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Abstract 

In this study, omics-based analysis tools were used to explore the effect of glucose starvation 

and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell 

culture to gain better insight into how these parameters can be controlled to ensure optimal 

mAb productivity and quality. Titer and N-glycosylation of mAbs, as well as proteomic 

signature and metabolic status of the production cells in the culture were assessed.  

We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was 

dependent on the degree of starvation during early stationary phase of the fed-batch culture. 

Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and 

UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and 

Gal occupancy correlated well with increased degree of glucose starvation, which can be 

attributed to the interplay between the dilution effect associated with change in specific 

productivity of mAbs and the changed nucleotide sugar metabolism. 

Herein, we also show and discuss that increased cell culture duration negatively affect the 

maturation of glycans. In addition, comparative proteomics analysis of cells was conducted to 

observe differences in protein abundance between early growth and early stationary phases. 

Generally higher expression of proteins involved in regulating cellular metabolism, 

extracellular matrix, apoptosis, protein secretion and glycosylation was found in early 

stationary phase. These analyses offered a systematic view of the intrinsic properties of these 

cells and allowed us to explore the root causes correlating culture duration with variations in 

the productivity and glycosylation quality of monoclonal antibodies produced with CHO 

cells. This article is protected by copyright. All rights reserved 
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Introduction 

Over the last decade Chinese hamster ovary (CHO) cells have been the predominant 

expression system used in the pharmaceutical bioprocessing of recombinant monoclonal 

antibodies (mAbs) due to their adaptability to industrial manufacturing environment and post-

translational modification compatibility with human patients (Lim et al. 2010). Fed-batch 

culture has become a widely used approach for mAb production because of its value in 

extending the viable and productive phase of the culture (Rouiller et al. 2013).  

The manufacturing process is typically optimized for increasing the productivity of mAbs, 

but this often increases the risk of compromising the critical quality attributes of the 

recombinant product. A number of strategies aiming at improving final titer have been 

proposed. For example, limiting the feed of glucose to minimize lactate accumulation (Dean 

and Reddy 2013; Gagnon et al. 2011) and extending culture duration to prolong the 

production window (Druz et al. 2013; Robinson et al. 1994), have been successfully 

implemented. However, all these strategies require precise control of the production process. 

The level of glucose limitation is crucial for the process, since it may cause undesired glucose 

starvation and lead to reduced cell growth and productivity (Hu et al. 1987) and altered N-

glycosylation quality (Liu et al. 2014). Extended culture duration may also affect the mAb 

quality in terms of N-glycosylation patterns (Pacis et al. 2011). N-glycosylation of mAbs 

affects their pharmacokinetic characteristics and efficacy as a drug, including clearance rate, 

stability, immunogenicity, antibody-dependent cellular cytoxicity (ADCC) and complement-

dependent cytoxicity (CDC) (Goetze et al. 2011; Hossler et al. 2009; Jefferis 2012; Raju 

2008; Zheng et al. 2011).  

Recently, CHO cell bioprocessing entered the omics era (Kildegaard et al. 2013), thanks to 

the availability of the CHO-K1 and Chinese hamster genome sequences, along with draft 

genomes of multiple cell lines (Cao et al. 2012; Lewis et al. 2013; Xu et al. 2011). This has 
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made other omics-based technologies more readily available for CHO cell culture, including 

RNA-sequencing transcriptomics analysis (McGettigan 2013) and tandem mass 

spectrometry-based proteomics analysis (Baycin-Hizal et al. 2012). In order to increase the 

understanding of CHO cell physiology to better control the quality attributes of mAbs, a 

multi-pronged approach that integrate data from cell culture behavior, metabolism, mAb 

quality and omics-based phenotyping will become a trend for CHO cell culture process 

development in the future. 

This study is, to our best knowledge, the first time a multi-pronged approach has been used to 

investigate the effect of glucose starvation and culture duration on mAb production in fed-

batch CHO cell culture. Here, we aim to understand how the titer and N-glycosylation of the 

mAb product, as well as the proteomic signature and the intrinsic properties of the cells, are 

affected by changing these process parameters. The results presented herein provide 

mechanistic insight into how these process parameters influence mAb productivity and 

quality, and thus should aid in the identification of an appropriate operating windows for 

glucose limitation without running into glucose starvation and of the optimal harvest time. 

