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Abstract: In this report we use a validated model of the glucoregulatory system in-
cluding effects of insulin and glucagon for simulation studies in seven type 1 diabetes
patients. Using simulations, we replicate the results from a clinical study investigating
the effect of micro-doses of glucagon on glucose metabolism at varying ambient insulin
levels. The report compares in vivo and in silico results head-to-head, and discusses
similarities and differences. We design and simulate simple studies to emphasize the
implications of some glucoregulatory dynamics which are ignored in most previous
clinical studies: the effect of discontinuing insulin and glucose infusions prior to glu-
cagon administration, the delayed effect of insulin, timing of data sampling, and carry-
over effects from multiple subcutaneous doses of glucagon. We also use simulations to
discuss two hypotheses of how insulin and glucagon might interact in influencing the
glucose response. Following the simulations we propose a study design that potentially
could explore if the hypotheses are true or false.
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Preface
This technical report aims to discuss how to conduct clinical studies seeking to elu-
cidate the dynamics in the glucoregulatory system with focus on glucagon. The dis-
cussion is based on published clinical data and simulation experiments using a newly
validated glucose-insulin-glucagon model [1].
Simulation models describing insulin and glucagon pharmacokinetics and glucose phar-
macodynamics are presented in the first section along with subject specific model pa-
rameters and their interpretations.
Second section presents an in silico replication of the highly cited study by El Youssef
et al. from 2014 with the title ”Quantification of the Glycemic Response to Microdoses
of Subcutaneous Glucagon at Varying Insulin Levels” [2]. All results and graphs of the
original paper are replicated using simulations. We present a comparison between the
in silico and the in vivo results.
Third section describes a simulation study exploiting the ability of computer simula-
tions to conduct infinite number of trials thereby creating smooth dose-response curves
for glucagon at varying insulin levels with glucagon doses ranging from 1 µg to 10 mg.
This section also discusses two possible hypotheses describing the interaction between
insulin and glucagon, and suggests a study design that could evaluate the hypotheses.
Based on simulation studies and published clinical studies, fourth section discusses
pearls and pitfalls for conducting clinical studies of the glucoregulatory system with
focus on trials including glucagon. This last section contains a thorough discussion of
the importance of clamp study designs and limitations to identify dynamics in data.
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Abbreviations

AUC area under the curve
AUC60 AUC over 60 minutes
EGP endogenous glucose production
HbA1c glycated hemoglobin A1c
IIR insulin infusion rate
IQR inter quartile range
MPC model predictive control
PD pharmacodynamic
PID proportional integral derivative
PK pharmacokinetic
SD standard deviation
SS steady state
SC subcutaneous
Tmax time to maximum concentration
T1D type 1 diabetes
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1 SIMULATION MODEL

1 Simulation Model
The simulation models in this section including equations and parameter values were
published by Wendt et al. [1]. For details on the model validation and parameter es-
timation the reader is kindly referred to the original publication. This section serves
as a summary of the model providing the information necessary to use the model for
simulations.

1.1 Insulin Pharmacokinetics Model
The insulin pharmacokinetics (PK) model is adopted from Haidar et al. [3] and de-
scribed by equations (1)-(3).

dX1(t)

dt
= uI(t) − X1(t)

tmax
(1)

dX2(t)

dt
=
X1(t)

tmax
− X2(t)

tmax
(2)

I(t) =
1

tmax

X2(t)

W · ClF,I
106 + Ib (3)

The steady state conditions of the system are both states, X1 and X2, equal to zero.
The interpretations of the insulin PK model variables are listed in Table 1. Individual
model parameter values are presented in Section 1.4.

Table 1: Interpretation of insulin PK model states, input, output and parameters.

Class Variable Unit Interpretation

States X1(t) U insulin mass due to SC doing, in SC tissue
X2(t) U insulin mass due to SC dosing, in serum

Input uI(t) U/min insulin dose
Output I(t) mU/L insulin concentration in serum

Parameters

Ib mU/L steady state insulin concentration
tmax min time to maximum serum concentration
W kg body weight
ClF,I mL/kg/min apparent insulin clearance
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1.2 Glucagon Pharmacokinetics Model 1 SIMULATION MODEL

1.2 Glucagon Pharmacokinetics Model
The glucagon PK model is adopted from Wendt et al. [4] and described by equations
(4)-(6).

dZ1(t)

dt
= uC(t) − k1Z1(t) (4)

dZ2(t)

dt
= k1Z1(t) − k2Z2(t) (5)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb (6)

The steady state conditions of the system are both states, Z1 and Z2, equal to zero.
Table 2 lists the interpretations of glucagon PK model variables. Individual model
parameter values are presented in Section 1.4.

Table 2: Interpretation of glucagon PK model states, input, output and parameters.

