This is the motivation for applying the First fit decreasing heuristic.
4Out of bound values are assumed to be false.

9



Data: A dynamic programming table dptsum,i.
Item sizes a1 . . . an corresponding to each column as described in
section 4.1 sorted in increasing order as described in section 4.1.1.
A maximum index of usable item m.
The last used item size l.
A desired sum s.
Result: A list of items that sums to s, or false if this is impossible.

if s = 0 then // We are done as we are trying to sum to 0

return ∅;
end

if am ≥ s then // The item is too large to use

return readSolution(dptsum,i, a1 . . . an, m− 1, l, s);
end

if m = 0 ∨ dpts,m = 0 then // No solution with the desired sum

return False;
end

/* Can create a solution using the m’th item? */

if dpts−am,m−1 = 1 ∧ l 6= am then

result ← readSolution(dptsum,i, a1 . . . an, m− 1, am, s− am);
if result 6= False then

return am∪ result ;
end

end

/* Can create a solution not using the m’th item? */

if dpts,m−1 = 1 then

result ← readSolution(dptsum,i, a1 . . . an, m− 1, l, s);
if result 6= False then

return am∪ result ;
end

end

/* Only reachable if similar sized items were skipped. */

return False;

Algorithm 1: readSolution(dptsum,i,a1 . . . an,m,l,s) The next solution
can be obtained by blocking the use of the item ai with the lowest i in
the previous solution, and unblocking all aj for j < i
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running time in a critical region of the code. In our practical applications
this optimization is of great importance.

4.2. An Exact Solver for VSBPP

As the bin packing problem is NP-hard, no polynomial time algorithm
can be expected to solve the problem to optimality. For sufficiently small
instances however, there might exist algorithms that finish quickly enough
to be viable. The definition of ‘quickly enough’ varies from application to
application. In some of the interactive applications, two seconds might be
very acceptable, while a quarter of a second is pushing the limit when inter-
acting with fast paced machinery. Recent work in the field of exact solvers
includes the following articles mentioned in the literature review: [10] uses
branch and bound to solve instances with an unlimited supply of each bin
size and both convex and concave cost functions. [8] and [9] solves a multiple
length cutting stock problem that is equivalent to the problem treated in
this paper aside from the low number of cutting stock lengths, high number
of item sizes, their relation between item and bin sizes and their inability
to handle usable leftovers. If problems that have these characteristics are
considered, the local search proposed can easily be adapted to use these as
solvers instead.

Our exact solver (Algorithm 2 and 3) uses the dynamic programming
approach to solve the subset sum subproblems, it then iterates through the
solutions attempting to solve the induced problem recursively. To make the
approach faster, several optimizations have been made:

• The iteration is performed in an order that ensures that once a feasible
solution is found, it is optimal and the search can be halted.

• Several fail fast checks have been implemented, detecting that no solu-
tions exists before all possible assignments have been enumerated.

• If there exists an upper bound b on the waste that the optimal solution
can contain. The number of bins of certain size can be removed as long
as enough bins of that size remain to contain all items plus b units of
waste.
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Data: A set Bins of k bin sizes v1 . . . vk
A set Items of n item sizes a1 . . . an
A minimal amount of waste that can be ignored in a bin (minIgnored)
Result: An optimal partition of items into bins

Compute all possible sums of bin sizes v1 . . . vk;
Compute all possible sums of item sizes a1 . . . an;
itemSum←

∑n

i=1
ai;

maxSpill ← max(0, max(v1 . . . vk)−minIgnored);
for waste← 0 to infinity do

for spill ← 0 to maxSpill do
if (waste+ itemSum− spill) is an obtainable sum of bin sizes
and (spill) is an obtainable sum of item sizes then

for Each binSet with sum of sizes
(waste+ itemSum− spill) do

if max{vi|vi ∈ Bins \ binSet} − spill > minIgnored

then

continue;
end

for Each itemSet with sum of sizes (itemSum− spill)
do

solution← attemptAssign(binSet,itemSet,waste);
if solution 6= null then

assign (Items \ itemSum) to an unused bin in
solution;
return solution;

end

end

end

end

end

end

Algorithm 2: The algorithm searches for solutions with an increasing
amount of waste. For each waste amount it searches through solutions
assigning increasing amounts of items (spill) to the bin that has its
waste ignored.
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Data: A set Bins of k bin sizes v1 . . . vk
A set Items of n item sizes a1 . . . an
An allowed amount of waste in the bins: slack
Result: An optimal partition of items into bins