Materials and methods 

Cell culture and fed-batch process 

Cell line A, an in-house CHO DG44 cell line producing mAb A was used as model cell line 

in this study. Cells were maintained in proprietary serum-free basal medium in shake flask at 

37˚C, 5% CO2, 200 rpm prior to the fed-batch process.  

Fed-batch culture was carried out in 500 ml shake flasks (working volume 50 – 100 ml) at 

37°C, 5% CO2, 200 rpm with an initial seeding density of 4×10
5
 viable cells/mL and 

temperature shift from 37°C to 33.5°C on day 5. Proprietary feed was added to the culture on 

days 2, 5, 7, 9 and 12 (10% of the initial culture volume). Glucose concentration was adjusted 

to 33mM on day 5 and to 50mM on day 12. Cell culture was sampled before feeding on days 
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2, 5, 7, 9, 12 and 14 for monitoring cell growth (Vi-CELL XR, Beckman Coulter, Brea, CA), 

cell metabolism (Bioprofile 100plus, Nova BioMedical, Waltham, WA) and mAb production 

(Octet QK384 equipped with Protein A biosensors, ForteBio, Menlo Park, CA). Sampling for 

intracellular nucleotide sugar quantification and mAb glycoprofiling was performed on days 

2, 5, 9 and 12. Harvesting criteria for the culture was considered to be either when cell 

viability fell below 70% or on day 14, whichever occurred first. Four different fed-batch 

processes were performed in duplicate: severe glucose starvation (SGS), high glucose 

starvation (HGS), low glucose starvation (LGS) and no glucose starvation (NGS). In each of 

these processes, glucose concentration was set to 11mM (SGS), 22mM (HGS), 33mM (LGS) 

and 50mM (NGS) on day 9 of the fed-batch culture. Additional sampling for comparative 

proteomics analysis was performed on days 2 and 9 of the NGS process. 

Nucleotide sugar analysis 

Nucleotide sugar analysis was performed on harvested cell pellets using acetonitrile 

extraction followed by high-performance anion-exchange (HPAEC) HPLC as described 

previously (Fan et al. 2015; Jimenez Del Val et al. 2013).  

Semi-high throughput mAb purification 

The supernatant harvested from cell culture was filtered through a 0.22μm filter (Millipore, 

Billerica, MA) and applied onto a Protein A HP MultiTrap™ 96-well filter plate (GE 

Healthcare, Fairfield, CA) which had been previously equilibrated with PBS following the 

manufacturer's instructions. Elution was performed using 0.1M citrate buffer (pH=3.5, 

Sigma-Aldrich). The eluate was immediately transferred to a Zeba™ spin desalting plate 

(Thermo Scientific, Waltham, MA) previously equilibrated with a 10mM citrate, 150mM 

NaCl (pH=6.0) buffer (Sigma-Aldrich, St. Louis, MO). Purified mAb concentration was 

measured using a NanoDrop ND-1000 system (Thermo Scientific) prior to sample storage at 

-20°C. 
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mAb Glycoprofiling 

mAb Glycoprofiling was performed with an in-house HPLC analysis method using 

InstantAB labeled (Prozyme, Hayward, CA) glycans (Fan et al. 2015). 

Statistical analysis of glycoform distributions 

Differences among the glycoform distributions were evaluated by comparing the mean 

obtained from two independent experiments. Depending on equality of variances, different 

post-hoc tests were performed to assess the statistical significance of the differences among 

the means. First, the variances of each treatment were compared using Levene’s test. If the 

variances were observed to be equal, a one-way ANOVA was performed to evaluate the 

differences between the means of the treatments. Where the ANOVA yielded statistically 

significant differences (pANOVA<0.05), Tukey’s honest significant difference test was 

performed post-hoc for pairwise comparisons. For data where the variances were found to be 

unequal, a one-way Welch’s ANOVA was performed, and if this analysis yielded statistical 

significance (pWELCH<0.05), the Games-Howell post hoc test was performed for pairwise 

comparisons. All statistical analysis was performed using the IBM SPSS Statistics software, 

v.20 (SPSS Inc. 2011). 