Class Variable Unit Interpretation

States Z1(t) pg glucagon mass due to SC dosing, in SC tissue
Z2(t) pg glucagon mass due to SC dosing, in plasma

Input uC(t) pg/min glucagon dose
Output C(t) pg/mL glucagon concentration in plasma

Parameters

Cb pg/mL steady state glucagon concentration
k1 min−1 absorption rate constant
k2 min−1 elimination rate constant
W kg body weight

ClF,C mL/kg/min apparent glucagon clearance

1.3 Glucose Pharmacodynamics Model
The glucose pharmacodynamics (PD) model was first developed using preclinical data
from healthy dogs [4] and then tested with data from healthy humans [5]. Finally, the
PD model was validated for simulations in seven type 1 diabetes patients [1]. The
model structure is described by equations (7)-(13).
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1.4 Model Parameters 1 SIMULATION MODEL

dQ1(t)

dt
= −F01 − FR − STx1(t)Q1(t) + k12Q2(t) +GGG(t) +GGNG (7)

dQ2(t)

dt
= STx1(t)Q1(t) − [k12 + SDx2(t)]Q2(t) (8)

GGG(t) =
1 − SEx3(t)

1 − SEIb
·
(

(Emax −GGNG)
C(t)

CE50 + C(t)

)
(9)

G(t) =
Q1(t)

V
(10)

dx1(t)

dt
= ka1[I(t) − x1(t)] (11)

dx2(t)

dt
= ka2[I(t) − x2(t)] (12)

dx3(t)

dt
= ka3[I(t) − x3(t)] (13)

In equation (9), 1 − SEx3(t) is always greater than or equal to zero. Interpretations of
PD model states, inputs, outputs and parameters are listed in Table 3. Subject specific
model parameters are presented in Section 1.4. The steady state conditions of the model
are listed in equations (14)-(18).

Q1,SS = GSS · V (14)

Q2,SS = Q1,SS
x1,SS

x2,SS + k12
(15)

x1,SS = Ib (16)
x2,SS = Ib (17)
x3,SS = Ib (18)

1.4 Model Parameters
The majority of PK and PD model parameters are subject specific and listed in Table
4. A few parameters are fixed for all subjects including the rate of gluconeogenesis,
GGNG, at 6 µmol/kg/min [6], and the glucose volume of distribution, V , at 160 mL/kg
[7]. The renal clearance of glucose is zero unless the plasma glucose concentration
exceeds 9 mmol/L in which case it is calculated as 0.003 · (G − 9) · V [8]. Similarly,
the insulin independent glucose flux is calculated as F01 · G/4.5 when the plasma
glucose concentration falls below 4.5 mmol/L [8].
The glucose PD model was validated using leave-one-out cross-validation in seven
out of eight type 1 diabetes patients. The model parameters of patient 8 are reported
although the model could not be validated in this subject. Therefore, simulations in the
following chapters are carried out using only subjects 1-7.
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2 THE STUDY BY EL YOUSSEF ET AL.

2 The Study by El Youssef et al.
In this section, using simulations we aim to replicate the clinical study by El Youssef
et al. published in Diabetes Care November 2014 with the title ”Quantification of
the Glycemic Response to Microdoses of Subcutaneous Glucagon at Varying Insulin
Levels” [2].

2.1 Study Design
The study by El Youssef et al. [2] included 11 type 1 diabetes (T1D) patients (5 fe-
males, age IQR: 36.5-46.0 years, BMI IQR: 23.0-31.1 kg/m2, HbA1c IQR: 7.0-8.2%).
The patients participated in three study days of each 10 hours duration with constant
intravenous insulin infusion rate (IIR) of either low, medium or high. Average results
during low, medium and high IIR are based on 10, 9, and 10 subjects, respectively.
Glucose infusion rates were controlled using a proportional integral derivative (PID)
controller aiming at a blood glucose concentration of 85 ± 20 mg/dL. When blood glu-
cose read below 60 mg/dL the controller regulated the glucose infusion rate every five
minutes, otherwise every ten minutes. After an initial two hours run-in period the sub-
jects received the first glucagon bolus. They received the second glucagon bolus after
another two hours until a total of four glucagon boluses were delivered and observed
for the following two hours. The glucagon boluses were delivered in a pseudo-random
order by varying the initial dose, but keeping the order: 25 µg, 75 µg, 125 µg, and 175
µg (25-75-125-175, 75-125-175-25, 125-175-25-75, 175-25-75-125). Each subject re-
ceived the same pseudo-random order of glucagon boluses during each study day.
The study used regular human insulin (Humulin R, Eli Lilly and Company) and gluca-
gon (GlucaGen, Novo Nordisk).

2.2 Simulation Study Details
In the in silico study we used the validated patient specific PK/PD models describing
seven T1D patients (4 females, age range: 19-64 years, BMI range: 20.0-25.4 kg/m2,
HbA1c range: 6.1-7.4 %) presented in Section 1 [1]. All virtual subjects participated
in experiments with low, medium and high IIRs. We followed the study design of the
clinical study described in Section 2.1. We allowed initialization of patients at steady
state (SS) at the beginning of the two hours run-in period by solving the patient specific
equations for SS.
The insulin and glucagon PK/PD model parameters were based on a study using insulin
aspart (NovoRapid, Novo Nordisk) and glucagon (GlucaGen, Novo Nordisk). As the
IIRs are constant during the experiment the possible differences in insulin PK between
Humulin R and NovoRapid are not confounding the study. Differences in insulin PD
effects are relevant, however, we assume that the insulins have identical PD effects.

2.2.1 Determining Infusion Rates

The low and medium IIR were chosen based on individual basal infusion rates and the
high IIR was fixed at 0.05 U/kg/h for all subjects. In the clinical study they used either
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2.2 Simulation Study Details 2 THE STUDY BY EL YOUSSEF ET AL.