if k = 0 then // If we have filled all bins

return Empty solution;
end

itemSums← Compute all possible sums of item sizes a1 . . . an;
if failFastChecks(Bins, slack, itemSums) then

return null ;
end

surplus← 0;
while surplus < v1 and surplus < slack do

for Each set itemSet of items summing to v1 − surplus do
solution←
attemptAssign(bins \ v1,Items \ itemSet,slack − surplus);
if solution 6= null then

return solution ∪ itemSetassignedtov1;
end

end

surplus← surplus+ 1;

end

return null ;

Algorithm 3: attemptAssign(Bins,Items,slack) This algorithm as-
sumes that all bins need to be used. The function failFastChecks is
described in Section 4.2.2
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4.2.1. Iteration Order

To ensure that the first feasible solution found is also optimal, a variable
keeps track of the amount of wasted space allowed. This variable is initial-
ized to 0. If the current bin cannot be filled causing less than that amount of
wasted space, there is no solution with that amount of waste, and the sub-
problem is infeasible. If the initial problem is deemed infeasible, the waste
variable is incremented, and the search repeated.

In the traditional case of a uniform bin size, a further optimization can
be realized by ensuring that the waste plus the sum of the items always
correspond to a multiple of the bin size.

4.2.2. Fail Fast Checks

The first fail fast optimization consists of checking whether the sum of
item sizes plus the allowed waste, equals something obtainable by combining
bins. For traditional bin packing problem this corresponds to checking if it
equals a multiplum of the bin size, whereas it can be achieved by using the
dynamic programming approach on the bin sizes if they are allowed to vary.

The second fail fast check is done each time items are assigned to a bin. If
the minimum number of bins needed for the remaining items cannot be filled
without incurring more than the alloted wasted space, the partial assignment
can lead to no feasible solution. This check is made by relaxing the remaining
problem to allow the use of all items in all bins, and can be done trivially
using the dynamic programming table.

5. Solution methods for the BPP

As the goal was to create a method that did not rely on external solvers,
and gave solutions superior to those obtainable with First Fit Decreasing
(FFD) etc., local search was considered. Firstly an initial solution had to be
constructed, and in addition to First Fit Decreasing and Best Fit, a dynamic
programming approach as seen in [18] and [19] was considered as construction
heuristic.

5.1. A Dynamic Programming Construction Heuristic

To generate initial solutions for the local search heuristic, a dynamic
programming approach is used. First it generates all possible sums of item
sizes, and greedily assigns the best fitting set of items to the first bin. Then
it solves the remaining problem recursively.
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For the problem faced by the undisclosed company, this construction
heuristic produces guaranteed optimal combinations of compartments to re-
lease when considering a release event locally. When using the dynamic pro-
gramming table, it’s trivial to iterate through all combinations of compart-
ments satisfying this. The ability to use the remainder of the compartments
efficiently given a set of compartments to release, can be measured by rerun-
ning this construction heuristic on the remaining compartments. Should this
technique approach the time limit, the best found solution so far can always
be returned instantly.

5.2. A Local Search Heuristic

The local search heuristic (DPLS) (as outlined in Algorithm 4) takes an
initial solution generated by the dynamic programming construction heuris-
tic. It then creates subproblems of a more manageable size, and tries to
reoptimize them to optimality.

Other initial solution generation schemes can be chosen, but the algo-
rithm performs better given a solution where as many bins as possible are
packed very well, as opposed to having every bin packed reasonably well.
Experiments showed that using FFD or similar construction heuristics for
generating an initial solution decreased solution quality and/or increasing
computation time on average.

Given a feasible solution to the problem, the heuristic first checks if there
is wasted enough space to potentially use one bin less. If this is the case, the
heuristic identifies the bins containing wasted space and chooses a subset of
these again ensuring that they contain enough wasted space to potentially
free one bin. Besides these sets, one or more full bins might also be chosen
to increase the size of the neighborhood.

Given the subset X of bins found as above, the heuristic undoes all as-
signments of items to members of X , and attempts to reassign the items
to the available bins5 optimally using the exact solver. A new solution is
accepted if it uses fewer bins, or if it concentrates the waste more.6 The
concentrated waste criteria was added to bring the local search out of local
minimas, without requiring the release of a very large number of bins.

