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Low-Complexity Tracking of Laser and Nonlinear
Phase Noise in WDM Optical Fiber Systems

Metodi P. Yankov, Student Member, IEEE, Tobias Fehenberger, Student Member, IEEE, Luca
Barletta, Member, IEEE, and Norbert Hanik, Senior Member, IEEE

Abstract—In this paper the wavelength division multiplexed
(WDM) fiber optic channel is considered. It is shown that for ideal
distributed Raman amplification (IDRA), the Wiener process
model is suitable for the non-linear phase noise due to cross phase
modulation from neighboring channels. Based on this model, a
phase noise tracking algorithm is presented. We approximate
the distribution of the phase noise at each time instant by a
mixture of Tikhonov distributions, and derive a closed form
expression for the posterior probabilities of the input symbols.
This reduces the complexity dramatically compared to previous
trellis based approaches, which require numerical integration.
Further, the proposed method performs very well in low-to-
moderate signal-to-noise ratio (SNR), where standard decision
directed (DD) methods, especially for high order modulation, fail.
The proposed algorithm does not rely on averaging, and therefore
does not experience high error floors at high SNR in severe
phase noise scenarios. The laser linewidth (LLW) tolerance is
thereby increased for the entire SNR region compared to previous
DD methods. In IDRA WDM links the algorithm is shown
to effectively combat the combined effect of both laser phase
noise and non-linear phase noise, which cannot be neglected in
such scenarios. In a more practical lumped amplification scheme
we show near-optimal performance for 16QAM, 64QAM and
256QAM with LLW up to 100kHz, and reasonable performance
for LLW of 1MHz for 16QAM and 64QAM, at the moderate
received SNR region. The performance in these cases is close
to the information rate achieved by the above mentioned trellis
processing.

Index Terms—Phase noise, WDM, optical fiber communication,
Wiener process, Cross phase modulation

I. INTRODUCTION

THE non-linear phase noise (NLPN) is the main factor for
the currently limited achievable rates on the wavelength

division multiplexed (WDM) optical fiber channels [1]. Due to
the interaction between self and cross phase modulation (SPM
and XPM, resp.) effects, the amplified spontaneous emission
(ASE) noise and chromatic dispersion in the fiber, the non-
linear phase rotation due to SPM and XPM generally cannot
be canceled completely at the receiver. Furthermore, XPM and
SPM introduce memory in the channel, which makes optimal
detection even more challenging. Recent works have gone
into modeling this memory [2]–[4], and shown that the phase
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noise is highly correlated in time and frequency. A model
is also proposed that allows to calculate the auto correlation
function (ACF) of the phase noise. Using the time domain
ACF properties, the authors in [2] separate the contribution of
the noise into linear and non-linear part, and thereby are able
to show potential increase in the maximum achievable rate
in a point to point WDM link. A strategy for canceling the
phase noise is proposed in [5], based on a frequency domain
equalizer. This work is extended in [6] to a multi-carrier
modulation, which is shown to be beneficial in combating
XPM interference. Gaussian input is assumed in [2] [5] [6],
which is not currently realizable in practice.

On top of the NLPN, fiber-optic systems generally suffer
from phase noise due to imperfect lasers. The non-zero laser
line width (LLW) results in time-varying carrier phase offset.
The Wiener process has previously been shown to be accurate
in modeling the laser phase noise, and also the NLPN for a few
particular cases [7]. For QPSK constellations simple methods
such as Viterbi and Viterbi are shown to be effective for carrier
phase recovery. Extensions of this method to larger order
constellations are possible, e.g. [8]. However, they generally
require hard decision on the signal’s amplitude before the
phase is estimated. Other types of decision directed (DD)
methods are available for higher order constellations, e.g. [10]
[11] [12]. In [12], a second order DD phase-locked loop (PLL)
method is employed, which is shown to be effective also
in the presence of frequency fluctuations. We highlight the
method from [10] as very popular among engineers, due to its
simple implementation. DD methods typically require an SNR
relatively high to the order of modulation (equivalently, low
symbol error rate (SER)). Alternatively, the phase offset may
be estimated from very long window averages, which makes
the system unreliable in severe phase noise scenarios, since the
phase varies significantly within the window. Another problem
with the method from [10] is its vulnerability to phase slips.
A modulation size independent method was derived in [14]
for quadrature amplitude modulation (QAM) constellations,
which aims at forcing the received symbols in each quadrant
to the original square shape, and uses a PLL-like circuit to
track the phase offset. This method also suffers greatly at low
SNR/high SER, however it is very simple to implement. The
above methods do not generally exploit the Wiener process
model for the phase noise in order to improve the estimate.
The authors in [13] propose an extension to the algorithm
from [10], where a pilot-based coarse estimation is combined
with the sub-sequent DD estimation, in order to combat the
phase-slip problem.
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Iterative decoding and laser phase-noise cancellation is
proposed in [15], later extended to cover the above mentioned
NLPN in WDM systems [16]. Up to 16QAM is considered
there. The clear problems with iterative receivers are com-
plexity and latency.

