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A comprehensive methodology for development, 

parameter estimation and uncertainty analysis of 

group contribution based property models – an 

application to heat of combustion 

Jérôme Frutiger, Camille Marcarie, Jens Abildskov, Gürkan Sin* 

Department of Chemical and Biochemical Engineering, Technical University of Denmark 

(DTU), Building 229, DK-2800 Lyngby, Denmark 

ABSTRACT: A rigorous methodology is developed that addresses numerical and statistical 

issues when developing group contribution (GC) based property models such as regression 

methods, optimization algorithms, performance statistics, outlier treatment, parameter 

identifiability and uncertainty of the prediction. The methodology is evaluated through 

development of a GC method for prediction of the heat of combustion ( ) for pure 

components. The results showed that robust regression lead to best performance statistics for 

parameter estimation. Bootstrap method is found a valid alternative to calculate parameter 

estimation errors when underlying distribution of residuals is unknown. Many parameters (first, 

second, third order groups contributions) are found unidentifiable from the typically available 

data, with large estimation error bounds and significant correlation. Due to this poor parameter 
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identifiability issues, reporting of the 95%-confidence intervals of the predicted property values 

should be mandatory as opposed to reporting only single value prediction, currently the norm in 

literature. Moreover, inclusion of higher order groups (additional parameters) does not always 

lead to improved prediction accuracy for the GC-models, in some cases it may even increase the 

prediction error (hence worse prediction accuracy). However, additional parameters do not affect 

calculated 95%-confidence interval. Last but not least, the newly developed GC model of the 

heat of combustion ( ) shows predictions of great accuracy and quality (the most data falling 

within the 95% confidence intervals) and provides additional information on the uncertainty of 

each prediction compared to other  models reported in literature. 

 

INTRODUCTION 

When experimental values are unavailable due to cost or time constraints, there is a strong 

demand for generating accurate and reliable data by predictions. In the early stage of process 

development, when a large number of alternative processes are evaluated and ranked, property 

data are often estimated, especially when new or alternative products or processes are analysed
1
. 

Thus, property prediction models are critically important to process systems engineering, e.g. 

process simulation, analysis and optimization as well as computer-aided molecular design 

(CAMD). Three main types of property prediction models are widely employed: group 

contribution (GC)
2
, quantitative structure-property relationship (QSPR)

3
 and ab initio quantum 

mechanics based methods
4
. 

GC based prediction of pure component properties uses a function of structurally dependent 

parameters. The best known GC methods are those of Joback and Reid
5
, Lydersen

6
, Klincewicz 
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and Reid
7
, Constantinou/Gani

8
 and Marrero/Gani

2
. Compared to ab initio procedures, GC 

methods have a simpler model structure, a wider application range and are computationally less 

demanding. The advantage of the GC approach compared to quantitative structure property 

relationship (QSPR) or prediction based on artificial neural networks (ANN) is that the model 

structure does not depend on the data set
9
. This means that GC models are likely to be more 

reliable for predicting properties of compounds not included in the original data set used for 

model building. The idea of a property function common to all species is in line with Pitzer´s 

corresponding states principle
10

, often shown to be nearly valid for fluid properties. 

In GC model development, the key task is estimation of group contributions using experimental 

data. Systematic reporting of uncertainty for experimental values is widely used
11

. Hence, 

assessing uncertainty of both estimated parameters and predicted properties is appropriate, but 

this issue has nevertheless traditionally not been systematically reported. While the importance 

of uncertainty analysis has been recognized in the literature (Whiting
12

, Larsen
13

, Klotz and 

Mathias
14

, Hajipourt and Satyro
15

, Maranas
16

, Yan
17

, Verevkin
18

), the quantification of the 

source of uncertainties itself (e.g. property prediction errors associated with any property 

models) has not received much attention. For example, Whiting
12

 investigated the effects of 

uncertainties in thermodynamic data and models on process calculations, Larsen
13

 suggested 

methods to analyse the data quality for chemical process design and Klotz and Mathias
14

 

compared van der Waals (vdW) equations of state (EOS) for specific properties. Furthermore, 

Hajipour and Satyro
15

 illustrated the effect of uncertainty of models for critical constants and 

acentric factor and Maranas
16

 performed an uncertainty analysis on optimization calculations 

involved in computer aided molecular design studies. Yan
17

 compared the reliability of a variety 

of group contribution methods in predicting critical temperatures of organic compounds by 
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analysing the respective average absolute deviation. Verevkin et al.
18

 proposed a new group-

contribution approach involving systematic corrections for 1,4-nonbonded carbon-carbon and 

carbon-oxygen interactions. The authors considered uncertainties of predicted values. However, 

their modification of the covariance matrix calculation seems non-standard, as it is not based on 

known statistical theories for parameter estimation
19

, and its generalization may not be 

straightforward. 

Recently, the Marrero/Gani group contribution method (MG method) was used by Hukkerikar et 

al.
20

 to estimate thermo-physical properties (e.g. flash point) of pure components. Hukkerikar et 

al. performed a GC parameter estimation based on maximum likelihood theory, an uncertainty 

analysis based on the parameter covariance matrix and performance criteria to assess the quality. 

In addition to Hukkerikar et al. there is a need for a comprehensive methodology that includes 

 Formulation of parameter estimation problem (e.g. weighted least squares, ordinary least 

squares, robust regression) 

 Performance of optimization algorithms used to locate minima of the objective function 

used for parameter estimation 

 Additional alternative uncertainty analysis method 

 Assessment of parameter estimation errors and of property model prediction errors 

 Method to identify outliers and data pre-treatment 

 Analysis of the source of uncertainty 

 Effects of additional GC-factors on prediction and uncertainty 

We aim at a methodology to perform a comprehensive and step-by-step assessment and solution 

of the above mentioned challenges involved in developing GC-based property models. We 
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demonstrate the methodology by developing a new GC model for the heat of combustion ( ) 

based on the MG groups, employing molecular structural information at different levels. 

The heat of combustion  provides important information in risk assessment in order to 

quantify the stabilities of chemical compounds. Furthermore the values are required when 

considering the thermal efficiency of process equipment in particular where either heat or power 

is produced.  is defined as the enthalpy increase of a chemical compound while undergoing 

an oxidation to defined combustion products at a temperature of 298.15 K and pressure of 1 

atm
21

. 