0.01 U/kg/h or the patient’s average daytime basal rate as the lowest IIR, but the latter
information was not available in the simulation study. Therefore, the individual low
IIR was maximized to either 0.01 U/kg/h or the infusion rate yielding an insulin level
equal to one and a half times the fasting serum insulin concentration. The medium IIR
was chosen halfway between the low and high IIR.
The SS glucose infusion rate was calculated by solving individual glucoregulatory
models at SS given the pre-specified insulin infusion rate.

2.2.2 Proportional Integral Derivative Controller

We implemented a simple proportional integral derivative (PID) controller with clip-
ping to control the blood glucose concentration by adjusting the glucose infusion rate,
as listed in equations (19)-(22).

ek = GSS −Gk (19)
Ik = Ik−1 + ki · ∆t · ek (20)

dek =
ek − ek−1

∆t
(21)

Uk = max(0, USS + kp · ek + Ik + kd · dek) (22)

GSS is the glucose concentration at SS (set point of 85 mg/dL), Gk is the kth glucose
observation, and ek is the deviation from set point of the kth observation. Ik is the
discretization of the integral of errors until k, calculated as the sum of the previous
integral of errors, Ik−1, and the current integral of error weighted by ki. dek is the
discretization of the error derivative at k calculated by the backward difference. The
updated glucose infusion rate, Uk, is the sum of the SS glucose infusion rate, USS , the
error weighted by kp, the integral of errors, and the error derivative weighted by kd,
unless the sum is negative, in which case the glucose infusion rate is set to zero. We
used kp = 4, ki = 1, and kd = -2.

2.2.3 Calculation of Endogenous Glucose Production

The endogenous glucose production (EGP) due to glucagon was directly calculated
using the PD model. EGP was baseline-corrected by subtracting the EGP level at
the time of the most recent glucagon dose to avoid carry-over effects from previous
glucagon doses or from baseline production maintained by the constant insulin infusion
and SS glucagon concentration.

EGPCorrected(t) = EGP (t) − EGP (tDose,n) n = 1, ..., 4 (23)

The baseline-corrected EGP can thus become negative when current EGP is less than at
the time of the most recent glucagon dose. However, it can not be more negative than
the difference between EGP at SS and EGP at the time of the most recent glucagon
dose.
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2.3 Results and Discussion
2.3.1 Insulin and Glucose Infusion Rates

(a) In vivo from [2]. (b) In silico (n=7).

Figure 1: Box plot of glucose infusion rate (mg/kg/min) across all studies, by insulin
infusion group.

Table 5 compares the reported in vivo and simulated in silico average insulin and glu-
cose infusion rates at low, medium and high IIRs. At a first glance, insulin infusion
rates are very similar in the two studies based on averages and medians. However, the
virtual study contained one patient (no. 7) having a very high basal IIR yielding a low
IIR of 0.042 U/kg/h and a medium IIR of 0.046 U/kg/h. Ultimately, there was little
differences between the three IIRs in this subject and therefore only minor differences
in responses during the various insulin infusion rates. The high basal IIR indicates that
the subject is not very sensitive to insulin and therefore the response to glucagon during
the high IIR was little attenuated by the insulin level. No formal test was performed to
exclude this subject. However, the low IIR and medium IIR are more than two standard
deviations from the mean infusion rates reported in vivo which justifies the exclusion
of the subject from the analysis of EGP response to glucagon at various insulin levels.

Table 5: Summary of insulin and glucose infusion rates in vivo and in silico. Infusion
rates are reported as mean ± SD and median [IQR]. L = low, M = medium, H = high.

IIR In Vivo In Silico
Insulin L 0.016 ± 0.006 0.014 0.018 ± 0.011 0.014

rate M 0.032 ± 0.003 0.03 0.034 ± 0.006 0.032
U/kg/h H 0.05 ± 0.00 0.05 0.05 ± 0.00 0.05
Glucose L 0.7 ± 0.5 0.6 [0.2-1] 0.5 ± 0.8 0.0 [0.0-1.0]

rate M 2.9 ± 1.3 3.2 [1.9-4] 2.1 ± 0.9 2.3 [1.9-2.9]
mg/kg/min H 4.5 ± 2 5.1 [2.9-6.2] 3.8 ± 1.2 4.0 [3.2-4.8]

Summary statistics of glucose infusion rates are similar although the interquartile range
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is narrower in silico than in vivo. This difference is also evident in Figure 1 showing
smaller boxes but several outliers in silico compared to in vivo. Looking at the glu-
cose infusion rates over time in Figure 2b, we observe a difference in the response to
glucagon, thus the amount of decrease in glucose infusion rate compared to Figure 2a.
Moreover, the glucose infusion rate at SS is slightly lower during medium and high
IIRs. To the authors it is not clear how the large decrease in glucose infusion rate
during high IIR displayed in Figure 2a relates to the small EGP area under the curve
(AUC) displayed in Figure 8a.

(a) In vivo from [2].

(b) In silico (n=7).