Sample preparation for proteomics analysis 

Two biological replicates from days 2 and 9 of the NGS fed batch process were subjected to 

proteomics analysis using iTRAQ (isobaric Tags for Relative and Absolute Quantification) 

labeling mass spectrometry (Aggarwal et al. 2006; Pottiez et al. 2012). The harvested cells 

were washed with ice-cold PBS (Invitrogen, Life Technologies, Carlsbad, CA), flash-frozen 

in liquid nitrogen and stored at -80°C prior to cell lysis.  For lysis, the cells were thawed and 

immediately resuspended in SDS-lysis buffer (2% SDS (w/v), 1mM EDTA and 0.1mM 

phenylmethylsulfonyl fluoride [PMFS], pH = 8 adjusted with triethylammonium bicarbonate 

[TEABC], Sigma-Aldrich) and sonicated on ice three times for 30 seconds with a probe 
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sonicator. The total protein concentration of the lysate was measured with the BCA assay 

(Thermo scientific).  

The lysates were then reduced by incubation in a final concentration of 4.5mM Tris-(2-

carboxyethyl) phosphine (TCEP, Sigma-Aldrich) at 60°C for 1 hour and subsequently 

alkylated by incubation in a final concentration of 8.3mM methyl methanethiosulfonate 

(MMTS, Sigma-Aldrich) at room temperature in the dark for 30 min using a modified filter-

aided sample preparation (FASP) protocol based on Wisniewski et al. (2009). 90µg of the 

obtained protein from each sample were diluted with 9M Sequanal grade urea (Thermo 

scientific) to obtain a final SDS concentration of 0.09% (w/v). This mixture was incubated at 

room temperature in the dark for 1 hour after which the low-molecular-weight substances 

were removed by ultracentrifugation using a 10KDa cutoff 0.5ml Amicon filter (Millipore). 

The retained proteins were digested by incubation with 50µL of LysC digestion buffer (50 

mM TEABC, pH=8) containing 4.5 µg of LysC enzyme (Wako Pure Chemical Industries, 

Japan) at 37°C for 4 hours and additional incubation with 350µL trypsin LysC digestion 

buffer (50 mM TEABC, pH=8) containing 10 µg trypsin enzyme (Promega Corporation, 

Madison, WI) at 37°C overnight. The digested peptides were dried using SpeedVac (Savant, 

Thermo Scientific) prior to iTRAQ labelling. The iTRAQ 8-plex reagent was dissolved in 

50μL of isopropanol following the manufacturer's instructions (AB Sciex, Framingham, 

MA). Each dried peptide sample was dissolved in a mixture of 17µL H2O, 20µL 0.5M 

TEABC and 50µL of iTRAQ 8-plex reagent solution and incubated for 2 hours at room 

temperature in the dark. Peptides from different samples with their unique iTRAQ labeling 

were mixed, dried and resuspended into 1mL of 10mM TEABC prior to peptide fractionation 

using basic pH reversed-phase liquid chromatography (bRPLC). 

 

 

http://www.absciex.com/company/news-room/press-releases/ab-sciex-advances-proteomics-research-with-new-eksigent-nanolc-system
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Fractionation of peptides  

The bRPLC method was performed to improve identification of unique peptides in the 

sample as was described byBaycin-Hizal et al. (2012). Peptides were fractionated on an 

XBridge C18 Column (5 µm, 2.1 x 100 mm, Waters, Milford, MA) with an XBridge C18 

Guard Column (5 µm, 2.1 x 10 mm, Waters), using an Agilent  HPLC system consisting of a 

1100 series binary pump, a 1200 series UV detector and a 1200 series micro-fraction 

collector. Fractionation of peptides was carried out by a linear gradient (T0 min =10% B, T10 

min=10% B, T50 min=35% B, T50.1 min=70% B, T60 min =70% B, T60,1min = 100% B, 

T70 min = 100% B, T70.1 min = 10% B, T95 min = 10% B) between solvent A (10 mM 

TEABC, Sigma-Aldrich) and solvent B (10 mM TEABC in 90%v/v Acetonitrile, Sigma-

Aldrich) with a flow rate of 250µL/min. 84 bRP fractions were collected and re-combined 

into 24 fractions and then dried in a SpeedVac (Savant, Thermo Scientific) prior to liquid 

chromatography/tandem mass spectrometry (LC-MS/MS) analysis. 

