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ABSTRACT 

Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a 

cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale 

has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at 

the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate 

collection wells. An innovative gas distribution system was used to overcome the commonly observed surface 

emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading 

to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, 

as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous 

distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the 

compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas 

stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system 

showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer 

gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution.  

Installed probes logging the temperature and moisture content of the methane oxidation layer at different 

depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in 

the range of 25 - 50°C at the deepest measuring point due to the microbial processes occurring in the layer. The 

moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane 

oxidation layer. 
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1. Introduction 

  

 Landfills containing organic waste produce biogas containing methane (CH4). Landfills are significant 

sources of CH4, which contributes to climate change (Bogner et al., 2008). At some landfills utilization of landfill 

gas (LFG) is not or cannot be carried out, and the gas is either flared with risk of producing toxic combustion 

products or just emitted to atmosphere. As an alternative to mitigation by gas utilization systems, mitigation 

systems based on CH4 oxidation processes may be implemented. Such systems, here called biocover systems 

are based on microbial CH4 oxidation in full surface biocovers, biowindow systems or open or closed bed biofilter 

systems. Experiments have documented that very high CH4 oxidation rates can be obtained in biocovers, high 

enough to significantly reduce the CH4 emission from the landfill (Scheutz et al., 2009). Documentation of the 

efficiency of biocovers has so far only been carried out in full scale in a few cases. An example is the study 

carried out at Fakse Landfill, Denmark where a new-developed protocol for biocover system establishment and 

monitoring was presented (Scheutz et al., 2011a, b) and the second generation biocover system established at 

the Klintholm Landfill, Denmark (Scheutz et al., 2014, Kjeldsen et al., 2009). Both mentioned biocover systems 

were passively loaded with landfill gas from the landfilled waste. One of the lessons learned from these two full-

scale biocover systems was that avoidance of point releases of CH4 from the leachate collection system was 

very difficult to achieve. In addition, a major challenge in any biocover system is to obtain an even gas 

distribution to the active CH4 oxidation layer to avoid areas with CH4 overloading, which results in hot spots with 

significant CH4 emissions. Hot spot areas with elevated local CH4 emissions were observed both at the 

biowindows of the Faxe biocover system, and also to a lesser extent at the Klintholm biocover system. At the 

Faxe biocover system detailed studies on one of the biowindows showed large spatial variation in surface CH4 

emission on the biowindow surface with values in the order of 1200 CH4 m
-2 d-1 at the edge of the biowindow 

decreasing to non-detect 3.3 meter away (Pedersen, 2010).  Similar detailed studies performed on three 

biocover sections at the Klintholm biocover system showed only large spatial variation in the surface CH4 

emissions from one of the sections with values in the order of 40-60 CH4 m
-2 d-1 at the edge of the biowindow 
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decreasing to non-detect 2.5 meter away (Scheutz et al., 2014). Spatial variation in surface emissions were also 

observed  at a biocover system established in the Netherlands (Geck et al., 2012).  

 At many landfills, a significant fraction of the landfill gas generated may escape from point sources such 

as leachate collection/inspection wells or installed gas vents (Scheutz et al., 2011a, Fredenslund et al., 2010). In 

such case semi-passive gas routing systems may be needed with extraction of gas from the identified point 

source followed by loading of the gas to biofilters for microbial CH4 oxidation. Similar cases could evolve at 

landfills where the energy utilization of gas loaded from an existing gas extraction system no longer is 

economical viable; here the energy utilizing facility (such as a gas engine) may be replaced by an actively or 

passively loaded biofilter to reduce the CH4 emission from the landfill (Kjeldsen and Scheutz, 2014). There is 

very little full scale experience with biocover systems loaded by point gas releases or existing gas extraction 

systems. However, Roncato and Cabral (2012) presented pilot-scale field experiments where biofilters were 

passively loaded from a landfill gas well. 

The objective of this study was to design and construct a pilot-scale biocover system loaded with landfill 

gas collected from leachate collection wells. Special emphasis was given to the gas distribution system, which 

included a novel design idea intended to obtain an evenly distributed gas load to the CH4 oxidation layer. The 

functioning of the constructed gas distribution system was assessed by performing surface screens, gas 

composition evaluations and tracer gas release experiments. 

This paper is the first in a series of two. The second paper presents and compares several methodologies 

for documenting the CH4 oxidation efficiency of the biocover system (Scheutz et al., 2017). 

 

 

2. Site characterization and pre-investigations 

 

2.1 The landfill site 

 AV Miljø is a modern waste disposal site situated in Avedøre Holme, approx. 10 km South of 

Copenhagen, Denmark. The disposal site was established in 1989 and has a total disposal capacity of 2 mill. m3 

divided into 22 disposal cells. The landfill receives waste from approx. 1.2 mill. inhabitants and 80,000 larger and 
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smaller enterprises. Since 1997, it has been forbidden in Denmark to use landfills for disposal of combustible 

waste. AV Miljø therefore mostly accepts non-combustible waste, i.e., waste with low organic content such as, 

e.g., shredder waste, asbestos waste, contaminated soils, construction waste, residues from street cleaning, 

slag and fly ashes from waste incineration. Previous studies have shown that significant quantities of landfill gas 

are produced at the landfill, where a considerable amount is emitted from the leachate collection system via 

inspection and collection wells, (Scheutz et al., 2011c, Fredenslund et al., 2010). The planned study and 

establishment of the pilot scale biocover system focused on the western part of the landfill where several 

leachate wells showed significant gas emission (see Fig. 1b). 