Figure 2: Mean glucose infusion (mg/kg/min) over time by insulin infusion rate group
and glucagon dose: top left, all insulin infusion rates together; top right, bottom left,
and bottom right, low, medium, and high insulin infusion rates, respectively.
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2.3.2 Insulin and Glucose Concentrations

Table 6 compares reported and simulated serum insulin concentrations and plasma glu-
cose concentrations after the two hours run-in period. The distribution of serum insulin
levels are very similar in the clinical and virtual studies as seen in Figure 3. This con-
firms that the insulin PK model is applicable despite not being estimated from optimally
sampled data as described in [1]. On the contrary, the plasma glucose concentrations
differ. The glucose concentration is lower with less variation during the in silico ex-
periment especially during low and medium IIR. This is probably due to differences in
the PID controller settings achieving better control in the virtual population than in real
subjects. Moreover, using the SS equations of the individual subjects we calculated the
exact needed glucose infusion rate to counter the IIR. This is unfortunately not possi-
ble in real life. The plasma glucose concentration is equally well controlled during the
high IIR which is probably due to the attenuated EGP response to glucagon.

Table 6: Serum insulin and plasma glucose concentrations in vivo and in silico. Con-
centrations are reported as mean ± SD and median [IQR]. L = low, M = medium, H =
high.

IIR In Vivo In Silico
Serum L 17.6 ± 13.0 11.0 [9.7-24.6] 15.0 ± 7.2 13.1 [10.2-17.1]
insulin M 29.1 ± 8.9 28.1 [25.5-31.5] 29.7 ± 4.8 30.5 [28.0-31.9]
mU/L H 46.0 ± 12.5 41.7 [37.5-46.8] 44.4 ± 7.8 45.1 [37.4-48.1]

Plasma L 150.8 ± 68.3 100.5 ± 28.0
glucose M 92.9 ± 21.3 83.6 ± 14.6
mg/dL H 88.0 ± 16.0 83.4 ± 13.4

(a) In vivo from [2]. (b) In silico (n=7).

Figure 3: Box plot of serum insulin levels (mU/L) at low, medium, and high insulin
infusion rates.
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2.3.3 Glucagon

Table 7 compares time to maximum concentration (Tmax) of glucagon between the
clinical and virtual studies stratified by glucagon dose. In both studies, Tmax did not
dependent on glucagon dose. We found smaller Tmax with smaller variation in silico
than in vivo. One should keep in mind that blood was only sampled every 10 minutes
in the clinical study whereas data used for estimating glucagon PK model parameters
for simulations were sampled every 5 minutes. Blood sampling every 10 minutes does
not allow for accurate determination of glucagon’s Tmax.
Comparisons of glucagon AUCs in Figure 4 and concentration time profiles in Figure 5
to the in vivo findings should be made with caution as absolute glucagon concentration
highly depends on the assay [9]. Moreover, the in vivo study measured glucagon in
serum whereas the in silico study simulated glucagon in plasma. Overall, in silico glu-
cagon levels seem more variable, although with clearly separated average PK profiles
for each dose.
Figure 5a and 5b show that the plasma glucagon concentration is still above SS two
hours after most glucagon doses. Therefore, repeating glucagon dosing after only two
hours will likely introduce some carry-over effects from the previous dose, even when
baseline-corrected at the time of dose.

Table 7: Glucagon Tmax.

Dose In Vivo In Silico
25 µg 23.2 ± 13.5 11.1 ± 3.5

Glucagon Tmax 75 µg 17.1 ± 8.1 12.1 ± 4.3
min 125 µg 19.6 ± 6.1 12.1 ± 4.3

175 µg 20 ± 9.6 12.1 ± 4.3

(a) In vivo from [2]. (b) In silico (n=21).

Figure 4: Box plot of glucagon plasma level AUC over 60 min, stratified by dose.
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(a) In vivo from [2].

(b) In silico (n=21).

Figure 5: Mean incremental change in glucagon plasma levels (baseline corrected at
time = 0).
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2.3.4 Endogenous Glucose Production

The results in the following section highly depends on the method used for calculat-
ing EGP. In the in vivo study they derived the EGP from tracer data by fitting a two-
compartment model. In the in silico study we calculated the EGP directly from the
model description.
As mentioned in Section 2.3.1, one patient was considered an outlier because of nearly
no difference in IIRs and was excluded from the following analysis of EGP due to glu-
cagon at various insulin levels.

Figure 6b replicates Figure 6a with many similarities but also some differences. Most
importantly, the magnitudes of average peak EGP to the four glucagon doses are sim-
ilar. The EGP increase appears to be more rapid in silico than in vivo yielding a faster
Tmax, which can be partly explained by the faster glucagon Tmax. However, with the
sampling of every ten minutes the observed Tmax could be anywhere between 10-30
minutes and the simulated Tmax could be between 0-20 minutes (the average is in fact
12 minutes). If the true Tmax of EGP in response to glucagon is between 10-20 min-
utes, this fits with both the observed and simulated results.
The in vivo estimated EGP returned fast to baseline and after 60 minutes it was below
the production before injection of the preceding glucagon bolus. The simulated EGP
has slower return to baseline and we only observe slightly negative values after the
lowest glucagon dose.

The average EGP over the first 60 minutes is somewhat higher in silico than in vivo
as visualized in Figure 7b compared to Figure 7a. This difference is expected based
on the simulated slower return to baseline just described. The simulated averages are
however within the standard error of measurement of the observed data.