LC-MS/MS analysis 

The LC-MS/MS analysis of the different fractions of the peptides was performed using an 

LTQ Orbitrap Velos MS/MS in FTFT (Thermo Scientific) interfaced with a 2D nanoLC 

system (Eksigent, AB Sciex), as described previously (Baycin-Hizal et al. 2012), but with the 

following modified parameters. Precursor and fragment ions were explored in tandem MS 

analysis at a resolution of 30000 and 15000, respectively. Survey scans (full ms) were 

acquired on the Orbitrap within an m/z range between 350-1700Da. Precursor ions were 

individually isolated with a 1.2Da window and fragmented (MS/MS) using 40% collision 

energy in order to achieve higher collision dissociation (HCD) activation. The MS/MS 

spectra were analyzed using the Mascot software (v2.2.2, Matrix Science, London, UK) in 

the framework of ProteomeDiscoverer v1.4 (PD1.3; Thermo Scientific) with fixed 

modifications of N-terminal 8-plex-iTRAQ labeling and cysteine methylthiolation and 

http://www.absciex.com/company/news-room/press-releases/ab-sciex-advances-proteomics-research-with-new-eksigent-nanolc-system
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variable modifications of methionine oxidation and 8-plex-iTRAQ labeling of tyrosine and 

lysine. 

MS data analysis 

The obtained MS data was compared against the cricetulus_g_v2 custom database, which 

was constructed using the RefSeq annotation of the CHO genomic sequence downloaded in 

October, 2013. Protein identification was performed using Mascot v2.2.2 (Matrix Science) 

where the searches were processed with a confidence threshold of 1% False Discovery Rate 

(FDR). Protein ratios were calculated based on the median value of the unique peptide ratios. 

Comparative proteomics analysis  

A BLASTp search of all identified proteins was performed against the mouse, human and rat 

RefSeq databases (accessed on November, 2013) in order to find the closest homologous 

proteins (lowest E-value) in these species. Identifiers, including RefSeq Protein Accession, 

ENSEMBL gene ID, UNIPROT accession and Agilent ID for each protein were subsequently 

obtained using the Gene ID conversion Tool from the DAVID database (Huang da et al. 

2009a; Huang da et al. 2009b) (from November, 2013). Gene set enrichment analysis (GSEA) 

(Subramanian et al. 2005) was performed on the proteins that exhibited differential expression 

between days 2 and 9. The resulting data were used to identify the up and down-regulated 

gene sets (between 15 and 500 genes per set) between days 2 and 9 of the NGS fed-batch 

process. This analysis was performed using both the functional database (a combination of 

Biocarta, KEGG and Reactome databases) and the gene ontology database (downloaded from 

Molecular Signatures Database v4.0, http://www.broadinstitute.org/gsea/msigdb/index.jsp). 

Leading edge genes (genes that are core representatives of their gene set with FDR q-value 

cutoff of 0.25) were identified using Leading-edge analysis. An enrichment map (Merico et 

al. 2010) of the gene clusters were obtained in Cytoscape v3.1.1 using the GSEA results as 

input, a p-value cutoff of 0.05 and an FDR q-value cutoff of 0.25. A direct search using all 
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identified proteins from MS analysis against an in-house reconstruction of the CHO secretory 

pathway network (Table SX) was performed with a log2 expression cut off of ±0.8 and a p-

value cutoff of 0.05 in order to analyze the secretion machinery of the cells. Moreover, all 

identified proteins that are involved in nucleotide sugar biosynthesis pathway and glycan 

biosynthesis pathway were sorted out and evaluated. 