2.2 Gas flow rates from leachate collection wells 

 Pump tests were carried out in six leachate inspection/collection wells in the western part of the landfill. 

Each test had a duration of about three days where gas was extracted from the well at a gas pump rate of 47 L 

min-1. The accumulative pumped volume was monitored by a gas meter and the content of CH4 was measured 

continuously by a Photoacoustic Multi Gas Monitor INNOVA 1412i (LumaSense Technologies, Denmark). The 

results showed that especially three out of the six wells could maintain a significant and constant CH4 supply. 

The total extracted CH4 from the three wells was calculated to be 26 kg CH4 d
-1. The three wells were chosen as 

gas supply wells for the biocover system. Locations of the wells are shown in Fig. 1b and c. 

2.3 Testing CH4 oxidation capacities of compost 

 Early in the project it was decided to use locally produced compost as bio-active material in the biocover 

system. Two producers of garden waste compost were identified in the vicinity of the AV Miljø landfill, (Solum 

and RGS90). Representative sampling of the two compost types was carried out and regular batch incubation 

test were performed to measure the respiration activity and the CH4 oxidation capability of the two composts. 

The tests were carried out in 500 mL containers each containing 100 g of moist compost. For the respiration 

tests 120 mL of the head space air was exchanged with pure oxygen (O2) and the decrease of O2 and increase 

of carbon dioxide (CO2) contained in the head space was monitored over a period of 250 hours. For the CH4 

oxidation similar tests were set up. Here 30 g of moist compost was used and 200 mL of the head space air was 
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exchanged with 120 mL O2 and 80 mL CH4 followed by monitoring of the gas composition of the head space for 

100 hours. More details of material and methods are given in Scheutz et al. (2014).  

The results of the batch incubation tests showed that the compost from RGS90 had the lowest 

respiration (8.9-9.2 µg O2 g
-1 h-1) and also the highest CH4 oxidation rate (126-135 µg CH4 g

-1 h-1), so the 

compost from RGS90 was chosen as the active CH4 oxidation medium for the biocover system. Furthermore, 

the compost was produced very close to the AV Miljø Landfill. Based on previous experiences from the Fakse 

and Klintholm biocover systems (Scheutz et al., 2011a, Scheutz et al., 2014), where both batch incubations, 

column experiments and in situ determination of CH4 oxidation capacities of compost layers were carried out, a 

conservative expected in situ CH4 oxidation capacity of the RGS90 compost was evaluated to be in the vicinity of 

50 g CH4 m
-2 d-1 based on reviews given by Scheutz et al. (2009) and Sadasivam and Reddy (2014). With an 

expected CH4 load extracted from the three selected supply wells of 26 kg CH4 d
-1, the area of the pilot scale 

biocover system was set to 500 m2. 

 

3. Overview of the installed biocover system 

 

 The biocover system (12 m x 42 m) consisted of a gas distribution layer (30 – 50 cm) overlain by a 

compost layer (80 – 90 cm) (see Fig. 2). The three supply wells mentioned above were connected with 

underground piping to an inlet mixing chamber where gas from the three wells was efficiently mixed before being 

fed to the biocover gas distribution layer (see Fig. 1c). The three landfill gas emitting leachate wells were 

enclosed in air tight sheds to improve gas extraction. To obtain a controlled loading to the biocover, the landfill 

gas was pumped from the enclosed wells to the inlet mixing chamber of the biocover. The pumped gas, reached 

the inlet mixing chamber through three PVC pipes (120 mm diameter). The cylindrical mixing chamber had an 

internal diameter of 100 cm, and was made of HDPE material. Pumping rates from each of the three sheds were 

continuously monitored and the content of CH4 in the mixing chamber was continuously monitored with a CH4-

sensor and data logger (details provided in section 4.1). Knowing the gas flow and the CH4 content in the mixing 

chamber, the CH4 load to the biocover could be determined. Other gases (O2, CO2 and nitrogen (N2)) were 
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monitored manually by connecting a gas analysing device to sampling gas tubes connected to the interior of the 

mixing chamber (more details can be found in section 4.1).  

In earlier studies, accumulation of infiltrating water in the interface between the CH4 oxidation layer and 

gas distribution layer has been identified as a major problem leading to an uneven gas distribution forming CH4 

emission hotspots in the biocover surface (Scheutz et al., 2011a, Gebert & Gröngröft, 2012, Tetreault & Cabral, 

2013). The latter study showed that a capillary barrier can form due to the higher permeability of the coarse gas 

distribution layer underneath the compost. This effect can cause accumulation of water in the interface between 

the two layers. In worst case, accumulation of water in the compost layer can result in anaerobic conditions 

leading to CH4 generation in the deeper part of the biocover (Scheutz et al., 2009). To hinder water accumulation 

in the interface due to capillary effects a novel interface design was constructed and tested. The interface 

between the CH4 oxidation layer (consisting of compost) and the coarse gravel gas distribution layer (consisting 

of small pebbles with size 8-16 mm) was ”zig-zag-shaped” to minimize continuous water locking due to capillary 

effects  ( Figure 3.1a). The “zig-zag shaped” surface of the gas distribution layer was constructed manually using 

shovels and was finalized for the 500 m2 biofilter in a few days. 

 The idea of the zig-zag shaped interface is to construct small capillary barriers leading infiltrating water 

laterally to the low points. Here the water will temporarily accumulate, but due to the pressure build up, the water 

will break the capillary barrier and quickly be transported vertically into the coarse gas distribution layer below. 