Perhaps the most interesting graph is Figure 8a which is replicated by simulation in
Figure 8b. The averages of the simulated data are different from the observed aver-
ages. However, considering the standard error of measurement of both datasets the
simulated data is not different from the observed data. The EGP responses to doses of
glucagon during medium IIR were very similar to the EGP responses during low IIR in
the measured data, whereas we observe a difference between the responses during the
two IIRs when simulating the experiments. We also find a small increase in response to
increasing glucagon boluses even at high IIR which is not pronounced in the original
observed data. In general, the standard error of measurements are smaller in silico than
in vivo.

Figure 9b is a replication of Figure 9a but without extrapolation. The original graph
shows the actual data in the dose-range of 25-175 µg glucagon and extrapolates the
presumed trends down to 1 µg and up to 10 mg. Note, this is a wild extrapolation with
no data to support it. Within the data-range the simulated results match the observed
results although the simulated EGP at low IIR tends to be higher than the observed.
Having only four points very closely spaced on a log-scale, a single point can largely
influence the overall interpretation of the curves.
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(a) In vivo from [2].

(b) In silico (n=6).

Figure 6: Time profiles of calculated EGP by glucagon dose, baseline corrected for
EGP at the time of dose.
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(a) In vivo from [2]. (b) In silico (n=18).

Figure 7: Mean EGP AUC over 60 min after the dose.

(a) In vivo from [2]. (b) In silico (n=6).

Figure 8: Mean EGP AUC separated by glucagon dose and insulin infusion rate.
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(a) In vivo from [2]. (b) In silico (n=6 or 18).

Figure 9: Dose-response curve across all doses, and for low and high insulin infusion
rate experiments, estimated from simulated data.
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Figure 10: Example of simulated raw data from patient 4 during the low IIR with first
bolus being 25 µg. Notice that the blood glucose concentration and glucose infusion
rate do not return to SS before the next glucagon bolus is administered.

2.3.5 Examples of Simulated Raw Data

Figures 10 and 11 show examples of raw data from the simulation study. The points
mark blood sampling times during the in vivo study.
The first figure presents data during low IIR and reveals that the blood glucose level
cannot be kept within ±20 mg/dL of the set point at all times. Especially after the
higher doses of glucagon the blood glucose exceeds the upper limit. The graph also
reveals that the glucose infusion rate is zero during most of the experiment. The ex-
planation to this observation is that during low IIR the glucose infusion rate needed
to maintain SS is equally low and cannot be lowered sufficiently after the glucagon
boluses to maintain the blood glucose within the boundaries. Moreover, the plasma
glucose concentration and glucose infusion rate do not return to SS before the next
glucagon bolus administration.
The second figure shows data during medium IIR where the glucose infusion rate is
never zero although decreased in response to glucagon boluses. The blood glucose is
mostly kept within the boundaries.
The raw data from the study by El Youssef et al. [2] are not available, making it im-
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Figure 11: Example of simulated raw data from patient 6 during the medium IIR with
first bolus being 75 µg. Notice how the glucose infusion is regulated to control the
blood glucose close to the set point.

possible to compare our examples to actual data.
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Figure 12: Simulated average of seven T1D patients’ dose-response curves of glucagon
boluses ranging from 1 µg to 10 mg at various insulin levels expressed as multiples of
the basal IIR.

3 Dose-Response Studies
In this section, we demonstrate the advantage of using simulations to conduct large
cross-over studies that would not be feasible in real life. Moreover, we use simulations
to design guidelines for realistically sized studies that, if the simulation model is cor-
rect, will provide the same information as the large in silico study, while exposing the
patients to a limited number of experiments.

3.1 Study Design
The in silico study included seven T1D virtual patients [1], that each underwent 115
cross-over study days. Model equations and subject specific model parameters are
listed in Section 1. At each study day, the IIR was constant at either 1, 2, 3, 4, or 5 times
the basal IIR and the glucose infusion rate controlled every five minutes as described
previously in Section 2.2.2 to maintain a glucose clamp of 5 mmol/L. After 60 minutes
SS run-in period, a glucagon bolus was administered and simulation continued till 5
hours after the bolus. We simulated the effect of the following glucagon boluses: 1 µg,
2.5 µg, 5 µg, 10 µg, 25 µg, 50 µg, 75 µg, 100 µg, 125 µg, 175 µg, 200 µg, 300 µg,
400 µg, 500 µg, 750 µg, 1 mg, 1.5 mg, 2 mg, 3 mg, 4 mg, 5 mg, 7.5 mg, and 10 mg.
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3.2 Results and Discussion
The EGP AUCs over 60 minutes (AUC60) were calculated as described in Section
2.2.3. The average EGP AUC60 for each dose stratified by IIR were calculated and
plotted in Figure 12. The response to glucagon doses below approximately 25 µg are
very similar independent of IIR. However, with increasing glucagon doses the curves
for each IIR separate. The higher the IIR, the less response to a glucagon bolus. Small
increases in glucagon dose during low IIR increase the response significantly although
it seems to saturate for some glucagon dose.
The results in Figure 12 represent classical dose-response curves and can be described
mathematically by the Michaelis-Menten equation:

EGPAUC60min = Rmax · Dose

ED50 +Dose
(24)

Rmax is the maximum response and ED50 is the dose yielding the half-maximum
response. The fitted Rmax and ED50 for each IIR are summarized in Table 8. The
ED50 does not seem to depend on the insulin level. On the contrary, Rmax is highly
dependent on the insulin level according to Table 8. This observation is expected, as
the model used for simulations describes how insulin modulates the maximum achiev-
able EGP response to glucagon, but does not influence the concentration yielding half-
maximum response.