In [17], a Kalman filter is used that needs to be linearized
since the output is not a linear function of the phase noise. The
Kalman filter approach has low complexity and was shown
to be near-optimal in some cases [18]. However, it suffers
performance degradation for high information rates and SNRs.
In a more general approach [19] the phase is discretized
into bins, and trellis processing is used for phase tracking,
Mutual Information (MI) calculation and demodulation. This
method allows for processing of non-linear functions of the
phase. Both [17] and [19] are basically a special case of
the sum-product algorithm for finding marginal and posterior
distributions, which can be represented with a graph. In [20]
this algorithm is presented in the context of phase noise, where
the graph may be constructed as a Markov chain. Several
approximations are also proposed there for constant ampli-
tude modulation, such as phase-shift keying (PSK). Of these
approximations we mention the modeling of the distribution
of the phase noise as a Tikhonov (also known as von Mises)
distribution.

In this paper we show that the Wiener process is suitable
for modeling the phase noise due to XPM in WDM systems
with ideal distributed raman amplification (IDRA). Then we
propose a simple approximate detector based on phase noise
tracking, which is able to combat the combined effect of laser
phase noise and NLPN in the fiber-optic channel. Focus is
given on discrete input constellations, particularly QAM.

II. CHANNEL MODEL

The fiber channel model under investigation is given in
Fig. 1. Data is modulated into constellation symbols x, which
are drawn from a finite size alphabet X . The modulated
symbols are then passed through a Nyquist pulse shaping
filter and up-converted to the desired carrier frequency on
the frequency grid. During upconversion laser phase noise
is introduced, which is modeled by a Wiener process. The
signal is then combined with the other channels, and sent
on Nspan spans of optical fiber. In order to compensate for
attenuation, IDRA is employed [1]. At the receiver, the WDM
channel is down-converted to baseband, while introducing
laser phase noise identically distributed to the transmitter’s.
The interfering channels are filtered out, and the desired
channel is sent for baseband processing. This includes digital
back-propagation (DBP) of the channel of interest only, in
order to remove SPM, and the subsequent phase noise tracking
algorithm. The signal after DBP is denoted as y. We are
interested in the MI between x and y

I(X;Y ) = H(X)−H(X|Y ) =

H(X) + lim
K→∞

1

K
log2(p(xK1 |yK1 )), (1)

where xK1 and yK1 denote the input and output sequences from
time 1 to K, respectively, and we have used the convergence

properties of the entropy function for long sequences [21].
Evaluating the joint and/or conditional probability of the
entire sequences is an exponentially complex problem, and
so a typical receiver will usually approximate p(xK1 |yK1 ) ≈∏
k p(xk|yK1 ), or even p(xK1 |yK1 ) ≈

∏
k p(xk|yk). When such

a mismatched receiver is employed, the result is an upper
bound on the entropy H(X|Y ) [21], that gives an achievable
information rate (AIR), which is a lower bound on the MI rate
in (1).

A. Simplified Channel Model

In order to design a phase noise tracking algorithm, we
employ the following simplified model of a standard phase
noise channel

yk = xk exp(j(θtxk + θrxk + θNLk )) + wk, (2)

where j =
√
−1 is the imaginary unit. The phase noise

contribution from the transmitter, receiver and the non-linearity
(θtx, θrx and θNL, respectively) are all modeled by a Wiener
process, e.g., for the transmitter term

θtxk = θtxk−1 + ∆txvk, (3)

where the vk’s are standard i.i.d. Gaussian variables, and
∆2
tx is the process noise variance. If we assume independent

sources, they can be combined into a single phase noise
process θ with parameter ∆2 = ∆2

tx + ∆2
rx + ∆2

NL, and the
channel model becomes

yk = xk exp(jθk) + wk. (4)

The term wk is a sample of additive white Gaussian noise
(AWGN) with zero mean and variance assumed to be known
at the receiver. When the phase noise is generated by a
local oscillator (LO) with a certain spectral width around the
central frequency (in case of lasers the more popular term is
linewidth), the parameter ∆ is found as

∆2 = 2πfWTs, (5)

where fW is the width of the spectrum in Hz at −3dB of
the maximum value (also known as full-width half-maximum
bandwidth), and Ts is the sampling time in seconds.

B. The Non-Linear Term

In order to validate the Wiener model for the NLPN, we
simulate an IDRA link, and examine the power spectral density
(PSD) of the phase noise process. For demonstration, we
choose a link with 5 channels at 100 GBaud each, of total
length 4000km (the other fiber parameters are standard, and
are listed in Table II), without transmitter and receiver phase
noise. The input constellation in this case is 256QAM and the
input power is −4dBm, which we found to be optimal at this
distance. As shown in [2] [22], the NLPN is highly correlated
within a window of several tens of symbols, which can be
exploited in order to estimate the actual phase noise samples
as

θ̂k = 6
k+L/2∑
l=k−L/2

ylx
∗
l , (6)
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Fig. 1. Optical fiber channel model. Fiber parameters are defined in Section IV.

where L + 1 is the window size, (·)∗ denotes complex
conjugate, and 6 (·) denotes the angle of a complex number.
We then compare the estimated PSD of {θ̂k} to the theoretical
PSD of a Wiener process given by the Lorentzian function with
process noise variance