There are a number of GC-based methods for the estimation of  in the literature. Cardozo
22

 

estimated enthalpies of combustion by developing correction factors from an equivalent alkane 

chain length and then utilized these factors along with simple relations developed for n-alkanes. 

Seaton and Harrison
23

 proposed a method based on the original Benson’s methods that had been 

used for the prediction of enthalpy of formation. Both Cardozo as well as Seaton and Harrison 

did not provide information on accuracy and uncertainty of their respective models. Hshieh et 

al.
24

 developed an empirical model to estimate the heat of combustion. However, the application 

range is limited due to a small number of compounds taken into account for the parameter 

estimation. 

Gharagheizi
25

 developed a simple three-parameter quantitative structure-property relationship 

(QSPR). Cao et al.
26

 suggested a model to estimate the heat of combustion based on an artificial 

neural network (ANN). Furthermore, Pan et al.
27

 developed a four-parameter QSPR method. 

Recently Gharagheizi et al.
21

 developed new GC model for the heat of combustion based on 

ANN. The latter four mentioned models showed all a high squared correlation coefficient 
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between the experimental and the predicted data (>0.99). However, none of the studies includes 

a thorough uncertainty analysis of model predictions including for example the 95%-confidence 

interval of the prediction or the covariance matrix of the parameters. As a case study to highlight 

the application of rigorous methodology developed in this study, we develop a novel GC-based 

model for estimation of   as well as provide comprehensive assessment of uncertainties and 

model prediction accuracy including 95% confidence interval demonstrating the added value of 

using the systematic methodology for the development of GC –based property models.  

The paper is organized as follows: (i) the overall methodology is outlined; (ii) the property 

model for  is developed; (iii) results of parameter estimation, using different regression 

methods, combined with outlier detection and uncertainty analysis, are presented, and; (iv) the 

new  model performance is compared with that of existing models. 

 

2. Method 

An overview of the methodology including the workflow, the data and techniques used at each 

step is shown in Figure 1. 
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Figure 1. Overview of the methodology for development, parameter estimation and uncertainty 

analysis of group contribution based property models. 
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Detailed explanation of the tasks to perform when following the methodology is described in the 

following. 

 

Property model structure definition and experimental data collection. Here the 

Marrero/Gani (MG)
2
 method is selected for development. This method combines the 

contributions from a specific functional group (1st order parameters), from polyfunctional (2nd 

order parameters) as well as from structural groups (3rd order parameters). By using higher order 

parameters (2nd and 3rd), additional structural information about molecular fragments is 

provided. This may be useful, if the description given by 1st order groups is insufficient. The 

general form of the MG method is, 

 
 

(1) 

  (2) 

In Eq. (1) Cj is the contribution of the 1st order group of type j that occurs Nj times whereas Dk is 

the contribution of the 2nd order group of type k that occurs Mk times in the molecular structure 

of a pure component. El is the contribution of the 3rd order group of type l that has Ol 

occurrences. The function f(X) is specific for a certain property X. The parameters can be 

collected in the vector  and the occurrences of the groups can be depicted in the matrix T as 

shown in Eq. (2). As an example, the different GC-factors of 1,2-Dichloro-4-nitrobenzene and 

Adiponitrile are visualized in Figure 2. 
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Figure 2. Example of Marrero/Gani group contribution factors of 1,2-Dichloro-4-nitrobenzene 

and Adiponitrile. 

Experimental  data of 794 compounds are obtained from AIChE DIPPR 801 Database
28

. A 

high number of experimental data points is a prerequisite in order to obtain an accurate model 

with a wide application range. The heat of combustion of each compound is provided in kJ/mol. 

After assigning the different 1st, 2nd and 3rd order groups to the respective molecules, it is 

necessary to determine a model function. We seek a function of the property which is linear in 

the group contributions. Hence, a suggestion for the property function is obtained by generating 

plots of various classes of pure components versus their increasing carbon number in homologue 

series as already shown by Pierotti et al.
29

. A selection of classes of compounds is shown in 

figure 3. From these plots, a linear function is deemed as appropriate model function for the 

 property and shown in Eq. (3), where  is a universal constant. 

  (3) 
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Figure 3. Graphical analysis of number of carbon atoms versus property to infer about a proper 

model function: (y-axis) heat of combustion  of a selection of pure components, (x-axis) 

carbon number of pure components in increasing order.  

Choice of regression method. Three regression models are investigated for the use in parameter 

estimation in group contribution model development. 

- Ordinary nonlinear least squares regression 

- Robust regression  

- Weighted nonlinear least squares regression  

Ordinary nonlinear least squares regression is the most commonly used method for parameter 

estimation. The ordinary least squares regression minimizes the squares of the difference 
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between the experimental property value y
exp

 and the predicted property value y
pred

, i.e. the 

residuals, in order to get the parameter estimates ,  

  (4) 

For the case of  y
pred

 is defined by combining Eq. (1) and (3), see Eq. (5). Each data point 

has equal weight (unity)
19

, 

 
 

(5) 

Ordinary least squares regression assumes that the errors are ideally independently distributed 

and uncorrelated, following a Gaussian distribution with a mean value of zero and a constant 

variance
19

. While these assumptions are made, in practice their validity is rarely checked. This is 

the motivation for using a bootstrap method as outlined below. 

In robust regression each residual is weighted by a certain factor 
19

. Here the Cauchy weight is 

used, placing high weights on small residuals and small weights on large residuals (see Eq. (6) 

and (7)). The weights are updated recursively. In this way the influence of data points producing 

large residuals (not following the model), i.e. potential outliers, is decreased. Another intrinsic 

property of robust regression is that a common variance of all data points is not assumed
30

. 

  (6) 

  (7) 

Weighted non-linear least squares regression uses the variance Vi of the measurement error to 

weight the data as shown in Eq. (8)
31

. Data points with a high variance are considered to be less 
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reliable and hence their influence on the objective function is reduced. The variance of errors of 

the present experimental  measurements are obtained from the AIChE DIPPR 801 

Database
28

.  

 
 

(8) 

  (9) 

In Eq. (9)  is the standard deviation of the respective measurement error. 

 

Initialization using linear algebra and sequential parameter estimation. The universal 

constant as well as the GC factors are (a priori) unknown. A first guess  for the parameter 

estimate is provided using linear algebra according to Eq. (10), 

  (10) 

A value for the constant const is assumed in order to calculate the first guess for the 

parameters from  data and the occurrence matrix T. This offers a unique solution existing 

without iterations. 