Results and Discussion 

During fed-batch manufacturing of mAbs, glucose concentration and culture duration are 

considered to be critical parameters for both productivity and quality (Pacis et al. 2011; Xie et 

al. 1997). Therefore, lack of control in these parameters is always risky for mAb 

manufacture. Here, we investigate the effect of glucose starvation during early stationary 

phase of fed-batch culture and the effect of culture duration on mAb productivity and 

glycosylation. Our results contribute to further understand how glucose starvation and culture 

duration impact CHO cell physiology in fed-batch culture processes and yields insight into 

potential metabolic and/or proteomic causes for these effects. 

Effect of glucose starvation 

Culture performance and mAb productivity of four culture processes with different degrees of 

glucose starvation (SGS, HGS, LGS and NGS) are shown in Figure 1 and are summarized in 

Table I. As would be expected, glucose starvation during early stationary phase resulted in 

earlier onset of cell death (Figures 1 A and B), reduced integral viable cell concentration 

(IVC) (Figure 1 C), lactate depletion (Figure 1 E), and increased accumulation of NH4
+
 

(Figure 1 F). Additionally, the level of glucose starvation negatively correlated with mAb 

titer (Figure 1 C) and specific productivity (qp) (Figure 1 C slope of the curves).  

Nucleotide sugars (NSs) are metabolites that are required as substrates for the elongation of 

oligosaccharide chains during the process of glycosylation. Their concentrations in the cell 

have been demonstrated to be one of the major causes of alterations in mAb glycopatterns 
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(Chee Furng Wong et al. 2005; Fan et al. 2015; Wong et al. 2010b).  It has been previously 

suggested that glucose depletion can reduce the biosynthesis of nucleotide sugars 

(Kochanowski et al. 2008). In accordance with this hypothesis, we observed reduced (LGS) 

or even fully depleted (HGS and SGS) intracellular concentrations of uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc) and uridine diphosphate N-acetylgalactosamine (UDP-

GalNAc) when glucose availability was limited during early stationary phase of the fed-batch 

culture (Figure 2 – bottom). Counterintuitively though, considerable accumulation of uridine 

diphosphate glucose (UDP-Glc) and uridine diphosphate galactose (UDP-Gal) was observed 

after glucose starvation was induced at day 9 of culture (Figure 2 – top). Although this 

finding may be seen as conflicting, a clear explanation can be found when considering the 

steps involved in NS biosynthesis and glutamine metabolism in CHO cells. Figure 2 shows a 

simplified metabolic diagram for NS biosynthesis from glucose and glutamine (Gln) as 

primary substrates. There, we see that Fru-6P and Gln are combined to yield glucosamine 6-P 

(GlcN-6P), which eventually is converted to UDP-GlcNAc. Glutamine, in turn, has been 

widely reported to be consumed as an important carbon and energy source by CHO cells 

(Ahn and Antoniewicz 2013; Dean and Reddy 2013; Templeton et al. 2013; Young 2013). 

These authors have reported that considerable amounts of the Gln consumed during CHO cell 

culture is deamidated to yield ammonia and glutamate (Glu), the latter of which is then 

converted to TCA cycle intermediates such as oxaloacetate and -ketoglutarate ( -KG). It is 

likely that under glucose starvation, glutamine and other amino acids uptake towards TCA 

cycle intermediates is increased in an attempt to sustain cellular energetic requirements, and 

that this increased glutaminolysis towards TCA cycle intermediates translates into a 

decreased flux of Gln towards GlcN-6P and eventual UDP-GlcNAc formation. 

Simultaneously, the flux of glucose that is not being converted to UDP-GlcNAc due to lack 

of Gln availability may be funneled towards UDP-Glc and UDP-Gal formation, possibly 
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generating the observed accumulation in the HGS and SGS cultures. This mechanism is 

further substantiated by the observed increase in both Glu and NH4
+
 concentration seen in 

Figures 1 E and H, respectively, and a considerably higher Gln uptake rate in processes SGS 

and HGS. 