Dimensions of the zig-zag shaped interface were not determined based on physical principles of water flow 

through unsaturated soils, but more on practical construction related considerations. The gas from the inlet 

mixing chamber was fed into an un-slotted gas pipe (50 mm internal diameter) and via this distributed to 20 

slotted gas pipes (100 mm internal diameter). The un-slotted gas pipe was equipped with small outlet holes to 

obtain an even gas distribution (see Figure 3.1b and c). At each intersect between the un-slotted gas pipe and a 

slotted gas pipe two 4 mm outlet holes were drilled to distribute the gas into the slotted pipe.  

A section of the gas distribution layer and the CH4 oxidation layer was equipped with horizontal multi-

port gas monitoring units to study gas distribution and CH4 oxidation processes (see Material and Methods 

section 4.5). Two transects each having 50 gas ports were constructed at two different distances from the gas 



7 
 

inlet (see Figure 3.1b and c). The biogas system was equipped with a water draining system including a water 

lock to avoid gas by-pass.  

The system was constructed in the summer of 2012 with the gas load start up in September 2012. 

During the experimental period, the biocover was gradually vegetated by different weeds, which at the end of the 

experimental period reached a height of up to 150 cm. The first year, the vegetation was dominated by one 

single species of Chenopodium with several species taking over in the second growth season. 

 

4. Materials & Methods 

4.1 Monitoring of gas supply to the biocover 

 The gas pumping rate was continuously monitored at each of the air tight sheds confining the leachate 

wells by occasionally reading the accumulative gas meter (Flonidan, Denmark). The landfill gas composition in 

the inlet of the biocover was monitored continuously during the whole study period. An OLCT Infrared 

Transmitter Detector (Oldham, France) was installed in the mixing chamber and the CH4 percentage 

composition measured every 5 minutes. Data were recorded by using a GP-HR TruTrack outdoor data logger 

(Intech, New Zealand). Additionally, the major constituents of the gas were monitored in the mixing chamber 

once a week by using a Biogas 5000 portable gas analyser (Geotech, Warwickshire, UK). 100 mL of gas was 

extracted from the three inlet pipes to the mixing chamber and from the inlet pipe to the biofilter distribution 

system. The volumetric percentage composition of CH4, CO2, and O2 was determined and manually recorded.  

4.2 Moisture and temperature probes and measurements 

 Compost temperature and moisture content were monitored throughout the entire study period. Combined 

temperature and moisture probes (ECH2O EC-TM probes -Decagon Devices, USA) were installed in three 

different depths (-20 cm, -50 cm, and -95 cm) in the CH4 oxidation layer of the biocover. For determination of 

volumetric water content (VWC) a soil-specific calibration was previously done on a similar compost material for 

the ECH2O-TM probe in accordance with the calibration method specified by the instrument manufacturer 

(Pedersen, 2010). In this study, gravimetric water contents were compared with measured raw counts and a 

correlation between raw counts and VWC was found (VWC = 1.006 ·10-6·raw – 0.425, R2=0.9897). The 
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calibration curve was comparable with the one given in the instrument operators manual (version 5) for several 

potting soils (VWC = 1.04 ·10-6·raw – 0.5).  

 The Decagon TM probe measured temperature by an on board thermistor, along with accurate volumetric 

water content by measuring the dielectric constant of the compost using capacitance/frequency domain 

technology. The location of the probes is shown in Fig. 3. A digital EM50 Decagon data logger (Decagon 

Devices, USA) was connected to the three probes and programmed to measure the temperature (°C) and 

moisture content (m3·m-3 volumetric water content (VWC)) every 5 minutes. The probe in the -95 cm depth 

unfortunately stopped recording moisture after November 7th, 2012. 

4.3 Surface screening of CH4 and CO2  

 A qualitative analysis of the spatial variability in surface emissions was carried out by measuring the gas 

concentrations of CH4 and CO2 above ground surface. A grid was created to regularly divide the biocover area in 

252 rectangular subareas of 2 m2 each. Surface air concentrations were measured at the central spot of each 

subarea 10 cm above the soil surface.  Surface CH4 concentrations (ppmv) were measured with a TVA1000B 

Photovac MicroFID analyzer (ThermoScientific, Waltham, USA) whereas surface CO2 concentrations (ppmv) 

were measured using a Vaisala CARBOCAP® Infrared Sensor (Vaisala, USA). All the screening campaigns took 

place during monitored weather conditions with low wind speed and stable barometric pressure to minimize 

spatial mixing of the sampled gas. A total of six measurement campaigns were carried out during the whole 

study period. The screening was carried out on November 28th, 2012, December 4th, 2012, April 11th, 2013, April 

21st, 2013, May 2nd, 2013 and May 24th, 2013. Collected data were then processed by using Surfer 8 software 

(Golden Software Inc., Golden, USA) and interpolated with kriging statistical method to define iso-concentration 

curves.      