Sequential and simultaneous parameter estimation and verification of global optimality. 

Afterwards the universal constants as well as the 1st, 2nd and 3rd order parameters are estimated 

separately and sequentially applying the non-linear regression model from the previous step. The 

solution of Eq. (10) is used as input for the sequential parameter estimation in the next step. 
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The result of the sequential estimation serves as initial guess for the simultaneous parameter 

estimation algorithm, where all parameters are estimated together for the chosen regression 

problem. The purpose of this step is twofold: (a) integrated solution of the parameter estimation 

problem and (b) practical verification of global optimality of the parameter estimation solution. 

In order to test that the global minimum of the least-squares regression has been achieved, a 

practical approach is followed, in which 4 different optimization algorithms are applied. 

Derivative based:  - Levenberg–Marquardt algorithm
32

 

   - Trust-region reflective algorithm
33

 

Non-derivative based: - Simplex algorithm
34

 

   - Pattern search optimization
35

 

The Levenberg-Marquardt as well as the Trust-region reflective algorithm are based on the 

method of steepest descent and the line search approach. They differ in the solution of the 

quadratic subproblems
36

. Both algorithms are commonly known as computationally very fast 

compared to non-derivative based algorithms. However, if the parameter number is high and the 

parameters are a priori unknown (as in developing GC models), it is suggested to additionally 

use robust non-derivative based algorithm such as simplex and pattern search
34

.  

Statistical performance indicators for parameter estimation. Performance of the parameter 

estimates is quantified by a variety of statistics in order to obtain a broad set of measures. 

Hukkerikar et al.
20

 adopted the following statistics:  

- Sum of squared errors between the experimental and predicted data, 
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  (11) 

- Standard deviation, SD, measures the spread of the data about the mean value , 

  (12) 

- R
2
 between the experimental and the predicted values suggests the quality of the model fit 

by assessing linear correlation,  

 
 

(13) 

R
2
 close to 1 indicates that the experimental data used in the regression have been fitted to a 

good accuracy. 

- Average absolute deviation (AAD) is the measure of deviation of predicted property values 

from the experimentally measured property values, 

  (14) 

- Average relative error ARE provides an average of relative error calculated with respect to 

the experimentally measured property values, 

  (15) 

- The percentage of the experimental data-points Prc represents the fraction of data found 

within ± 25% relative error range respectively. 
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In addition to the above suggested performance statistics, the rank correlation coefficient , is 

proposed, 

 
 

(16) 

Similar to the R
2
, the rank correlation coefficient  measures the quality of the model fit. A 

value near unity is desired. An advantage of  is that it is more suitable to assess monotonically 

increasing nonlinear functions which is the nature of ranked property
37

. 

The classical parameter estimation problem assumes that the error of the data is normally 

distributed. In addition to the above statistical performance indicators suggested by Hukkerikar 

et al.
20

, different probability plots of the residual errors are considered to test if the underlying 

assumptions are valid: 

1. Normal probability plot: Illustrates sequential departure from Gaussian normality, hence 

how closely the errors follow normal distribution. 

2. Cauchy probability plot: Illustrates how well the errors follow a potential Cauchy 

distribution, which is better suited to describe residual distributions deviating from 

normal distribution due to in particular long tails (residuals distribution obtained from 

property prediction models mostly have long tails as observed in Hukkerikar et al.
20

). The 

Cauchy distribution is defined as in Eq. (17)
38

, 

  (17) 
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Outlier treatment based on empirical cumulative distribution. The GC parameter estimation 

can be strongly influenced by outliers from the model structure. Although principles for their 

detection and deletion are well known, in property modeling literature it is uncommon to see an 

explicit account of a systematic treatment of outliers. In engineering applications usually a 

normal distribution of data is assumed to be followed and residuals beyond 2-3 standard 

deviations are considered to be outliers. Here outliers are detected based on the empirical 

cumulative distribution function (CDF) of the residuals between experimental and predicted 

values. This methodology was suggested by Frutiger et al.
39

 for the identification of outliers in 

group contribution models, exemplified for the upper flammability limit UFL and compared to 

outlier detection based on Cook’s distance and normal cumulative distribution. 

The empirical CDF is a step function that increases by 1/n in every data point, where n is the 

number of data points. In this way, it seeks to estimate the true underlying distribution function 

of residuals and thereby improve the detection of outliers. It does not assume that residuals 

follow a normal distribution (or any other distribution function a priori), as e.g. the approach 

suggested by Ferguson
40

. This can be an advantage if the probability plots show great deviations 

from Gaussian normality. Data points that lie below the 2.5% or above the 97.5% probability 

levels which corresponds to 2-sigma deviation in normal distribution, are taken to be outliers. 

Figure 4 shows the empirical CDF of the parameter estimation using ordinary non-linear least 

squares regression and Levenberg-Marquardt algorithm. 
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Figure 4. Empirical CDF of the residuals obtained from the parameter estimation using ordinary 

non-linear least squares regression and Levenberg-Marquardt algorithm. Below a probability of 

0.025 and above 0.975 the data points are considered to be outliers. 

 

UNCERTAINTY OF PARAMETER ESTIMATION AND PROPERTY PREDICTION 

Uncertainty analysis based on linear error propagation using parameter covariance 

matrix. The underlying assumption of this method for uncertainty analysis method is that the 

measurement errors are ideally and independently distributed and defined by a Gaussian 

distribution white noise (normal distribution with zero mean and unit standard deviation).  
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The uncertainty of the parameter estimates is based on the asymptotic approximation of the 

covariance matrix,  of parameter estimators
19,41

 

  (18) 

 

In Eq.(18) SSE is the minimum sum of squared errors obtained from the least-squares parameter 

estimation method, n is the number of data points and p the number of parameters. The Jacobian 

J is the local sensitivity of the property model f with respect to the parameter values * . The 

corresponding elements of the parameter correlation matrix can be obtained by 

  (19) 

In Eq. (19)   is the respective element of  and  of the covariance matrix and 

 and  are the variances of the respective parameters. The error on property 

predictions are estimated using linear error propagation in which the covariance matrix of the 

predictions  is approximated using the Jacobian and the covariance of the parameter 

estimates as shown in Eq. (6), 

  (20) 

If the assumptions behind the model are satisfied (as ensured in previous steps) the parameter 

estimates will follow a student t-distribution, so  

  (21) 
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Similarly, the confidence intervals of the property predictions are given by: 

  (22) 

In Eq. (21) and (22)  is the t-distribution value corresponding to the  percentile 

of Students t-distribution,  represents the diagonal elements of  and 

 the corresponding diagonal elements of 

. 