∆2 = Ek

[
(θ̂k − θ̂k−1)2

]
. (7)

Example PSDs are given in Fig. 2 for different values of
L. The PSD of {θ̂k} is obtained by Welch’s method [23]
with 106 samples, which were divided into 1999 blocks, 1000
samples each, with 50% overlap. Depending on the window
size reasonable match can be obtained to the theoretical model.
Long window results in relatively smooth PSD due to the
better estimation in presence of noise. This would translate
to better modeling of {θk} by the Wiener process. However,
it leads to underestimation of ∆2

NL. Decreasing L results in
stronger oscillations at high frequency, and a large bias in the
low frequency. In the rest of the paper the window size for
estimating the samples θk, and thereby ∆2, is chosen to be
L = 20, which as we see in Fig. 2 is a reasonable compromise
between modeling accuracy and bias.

III. PHASE NOISE TRACKING

As mentioned in Section II, in order to compute AIRs, we
need to compute the posterior probability of the input sequence
p(xK1 |yK1 ), which we approximate as

∏
k p(xk|yK1 ), resulting

in a lower bound on the MI rate. In this section we propose an
efficient algorithm for calculating the posterior distributions at
each time recursively.

Marginalizing the phase noise at time k, the posterior can
be re-written as

p(xk|yK1 ) =

∫ π

−π
p(xk, θk|yK1 )dθk

=

∫ π

−π
p(xk|θk, yK1 )p(θk|yK1 )dθk

=

∫ π

−π

p(xk)p(yk|xk, θk)

p(yk|θk)
p(θk|yK1 )dθk (8)

∝
∫ π

−π

p(xk)p(yk|xk, θk)

p(yk|θk)
p(yk|θk)p(yKk+1|θk)p(θk|yk−11 )dθk

(9)

=

∫ π

−π
p(xk)p(yk|xk, θk)p(yKk+1|θk)p(θk|yk−11 )dθk. (10)

To get to (8) we used the fact that given the state θk,
the input samples are independent of the past and future:

Normalized frequency f " Ts

10-3 10-2 10-1
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S
D

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
Lorentzian PSD, "2 = Ek

h
(3̂k ! 3̂k!1)

2
i

PSD of f3̂kg

L = 10;"2 = 1:05 " 10!4

L = 20;"2 = 2:50 " 10!5

L = 100;"2 = 1:00 " 10!6

Fig. 2. Lorentzian PSD of a Wiener process (dashed lines) with process noise
variance as in (7), together with the PSD of the phase noise {θ̂k} (solid lines),
for the link given in Section II-B. Depending on the choice of the window L
a good match can be found to the theoretical model.

p(xk|θk, yK1 ) = p(xk|θk, yk). To get to (10) we have used the
fact that output samples are independent of the past given the
phase: p(yKk+1|θk, y

k−1
1 ) = p(yKk+1|θk), and we have removed

the factor p(yKk+1|y
k−1
1 ) that does not depend on xk and θk.

The first and second term under the integral in Eq. (10)
are the prior distribution of the constellation symbols and
the likelihood of the output at time k, respectively. In order
to derive expressions for the last two terms, we first define
forward and backward recursions for the posterior distributions
p(θk|yk1 ) and p(yKk |θk), which we model by mixtures of M
and N Tikhonov distributions, respectively

p(θk|yk1 ) =

M∑
m=1

αm,kt(wm,k; θk), (11)

p(yKk |θk) =

N∑
n=1

βn,kt(un,k; θk). (12)

The terms αm,k and βn,k are non-negative mixing coefficients,
and are such that

∑
m αm,k = 1 and

∑
n βn,k = 1. The

Tikhonov distribution at θ with a complex parameter w is
defined as

t(w; θ) =
exp(Re [w · exp(−jθ)])

2πI0(|w|)
, θ ∈ [−π;π), (13)
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and 0 elsewhere. In (13), I0 is the zero-th order modified
Bessel function of the first kind and Re [z] is the real part
of z. We now derive mixture parameters for the predictive
backward recursion term that appears in Eq. (10)

p(yKk+1|θk) =

N∑
n=1

β̄n,kt(ūn,k; θk)

=

∫ π

−π
p(yKk+1|θk+1, θk)p(θk+1|θk)dθk+1

=

∫ π

−π
p(yKk+1|θk+1)g(θk,∆; θk+1)dθk+1

=

N∑
n=1

βn,k+1

∫ π

−π
t(un,k+1; θk+1)g(θk+1,∆; θk)dθk+1,

(14)

where g(µ, σ; z) is the Gaussian probability density function
(PDF) at z with mean µ and standard deviation σ. The update
parameters can then be found as

β̄n,k = βn,k+1, ūn,k =
un,k+1

1 + ∆2|un,k+1|
, (15)

where we have used the fact that the convolution of a Gaussian
and Tikhonov distributions is a Tikhonov with a modified
complex parameter [20]. In order to complete the recursion,
the updates for βn,k and un,k are found from the following:

p(yKk |θk) = p(yk|θk, yKk+1)p(yKk+1|θk)

=

N∑
n=1

β̄n,k
∑
xk∈X

p(xk)p(yk|xk, θk)t(ūn,k; θk)