4.4 Surface emissions of CH4, CO2 and tracer gas (HFC-134a) 

 The initial surface screening was followed up by quantitative measurements of emissions from the 

biocover surface. With this methodology, the surface distribution of CH4, CO2 and tracer gas fluxes was 

evaluated. A series of 50 points equally distributed over the biocover surface was chosen for gas flux sampling – 

sampling locations are shown in Fig. 3. Surface emission rates were determined using static flux chambers. The 
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flux chambers were made of stainless steel, equipped with sampling ports and a manually operated fan securing 

that the air inside the chamber was totally mixed during sampling. When installed, the flux chamber had a height 

of approximately 21 cm and an inner diameter of 30 cm (giving a total chamber volume of 15 L). The emission 

rates were measured by taking a time series of gas samples (1 sample per minute for minimum 5 minutes) from 

the chambers. A Photoacoustic Multi Gas Monitor INNOVA 1412i (LumaSense Technologies, Denmark) was 

used to measure concentrations of CH4, CO2, and tracer gas (HFC-134a) (for the tracer gas only during tracer 

gas release experiments). Concentrations and times of measurement were logged using a laptop PC connected 

to the instrument. Measurement ranges at the used configuration of the instrument were 0.4–20,000 ppmv 

(CH4), 1.5–10,000 ppmv (CO2) and 0.2-2,000 ppmv (HFC-134a). In general, the concentration vs. time curves 

showed good linear fits (r2 > 0.9) without any change in slope for the final sampling times. Fluxes were 

calculated from the product of the change in concentration over time (dC/dt) and the chamber volume/chamber 

area ratio (Scheutz et al., 2003, 2008). The detection limit of the flux chamber measurements were ±0.05 g m-2 

d-1. A spatial two-dimensional distribution of fluxes was obtained by processing calculated fluxes for each 

measuring day with Surfer 8 software using interpolation by the kriging statistical method.  

 

4.5 Horizontal multi-port gas probes (HMPGP) – design and sampling 

To evaluate the spatial vertical and horizontal distribution of gas loaded to the biocover, a multi-port gas 

sampling system was designed. Two transects of 50 ports each were embedded in the biocover; one in the 

South-Eastern part (3.5 m North of the Southern biocover boundary, called Southern transect) of the biocover 

and one in the North-Eastern (8.5 m North of the Southern biocover boundary, called Northern transect). Each 

sampling port was designed to connect a predetermined point inside the biofilter to the outside, in order to make 

the sampling of the pore gas easier and avoid compaction of the compost layer by walking on the biocover area. 

In each transect, the ports were divided in five groups, each laid at a different depth in the biocover volume (-20 

cm, -50 cm, -75 cm, -100 cm and -120 cm below ground surface). Each depth was labelled with different letters 

(A, B, C, D, E) with A being the shallowest one. In the end, each port of this group of ten was placed at a 

different distance from the gas inlet point and labelled with a number. The ports were located at 18(#1), 16(#2), 
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14(#3), 12(#4), 11(#5), 10(#6), 9(#7), 8(#8), 4(#9), and 2(#10) meters from the biocover midline, as represented 

in Fig. 2a. As an example, the port labelled with N1A was located in the North-Eastern part of the biofilter, 18 

meters from the biocover midline and at a depth of 20 cm. The exact location (plan view) of each sampling port 

is also shown in Fig. 3. Each sampling tube had an internal diameter of 2 mm giving an internal volume of 3.1 

mL m-1. Each bundle of 10 sampling tubes was equipped every second meter with a gas blocking plastic plate to 

avoid horizontal transport of gas along the bundle. 

Gas concentrations of CH4, CO2, O2 (volume percentage) were determined using a Biogas 5000 

portable gas analyzer (Geotech, Warwickshire, UK). The pump rate of the Biogas 5000 was approximately 550 

mL/min, with an operating temperature range from -10°C to +50°C. The pump was set to run for 10 second, with 

a 30 seconds flushing prior to measurement. The operating range of the gas analyser was between 0-100 %vol. 

for CH4 and CO2 and 0-25 %vol. for O2. The detection accuracy was +/- 1 %vol. in the concentration range of 0 

to 25 %vol. Samples for trace gas quantification (during the tracer gas release experiments – see next section) 

were analysed using the INNOVA. Data were then processed with Surfer 8 software using interpolation by the 

kriging statistical method to obtain the vertical two-dimensional distribution of each gas for each of the transects 

defined by a multi-port sampling system. Data were also used for determination of vertical gas concentration 

profiles at selected locations. 

4.6 Tracer gas release experiment   

To evaluate the ability of the designed biocover system to evenly distribute the loaded gas to the full 

footage biocover area and to improve the determination of the biocover efficiency for CH4 oxidation (see Scheutz 

et al. 2016), a step-input tracer gas test was conducted by injection of a tracer gas into the inlet mixing chamber. 

The tracer gas adopted for the field study is known scientifically as 1,1,1,2-Tetrafluoroethane or as C2H2F4 

(commercially as HFC-134a). The compound is regarded as persistent under anaerobic as well as aerobic 

conditions (Scheutz et al., 2004, 2007), and has a low hydrophobicity leading to a low retardation due to sorption 

by the compost material. A 20 L Tedlar gas bag (SKC Inc., Eighty Four, PA, USA) was refilled every 12 h with 

pure HFC-134a from a pressurized gas bottle. A constant flux of 0.2 mL s-1 was continuously pumped from the 

gas bag into the inlet mixing chamber with the use of a high-precision peristaltic pump (Masterflex® Digital 
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Console Drive, Cole Parmer Instrument Company, Niles, Il, USA). A constant flux of tracer gas guaranteed a 

stable concentration in the inlet of 80 ppmv, constantly monitored during the whole experimental period. A ball 

flow-meter (Porter Instrument Co, INC., Hatfield, PA, USA) was also added between the peristaltic pump and the 

biocover mixing chamber to guarantee a constant influent tracer gas flux. The INNOVA was calibrated for the 

analysis of CH4, CO2 and C2H2F4 altogether, with a detection limit of 3.0 ppmv, 5.1 ppmv and 200 ppbv, 

respectively. The inlet concentration was measured with the INNOVA twice a day during tracer gas release to 

ensure a constant flux of tracer gas (68 g C2H2F4 d
-1) into the biocover system.  