Uncertainty analysis based on bootstrap method. Using the parameter covariance matrix as 

described, assumes that the residuals are independent and follow normal distribution with zero 

mean
19

. However in practice this is rarely such (see e.g. the residual plots in Hukkerikar et al.
20

). 

The bootstrap method is an attempt to calculate the distributions of the errors from the data, and 

to use these to calculate the errors on the parameter estimation
42

. In a certain sense, the bootstrap 

method aims to relax the restriction to independent and identically distributed measurement 

errors, which is a central assumption in nonlinear least squares theory. In order to perform 

bootstrap method
42

, first a reference parameter estimation is made, giving  

  (23) 

The bootstrap method defines  as the sample probability distribution of the errors : 

  (24) 

From this the new set of errors can be obtained. The residuals are assumed to be uniformly 

distributed  i.e. each residual has equal probability of realization. In the next steps, new 

synthetic data sets are produced. The bootstrap method generates any number of synthetic data 
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sets (y
*
(1); y

*
(2),…, y

*
(k)) also with n data points (n being here the total number of observations, 

and k being the total number of bootstrap samples) by using random sampling with replacement 

from the residuals . The procedure is simply to add the n bootstrap samples of residuals to the 

model predictions obtained using the estimated parameters in the reference step above as 

follows:   

  (25) 

Parameter estimation is repeated using each synthesis data set y*(k), which results in a new set of 

estimated parameters  and a new predicted value of  solving the minimization 

problem as formulated above. The resulting sample of estimated parameter values are plotted to 

graphically visualize the uncertainty in the estimated parameter values. In addition, inference 

statistics can be used to estimate the mean  and standard deviation of the distribution of the 

estimated parameter values. The mean value and the standard deviation of all the estimated 

parameter sets can be used to calculate the confidence intervals: 

  (26) 

 

  (27) 

In Eq. (26) and (27) n is the number of data points and  is the estimated parameter using the 

k-th synthetic data set. 

Parameter identifiability. Parameter identifiability is a common issue in nonlinear regression
19

 

with important implications for model validation and application. Parameter identifiability is 
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basically the issue, can the model parameters be estimated uniquely from a certain data set? We 

use the following diagnostic measures to analyze parameter identifiability in GC models: 

a) The parameter estimates must not be linearly dependent, so the linear correlation 

coefficients between parameter estimates should be sufficiently low, e.g. less than 0.7 

43,44
, and  

b) Parameter estimation errors (i.e. 95% confidence intervals) should be sufficiently low
45

. 

One obvious indication of poor parameter identifiability is a large confidence interval, 

e.g. relative parameter estimation error being larger than 50% 
46,45

.  

 

RESULTS AND DISCUSSION 

Regression models and practical global optimality of parameter estimation. The 

performance of the applied regression models for the  GC method is shown in table 1. The 

results are depicted before and after outlier deletion, where Nout is the number of outliers 

removed. R
2
, , SD, ARE, SSE and AAD are defined above. Prc represents the percentage of the 

experimental data points found within ± 25% relative error range respectively 
20

. Figure 5 shows 

the prediction of  versus the experimental value for Robust regression and Weighted least 

squares regression after outlier deletion. 
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Table 1. Regression model performance statistics, the best value of the respective column is 

highlighted. 

  R
2 

Pearson 

 

Spearman 

Nout SD AAD 

ARE 

[%] 

SSE Prc 25% 

Ordinary least-

squares before outlier 

deletion 

0.99 0.99 0 76.63 30.35 1.10  99.75 

Robust regression 

before outlier deletion 
0.99 0.99 0 87.33 21.80 0.75  99.62 

Weighted least 

squares before outlier 

deletion 

0.99 0.99 0 134.39 61.25 1.82  99.62 

Ordinary least-

squares after outlier 

deletion 

0.99 0.99 40 22.14 14.18 0.52  100 

Robust regression 

after outlier deletion 

0.99 0.99 40 23.30 13.09 0.50  99.87 

Weighted least 

squares after outlier 

deletion 

0.99 0.99 40 29.64 18.37 0.57  100 

 

Outlier deletion improves the regression performance. After outlier deletion, the results are 

relatively close for the three models. The best fit according to ARE and
 
AAD was achieved by 

robust regression after outlier deletion. However, for robust regression SD is slightly higher than 
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ordinary least squares and SSE is slightly higher than weighted-least squares and Prc is slightly 

lower compared to both of them. The regression models performed an very good fit (see Figure 

5). 

 

Figure 5. Prediction versus the experimental value of  after outlier removal for a) robust 

(left) and b) weighted least squares regression (right). 

The reason why weighted least square performs slightly worse in terms of SD, ARE and
 
AAD 

than robust regression can be explained as follows: The measurement error, which is the basis for 

the variance in the regression model, is given in percentage. Hence, large data points are often 

assigned a large variance and are therefore weighted less, such that the minimization of the 

residuals of large data points has a lower influence on the optimization. As a consequence, 

weighted least squares regression fits small property values much better than the large property 

values, whereas robust regression has no such bias. In that sense overall robust regression seems 

slightly favorable model for the GC parameter estimation of  property data.  



 24 

Four separate search algorithms were used to cross-check and validate the global minimum of 

the solution. Table 2 shows the sum of squares errors SSE after the corresponding sequential and 

the simultaneous parameter estimation. A higher amount of parameters increases the goodness of 

the fit.  

When comparing the final performance of the different optimization algorithms (see Table 2, 

final SSE), it can be seen that the Simplex and Trust-region reflective-algorithm lead to the best 

solutions, whereas SSE for pattern search algorithm and Levenberg-Marquart-algorithm was 

terminated at a higher SSE value. The solution found by the Simplex and Trust-region reflective- 

algorithms can be considered as practically (considering the four different search algorithms) 

globally optimal solution. The Levenberg-Marquart and Trust-region reflective-algorithm are 

strongly depending on the initial guess, since they are local search algorithms. The initial guess 

might have been suitable for Trust-region reflective, but not for Levenberg-Marquart. A possible 

explanation why pattern search did not find the same minimum as the others could be the nature 

of the search algorithm. It is known to be powerful for specific classes of functions
47

. 
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Table 2. Sum of squares errors SSE of the parameter estimation for different optimization 

algorithms using sequential (sequ.) and simultaneous (sim.) estimation. 