Table 8: Fitted parameters for dose-response relationship between glucagon and EGP
at multiples of the average basal IIR.

IIR x basal Rmax, mg/kg ED50, mg
1 609 0.220
2 385 0.226
3 183 0.244
4 96 0.256
5 59 0.237
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 13: Fitted dose response curves when using doses of 25, 75, 125, and 175 µg as
in the study by El Youssef et al. [2] assuming independence of insulin for either ED50

or Rmax.

3.3 Dose Selection for an in Vivo Study
There is speculations to how the ambient insulin level affects the EGP response to
glucagon. Two hypothesis are proposed:

• insulin level influences the maximum response to glucagon, Rmax

• insulin level influences the glucagon dose at which half-maximum response is
achieved, ED50

The hypotheses could be examined by carrying out a smaller in vivo study. However,
the glucagon doses must be carefully chosen to make sure to capture the essential parts
of the dose response curve. If all tested doses are below the trueED50 both hypotheses
would describe the data equally well. This pitfall is illustrated in the following exam-
ple.

The in silico study just described in Section 3.1 was inspired by the results presented
in Figure 9 in Section 2.3.4. Assuming the in vivo study was carried out again with the
same glucagon doses of 25, 75, 125, and 175 µg at one to three times the basal IIR,
would one be able to decide which parameter in equation (24) insulin affects?
To answer this question, we simulated the small study and fitted the parameters of (24)
twice; first assumingED50 was constant across insulin levels and then assumingRmax

was constant across insulin levels. The results are presented in Figure 13. Because the
four doses are within a narrow dose range and all doses are below the simulated ”true”
ED50, both hypotheses fit the simulated data equally well. Although the case with
equal ED50 represents the simulated ”truth”, the commonly identified ED50 is much
lower than the parameter value presented in Table 8.
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(a) ED50 independence of IIR. (b) Rmax independence of IIR.

Figure 14: Fitted dose response curves when using SC glucagon doses of 25, 100, and
1000 µg assuming independence of insulin for either ED50 or Rmax.

If the glucagon doses had been distributed across a larger dose range encompassing
the ”true” ED50, would it then be possible to determine how insulin affects EGP? Re-
alistically, one can not administer more than 1 mg glucagon as a SC bolus injection
which causes some limitations to the maximum possible dose range in an in vivo study.
We simulated a small realistic study with three SC glucagon boluses of 25 µg, 100 µg,
and 1 mg at one to three times the basal IIR. We then fitted (24) assuming either ED50

or Rmax constant and independent of the ambient insulin level. Figure 14 presents the
results using the model analyzed in Section 3.2 where ED50 is constant and indepen-
dent of the ambient insulin level. The graphs visualize a clear difference in the fitness
of the two hypotheses making one more plausible than the other; that ED50 does not
depend on ambient insulin levels, but that Rmax does. Moreover, the identified com-
mon ED50 is similar although a bit lower than the values listed in Table 8.

If this study was to be carried out in real life, biological variation between subjects
might be dominating making it difficult to determine which hypothesis to accept and
which to reject. Instead of relying on the inter-subject variation being low, one could
fit (24) to data from individual subjects and hopefully reach the same conclusion in all
subjects. The individually confirmed hypothesis could then be transferred to the popu-
lation mean.
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4 Pearls & Pitfalls
This section focuses on the DOs and DON’Ts when conducting clinical studies of the
glucoregulatory system with focus on experiments involving glucagon. The points
will be exemplified through simulations and references to literature. We hope that this
section serves as an inspiration to researchers who are planning in vivo studies of the
glucoregulatory system.

4.1 Glucose Clamps
The blood glucose clamp is a procedure used to maintain the same glucose level through-
out an experiment either hypoglycaemic (below normal), euglycaemic (normal), or hy-
perglycaemic (above normal). The purpose of clamping the blood glucose is to elim-
inate the influence of varying glucose levels during an experiment where glucose is
believed to affect the investigated mechanism. As an example, the glucose clamp pro-
cedure could be used during a gastric emptying study to eliminate the negative feedback
mechanism between blood glucose concentration and gastric emptying rate [10].
The glucose clamp can be controlled using intravenous (IV) infusions of insulin and
glucose. Somatostatin may be infused to inhibit endogenous production of hormones
like insulin and glucagon in healthy subjects. The glucose regulating hormones are
then clamped at continuous rates and as a minimum clamped at the basal rates to sub-
stitute for baseline concentrations. Somatostatin may not be necessary in clamp studies
when investigating effects of exogenous supraphysiological glucagon doses in patients
with type 1 diabetes having no endogenous insulin production.