5That is, X and all previously unused bins
6If the sum of the squared waste in each bin is higher.
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Data: An initial solution sol.

nbReleased← 2;
while The allotted time has not expired and the solution is not
verifiably optimal do

X ← selectNextSubset(nbReleased);
subS ← reassign items from X optimally;
if cost(subS) < cost(X) then

Reassign items from X in sol according to their assignment in
subS;

end

if All releasable subsets have been explored since last improvement
then

nbReleased ← nbReleased + 1;
end

end

return sol
Algorithm 4: A general local search based on dynamic programming.
The differences between the local search algorithms used in this paper
consists in 1) The ways the subsets X are selected. 2) The check for
whether optimality is achieved and 3) In the objective function used.
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6. Generalizing the Method to Our Real-Life Application

In the real life problem of Danfoam, the bin sizes will vary and the op-
timization objective is to minimize the wasted bin space in the used bins,
possibly ignoring waste in the last bin if it exceeds a certain amount. This
requires adaptations in both the construction heuristics and the local search
heuristic.

6.1. Dynamic Programming Construction Heuristic for VSBPP

The approach can easily be generalized to the case where bins vary in
sizes: Instead of assigning to the first bin, the potentially wasted space is
computed for each bin, and the one with the least amount of potentially
wasted space is chosen. To break ties, the smaller or larger of the bins can
be chosen, depending on what seems preferable in the problem.7

6.2. Dynamic Programming Based Local Search Heuristic for VSBPP

Like in the case with constant bin sizes, a set of bins are selected and all
their assignments are released. The first motivator for change consists in the
fact, that a better solution might be reached, even if the sum of the wasted
bin space does not exceed the size of a bin. This can be seen by considering a
case where a bin has wasted space, and a smaller bin exists that can contain
the same items.

The second difference is that bins that are in use, and whose wasted space
exceeds the size of the smallest released element can have its wasted space
considered as a bin in its own right in the subproblem. This further reduces
the need to release assignments on bins with wasted space.

To exploit these properties, relatively few bins are released initially, and
the number is increased until the time allotted is spent. To demonstrate the
consequences of various time limits, graphs of cost vs. time are presented in
Figures 1 and 2 on page 24.

When adapting the objective function to the alternative one, where a
bin with more waste than 800 cm can be considered having no waste, it
is important to note that our exact solver will iterate through candidate
solutions in a way that seeks to concentrate waste on the last bin considered.
Thus when a subproblem is integrated into the current solution, it tends to

7Smaller bins are usually chosen, as they usually contain fewer items, and the possible
sizes obtainable with fewer items tend to be fewer.
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have the waste concentrated, and the local search algorithm (DPLSW) can
just use the new objective function as acceptance criteria for any candidate
solution.

7. Performance and Comparisons

Measuring the performance of the developed heuristic is not trivial, as
each set of benchmark instances are tailored towards a specific configuration
of the problem. The instances used in [14] can be found at the OR library
[21], and they provide a reasonable estimate of performance on instances
with the same bin to item size ratio even though they are traditional bin
packing problems. The instances used in [11] differ significantly from the
ones encountered in the real-life problems under consideration, in that it
focuses on problems with very few items per bin, and a larger number of
item sizes while still making waste in a large number of bins necessary. The
instances from [22] have multiple bin sizes, and relatively few item sizes, but
their relative size only matches the encountered real life problem on a few of
the classes of problems defined.

Generators and instances used in this article, can be obtained by contact-
ing the authors.8

Coding was done in Java 1.6 and in all tests, a single thread was used
on a Core i7 920 processor having 4 gigabytes of ram, and unless otherwise
noted, an upper bound of ten seconds time usage has been enforced on each
instance. Given enough time, the algorithm can usually improve the solution,
and given enough time and memory it will give the optimal solution, but for
all but the smallest instances from [22] this has not been done. On the real
life instances, graphs are presented to show the quality of the solutions as a
function of the time used.