∝
N∑
n=1

∑
xk∈X

µn,k(xk)t(ūn,k + 2 · SNR · ykx∗k; θk), (16)

where the likelihood p(yk|xk, θk) is expressed as a Tikhonov
approximation to the Gaussian

p(yk|xk, θk) ≈
2 · SNR · I0(2 · SNR|ykx∗k|)t(2 · SNR · ykx∗k; θk)

exp(SNR(|yk|2 + |xk|2))
. (17)

In (16) we have used the fact that the product of two Tikhonov
distributions may also be expressed as a Tikhonov distribution
in order to calculate the sub-component mixture coefficient

µn,k(xk) =
β̄n,k · p(xk)I0(|ūn,k + 2 · SNR · ykx∗k|)

I0(|ūn,k|) exp(SNR · |xk|2)
. (18)

Due to the discrete nature of the input signal, the number
of components needed for tracking the phase noise grows
exponentially with time. In order to avoid this problem, we
propose an approximation to the inner sum in (16), where at
each step we only take the sub-component with the largest
mixing coefficient

x̂n,k = arg max
xk∈X

µn,k(xk), (19)

un,k = ūn,k + 2 · SNR · ykx̂∗n,k, (20)

βn,k = B · µn,k(x̂n,k), (21)

where B is such that
∑N
n=1 βn,k = 1.

Similarly we express the predictive forward distribution
appearing in (10), as

p(θk|yk−11 ) =

M∑
m=1

ᾱm,kt(w̄m,k; θk), (22)

where

ᾱm,k = αm,k−1, w̄m,k =
wm,k−1

1 + ∆2|wm,k−1|
. (23)

The update parameters are found as

ρm,k(xk) =
ᾱm,k · p(xk)I0(|w̄m,k + 2 · SNR · ykx∗k|)

I0(|w̄m,k|) exp(SNR · |xk|2)
, (24)

x̂m,k = arg max
xk∈X

ρm,k(xk), (25)

wm,k = w̄m,k + 2 · SNR · ykx̂∗m,k, (26)

αm,k = A · ρm,k(x̂m,k), (27)

where A is such that
∑M
m=1 αm,k = 1. We are now ready to

express the posterior distribution (10) as

p(xk|yK1 ) = p(xk)

M∑
m=1

ᾱm,k

N∑
n=1

β̄n,k×∫ π

−π
p(yk|xk, θk)t(ūn,k; θk)t(w̄m,k; θk)dθk. (28)

Using the expression for the likelihood (17), the integrand in
(28) becomes a product of three Tikhonov distributions in θk,
which is again a scaled Tikhonov of θk

p(yk|xk, θk)t(ūn,k; θk)t(w̄m,k; θk) ∝
I0(|w̄m,k + ūn,k + 2 · SNR · ykx∗k|)

I0(|w̄m,k|)I0(|ūn,k|) exp(SNR(|yk|2 + |xk|2))
×

t(w̄m,k + ūn,k + 2 · SNR · ykx∗k; θk), (29)

where we have removed the proportionality factors, indepen-
dent of θk and xk. The scaling factor goes out of the integral
in (28), and the remaining Tikhonov distribution integrates to
one. The expression for the posterior is then

p(xk|yK1 ) = p(xk)

M∑
m=1

ᾱm,k

N∑
n=1

β̄n,k×

I0(|w̄m,k + ūn,k + 2 · SNR · ykx∗k|)
I0(|w̄m,k|)I0(|ūn,k|) exp(SNR(|yk|2 + |xk|2))

. (30)

The expression (30) is a sum of N ·M elements, which is
very efficiently calculated in the log domain, using the large
value approximation of the modified Bessel function

I0(w) ≈ exp(w)√
2πw

. (31)

Typical values of |w̄| and |ū| are above 200, for which the
approximation in (31) is accurate.

A. Summary

The complete algorithm is summarized in the following
steps:
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1) Initialize:

αm,0 = 1/M, βn,K+1 = 1/N,

wm,0 =
1

∆2
ej(m·

2π
M −π), un,K+1 =

1

∆2
ej(n·

2π
N −π)

(32)

2) Forward recursion - equations (23),(25)-(27)
3) Backward recursion - equations (15),(19)-(21)
4) Posteriors calculation - Eq. (30)

The initialization values are chosen such that each compo-
nent corresponds to a Gaussian distribution of the phase with
variance ∆2, and the means of the components are uniformly
spaced within [−π;π).

B. Phase Noise Distribution

The phase noise PDF at each time is not explicitly calculated
by the algorithm, but can be found, if needed for further
processing, as

p(θk|yk1 ) ∝ p(yKk+1|θk)p(θk|yk1 )

=

N∑
n=1

β̄n,kt(ūn,k; θk)

M∑
m=1

αm,kt(wm,k; θk). (33)

An example distribution update is given in the surface plot in
Fig. 3 for a standard Wiener phase noise channel, simulated
via (4), with parameter ∆ = 0.05 and 256QAM input. The
distribution is given as a surface plot, where the height of the
surface is described by the color bar. We evaluate the phase
noise distribution for all phases within [−π;π), with a reso-
lution of 2π/512 radians. We also plot the actual phase noise
realizations. In this case the number of mixture components
in the forward and backward recursions is M = N = 4. We
clearly see the different components, one of which tracks the
true phase noise realization. Due to the unknown initial phase
and the 4-fold symmetry of the constellation, there is phase
ambiguity in multiples of π/2 radians. In order to combat this
problem, we insert pilot symbols at rate P , which give an
absolute reference for the phase. Pilot symbols are accounted
for in the model by changing the PMF p(xk) at the pilot
instants to an indicator function, which is ’1’ for the true sent
symbol, and ’0’ otherwise. Even though this is a sub-optimal
pilot design, it suffices for our further analysis. The resulting
phase noise distribution after pilot insertion is given in Fig. 4.