4.1.1 Glucose Level and Glucose Infusion

An in vivo study by Hinshaw et al. points to that the glucose level does not influence
the effect of glucagon [11]. However, Cherrington advocates there is an inhibitory ef-
fect of hyperglycemia on EGP [12]. Therefore, we recommend that the blood glucose
concentration is kept close to a set point throughout a clamp experiment involving glu-
cagon to minimize potential influence of the blood glucose concentration on EGP.
The simplest and fastest way to control the glucose level during a clamp is through
IV glucose infusion. The glucose infusion can be controlled automatically using vari-
ous controllers based on PID or Model Predictive Control (MPC). In Section 2.3.5 we
demonstrated that a simple PID controller was sufficient to maintain the blood glucose
close to a predefined set point while administering glucagon. Moreover, a simple PID
controller is easy to implement and may assist investigators in keeping the blood glu-
cose close to the predefined set point level. This is however only possible in cases when
the insulin and glucose infusions are sufficiently high to allow for the glucose infusion
to be reduced corresponding to the EGP contribution from the glucagon bolus.

4.1.2 Insulin Level and Insulin Infusion

Glucose clamps are not recommended to be controlled by IV insulin infusion although
it occurs. Studies have showed that high insulin levels during euglycaemia suppress the

27



4.1 Glucose Clamps 4 PEARLS & PITFALLS

Figure 15: In silico demonstration of the dynamics when stopping or continuing IV
insulin and glucose infusion during a clamp study in subject 4. Blood glucose was
clamped at 5 mmol/L by twice the basal IIR and constant glucose infusion. After
30 minutes SS, glucose and insulin infusions were stopped (left column) and 20 min-
utes after either no bolus (dashed line) or a 0.5 mg SC glucagon bolus (solid line)
was administered. In a different scenario, the insulin and glucose infusions continued
throughout the study and a 0.5 mg SC glucagon bolus was administered (right column).

effect of glucagon on EGP [2, 13]. In Section 2 we verified that our simulation model
achieved similar results as obtained in vivo by El Youssef et al. [2]. Should the insulin
infusion then be kept constant throughout a clamp experiment? Yes. In the following
we demonstrate in silico how much insulin levels influence the response to glucagon.

The first in silico study design is inspired by Blauw et al. [14] to demonstrate that
it is difficult to interpret the glucose response to glucagon when too many dynamics
influence the response. This situation is illustrated in Figure 15 by simulations and ex-
plained in the caption. When insulin and glucose infusions are stopped during a clamp
procedure, the immediate response is a drop in glucose levels both due to the lack of
glucose infusion and because the effect of insulin persists after the infusion is stopped.
Although the glucose responses to glucagon in Figure 15 look fairly similar, more EGP
is produced when the infusions are stopped as measured by the AUC. The increased
EGP is hiding the drop in glucose that would have been seen if no glucagon bolus was
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administered. Even when no glucagon bolus is administered the EGP increases slightly
after infusion stop of insulin and glucose because of the fading insulin level.
It should be noted, that the insulin clearance parameters were estimated from data
following SC insulin administration rather than IV administration, which could under-
estimate the actual clearance since it is limited by the slow and variable SC absorption.

The second in silico study design explores what happens if one uses insulin to con-
trol a glucose clamp rather than glucose. The blood glucose of a patient undergoing
a glucose clamp responds immediately to the changes in the glucose infusion whereas
the effect of insulin is delayed. An example to illustrate the delayed effect of insulin
is demonstrated in Figure 16 by simulations and explained in the caption. Although
the same glucagon bolus of 0.5 mg was given at the same insulin concentration, the
responses were different - the larger the prior SC insulin bolus, the smaller response
to glucagon. However, not all virtual patients seem to have as pronounced delayed
response to insulin as in this example. The size of the delay highly depends on the
parameter ka3 in the PD model which represents the rate constant of remote insulin
action on EGP, see Table 4 in Section 1.4.

The simulated examples show that the insulin level highly influences the EGP response
to glucagon and the effect of insulin can be delayed.

4.2 Dynamics in Data
A model can only be expected to describe dynamics present in the data used for model
development and parameter estimation, if data is sampled sufficiently. To correctly es-
timate Tmax after a bolus administration in a PK model, data must be sampled densely
around Tmax. If Tmax of a compound is expected to be 50 minutes, and no samples
are collected the first two hours after dose administration, it is practically impossible
to determine Tmax without inferring prior knowledge. More importantly, if Tmax is
very short the exact notation of the dosing time is absolutely necessary in order to fit a
meaningful PK model to data.

Furthermore, factors influencing the model parameters can not be included in the de-
scription of the parameters if the factors do not vary in the training dataset. As an ex-
ample, exercise and stress are long known to alter the insulin sensitivity, and recently
Ranjan et al. found that diet might influence the response to glucagon [15]. None of
these factors are accounted for in the glucose PD model used for simulations through-
out this report [1]. Moreover, the model does not include a feedback mechanism of the
glucose levels to the endogenous production of insulin and glucagon.