7.1. Dynamic Programming Construction Heuristic

The obvious benchmark for a construction heuristic, must be a test against
the current most popular approach, which until lately was the first fit de-
creasing algorithm as seen in [20] and [22] amongst others.9 The average10

8Note that the data from Danfoam is not freely available.
9In [11] and [17] they also propose subset sum, dynamic programming based solutions,

and the method is rapidly gaining acceptance.
10The number of bins used, averaged over all instances.
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number of bins used can be seen in Table 2, and can be compared to the
best solution known. This shows that the dynamic programming algorithm
outperforms FFD on average and gets very close to optimality. On the in-
stances from [14], DPC and FFD finds the best solution in 133 and 2 of the
140 instances respectively, and tie on the remaining 5, thus we must conclude
that DPC nearly always yields better solutions than FFD. This price of this
improvement is that DPC does not run in polynomial time in the size of the
bins, but this seems less alarming as the time it takes for both algorithms
to finish all instances combined is measured in a few seconds. Furthermore
it should be noted that the instances have a higher bin size than typically
encountered as described in [23], and that the real life applications of DPC
has proven its efficiency on much larger instances as seen in subsection 7.3.

The DPC matches the currently best known solution on 28 of the in-
stances, and often this can be proven to be an optimal solution as relaxing
the constraint that items cannot be partially assigned, gives the same cost
in number of bins used.

Current best DPC FFD DPLS

234.4833 235.15 237.4667 234.6667

Table 2: DPC VS. FFD average waste over all 140 instances. DPLS is described in
subsection 7.2.

A generation scheme for test instances for general one-dimensional cutting
stock problems can be found in [22], and Table 3 clearly shows that DPC
outperforms the other presented constructive heuristics.

7.2. Dynamic Programming Based Local Search

As the performance of solvers is highly dependent on the characteristics
of the problem, finding a fair basis for comparisons can be challenging. The
public test instances having the most similar bin and item size ratio with the
encountered real life problem from Danfoam, are the instances in [21]. They
are however single size bin packing problems, and all results obtained should
be treated accordingly. The proposed local search heuristic does however
manage to improve on the results produced by the dynamic programming
construction heuristic on the instances from [14], creating results that are
only about 0.18 bins or 0,078% above the currently best known solution as
seen in table 2.
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Class K m v1 v2 best constr. DPC best resi.
1 3 5 0.01 0.2 118.75 250.25 108.70
2 3 5 0.01 0.8 42429.35 1739.48 683.05
3 3 5 0.1 0.8 31493.55 2309.60 617.20
4 3 20 0.01 0.2 170.50 274.90 155.65
5 3 20 0.01 0.8 49565.05 5349.08 392.60
6 3 20 0.1 0.8 84775.60 6016.45 361.40
7 5 10 0.01 0.2 152.30 303.38 129.20
8 5 10 0.01 0.8 73920.20 3821.23 545.00
9 5 10 0.1 0.8 96475.80 3780.48 785.10
10 5 20 0.01 0.2 163.80 293.65 147.60
11 5 20 0.01 0.8 81946.20 5943.08 172.05
12 5 20 0.1 0.8 98766.15 7733.68 192.90
13 7 10 0.01 0.2 146.05 380.38 115.90
14 7 10 0.01 0.8 87379.30 3342.33 241.35
15 7 10 0.1 0.8 118647.90 4018.05 247.65
16 7 20 0.01 0.2 190.30 511.78 126.00
17 7 20 0.01 0.8 91638.20 6751.58 132.60
18 7 20 0.1 0.8 125865.15 6754.70 153.65

Table 3: Testruns on instances from [22], K is the number of bin sizes, m is the number
of item lengths, and v1 and v2 are the upper and lower bounds on item sizes relative to
average bin size. Bin sizes are chosen uniformly randomly between 100 and 1000. The
best results of the constructive and the residual algorithms presented in [22] can be seen
in the columns best constr. and best resi. respectively.

Table 3 and 4 contains results based on 400 instances per class generated
as described in [22]11 They have multiple though fairly few “bin” sizes, but
they suffer from a smaller item to bin size ratio on many of the classes. On
the instances with the highest bin to item size ratio, the proposed local search
consistently outperforms the heuristics proposed in [22] within a quater of
a second, and on many of the remaining instances the local search delivers
better or comparable results fast, as can be seen in Table 4. The running
time in [22] was an average of 2.27 to 2.59 seconds on a Pentium III (866 MHz

11This scheme might generate infeasible instances. These have been proven infeasible
and then discarded.
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- 256 MB RAM) depending on the heuristic. As the Core i7 920 processor
and its 4 GB RAM is significantly more powerful, a maximum running time
of 0.25 seconds in Table 4 is the fairest column to compare to, but the ability
of DPLS to make use of extra time should be taken into consideration.