C. Relation to Other Algorithms

When the PDFs p(θk|yK1 ), p(θk|yk1 ) and p(yKk |θk) are
modeled by a Gaussian, the solution of the recursions is the
Kalman filter [9]. The difference between our approach and the
Kalman filter is visible in Eq. (28). If the densities are modeled
as Gaussians, the likelihood p(yk|θk, xk), which is a non-linear
function of the phase θk, needs to be linearized in order to
make the integration simple, as done here. The linearization
leads to sub-optimal performance of the Kalman filter. We
note that the Tikhonov distribution may be seen as a Gaussian
“wrapped” around ±π. Example of the distribution with mean

Fig. 3. Probability distribution of the phase noise at time k (given by the
surface plot), together with actual phase noise samples, given by the red
line (pale line on black and white printer). Brighter color represents higher
probability, given by the side color bar.

Fig. 4. Probability distribution of the phase noise at time k after insertion of
P = 0.2% pilot symbols. Brighter color represents higher probability, given
by the side color bar. Note the different scale w.r.t Fig. 3 due to the absence
of the π/2 ambiguity.

−π/4 and different variances is given in Fig. 5, together
with the Gaussian and a wrapped Gaussian, as defined in the
legend. The latter distribution and the Tikhonov have support
set [−π;π). For small variance the three distributions coincide
due to the exponentially vanishing tail of the Gaussian. For
large variance we see the wrapping becoming significant and
the distributions diverging from each other.

The trellis approach from [19] replaces the above distri-
butions with histograms. This means that the integrations for
the updates (Eq. (14) and its forward recursion analogue) and
the posterior calculation (Eq. (28)) become sums. For large
constellations and fine resolution of the phase, the complexity
increases significantly.

The approach in [20] also employs Tikhonov distributions,
however, only for PSK constellations. There, the information is
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identical.
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Fig. 6. One section of the graph, used for estimating the posterior distribu-
tions. Factors are given as rectangles, and variables with circles. The factors
are represented by the corresponding distributions.

already included in the phase and therefore phase tracking and
posterior calculation can be performed simultaneously. The
focus here is on QAM constellations.

We note that all of the above approaches, including the one
proposed in this paper, in principle employ the sum-product
rules for estimating densities in graphs. In this particular case,
the graph represents a first-order hidden Markov chain. One
section of the graph for this algorithm is given in Fig. 6. The
variable nodes are given as circles, and the factor nodes as
rectangles. The direction of the messages ξ is given by the
arrows, and the messages themselves are calculated as:

• ξ1 = p(θk−1|yk−11 )
• ξ2 - Eq. (22)
• ξ3 - Eq. (14)
• ξ4 = p(yKk+1|θk+1)
• ξ5 = ξ2 · ξ3
• ξ6 =

∫ π
−π ξ5 · p(yk|θk, xk)dθk

• ξ7 = p(xk)

According to the sum-product rule, the unnormalized distribu-
tion at each variable is the product of all incoming messages.
Then we find p(xk|yK1 ) ∝ p(xk, yK1 ) = ξ6·ξ7, which is exactly
the expression in Eq. (10).

D. Complexity

In the following we refer to the proposed algorithm as
Tikhonov mixture model (TMM) algorithm.

The complete algorithm can be cast into the log-domain
with standard max-log approximations. Thus the complexity
is dominated by the computation of Euclidean distances (ED),
needed for calculating the largest mixing coefficients in (19)
and (25). There, the complexity is linear in the constellation
size and the number of mixing coefficients. The forward and
backward recursions require one max-log operation at each
time across M and N elements (for the normalization in (21)
and (27), respectively), in order to calculate the updates in (15)
and (23). The calculation of the posterior requires one max-log
across N ·M elements, bringing the total number of max-log
operations to ≈ O(K · (M · N + M + N)). Typical values
of M and N are as small as 2 or 4, so we conclude that the
complexity is still dominated by the EDs calculation, which
requires complex multiplication. We compare these numbers
to the DD algorithm [10], where a cost function of the EDs to
the closest constellation symbol is calculated for Np candidate
phases, and the minimum is taken as the phase rotation. The
number of EDs (complex multiplications) needed is therefore
O(K ·Np · |X |). Typical number of test phases (taken directly
from [10]) is Np ≈ 16 for |X | ≤ 16 and Np ≈ 64 for |X | ≤
256. Our method requires O(K · (M + N) · |X |), which for
256QAM and M = N = 2 Tikhonov components is more
than an order smaller.