4.2.1 Identifying Steady State

As described, the final fitted model is limited by the data used for estimating the model
parameters. Thus identifying the correct steady state can be difficult if the data do not
contain much information thereof. Figure 17 illustrates that the PD model described in
[1] does not estimate the correct steady state. Initializing patient 7 at euglycaemia with
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Figure 16: In silico demonstration of the delayed insulin effect on EGP. Blood glucose
was clamped at 5 mmol/L by basal IIR and controlled via IV glucose infusion every 5
minutes using the PID controller explained in Section 2.2.2. After 30 minutes steady
state, subject 4 received a SC insulin bolus of either 5 U (left), 3 U (middle) or 1 U
(right). When the insulin concentration dropped below 13 mU/L a SC glucagon bolus
of 0.5 mg was administered. The EGP responses are displayed in the bottom row; the
120 minutes AUCs are 323, 429, and 612 mg/kg, respectively.

baseline levels of insulin and glucagon as in Figure 17a, one would expect the glucose
level to stay constant or at least approach a level similar to either of the observed
initial values. However, the glucose concentration drops to a level below 50 mg/dL.
The reason for this behaviour is explained in the data used for estimating the model
parameters of patient 7 [1,16], see Figure 17b. The data contains very little information
about the insulin, glucagon and glucose levels before the system is disturbed with an
insulin bolus. On the contrary, it appears that a SS is achieved towards the end of
the experiment when the glucose concentration is around 50 mg/dL and both glucagon
and insulin have returned to their baseline levels. This phenomenon explains why the
model assumes glucose SS lower than one would expect at baseline levels of insulin
and glucagon.
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4.2.2 Repeated Glucagon Boluses

When conducting experiments in vivo one naturally wishes to maximize the informa-
tion from those experiments. Clinical studies are often set up to investigate multiple
glucagon doses during each trial day [2, 14]. However, depending on the size of the
glucagon bolus, it can take several hours before all administered drug is cleared from
the system and plasma concentration has returned to baseline. As evident in Figure
17b, plasma glucagon has only just returned to baseline four hours after a SC bolus of
300 µg glucagon. Be reminded of Figure 10 in Section 2 where the continuous increase
in glucose concentration is due to residual glucagon from the previous dose. One must
allow sufficient time in-between experiments and perhaps lower ones expectations to
what is practically possible to avoid carry-over effects from previous doses, rather than
rushing too many experiments in short time.

4.2.3 The Glucagon Evanescence Effect

The glucagon evanescence effect is well known and documented since the early 1980s
[11, 17, 18]. As implied in the name, the effect of glucagon tends to fade away over
time. This trend is observed during clamp studies with constant insulin and glucagon
levels where the EGP tends to return to baseline after approximately two hours al-
though the glucagon level is still significantly elevated above the baseline level [11,18].
Mechanisms to explain this phenomenon could be degradation/aggregation of infused
glucagon, hyperglycemia, intra-hepatic negative feedback mechanism or simply glyco-
gen depletion.
As the evanescence effect is observed even during clamped euglycaemia, hyperglyce-
mia can not solemnly explain the vanishing effect of glucagon [11].
Glycogen depletion seems like an easy explanation. However, the amount of infused
glucagon during the study by Hinshaw et al. [11] was 0.54 µg/kg over three hours dur-
ing the highest glucagon infusion rate. A study by Castle et al. [19] found that repeated
boluses of 2 µg/kg did not deplete the liver even after an overnight fast. Therefore,
it does not seem likely that the evanescence effect observed during clamp studies of
glucagon is due to depletion of the glycogen stores in the liver.
In vitro data suggest that the glucagon evanescence effect is due to desensitization of
the receptor regulated by cyclic AMP [20]. The reduced responsiveness to glucagon
was fully expressed after 2 hours which fits well with in vivo data [11,18]. Hinshaw et
al. [11] proposed a mathematical expression to capture the waning effect of glucagon.
However, it is unclear for how long this evanescence effect persists and if a sudden
increase in the glucagon infusion can overrule the evanescence phenomenon. More
studies of the glucagon evanescence effect are needed to fully understand the underly-
ing mechanisms and how the effect should be accounted for in a glucoregulatory model
including glucagon.
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(a) Simulation of subject 7’s modelled SS. Insulin and glucagon
are at baseline levels, and glucose concentration initiated at eugly-
caemia.

(b) Raw data and PK/PD model fits in subject 7: insulin PK (top), glucagon PK (middle), glucose
PD (bottom). Increasing glucagon boluses left to right: 0, 100, 200, 300 µg. Triangles indicate
time of insulin bolus (blue) and glucagon bolus (red). Please see [1] for further study details.

Figure 17: Comparison of modelled SS and data used for model building.
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4.3 Summary
The learnings of the previous sections can be summed up in the following statements
that should aid in the design of clinical studies:

• The glucose level during hypo- or euglycaemia does not influence the glucose
response to glucagon.

• Theoretically, a simple PID controller can control the needed glucose infusion to
maintain constant glucose levels when the insulin infusion is sufficiently high.

• The insulin infusion should be constant throughout the study duration.

• Nominal sampling times must be chosen carefully and actual sampling times
noted meticulously.

• A model can only be expected to account for dynamics present in the dataset
used for model building and parameter estimation.

• Less is more. Avoid multiple dynamics simultaneously by allowing enough time
between disturbances of the glucoregulatory system.

• The effect of glucagon wanes over time despite constant infusion.

• Glucagon doses should be distributed across a wide range encompassing the true
half maximum response in order to correctly identify the dose-response relation-
ship.
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