 

Uncertainty analysis property prediction errors. Figures 6 and 7 show the experimental and 

the predicted values of the heat of combustion with the respective 95%-confidence interval of the 

prediction for every substance both for covariance-based uncertainty analysis bootstrap 

sampling-based methods. As an example the prediction based on parameter estimates obtained 

using the robust regression is shown. The compounds are ordered from lowest to highest value 

and given an index number respectively. The confidence intervals are individual for each 

compound. The trend is a narrow band along with the experimental values. 

 

SSE (sequ.) 

1st order 

SSE (sequ.) 1st 

and 2nd order 

SSE (sequ.) 1st, 

2nd and 3rd order Final SSE (sim.) 

Simplex     

Pattern search     

Levenberg-Marquart     

Trust-region reflective     
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Figure 6. Experimental as well as predicted value of  for every compound with 95%-

confidence intervals generated by covariance-based uncertainty analysis (robust regression 

without outliers). A section of the plot is enlarged to show the distribution of the experimental 

values around the prediction. 
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Figure 7. Experimental as well as predicted value of  for every compound with 95%-

confidence intervals generated by bootstrap sampling-based uncertainty analysis. 

Both methods (linear error propagation versus bootstrap) used for the calculation of the 

uncertainty of the prediction of the corresponding experimental value show a similar result, i.e. - 

in both methods the experimental value lies within the calculated 95% confidence intervals. 

Although bootstrap technique requires more model evaluations and computations compared to 

the linear error propagation (where only one model evaluation is needed), it has the advantage of 

being sampling- based, which allows non-linear error propagation.  

Parameter identifiability analysis. The consideration of the 95%-confidence interval of the 

parameter estimates (see appendix), allows evaluating the practical identifiability of the GC 

factors. Although for all regression models the parameter fit was satisfying (see 3.1), there is a 
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large number of parameters that have a large confidence interval corresponding to a relative 

parameter estimation error  being larger than 50%. For the use of ordinary least-squares 

regression 96 out of 235 parameters are not practically identifiable, whereas for robust regression 

it is 95 out of 235. 83 out of 235 parameters fail practical identifiability for weighted least-

squares. However, the universal parameter const is identifiable. Furthermore, almost all of the 

1st order parameters (beside 3) could be identified practically compared to 2nd and 3rd order 

parameters where a larger part is not practically identifiable. 

The practical identifiability depends on two main issues: The amount of data for the parameter 

estimation and the correlation between parameters.  

If there is sufficient information (i.e. enough data points) to calculate the parameter estimates, 

the confidence interval gets smaller and hence, the parameters are practically identifiable. 

However, in GC parameter estimation there might be several functional groups that only occur in 

very few compounds. For some 3rd order parameters, there was only one compound available 

with a certain functional group. Hence, the 95%-confidence interval is very high and the 

parameters get non-identifiable 

The second major source of parameter identifiability problems is high correlation (>0.7) between 

parameters, which can be observed in the parameter correlation matrix given in the 

supplementary material. The elements of the correlation matrix are directly linked to the 

covariance of two parameters, which is subsequently obtained from the Jacobian (see Eq. (18) 

and (19)). This means, if two parameters have a similar or identical sensitivity to the model 

output, they are highly correlated. In GC methods, correlation is intrinsically often the case, 

because certain functional groups can occur frequently together (depending on the data set)
48

. 
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In many property modeling studies, practical identifiability of parameters has either not been 

considered or neglected. The diagnostic measures mentioned above indicate clearly that not all of 

the model parameters are uniquely identifiable. The first implication of this is that the estimated 

parameter values should not be attributed physical meaning since their values are not unique. 

Second, for practical application purposes, it is desirable to keep the parameters in the model, 

despite their identifiability issues, because in this way the application range of the GC model is 

higher (the more first, second and third order group contribution parameters in the model, the 

more chemicals property can be predicted). 

However in that case, i.e. using a model with poorly identifiable parameters, the uncertainty of 

the prediction (i.e. perform propagation of parameter estimation errors to the property prediction)  

as shown in figures 6 and 7 becomes critical. The confidence interval of property prediction 

provides a measure of the prediction quality (accuracy) of the model developed, which the end 

user can use to judge if the prediction accuracy is fit for the intended application or else a more 

accurate measurement needs to be done instead of using a model prediction. 

Effect of addition of higher order groups on property value and uncertainty. It is valuable to 

analyze, what the influence of correlated parameters is on the prediction and on the uncertainty 

of the prediction. The results obtained in this study showed that high correlation influences the 

mean prediction but not the uncertainty bounds (the upper and lower 95% confidence interval). 

In 155 out of 794 molecules the introduction of 2nd or 3rd order groups increased the relative 

error between experimental and predictive values for more than 10%. This particularity is 

exemplified and investigated by using two compounds namely cis,trans-2,4-Hexadiene and 

Acrolein. The parameter correlation matrix given in Table 3, shows that the GC factors of 

cis,trans-2,4-Hexadiene are highly correlated in comparison to the GC factors of Acrolein. The 
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prediction and 95%-confidence interval for the two selected substances are shown in Table 4 

considers 1st order only, 1st and 2nd order as well as 1st, 2nd and 3rd order GC factors. These 

two examples shows that while adding more groups increases the relative error of prediction for 

cis,trans-2,4-Hexadiene compound (worse case), however it leads to a lower relative prediction 

error for Acrolein (better case). However, it does not affect the calculation of the 95%-

confidence interval of the property prediction (reliable case). To understand this, we need to look 

back at the non-linear regression theory and parameter identifiability issues in detail. 
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Table 3. Parameter correlation matrices. The red color indicates a positive correlation of higher 

than 0.7 and the orange color indicates a negative correlation lower than -0.7. 