One issue with the sequential processing of our algorithm is
the latency. We note that even though very long sequences are
needed for the convergence limK→∞− 1

K log2 p(x
K
1 |yK1 ) =

H(X|Y ), a real receiver does not aim at computing the
entropy. The value of K may therefore be kept at a reasonable
value, while keeping the posteriors in (30) accurate.

IV. RESULTS

We examine the performance of the TMM algorithm mainly
in terms of AIR in bits/channel use. In case of a stan-
dard Wiener phase noise channel 1 bit/channel use means
1 bit/s/Hz/complex dimension. In case of the WDM link,
1 bit/channel use means 1 bit/s/Hz/polarization/complex di-
mension. The input power in the latter case is defined as input
power per channel. In all cases, the AIR is estimated from a
block of length 105 symbols.

A. Standard Wiener Phase Noise Channel

We start by analyzing a standard Wiener phase noise chan-
nel, which is simulated via (4). In Fig. 7, the AIRs are given
for a channel with fW · Ts = 8 · 10−5 and 256QAM input.
This is beyond the capabilities of the DD algorithm [10], and
our simulations also confirm that the DD algorithm fails with
such parameters, giving lower bounds on the MI well below
zero. We examine the performance of the TMM algorithm
with M = N = 2 and 4 mixture components, and pilot rates
of P = 0.005, 0.01, 0.02, and 0.05. For reference, we also
plot the AIR on an AWGN channel without phase noise, and
what is achieved by the trellis algorithm from [19] with pilot
rate P = 0.002 and 128 states. The rate loss due to the pilot
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Fig. 7. Comparison of pilot rates for the TMM algorithm. From bottom curve
to top: P = 0.005, 0.01, 0.02, 0.05. Standard Wiener phase noise channel,
fW · Ts = 8 · 10−5, 256QAM input. For small pilot rates the algorithm is
unstable.
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Fig. 8. Comparison with the DD algorithm. The trellis and the TMM
algorithm have optimized pilot rates, given in the legend. The DD algorithm
is tested with sliding window length of 30 and 100 symbols. Inset: very
high rate (low BER, respectively). Standard Wiener phase noise channel,
fW · Ts = 8 · 10−6, 256QAM input.

symbols is taken into account in the AIR calculation by scaling
the entropy H(X) in (1) by 1 − P . For such large values of
∆2 and insufficient pilot rate the algorithm is unstable, and
often switches to adjacent π/2 components. This leads to very
poor lower bounds on the MI, sometimes even negative. At
pilot rate above 1% the algorithm is stable, and we see only
marginal improvement going from 2 to 4 mixture components.
The performance is sub-optimal at high rates, however a stable
behavior is observed over the entire SNR range.

In Fig. 8 we show the performance at a smaller value
fW ·Ts = 8 ·10−6. In this case the algorithm from [10] is able
to operate with minor SNR penalty at BER = 10−3 with an
averaging window of size around 30. This window represents
the length over which test phases are evaluated, and should not
be confused with the window L we used in Section II-B for
estimating ∆2. As seen from Fig. 8, the achievable rate with
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Fig. 9. BER at high SNR for the TMM algorithm and the DD algorithm
[10] with 256QAM input, standard Wiener phase noise channel, fW · Ts =
8 · 10−6. For the DD algorithm, at low SNR short windows result in high
BER, whereas at high SNR long windows result in high error floor. The TMM
algorithm performs well for the entire region.

this window size is close to the maximum H(X) = log2 |X |,
which corresponds to the above mentioned low BER and SER.
However, when the SNR is reduced, the algorithm fails due
to the higher SER. Increasing the window length helps at the
lower SNRs, and at 100 symbols a stable behavior is observed
down to SNR= 15dB. Long averaging windows, however,
result in a sub-optimal performance at high SNR, where the
AIR appears to achieve a maximum value, smaller than H(X).
This is because small-scale, fast variations of the phase noise
are not captured by the long window averaging. This would
correspond to an error floor after de-mapping. The TMM
algorithm on the other hand achieves stable performance, close
to the reference trellis based AIR at significantly reduced
complexity, for the entire SNR region.

To further illustrate the problem with the error floor, we
analyze the BER at high SNR. On Fig. 9, the BER is given
at fW · Ts = 8 · 10−6. We assume Gray labeling of the
symbols. The algorithm from [10] requires differential coded
modulation, which technically will increase the BER slightly.
Therefore we can argue that the comparison is fair, with a
slight advantage given to the DD algorithm. At high SNR, the
TMM algorithm experiences up to 1dB loss compared to the
DD algorithm with averaging window of length 30 symbols.
However, at low SNR (BER ≈ 10−1), such window length
results in around 2dB loss compared to the TMM algorithm.
Increasing the window length helps, but results in very high
BER at high SNR. For completeness, in Table I the SNR
penalty to the AWGN channel performance at BER= 10−3

is given for several combinations of modulation format and
LLW. The window length of the DD algorithm is 30, and we
simulated SNRs up to 40dB. The TMM algorithm employs
4 components and P = 0.002 pilot rate. For high values
of fW · Ts the DD algorithm completely fails with this
window length, while reception with the TMM algorithm is
still possible. As mentioned above, decreasing the window size
of the DD algorithm might improve the penalty and allow for
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TABLE I
SNR PENALTY @ BER=10−3 . INFINITE PENALTY MEANS THAT THE