Alongside the possible metabolic effects described above, the consumption rate of the NSs 

for the glycosylation reactions must be considered. It is possible that UDP-Gal accumulates 

in the HGS and SGS cases because they present lower specific mAb productivity (Figure 1 

C). If the drop in qp for these cases is higher than the drop in UDP-Gal biosynthesis, this NS 

would accumulate. Similarly, the NGS and LGS cases present accumulation of UDP-GlcNAc 

(Figure 2), higher Man 5 (Figure 3 A) and lower GlcNAc occupancy (Figure S1 A) after 

glucose starvation is induced. It is possible that UDP-GlcNAc accumulates in these cases 

because consumption of this NS towards glycosylation is lower. These results highlight the 

interplay between nucleotide sugar metabolism and recombinant protein productivity. 

The considerable changes in glycoform distribution observed between days 5 and 9 of culture 

reduce visibility of changes in glycosylation after glucose starvation is induced in Figures 3 

and 4. However, a positive correlation between the degree of glucose starvation and the 

maturation of glycans was observed in repeated experiments. 

In Table II, the fractions of secreted mAb change during the intervals depend on variations in 

specific productivity (qp), which are most likely a consequence of glucose availability for 

each case. Specifically, a smaller fraction of the total mAb produced is being secreted by the 

HGS and SGS cases in the interval where glucose limitation was introduced (9 to 12d). When 

considering these changes in qp with respect to glucose availability, the reason why SGS 

yields a distribution with more highly processed glycoforms at day 12 is that during the 

starvation period, only 15.2% ± 0.5% of the total amount of mAb is produced. This lower 

fraction is diluted with the product that has been secreted up to that point in culture (84.8% ± 
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0.5%), and it is the dilution effect which leads to lower apparent decreases in mature 

glycoforms between days 9 and 12 (Figure 4). In contrast, a larger fraction of the total mAb is 

produced for the cases of less glucose starvation during the starvation period and thus, the 

dilution effect associated with changes in qp may mask the impact of cellular metabolism (via 

nucleotide sugar biosynthesis) on glycosylation.    

In order to account for the effect of qp on the glycan distributions after glucose limitation, the 

relative amount of each mAb glycoform produced (fi) during the interval was calculated 

based on a material balance for glycoform i (mAbi) over the starvation period: 

 … Eq. 1 

Where qp is the mAb specific productivity and Xv is the average cell density over the time 

interval (from t1=9d to t2=12d for the starvation period). And considering 

that , we find a simpler expression for fi: 

 … Eq. 2 

In equation 2, fi represents the mass fraction of mAb glycoform i produced relative to the 

total amount of mAb secreted during the time interval. Because Fc glycan variation accounts 

for very small changes in mAb molecular weight (<0.05%), fi was assumed to be a close 

approximation to the mole fraction of mAb glycoform i per total moles of mAb produced 

over the starvation interval. 

Figure 4 shows the fractions calculated with equation 2 for the interval before (day 5 to 9) 

and after (day 9 to 12) glucose starvation is induced for all degrees of glucose limitation 

(NGS, LGS, HGS and SGS). As expected, there are no statistical differences between the 

cases prior to glucose starvation (day 5 to 9) given that up to this point, all cultures were 

performed under similar conditions. However, statistically significant differences can be 



A
cc

ep
te

d 
P

re
pr

in
t

This article is protected by copyright. All rights reserved 

observed for Man5, G1F and G2F between the time intervals and among certain glucose 

starvation conditions during the 9 to 12d interval. 

Figure 4A shows that more Man5 is secreted during the 9 to 12d interval for all but the SGS 

culture. Within this interval, and depending on the different glucose starvation conditions, 

there is a decreasing trend where less Man5 is produced at higher glucose starvation. These 

results are reflected in GlcNAc occupancy (Figure 4, bottom row). 