GC-factors const ''CH3 'CH=CH' 

'CHn=CHm-

CHp=CHk' 

'CH3-

CHm=CHn' 

const 1.00 

    'CH3' 
-0.96 1.00 

   'CH=CH' 
-0.02 0.03 1.00 

  'CHn=CHm-

CHp=CHk' 0.02 -0.03 -0.94 1.00 

 'CH3-

CHm=CHn' 0.02 -0.07 -0.96 0.86 1.00 

cis,trans-2,4-Hexadiene 

GC-factors const 'CH2=CH' 'CHO' 'CHm=CHn-

CHO'  

const 1.0 

   

 

'CH2=CH' -0.45 1.0 

  

 

'CHO' 0.61 -0.26 1.0 

 

 

'CHm=CHn-CHO' 0.01 -0.55 0.30 1.0 

 

Acrolein 
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Table 4. Prediction and 95%-confidence interval for a selection of substances comparing the 

usage of only 1st order GC-factors with the usage of 1st and 2nd as well as 1st, 2nd 3rd order 

groups. 

 

   Relative error between  

   prediction and experimental value 

Boundary of 95%-confidence 

interval 

Used GC-factors    1st 1st, 2nd    1st, 2nd, 3rd    1st 1st, 2nd    1st, 2nd, 3rd 

cis,trans-2,4-Hexadiene 0.024 0.038    0.029 ±13.96 ±13.93 ±13.14 

Acrolein 0.0094 0.0051 0.0051 ±32.68 ±32.67 ±32.67 

 

Table 5. Comparison of sample variance, s
2
, as a function of increasing GC model parameters: 

comparison between a GC model containing only 1st order, 1st and 2nd as well as 1st, 2nd and 

3rd order groups. 

 

   Levenberg-Marquart algorithm 

Used GC-factors    1st 1st, 2nd    1st, 2nd, 3rd 

 531121 481983 452126 

 627 555 523 

 847 868 864 

SSE is the sum of squared errors, n is the number of compounds for which experimental data is 

available and p the number of parameters. 

In the case of Acrolein, most of the parameters are not significantly correlated and the relative 

error between experimental and predicted value as well as the 95%-confidence interval gets 

smaller by the introduction of 2nd order group. This outcome is observed for the majority (80%) 
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of the estimated compounds considered in this work. However, cis,trans-2,4-Hexadiene shows 

high correlation between the parameters, in particular negative correlation. The negative 

correlation between the universal constant and the 1st order parameters and 1st and 2nd as well 

as between 1st and 3rd order groups has an influence on the prediction. The relative error 

increases for cis,trans-2,4-Hexadiene by the introduction of the 2nd order group. However, the 

uncertainty (i.e. the 95%-confidence interval) is not enlarged by the introduction of higher order 

group. This particularity can be understood by looking at Eq. (18) and (20) (see above). The first 

reason lies in the negative correlation. If two parameters are negatively correlated and have 

similar sensitivity to the model output (corresponding to the Jacobian ), their uncertainties 

will tend to cancel 
48

. The second cause is the nature of the calculation of mean sum of squared 

error S=SEE/(n-p). Table 5 shows that this normalization factor for the covariance matrix 

remains constant, because the relative decrease of SSE is compensated by the corresponding 

increase in the number of parameters used for its estimation.  

As a result, one can conclude that definition and inclusion of higher groups for a GC model may 

not always lead to a more accurate property prediction. At least for some chemical compounds 

relative prediction error will become worse due to parameter identifiability issues. This can be 

for GC models that have a large amount of factors to ensure a brought applicability. However, 

the 95%-confidence interval does not enlarge due to poor parameter identifiability. We suggest 

therefore that developers and users of GC models in general always state the 95%-confidence 

interval, which includes information on the parameter correlation structure associated with poor 

parameter identifiability issues. 
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Comparison of different classes of compound classes. The average relative error ARE, the 

average absolute deviation and the number of compounds included for some selected classes of 

chemicals are shown in Table 6. The data is ordered according to the number of data points.  

Table 7. Comparison of performance of different classes of chemicals. 

Class 

ARE ( ) 

in % 

AAD ( )  

in kJ/mol 

No. of  

compounds 

Aromatic Compounds 0.18 10.97 104 

Alkanes 0.14 7.09 103 

Alkenes 0.24 8.70 65 

Acids 1.04 17.29 60 

Alcohols 0.41 12.70 56 

Sulfur containing 

Compounds 0.46 11.55 44 

Amines 0.70 17.91 37 

Halogen containing 

Compounds 1.27 10.93 33 

Ketones 0.52 14.72 30 

Nitro-Compounds 0.51 11.13 26 

Carboxylates 0.66 24.55 25 

Esters 0.70 16.31 24 

Ethers 0.49 13.43 20 

Nitriles 0.92 13.12 18 

Aldehydes 0.39 6.16 13 

Pyridines 0.46 18.66 12 
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Overall all the major classes of chemicals, except for the Halogen containing compounds which 

has an ARE of 1.27%, have an ARE below 1%. In particular the model performs best for 

Alkanes, Aromatic Compounds and Alkenes with an ARE below 0.3%. This demonstrates the 

accuracy of the model over a great variety of chemical compounds. The classes not included in 

the Table 6 consist of 10 or less compounds and the corresponding results can be found in the 

supporting material. 

 

Comparison of the new GC model with other property estimation models. The squared 

Pearson correlation coefficient R
2
, average relative error ARE, the average absolute deviation and 

the number of data included of this study for the model using robust regression are compared to 

5 other property prediction models in Table 6: Another group contribution (GC), quantitative 

structure-property relationship (QSPR), as well as artificial neural networks (ANN) for the 

calculation of . 

Table 7. Comparison of present model with existing models. 

 

Current  

study 

Hshieh et 

al.
24

 2003 

Gharageizi
25

 

2008 

Cao et 

al.
26

 2009 

Pan et 

al.
27

 2011 

Gharagheizi 

et al.
21

, 2011 

Model  

structure 
MG GC 

(robust reg.) 

Empirical 

Atomic 

Indices. 

QSPR 

QSPR 

with 

ANN 

QSPR ANN 

R
2
 

Pearson 
0.99 0.99 0.99 0.99 0.99 0.99 

ARE ( ) 

in % 
0.51 3.90 3.45 - - 0.16 

AAD ( ) 

in kJ/mol 
13.03 - - 155.32 104.13 - 

No. of  

data 
794 75 1714 1496* 1650* 4590 

*included experimental and predicted data hence it is biased. 
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Considering the average relative error ARE of , the model developed in this study performs 

better than Hshieh et al.. Furthermore, the amount of data that is taken into account is much 

higher for the present model. This increases the application range of the model, since more 

substance from different classes of molecules have been used. In terms of ARE the model shows 

increased performance compared to Gharagheizi (2008), although the number of data points are 

lower. This is an indication that the parameter estimation methodology is very efficient. Cao et 

al. and Pan et al. have a higher absolute average error AAE than the new model. Furthermore, the 

amount of data consists of all experimental and predicted data available in the DIPPR database 

which is not a proper way to perform model development and performance statistics (which 

should solely be based on experimental data points only). The ANN model of Gharagheizi 

(2011) has a lower ARE and more data points. ANN is a fundamentally different approach to GC 

models. As regards the comparison of two different approaches for heat of combustion 

modelling, it is important to note that in ANN approach the aim is to build the best possible 

model structure (i.e. how many variables, descriptors, to include). In GC-based approach, the 

model structure is fixed. Therefore, the aim is instead on identifying and estimating in the best 

possible way the parameters of the fixed model given a certain available set of measurements. 