A selection of sampling probes in the HMPGP was sampled and tracer gas concentrations determined 

using the INNOVA during the whole tracer gas study duration. The concentration of tracer gas as a function of 

time was then plotted to study the tracer gas breakthrough curve at selected ports. A pre-test and two measuring 

campaigns were carried out using this methodology. The pre-test experiment took place on November 17th-18th, 

2012 where gas was extracted from 18 ports (9 in the Southern transect and 9 in the Northern transect) over a 

period of 18 hours. The pre-test made a basis for creating a detailed testing plan for the following two studies. 

The first tracer gas test was carried out in the period December 5th-9th, 2012 for a total duration of 67 h. During 

this test, 9 ports in the Southern transect and 9 in the Northern transect were repeatedly monitored using the 

INNOVA. The ports chosen were #1, #4, #8, respectively 18, 12 and 8 meters from the biocover gas inlet. Ports 

at three depths were tested for each distance (A, B, D) corresponding to -20 cm, -50 cm and -100 cm depths 

below ground surface. The second tracer gas test was performed in the period May 16th-27th, 2013 for a total 

duration of 262 h. As for the previous tracer gas test, 9 ports were tested for each transect, for a total of 18 ports. 

Tracer gas concentrations as a function of time were measured for port #1, #7, #10, respectively 18, 9 and 2 

meters from the biocover inlet. The same three depths (A, B, D) as in the first test were monitored during this 

campaign. Tracer gas concentrations versus time were plotted to evaluate the tracer gas breakthrough in 

selected gas probes. At the end of the final tracer gas test, the surface flux of HFC-134a tracer was measured 

simultaneously with a CH4 and CO2 surface fluxes (as described in section 4.4).  

 

 

5. Results & Discussion 
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5.1 Temperature and moisture conditions in biocover 

Fig. 4 compares precipitation data obtained by the local weather station installed at AV Miljø and the 

compost moisture data recorded by the probes installed at different depths in the biocover. The comparison of 

precipitation and compost moisture data showed a correlation between significant rain events and the local 

increase of the moisture content at all depths. An increasing time delay between a rain event and noticeable 

compost moisture increase was observed depending on depth (the deeper the biocover depth, the higher the 

time delay). Between one significant rain event and the following one, a decrease of the moisture content in the 

CH4 oxidation layer was measured, indicating  the ability of the “zig-zag shaped” system to avoid long-lasting 

accumulation of water in the interface, which may lead to blockage of vertical gas transport. The removal of the 

exceeding water content from the biofilter system was further handled by the water drainage system installed, 

which led the excess water to the nearby sewer. In general, the volumetric moisture content increased by depth 

from around 0.1-0.2 at 20 cm depth to 0.4-0.5 at 50-90 cm depth. However, at no time the moisture content were 

above 0.6. It should be noticed that we do not know the exact porosity of the compost layers, so we cannot be 

certain that the lower compost layer was not water-filled for short periods. 

Fig. 5 shows the recorded temperatures in three different depths of the biocover over the entire 

monitoring period. The recorded ambient temperature is also shown. The temperature is a very important 

environmental factor for microbial CH4 oxidation (Scheutz et al., 2009). The figure shows that significantly 

elevated temperatures were measured in the biocover. The highest temperatures were observed in the 90 cm 

depth with a typical temperature difference to ambient temperature of about ∆50°C in the beginning of the period 

decreasing to about ∆25°C in the last period (April – July 2013). Temperatures were generally lower at more 

shallow depths, but the same trend of decreasing temperature differences over the experimental period (∆30°C 

decreasing to ∆15°C for the 50 cm depth, and ∆10°C decreasing to ∆5°C for the 20 cm depth) was observed. 

The reason to the elevated temperatures can be explained by the oxidation of CH4 and compost respiration 

(which both are exothermic reactions) in combination with heat transport from below (temperatures in the interior 

of the landfill have not been measured but is expected to be much higher than normal soil temperatures (Coccia 

et al., 2013)). The observed gradually decreasing temperature difference in all three depths of the CH4 oxidation 

layer is probably due to a lower heat generation from the continuously maturing compost during the ten month 
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period. Similar observations were done at the Klintholm biocover system (Scheutz et al., 2014). Further 

evaluation of the CH4 oxidation and compost respiration process is given in the second article of this series 

(Scheutz et al., 2017). 

5.2 Gas load to biocover 

The three pumps controlling the gas flow to the inlet mixing chamber gave very constant gas loading of 

totally 182 m3 d-1 (data not shown). Fig. 6 shows the CH4 concentration in the mixing chamber for both 2012 and 

2013. On the figure the recorded barometric pressure is also shown. The figure shows that the CH4 

concentration is fluctuating over time with typical concentrations in the range of 3-12 %vol. The CH4 inlet flux 

was varying in the same manner due to a constant gas pumping rate. The fluctuations seemed to some extent to 

be correlated with barometric pressure changes; however there must also be other factors controlling the CH4 

content for instance the pressure history some period back in time. As previously demonstrated in other studies 

(Christophersen and Kjeldsen, 2001; Czepiel et al., 2003; Fredenslund et al., 2010; Kjeldsen and Scheutz, 2011) 

an inverse correlation can be observed between the CH4 concentration and barometric pressure, identifying 

changes in barometric pressure as the most significant influencing factor on CH4 emissions from landfill bodies.  