When considering the intracellular UDP-GlcNAc concentrations presented in Figure 2, it is 

evident that lack of availability of this NS is not causing the increase in Man5 secretion for 

the NGS and LGS cultures. This is further substantiated by the small decrease in G0F 

glycoform secretion after glucose starvation for NGS, and no statistically significant changes 

in A1G0F secretion (Figures 4 B and C). If UDP-GlcNAc availability were limiting, 

secretion of both these glycoforms would also be negatively impacted. Furthermore, the 

intracellular accumulation of UDP-GlcNAc, the increase in Man5 secretion, and the relative 

stability of G0F secretion imply that the rate limiting step is the reaction catalysed by the 

GnTI enzyme. The measured ranges for extracellular pH and ammonia concentration are 

below those that have been previously reported to impact the activity or Golgi localisation of 

GnTI (Borys et al. 1993; Gawlitzek et al. 2000; Rivinoja et al. 2009). The remaining possible 

cause for increased Man5 secretion in the least glucose-deprived cultures is the abundance of 

GnTI relative to specific mAb productivity (Figure S2). When considering this is the 

limitation, intracellular accumulation of UDP-GlcNAc is explained: a low GnTI to qp ratio in 

NGS and LGS reduces the rate of GlcNAc transfer onto Man5, and because less UDP-

GlcNAc is being consumed for this reaction, this NS accumulates within the cells. 

In contrast to GlcNAc occupancy, production of galactosylated glycoforms (G1F and G2F, 

Figures 4 D and E, respectively) increases with higher glucose starvation. No statistical 

differences were observed for G1F secretion before and after starvation for the HGS and SGS 
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cultures, but a decrease of 1.5% ± 0.3% was observed for NGS and LGS (p<0.05). In general, 

more G2F glycoform was produced during the starvation interval. However, a more 

pronounced increase in G2F secretion before and after starvation was observed for the HGS 

and SGS cultures (P<0.001). The above results are also clearly reflected in Gal occupancy 

(Figure 4, bottom row). Specifically, galactose occupancy was not affected for the HGS and 

SGS cases, but was observed to decrease for NGS and LGS (p<0.05). 

When comparing galactose occupancy with intracellular UDP-Gal availability (Figure 2), we 

see a positive correlation. Higher intracellular UDP-Gal availability occurs for the most 

glucose starved cultures (HGS and SGS). In turn, these cultures present higher galactose 

occupancy during the starvation interval. The mechanisms underlying the interplay between 

intracellular UDP-Gal concentration, galactose occupancy and specific mAb productivity are 

consistent with the arguments put forth for GlcNAc. UDP-Gal accumulation in HGS and SGS 

is unlikely due to excess biosynthesis because these cultures were performed under 

considerable glucose limitation. Considering this, the most likely cause for intracellular UDP-

Gal accumulation is that it is being consumed at a lower rate due to the low specific mAb 

productivity observed under these glucose starvation conditions (HGS and SGS). In turn, a 

lower qp also implies higher residence time within the Golgi apparatus which would allow for 

further processing of the mAb-bound glycans, leading to higher galactose occupancy.  

Effect of culture duration 

Appropriate harvest criteria need to be selected for mAb manufacture. Here, we analyzed the 

fed-batch culture at different time points and try to understand the balance between titer and 

quality of the mAbs in relation to the culture duration.  

As shown in Figure 1 C, the specific productivity of mAbs was lower in early growth phase 

(slope 1, day 2 to 5) comparing to that in late growth phase and early stationary phase (slope 

2, day 5 to 9), which indicates there is an increase in qp after temperature shift. 
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With regards to glycosylation (Figure 3 and Figure S1), it has been demonstrated by a trend 

of overall increases in Man5 and A1G0F, and decreases in G1F, G2F, and GlcNac and 

galactose occupancy along cultivation. This finding is in accordance with the apparent 

accumulation of UDP-GlcNAc and UDP-Gal during the cell culture as well (Figure 2). 

More specifically, the most dramatic changes in glycoform distribution observed in this study 

occur between days 5 and 9 (Figure 3), where Man5 glycoform abundance increases by 

11.6% ± 0.3% and the G1F glycoform decreases by 11.9% ± 0.7%. The similarity between 

the changes in Man5 and G1F abundance is striking and is likely related: higher Man5 

production leaves less glycoprotein substrate available for galactosylation during later stages 

of the glycosylation process within the Golgi apparatus. It is therefore possible that the drop 

in galactosylation is a direct consequence of high Man5 secretion.  