Therefore, the structure of the MG GC model is much simpler compared to ANN and much 

easier to work with and apply in industrial applications. Furthermore the reliability of the GC 

model predictions have been statistically demonstrated and verified against application in 

practice. However, establishing the reliability and confidence of parameter estimation in ANN 

remains to be demonstrated. Furthermore, due to the fact that the model is predefined, new 

experimental values can be added to the parameter estimation without changing the model 
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structure in GC models, while in QSPR and ANN model building need to be performed all over 

again. 
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CONCLUSION 

In this study, a systematic methodology for the development, parameter estimation and 

uncertainty analysis of GC models was developed. The methodology was successfully applied 

for the development of new GC-based model with improved prediction performance statistics for 

the heat of combustion ( ). In particular, the systematically developed new model has a 

higher accuracy than existing GC models and is much simpler to apply than ANN models.  

The following are the main conclusions from the systematic development of GC-based models: 

 Concerning the regression models, robust regression showed best performance statistics. 

 The bootstrap method can be considered as a valid alternative to classical uncertainty 

analysis (linear approximation of covariance matrix of parameter estimators) when the 

underlying distribution of errors is considered to be unknown or not normally distributed. 

 Although GC-based models have severe parameter identifiability issues characterized by 

significant correlation between estimated parameters and large confidence interval, the 

GC-based models still can be used successfully provided that 95% confidence interval of 

model predictions (prediction accuracy) are also calculated and reported.  

 Addition of higher order groups (additional parameters) may in certain cases increase the 

prediction error, but does not enlarge the uncertainty (95%-confidence interval), due to 

parameter correlation associated with poor parameter identifiability. 

 The use of different optimization algorithms for the parameter estimation is suggested as 

a simple method to ensure that the practically globally optimal solution was found.  
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GC-based property models are highly valuable and effective tools of property predictors. To 

ensure accurate and reliable estimation of properties of interest, comprehensive uncertainty 

analysis in particular 95% confidence interval of model predictions must be performed using 

systematic methods as presented in this work. 

ASSOCIATED CONTENT 

Supporting Information Available: Marrero/Gani group contribution factors and the universal 

constant from robust regression fit without outliers in tabular form. Example of model 

application. This material is available free of charge via the Internet at http://pubs.acs.org 

AUTHOR INFORMATION 

Corresponding Author 

*Tel.: +45 45252806, E-mail address: gsi@kt.dtu.dk 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

Funding Sources 

This work was funded by the Innovation Fund Denmark under the THERMCYC project. 

  



 40 

REFERENCES 

 

(1)  Gani, R.; O’Connell, J. P. Properties and CAPE: From Present Uses to Future Challenges. 

Comput. Chem. Eng. 2001, 25, 3–14. 

(2)  Marrero, J.; Gani, R. Group-Contribution Based Estimation of Pure Component 

Properties. Fluid Phase Equilib. 2001, 183-184, 183–208. 

(3)  Bünz, A. .; Braun, B.; Janowsky, R. Quantitative Structure–property Relationships and 

Neural Networks: Correlation and Prediction of Physical Properties of Pure Components 

and Mixtures from Molecular Structure. Fluid Phase Equilib. 1999, 158-160, 367–374. 

(4)  Peterson, K. a.; Feller, D.; Dixon, D. a. Chemical Accuracy in Ab Initio Thermochemistry 

and Spectroscopy: Current Strategies and Future Challenges. Theor. Chem. Acc. 2012, 

131, 1–20. 

(5)  Joback, K. Estimation of Pure-Component Properties from Group-Contribution. Chem. 

Eng. Commun. 1987, 57, 233–243. 

(6)  Lydersen, A. L. Estimation of Critical Properties of Organic Compounds. Coll. Eng. Univ. 

Wisconsin Eng. Exp. Stn. Rep. 3, Madison, WI 1955. 

(7)  Klincewicz, K. Estimation of Critical Properties with Group Contribution Methods. 

AICHE J. 1984, 30, 137–142 

(8)  Constantinou, L.; Gani, R. New Group Contribution Method for Estimating Properties of 

Pure Compounds. AIChE J. 1994, 40, 1697–1709. 

(9)  Hukkerikar, A. S.; Meier, R. J.; Sin, G.; Gani, R. A Method to Estimate the Enthalpy of 

Formation of Organic Compounds with Chemical Accuracy. Fluid Phase Equilib. 2013, 

348, 23–32. 

(10)  Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Estimation of Physical Properties. In 

The Properties of Gases and Liquids; McGraw-Hill: New York, 2004; pp 1–9. 

(11)  Dong, Q.; Chirico, R. D.; Yan, X.; Hong, X.; Frenkel, M. Uncertainty Reporting for 

Experimental Thermodynamic Properties. J. Chem. Eng. Data 2005, 50, 546–550. 

(12)  Whiting, W. B. Effects of Uncertainties in Thermodynamic Data and Models on Process 

Calculations †. J. Chem. Eng. Data 1996, 41, 935–941. 

(13)  Larsen, A. H. Data Quality for Process Design. Fluid Phase Equilib. 1986, 29, 47–58. 

(14)  Mathias, P.; Klotz, H. Take a Closer Look at Thermodynamic Property Models. Chem. 

Eng. Prog. 1994, 90, 67–75. 

(15)  Hajipour, S.; Satyro, M. A. Uncertainty Analysis Applied to Thermodynamic Models and 

Process Design – 1. Pure Components. Fluid Phase Equilib. 2011, 307, 78–94. 

(16)  Maranas, C. Optimal Molecular Design under Property Prediction Uncertainty. AICHE J. 

1997, 43, 1250–1264. 