 As a result of the presented observation it is clear that the CH4 load to the biocover was fluctuating over 

time. Table 1 shows the manually measured gas composition in the mixing chamber. It is obvious that the 

leachate collection system had some openings to the atmosphere where atmospheric air was intruding, leading 

to O2 contents in the gas in the range of 5-13 %vol. The implication of this was, however, that the CH4 oxidation 

layer was loaded with O2 not only by diffusion from the atmosphere and into the cover, but also due to the O2 

content in the loaded gas mixture. Knowing the total pump rate and the CH4 content, the typical CH4 load can be 

deducted. With an average CH4 content of 10 %vol., the load was 13 kg CH4 d
-1, which is about 50% of the 

initially estimated load (26 kg CH4 d
-1) from the short time pump test of the three participating leachate wells (see 

section 2.2). This may be due to a larger dilution in the leachate collection system over the longer time period. 

5.3 Surface screening of CH4 and CO2 

Screening campaigns performed on the biocover surface for both CO2 and CH4 showed an even 

distribution of the surface gas emissions. Fig. 7 reports the iso-concentration plots obtained with Surfer 8 
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software for CH4 during four screenings performed in different seasons and periods of the study. Due to the 

duration of the project period no campaigns were performed during the summer months. However, we do not 

believe that results during the summer would have been very different from the other seasons, especially due to 

relative stable temperature and moisture conditions within the biocover (confer results in section 5.1). Very low 

CH4 concentrations were present all over the biocover surface in an average range of 2-3 ppmv, close to the 

background atmospheric concentration (1.7 ppmv). A modest emission hot spot was identified in the South-

Eastern corner during the first campaign (9 ppmv) and also in the following campaign (5 ppmv). The hot spot had 

disappeared in following screenings and was not measured again from January 2013 and on. The surface CO2 

screenings presented in Fig. 8 show an almost homogeneous distribution, close to the atmospheric 

concentration (400 ppmv). The average measured values ranged between 400 and 420 ppmv, with a general 

difference between the Southern and Northern part of the surface of 10 ppmv. Several CO2 hot spots were found 

on the biocover surface in different places from time to time, but no stable and substantial hot spots were 

identified during the whole study. In general, the two screenings together showed that formation of significant hot 

spot areas was successfully avoided, probably as a result of a good distribution of the gas from the mixing 

chamber into the gas distribution layer and further up in the CH4 oxidation layer.  

5.4 Surface fluxes of CH4, CO2 and tracer gas (HFC-134a) 

Both CH4 and CO2 iso-flux surface plots support the previous presented surface screening observations. 

For all flux chamber measurement campaigns, CH4 surface emissions show a homogeneous spatial distribution. 

Examples of the iso-flux distribution for CH4 are represented in Fig. 9 - Graph 1a-1b. Graph 1a refers to the 

January 25th, 2013 campaign and shows an average surface flux of 0.04 g C-CH4 m
-2 d-1, while the second one 

refers to the May 24th, 2013 flux chamber campaign and shows an average flux of 0.5 g C-CH4 m
-2 d-1. Also CO2 

surface fluxes indicate a modest spatial variation, with an average of 50 g C-CO2 m
-2 d-1 for both January 25th 

and May 24th field measurement (Fig. 9 Graphs 2a and 2b). Minor hot spots were found on the biocover surface 

in different points from time to time. The presence of these preferential emission points was probably due to 

changing gas concentrations inside the biocover and to other environmental factors. On the other hand, the 
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absence of permanent hot spots through all the flux chamber campaigns demonstrates the homogeneity of 

emissions and the efficient design of the biocover.  

The surface plot of tracer gas fluxes could be considered a precise picture of the distribution quality of 

the biocover system, and particularly of the gas distribution layer efficiency. Graph 3b in Fig. 9 shows the HFC-

134a distribution (May 24th, 2013 campaign), indicating a modest spatial variation of tracer gas. The average 

range of tracer gas emission fluxes was found to be between 0.2 and 0.5 g C2H2F4 m
-2 d-1, showing good 

distribution and homogeneous surface emission of gas. By using kriging interpolation of the 50 tracer gas 

emission measurements over the entire biocover area using the Surfer 8 software, the whole emission of tracer 

gas was found to be 71 g C2H2F4 d
-1, which is about 105% of the tracer gas loading rate (68 g C2H2F4 d

-1). This 

shows that the tracer gas experiment had reached stationarity at day 12 of the test, and that all loaded gas was 

finally leaving the biocover system as surface emissions. 

 

5.5 Spatial evaluation of pore gas composition in biocover 

The variable composition of the inlet gas could theoretically affect the biocover system stability and 

efficiency. Vertical 2D gas profiles of the biocover (Eastern part) showed an almost constant distribution and 

concentration of the analysed gases (CH4, CO2 and O2) even with different inlet gas and atmospheric pressure 

conditions. The average concentration of studied gases (CH4, O2 and CO2) into the compost pore volume is 

represented in Fig. 10. It should be noticed that the kriging interpolation used by the contouring program gives 

erroneous interpolation close to the biocover surface due to very steep gradients. CH4 and O2 vertical gas 

profiles showed the same trend with higher concentrations close to the gas distribution layer and lower close to 

the biocover surface. The bottom concentration of CH4 ranged between 3 and 5 %vol., with a final surface 

concentration after methanotrophic bacteria activity of about 0 %vol. (Fig. 10a). O2 is also consumed both during 

compost respiration and CH4 oxidation with a decreased from 6 %vol. at 120 cm depth to 1 %vol. at 20 cm depth 

(Fig. 10c). The presence of O2 and its homogeneous distribution in the biocover is very important since O2 is 

normally the limiting factor for methanotrophic processes. Since the inlet gas contained significant quantities of 

O2, the biocover was not only loaded by atmospheric O2 diffusion from the top, but also from below due to O2 
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presence in the inlet gas itself. This is different from traditional biocover systems, which are loaded by a more 

pure LFG not containing O2. The CO2 concentration increased from about 12 %vol. at the bottom to about 18-10 

%vol. at the top of the biocover CH4 oxidation layer (Fig. 10b). This indicate that CH4 oxidation was taking place 

at the bottom of the CH4 oxidation layer and probably already in the gas distribution layer. The general trend of 

the three gases clearly showed that methanotrophic bacteria were active in the system and that CH4 and O2 

were consumed and CO2 was generated. 