The actual 40 instances per class of [22] were unobtainable, and the 400
instances used in this article was thus generated independently, which this
further complicates direct comparisons. DPLS outperforms all of the three
proposed heuristics in [22] consistently on the 6 classes where v2 = 0.2, and
the likelyhood of that happening under the assumption that DPLS is no
better than the heuristics in [22] is bounded upwards by 0.56 = 1.5625%.
Based on this and the rest of Table 4 we conclude that DPLS is better
than the heuristics proposed in [22] on these instances and observe that it is
competitive on most of the remaining instances.

On some of the instances with v2 = 0.8 and m = 20, the local search
performs less impressively, and a closer inspection revealed this to be due
to two seperate factors. DPLS performs better when there exists a solution
with very little waste, as the search for the optimal solution will terminate
faster. Secondly the generation scheme presented in [22] generate bins with
an average combined capacity of 9 to 14.5 times the sum of the item sizes
on these instances, and as DPLS uses most bins in each subproblem, the
running time will suffer considerably. The local search could perform better
if the neighborhood was modified to take such instances into account, but
the heuristic presented in [11] has already shown promise on such instances.

7.3. Real Life Instances

The instances used in this article are artificially generated to simulate
data similar in properties to the largest instances obtained from Danfoam.12

The number m of different item sizes are varied from two to eight, two being
the absolute minimum making sense, and every instance being trivial for the
developed heuristics with more than eight item sizes, as all but the last bin
typically are filled to optimality by the construction heuristic. The bin sizes
are chosen with a uniform distribution between 2900 and 3050 centimeters
for 70% of the bins, the rest are choosen from a uniform distribution between
800 and 2900. Enough bins are created to cut out twice the needed amount.

12This is done to make comparisons possible by providing generators on request, as the
real instances are confidential.
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Class 0.25 sec. 0.5 sec. 1 sec. 5 sec. 10 sec.
1 68.84 68.54 66.96 61.58 60.81
2 439.72 430.22 421.09 413.50 412.18
3 534.39 526.29 515.96 505.99 500.37
4 90.99 87.78 80.70 71.69 65.68
5 1122.00 907.38 745.29 553.80 511.64
6 1075.65 849.27 732.72 644.49 609.42
7 31.95 29.43 27.52 19.95 15.02
8 295.21 250.06 218.28 187.79 177.96
9 413.72 314.77 270.29 243.19 233.29
10 39.76 37.77 35.70 29.45 25.98
11 804.37 502.18 341.48 210.20 183.75
12 963.58 606.29 429.47 308.78 276.30
13 11.46 10.50 7.73 3.05 1.73
14 329.54 202.30 149.24 96.06 88.78
15 433.12 322.32 242.04 150.84 141.48
16 25.27 23.97 22.895 15.13 14.36
17 949.96 608.61 386.89 115.69 93.00
18 1271.62 830.38 468.21 138.14 105.77

Table 4: Results of running DPLS on instances from Table 3 with varying limits on the
running time. The bold font marks the earliest result that is better than that of any
heuristic from [22]

The heuristics performance on the generated instances shows the same
characteristics that were observed on the more difficult instances of the real
life problem. These instances can thus be used for a fair comparison between
heuristics.

The algorithm is set to run for a maximum of ten seconds, but stopping
if a zero waste solution is obtained. The average time usage in table 5 thus
becomes an indicator for how often that is the case.

It is clear from table 5 that the problem becomes easier as the number of
item sizes increases. Further tests indicated that a large number of bin sizes
have a positive effect as well. It is also clear that DPLSW usually produces
solutions of a better quality than DPLS, though the limited gain on some
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n m DPC DPLS DPLSW time DPC time DPLS time DPLSW