REQUIRED BER IS NOT ACHIEVED.

fW · Ts 5 · 10−6 1 · 10−5 5 · 10−5 1 · 10−4 5 · 10−4

256QAM, TMM 1.1dB 1.3dB 4.9dB 7.8dB ∞
256QAM, DD [10] 0.6dB 0.9dB ∞ ∞ ∞

64QAM, TMM 1.0dB 1.2dB 2.2dB 4.4dB 9.8dB

64QAM, DD [10] 0.5dB 0.7dB 1.7dB ∞ ∞

16QAM, TMM 0.9dB 1.1dB 1.2dB 1.3dB 3.1dB

16QAM, DD [10] 0.1dB 0.2dB 0.3dB 0.9dB ∞

transmission, but will result in increased penalty at lower SNR
(higher BER, respectively).

B. IDRA WDM Optical Fiber Link

Next we evaluate the TMM algorithm in a WDM optical
link. The link is simulated using the split-step Fourier method
(SSFM). The fiber and transceiver parameters are given in
Table II. Single polarization transmission is used and single-
channel digital back-propagation is performed on the central
channel, which is the channel of interest.

In Fig. 10, the AIRs are given as a function of the launch
power per channel. For reference, we calculate the AIR with
a pseudo-ideal phase noise removal (PIPNR). This is achieved
by pre-processing the output samples as ẏk = yke

−jθ̇k .
The estimates of the phase noise θ̇k are obtained similar
to (6), but from a window of past samples only, i.e. θ̇k =
6
∑k−1
l=k−L−1 ylx

∗
l . This is done in order for the calculated

values to be AIRs. To better understand this, observe that
the probability p(xK1 |yK1 ) may be expressed from the product
rule as p(xK1 |yK1 ) ∝

∏
k p(xk|yK1 , x

k−1
1 ), which means that if

lower bounds on the MI are targeted, only past samples may
be used to obtain mismatched probability distribution.

In Fig. 10 we also plot the AIR in the idealized case of no
laser phase noise without any processing. In this case we as-
sume memoryless channel and model the likelihoods p(yk|xk)
as Gaussian distributions with known mean and variance. To
put the values of the LLW in the perspective of Section IV-A,
we estimated the value of ∆2

NL at the optimal input power in
the idealized case of fW = 0 to be ∆2

NL ≈ 2.5 · 10−5. The
term fW ·Ts then becomes ≈ 3.9·10−6, 4.2·10−6 and 6·10−6

in the 3 cases of LLW, respectively. The window size for the
DD algorithm is optimized to 500 (we note that the AIR at the
optimal input power increases very slowly for window sizes
from 200 to 500, and then starts to decrease). The pilot rate
for the trellis and the TMM algorithm is fixed to a minimal
value of P = 0.002. The TMM algorithm has M = N = 4
mixture components. We see that the performance of the TMM
algorithm is close to the pseudo-ideal one. The AIR in the
idealized case without processing is below what is achieved
in the 10kHz case when phase noise tracking is performed.
This is due to the non-zero value of ∆NL. The consequence
of this observation is two-fold:

1) Even if ideal lasers are used, correlations in the NLPN
can still be exploited by tracking it in order to improve

TABLE II
SYSTEM PARAMETERS, IDRA TRANSMISSION

Span length 100 km
Symbol rate 100 GBaud

Number of channels 5
Guardband 2 GHz (2% of symbol rate)

Total bandwidth 510 GHz
Oversampling factor 32

Pulse shape sinc

LLW 0 kHz, 10 kHz and 100 kHz
Fiber loss α = 0.2 dB/km

Non-linear coefficient γ = 1.3 (W·km)−1

Dispersion D = 17 ps/(nm·km)
Central wavelenght λ0 = 1.55 µm

SSFM step 0.1 km
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Fig. 10. AIRs after 40 spans, 256QAM, at different LLWs at transmitter and
receiver, 100GBaud.

the performance.
2) The algorithm for tracking should be able to account for

the combined effect of laser phase noise and NLPN.
The latter observation suggests that even when perfect know-
ledge is available for the lasers, the combined phase noise
process variance should always be estimated as ∆2 = ∆2

tx +
∆2
rx + ∆2

NL for the desired link set-up. In case the lasers are
not ideally characterized, the process noise variance may be
estimated from training data via (7). The latter approach is
also more robust to instabilities.

C. EDFA WDM Optical Fiber Link

In order to assess the performance of the TMM algorithm in
a more practical scenario, we consider a lumped amplification
scheme, where Erbium doped fiber amplifiers (EDFA) are
inserted at the end of each fiber span, instead of the Raman
pump. The new system parameters are given in Table III. The
fiber parameters are the same as in Table II.