5.6 Evaluation of gas distribution by the tracer gas experiment  

The HFC-134a concentration in the mixing chamber was constantly monitored during the whole tracer 

gas test campaign duration to guarantee a constant flux of the tracer gas in the biocover distribution system and 

a constant tracer gas concentration (about 82 ppmv). The concentration of tracer gas (HFC-134a) in the mixing 

chamber is represented by the red lines in Fig. 11 and shows a stable and constant trend of the gas, with natural 

fluctuations between 80 and 84 ppmv (0.97-1.03 normalized). 

  The breakthrough curve of the tracer gas for each sampling port has been drawn by plotting HFC-134a 

concentrations (ppmv) and time (hours). The normalized concentration (from 0 to 1) has then been calculated by 

dividing the point concentrations for the maximum concentration at saturation (82 ppmv). Data collected from the 

two tracer gas injection campaigns and plotted as breakthrough curve gave interesting results regarding the gas 

distribution in the biocover.  

During the first tracer gas test campaign (December 5th-9th, 2012), the stationary concentration of 82 

ppmv was reached for all ports installed in the Southern sampling transect of the biocover. The stationary 

concentration level was achieved for all Southern sampling ports between 50 and 100 hours from the initiation of 

HCF-134a injection. The stationary concentration level was also reached in the Northern sampling transect of 

the biocover for D (-100 cm deep) and B (-50 cm deep) ports but never for ports A (-20 cm) due to the premature 

termination of the campaign (data not shown). During the second tracer gas test campaign (May 16th-27th, 2013), 

tracer gas stationarity was reached in both the Southern and Northern sampling transects of the biocover and at 

all depths. Sampling ports placed in Southern transect at all depths (gas distribution layer and CH4 oxidation 

layer) and ports placed in the Northern transect gas distribution layer reached a stable concentration level 
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between 50 and 100 hours from the injection start (Fig. 11a and b). Sampling ports placed in the Northern 

transect in the biocover CH4 oxidation layer reached a stationary conformation between 100 and 200 hours after 

tracer gas injection start (Fig. 11b).  

 In general, the tracer gas experiments gave steep breakthrough curves with similar breakthrough times of 

sampling ports from the Southern transect independent of the distance from the inlet point. The breakthrough 

time was around 10 hours in the ports placed in the gas distribution layer and 10-20 hours in the CH4 oxidation 

layer. This shows an efficient and even delivery of gas in the un-slotted gas delivery pipe and the first part of the 

slotted gas distribution pipes. Breakthrough curves in ports from the Northern transect showed, however, longer 

breakthrough times indicating a slower distribution of gas to the Northern part of the biocover. For the Northern 

transect, breakthrough time was around 20-30 hours in the ports placed in the gas distribution layer and 30-60 

hours in ports placed in the CH4 oxidation layer.  

 

6. Conclusions 

 

Newer landfills are often receiving waste with lower organic contents leading to a lower, but still significant 

gas generation. Such landfills are often lined but not equipped with a gas extraction system due to the low 

expected gas generation. In such cases, the generated gas is often emitted to a large extent through the 

leachate wells directly into the atmosphere. In order to evaluate the possibility of mitigating the CH4 emission by 

a semi-passive system, an innovative 500 m2 pilot-scale biocover system was established at the AV Miljø 

Landfill, Denmark. In this system, gas was collected from leachate wells and fed into an established biocover 

system, where the CH4 contained in the collected gas was microbially oxidized. The system was equipped with a 

new-developed gas distribution system consisting of a “zig-zag shaped” interface between the compost layer 

and the gas distribution layer. The interface was easily constructed manually in a few days using shovels. There 

were indications on that the interface improved the discharge of accumulating water, which otherwise could have 

led to gas blockage. Additional testing of the system is however needed to fully document the functionality of the 

developed novel design idea. 

 The collected gas from the leachate wells was significantly mixed with atmospheric air, which had intruded 
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the collection sheds or other locations in the leachate collection system. This created a biocover system with 

supply of O2 not only by diffusion from the atmosphere into the cover, but also as part of the gas load. 

 Relatively even gas distribution was achieved in a 500 m2 biocover system by use of the new-developed 

gas distribution system. Even gas distribution is a prerequisite for obtaining an efficient biocover without the 

formation of emission hot spots on the biocover surface. The even gas distribution was indicated by CH4 and 

CO2 concentration screenings, and further documented by flux measurements at the biocover surface and by the 

performance of a tracer gas experiment. The tracer gas experiment showed equal distribution of gas to different 

parts of the biocover by the un-slotted gas distribution pipe and even distributed emissions of tracer gas over the 

biocover area. The tracer gas experiment also showed that the gas travel time in the gas distribution system to 

the Northern part of the biocover systems was longer than to the Southern part, which was located closer to the 

gas inlet. 