500 2 2186,10 153,40 145,45 0,0078 10,0015 10,0023
500 3 1340,11 9,76 9,43 0,0079 5,1965 5,0155
500 4 1563,57 6,99 1,75 0,0083 1,5303 1,4350
500 5 1538,22 0,28 0,19 0,0087 0,4522 0,4585
500 6 1343,01 0,00 0,00 0,0088 0,0490 0,0388
500 7 1352,97 0,00 0,00 0,0090 0,0523 0,0281
500 8 1392,54 0,00 0,00 0,0090 0,0232 0,0190
1000 2 3157,52 505,97 503,29 0,0288 10,0080 10,0153
1000 3 1910,57 66,03 58,52 0,0311 7,4589 7,7393
1000 4 1763,03 19,84 10,52 0,0406 2,8364 3,2317
1000 5 1554,60 0,74 0,82 0,0329 0,7969 1,0762
1000 6 1474,65 0,00 0,08 0,0344 0,2420 0,4270
1000 7 1446,43 0,09 0,07 0,0351 0,2620 0,2463
1000 8 1346,92 0,00 0,00 0,0359 0,1929 0,1431

Table 5: Average quality of solutions (in terms of units of waste) and time consumption
(in seconds) for problems with n items and m different item sizes. Collected over 100
instances

instances might surprise. For the instances with a low number of items, the
major part of the waste comes from the inability to fill any bin or most bins
and the increased flexibility of ignoring waste on a bin is of limited use. For
the instances with a high number of items, the waste is low enough for the
randomness of the local searches to play a significant role.

Figure 1 and 2 shows that the local search heuristic usually converges
relatively fast, but that it can be prone to random delays as is seen for the
run on n = 1000 and m = 8. This is expected to be a result of optimizations
of particularly expensive but irrelevant subproblems, and can be addressed
using more finely tuned traversal of the neighborhood, or by traversing it
multi threaded. The initial solutions to the local search usually has more
than 1000 and sometimes up to 4000 units of waste. To keep the scale in
check, this is shown by a line extending beyond 1000 units of waste. If the
algorithm ever encounters a solution with no waste, the line will disappear
before the tenth second.
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Figure 1: An example of solution quality as a function of time, solid lines and dashed lines
being instances with n = 500 and n = 1000 respectively.
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Figure 2: An example of solution quality as a function of time, solid lines and dashed lines
being instances with n = 500 and n = 1000 respectively.
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8. Adaptability of the Solver

One of the strengths of the local search heuristic is that it is often flexible
in what problems and constraints it is able to handle. Therefore its handling
of the following properties should be summed up:

Input minimization vs. output maximization. DPLS is made to han-
dle input minimization problems, but as noted in [3] fairly simple
schemes exists for transforming output maximization problems into
these.

Objective function. Currently DPLS handles only problems with a one to
one correlation between the objective function and the amount of waste
on bins, but it has the possibility to deduct a predescribed number of
or all usable leftovers.

Homogeneity of items and objects. DPLS generally performs better the
more heterogeneous objects and items are, but it has an acceptable per-
formance on problems with homogeneous object and item sizes as well.

Average number of items per object. DPLS currently performs better
on problems having a high number of items per object. Some of its
deficiencies on instances with a low average number of items per ob-
ject might be mitigated by further work, but other methods from the
literature performs exceedingly well on those.

Time for solving. DPLS can produce reasonably acceptable solutions within
half a second on all benchmark instances, and it can potentially use
any amount of time available to improve on these until optimality is
reached.

The proposed local search heuristic has proven flexible, and as its repre-
sentation of data is very straightforward, additional constraints that might
arise, should often been straightforward to implement.

9. Conclusions

A construction heuristic for the bin packing problem was described, and
shown to perform well, also given the larger bin sizes and item to bin ratio
than in previous applications of similar methods. Its use is recommended in
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all but the very most time or memory critical applications, or instances using
very large bin sizes.

Methods based on the construction heuristic efficiently solved a real life
problem involving very fast machinery, and deadlines measured in millisec-
onds.

Furthermore a local search heuristic was presented, that scaled well with
the number of different bin and item sizes as well as the number of items per
bin, at the cost of a poorer scaling with the maximal bin size. The methods
also allowed optimization to be resumed at any time, given changes in input,
without any ramp up time. Additionally the method allowed for the waste
on the worst packed bin to be ignored in a straightforward manner. These
properties supplements the methods presented in [6], [7], [11] and [22]. The
DPLS heuristic furthermore outperformed the solvers presented in [22] on a
large subset of the instances.

The local search heuristic was applied to a real life problem, and improved
material usage in Danfoam significantly.
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