In this case we employ both polarizations. DBP is not
performed here, but only electronic chromatic dispersion
compensation in the frequency domain. Polarization mode
dispersion is neglected in the SSFM.
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TABLE III
SYSTEM PARAMETERS, EDFA TRANSMISSION

Symbol rate 28 GBaud
Number of channels 17

Guardband 0.56 GHz (2% of symbol rate)
EDFA noise figure 4 dB

LLW 10 kHz, 100 kHz and 1 MHz

We also study the performance of the algorithm for smaller
constellations, where the LLW tolerance is generally higher.
AIRs are given for 256QAM, 64QAM and 16QAM, at 10
spans, 30 spans and 50 spans, respectively, in Fig. 11 for
10kHz LLW, Fig. 12 for 100kHz LLW and Fig. 13 for 1MHz
LLW. The distances and constellation sizes are chosen such
that the maximum AIR at the optimal input power is smaller
than ≈ 3

4 log2 |X |, which is the desired operating point for
energy and spectral efficient communications. This point can
be seen as the maximum SNR, at which the slope of the
MI with discrete input on a Gaussian channel is the same
as for Gaussian input, i.e., where the AIR is not yet limited
by the size of the constellation. For such information rates and
sufficiently large values of ∆, DD methods generally perform
poorly due to the high SER, regardless of the modulation
format.

At 10kHz LLW the TMM algorithm achieves near-optimal
performance in all cases up to the optimal input power for
the respective distances and constellations. We only see an
instability for very high input power and low SNR in the
case of 16 QAM after 50 spans. Similar to the IDRA case,
the DD algorithm from [10] requires around 500 samples for
averaging out the noise. At 100kHz LLW, the phase noise
cannot be considered constant for such a long period, and the
DD algorithm fails. The TMM method requires increase in
the pilot rate to P = 0.005, and achieves stable performance,
close to that of the trellis method. We note that the number of
states in the trellis was increased to 256, and we see that in
the case of 256 QAM there is still around 0.5 bits/channel use
gap to the PIPNR rate. For smaller constellations 256 states
are enough to see convergence in the performance. At 1MHz
LLW the TMM method becomes sub-optimal, however, still
achieves reasonable performance for 16 QAM and 64 QAM.
The pilot rate in this case is increased to P = 0.05. The gap
to the trellis method is around 0.4 and 0.2 bits/channel use for
64 QAM and 16 QAM, respectively.

V. DISCUSSION AND FUTURE WORK

As shown earlier, the trellis method from [19] achieves near-
PIPNR performance in nearly all cases of interest, however,
it is very complex. This is particularly the case for large
values of ∆, where the entire range [−π;π) must be covered
with very fine precision. Recently, the authors in [24] studied
this problem, and proposed a low-complexity solution, which
basically reduces the state space and thus the complexity
of the algorithm. A comparison in terms of complexity and
performance between the TMM and the solution from [24]
would be of interest, but out of the scope of this paper.
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Fig. 11. AIRs with 10kHz LLW for different modulation formats at different
distances. The DD method requires long averaging window. The TMM closely
approaches the trellis method in all cases.
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Fig. 12. AIRs with 100kHz LLW for different modulation formats at different
distances. The DD method cannot be used. The trellis method requires more
states than before. The TMM requires a slight increase in the pilot rate, but
still achieves a performance close to that of the trellis method in all cases.

As mentioned in Section II-B, the choice of the window
length L for estimating ∆2 may improve the quality of the
Wiener process model for the NLPN. We found that the
AIRs in Section IV vary only slightly for L ∈ [10; 100],
which means that the proposed method is generally robust to
variations and instabilities in the estimation of ∆. We note that
Eq. (6) may be seen as a convolution of the signal yk ·x∗k with
a rectangular pulse. Optimizing the pulse shape may further
improve the quality of the model.

A remark on the pilot symbols assumptions in our design
follows. In cases of very narrow linewidth, we have confirmed
that if the initial π/2 ambiguity is avoided, the algorithm
is stable in tracking the phase noise and does not require
subsequent pilots. Even though the P = 0.002 is negligible
in terms of reduced spectral efficiency, if the initial phase
noise value is known, the pilots may be entirely removed.
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Fig. 13. AIRs with 1MHz LLW for different modulation formats at different
distances. The DD method cannot be used. The TMM method requires an
increased pilot rate, and achieves stable performance, with a loss compared
to the trellis method of 0.4 and 0.2 bits/channel use for 64 QAM and 16
QAM, respectively.

This is a reasonable assumption when e.g. previous blocks are
decoded correctly, and such information can be extracted. We
note that due to the increasing order of modulation in optical
fiber systems, inserting pilot symbols is becoming a more and
more popular approach in the research community due to the
improved equalization they provide. The same pilots that are
used for equalization may generally be used for phase noise
tracking.

VI. CONCLUSION

An algorithm was proposed for tracking the phase noise
in wavelength division multiplexed optical fiber channels.
It was shown that in ideal distributed raman amplification
(IDRA) links, the proposed method can effectively combat
the combined effect of laser phase noise and non-linear phase
noise, outperforming previous decision directed methods, at
significantly reduced complexity compared to previous trellis
methods. Near optimal performance can be achieved for IDRA
links, but also in more practical lumped amplification links
with dual polarization input. Depending on the severity of the
phase noise, pilot symbols may be introduced, which allow
for stable performance on a wide variety of SNRs, achievable
information rates and laser linewidths.
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