(17)  Yan, X.; Dong, Q.; Hong, X. Reliability Analysis of Group-Contribution Methods in 

Predicting Critical Temperatures of Organic Compounds. J. Chem. Eng. Data 2003, 48, 

374–380. 

(18)  Verevkin, S. P.; Emel’yanenko, V. N.; Diky, V.; Muzny, C. D.; Chirico, R. D.; Frenkel, 

M. New Group-Contribution Approach to Thermochemical Properties of Organic 

Compounds: Hydrocarbons and Oxygen-Containing Compounds. J. Phys. Chem. Ref. 

Data 2013, 42, 1–48. 

(19)  Seber, G.; Wild, C. Nonlinear Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 

1989. 



 41 

(20)  Hukkerikar, A. S.; Sarup, B.; Ten Kate, A.; Abildskov, J.; Sin, G.; Gani, R. Group-

Contribution+ (GC+) Based Estimation of Properties of Pure Components: Improved 

Property Estimation and Uncertainty Analysis. Fluid Phase Equilib. 2012, 321, 25–43. 

(21)  Gharagheizi, F.; Mirkhani, S. A.; Tofangchi Mahyari, A. R. Prediction of Standard 

Enthalpy of Combustion of Pure Compounds Using a Very Accurate Group-Contribution-

Based Method. Energy Fuels 2011, 25, 2651–2654. 

(22)  Cardozo, R. L. Prediction of the Enthalpy of Combustion of Organic Compounds. AIChE 

J. 1986, 32, 844–848. 

(23)  Seaton, W. H.; Harrison, B. K. A New General Method for Estimation of Heats of 

Combustion for Hazard Evaluation. J. Loss Prev. Process Ind. 1990, 3, 311–320. 

(24)  Hshieh, F. Y.; Hirsch, D. B.; Beeson, H. D. Predicting Heats of Combustion of Polymers 

Using an Empirical Approach. Fire Mater. 2003, 27, 9–17. 

(25)  Gharagheizi, F. A Simple Equation for Prediction of Net Heat of Combustion of Pure 

Chemicals. Chemom. Intell. Lab. Syst. 2008, 91, 177–180. 

(26)  Cao, H. Y.; Jiang, J. C.; Pan, Y.; Wang, R.; Cui, Y. Prediction of the Net Heat of 

Combustion of Organic Compounds Based on Atom-Type Electrotopological State 

Indices. J. Loss Prev. Process Ind. 2009, 22, 222–227. 

(27)  Pan, Y.; Jiang, J. C.; Wang, R.; Jiang, J. J. Predicting the Net Heat of Combustion of 

Organic Compounds from Molecular Structures Based on Ant Colony Optimization. J. 

Loss Prev. Process Ind. 2011, 24, 85–89. 

(28)  Project 801, Evaluated Process Design Data, Public Release Documentation, Design 

Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers 

(AIChE), 2014. 

(29)  Pierotti, G. J.; Deal, C. H.; Derr, E. L. Activity Coefficients and Molecular Structure. Ind. 

Eng. Chem. 1959, 51, 95–102. 

(30)  Huber, P. J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–

101. 

(31)  Wassermann, L. All of Nonparametric Statistics; Springer: Berlin, 2006. 

(32)  Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. 

Soc. Ind. Appl. Math. 1963, 11, 431–441. 

(33)  Coleman, T. F. On the Convergence of Interior-Reflective Newton Methods for Nonlinear 

Minimization Subject to Bounds ". Math. Program. 1994, 67, 189–224. 

(34)  Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E. Convergence Properties of the 

Nelder–mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. 

(35)  Audet, C.; Dennis, J. E. Analysis of Generalized Pattern Searches. SIAM J. Optim. 2003, 

13, 889–903. 

(36)  Byrd, R. H.; Schnabel, R. B.; Shultz, G. A. A Trust Region Algorithm for Nonlinearly 

Constrained Optimization. SIAM J. Numer. Anal. 1987, 24, 1152–1170. 

(37)  Louangrath, P. I. Correlation Coefficient According to Data Classification. SSRN 

Electron. J. 2014, 1–28. 

(38)  Ferguson, T. S. Maximum Likelihood Estimates of the Parameters of the Cauchy 

Distribution for Samples of Size 3 and 4. J. Am. Stat. Assoc. 1978, 73, 211–213. 

(39)  Frutiger, J.; Abildskov, J.; Sin, G. Outlier Treatment for Improving Parameter Estimation 

of Group Contribution Based Models for Upper Flammability Limit. In 12th International 

Symposium on Process Systems Engineering and 25th European Symposium on Computer 

Aided Process Engineering; Gernaey, K. V., Huusom, J. K., Gani, R., Eds.; Copenhagen, 



 42 

2015. 

(40)  Ferguson, T. S. On the Rejection of Outliers. Proc. Berkeley Symp. Math. Stat. Probab. 

1961, 1, 253–287. 

(41)  Sin, G.; Gernaey, K. V.; Neumann, M. B.; van Loosdrecht, M. C. M.; Gujer, W. Global 

Sensitivity Analysis in Wastewater Treatment Plant Model Applications: Prioritizing 

Sources of Uncertainty. Water Res. 2011, 45, 639–651. 

(42)  Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. 

(43)  Brun, R.; Kühni, M.; Siegrist, H.; Gujer, W.; Reichert, P. Practical Identifiability of 

ASM2d Parameters - Systematic Selection and Tuning of Parameter Subsets. Water Res. 

2002, 36, 4113–4127. 

(44)  Sin, G.; Vanrolleghem, P. a. Extensions to Modeling Aerobic Carbon Degradation Using 

Combined Respirometric-Titrimetric Measurements in View of Activated Sludge Model 

Calibration. Water Res. 2007, 41, 3345–3358. 

(45)  Homberg, A. On the Practical Identifiability of Microbial Growth Models Incorporating 

Michaelis-Menten Type Nonlinearities. Math. Biosci. 1982, 62, 23–43. 

(46)  Baltes, M.; Schneider, R.; Reuss, M. Optimal Experimental Design for Parameter 

Estimation in Unstructured Growth Models. Biotechnolgoy Prog. 1994, 10, 480–488. 

(47)  Powell, M. J. D. On Search Directions for Minimization Algorithms. Math. Program. 4 

1973, 4, 193–201. 

(48)  Kirchner, J. W. Uncertainty Analysis and Error Propagation; University of California, 

Berkeley, 2001. 

 

 

 