 By installation of moisture and temperature probes it was documented that significantly elevated 

temperatures were achieved in the biocover due to self-heating CH4 oxidation and compost respiration 

processes. Moisture content logging in several depths of the biocover system indicated that the system was able 

to discard excess precipitation.  

 The biocover system was monitored over a period of several months after the finalization of the biocover 

system. The functionality of compost-based biocover systems may change over time due to consolidation 

process of the compost layer as a result of continuous maturing of the compost. Additional studies are therefore 

needed to address potential changes of system functionality with time. 
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    Table 1. The gas composition (%vol.) measured in the inlet mixing chamber feeding the 
biocover system. . The gas composition was measured using a field instrument (IR Device - 
Biogas 5000) and by continuous analysis using a permanently installed methane sensor. 

Date 
IR Device - Biogas 5000  Sensor 

CH4 CO2 O2 N2  CH4 

30/07 2012 4.8 5.1 12.9 77.2  4.2 

02/08 2012 10.6 7.8 8.1 73.5  9.6 

03/08 2012 6.9 6.2 10.5 76.4  5.7 

07/08 2012 6.3 5.4 12.8 75.5  5.7 

07/09 2012 6.3 7.0 11.5 75.2  4.0 

19/09 2012 2.0 3.3 17.2 77.5  1.3 

23/09 2012 1.2 2.2 17.9 78.7  1.3 

26/09 2012 2.8 4.3 13.7 79.2  1.3 

28/09 2012 0.7 2.7 16.9 79.7  1.3 

03/10 2012 6.6 6.9 12.2 74.3  5.2 

10/10 2012 8.2 6.5 11.5 73.8  7.1 

16/10 2012 6.5 5.7 13.4 74.4  10.2 

24/10 2012 12.8 10.7 5.4 71.1  12.3 

31/10 2012 5.3 5.4 14.0 75.3  4.4 

07/11 2012 6.0 5.5 13.4 75.1  5.7 

14/11 2012 7.9 7.3 10.0 74.8  7.2 

20/11 2012 7.7 6.7 10.7 74.9  6.5 

28/11 2012 8.8 7.6 11.0 72.6  7.1 

08/12 2012 6.8 5.9 12.4 74.9  5.5 

11/03 2013 10.7 8.0 8.9 72.4  6.1 

09/04 2013 8.6 6.5 12.7 72.2  7.2 

11/04 2013 9.6 7.0 10.2 73.2  7.8 

18/04 2013 5.8 5.0 16.2 75.3  6.9 

02/05 2013 6.8 6.7 11.0 75.5  5.9 

24/05 2013 6.8 7.5 10.5 75.2  5.4 

Average 6.7 6.1 12.2 76.1  5.8 
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Figures 

 

Fig. 1. The test site. a) Location of AV Miljø, b) Map of AV Miljø Landfill with location of the test site, c) Sketch of 

the pilot biocover systems showing the locations of the three gas emitting leachate wells, the mixing chamber 

and the biocover area. 
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Fig. 2. a) Plan view of biocover showing the gas distribution system with 19 slotted gas pipes connected to an 

un-slotted delivery pipe, b) Sectional view of biocover showing the zig-zag shaped interface between the CH4 

oxidation layer and the gas distribution layer, c) Sectional view of biocover showing water draining and gas 

distribution pipes. Locations of selected gas sampling ports in the two transects are indicated in sections A-A’ 

and B-B’. 
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Fig. 3. Map of the biocover monitoring system showing locations of flux chamber measurements, multi probe 

samplings locations, temperature/moisture probes and compost sampling sites. 

 

 

Fig. 4. Moisture content (m3 water/m3 biocover volume) in selected depths of the biocover. Local values for daily 

precipitation are also shown. 
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Fig. 5. Temperatures measured in biocover at different depth in comparison to ambient temperature for the 

period September 18th, 2012 until July 15th, 2013. 

 

 

Fig. 6. Concentration of CH4 (in % vol.) in the mixing chamber during the experimental period. Also the recorded 

barometric pressure (in hPa) is shown. 
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Fig. 7. Iso-concentration plots for CH4 on the biocover surface from 4 different screening campaigns, carried out 

on November 28th, 2012, December 4th, 2012, April 11th, 2013, and May 5th, 2013. Concentrations are expressed 

in ppmv. 
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Fig. 8. Iso-concentration plots for CO2 on the biocover surface from 4 different screening campaigns, carried out 

on (a) November 28th, 2012, (b) December 4th, 2012, (c) April 11th, 2013 and (d) May 5th, 2013. Concentrations 

are expressed in ppmv. 
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Fig. 9. Iso-flux plots for CH4 (1), CO2 (2) and HFC-134a (3) on the biocover surface from 2 different flux chamber 

campaigns, carried out on (a) January 25th, 2013 and (b) May 24th, 2013. Surface fluxes are expressed in g C m-

2 d-1 for CH4 and CO2 and in g C2H2F4 m
-2 d-1 for the tracer gas (HFC-134a). 
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Fig. 10. Gas composition (a: CH4, b: CO2, c: O2) in the pore gas of the biocover as a function of biocover depth 

and location from east biofilter edge as measured in the southern horizontal multi gas probe system. 
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Fig. 11. Concentrations of tracer gas (HFC-134a) in the mixing chamber representing influent and in gas probes 

placed in the gas distribution layer (a) and the CH4 oxidation layer (b) at different locations in the Southern and 

Northern transects.  

 