A similar correlation (glycans become less processed with extended culture duration) has also 

been reported in other studies (Bibila and Robinson 1995; Hooker et al. 1995; Pacis et al. 

2011; Robinson et al. 1994; Shi and Goudar 2014), which indicate that this could be a general 

phenomenon. Three major hypotheses have been proposed explaining such a phenomenon: 

(1) A bottleneck in the availability of nucleotide sugar substrates with respect to culture 

duration may exist (Hooker et al. 1995). However, this possibility can be ruled out in the 

NGS process, as the nucleotide sugar substrates such as UDP-GlcNAc and UDP-Gal were 

accumulated in the cells over time (Figure 2). (2) Cell death and lysis, may elevate the 

activity of extracellular glycosidase, especially sialidase in the culture, and thus increase the 

glycan degradation (Chee Furng Wong et al. 2005).  However, it has also been demonstrated 

that CHO-derived glycosidases including β-galactosidase, β-hexosaminidase may be less 

likely to contribute to the lower GlcNAc and Gal occupancy, since they exhibit very low 

activity at typical culture pH (Gramer and Goochee 1993). (3) Reduced expression or activity 

of Golgi-associated mannosidase and glycosyltransferases during the course of culture 
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(Robinson et al. 1994) can lead to high mannose and low galactosylation. However, as 

reported previously, the changes in expression of GlcNAc transferase I (GnT1) during the 

course of a cell culture is cell line-dependent and do not show any general trend of decline 

(Fan et al. 2015; Pacis et al. 2011). Additionally, no apparent down-regulation was observed 

in the expressions of GlcNAc transferase II (GnTII) and various galactose transferases (GalT) 

along with increased culture duration (Wong et al. 2010a). Temperature shift may contribute 

to the decreases before and after day 5 in glycan maturation as a result of reduced activities of 

these enzymes. Additionally, Figure 1 C also shows that the qp increases after the temperature 

shift on day 5 (slope 1 vs. slope 2). Therefore, it is possible that this increase in qp causes the 

decrease in glycoform complexity between 5 and 9 days of culture (This correlation is also 

indicated by Figure S2). If the abundance of GnTI relative to the qp goes below a certain 

level, lower GlcNAc occupancy will be achieved. These results point to the importance of 

considering the capability of glycosylation machinery available with respect to specific 

productivity. However, all the three major hypotheses do not completely explain the reported 

system-level data. Further investigations are needed in understanding the root cause of this 

type of glycosylation change. 

Comparative proteomics analysis between early growth phase and early stationary 

phase in fed-batch 

In order to gain insight into the fundamental differences in the cell culture from early growth 

phase to early stationary phase, in-depth analysis of proteome changes in cells from the two 

phases in the NGS process was performed. 

In total across all samples, 5113 proteins were identified with FDR<1% in the proteomics 

data (Table SIII), in which 4647 proteins were processed using gene set enrichment analysis 

(GSEA, Table SV). 3294 proteins were enriched into 228 and 334 gene sets using functional 

database and gene ontology database, respectively (Tables SVI and SVIII). Enrichment maps 
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illustrating GSEA results were built. The enriched gene sets containing genes with 

statistically significant changes in protein level between early growth phase and early 

stationary phase were shown in Figure 5. Further leading-edge analysis (LEA) was performed 

using the output from GSEA (Supplementary material II). The top 10 up and down-regulated 

genes (Tables III and IV) and enriched gene sets (Tables SI and SII) from LEA were shown.  

Briefly, the genes in the gene sets with transcription, cell cycle and nucleotide metabolism 

related activity were generally expressed at higher level in early growth phase, which is 

consistent with the rapid cell growth during this phase. The majority of proteins encoded by 

these genes are located in nucleus (283 proteins).  

On the other hand, the genes in the gene sets regarding glucose, lipid, and nucleotide sugar 

metabolism, environmental sensing and signal transduction, protein trafficking and secretion, 

extracellular matrix regulation, glycosylation and apoptosis related activity were up-regulated 

in early stationary phase. The proteins encoded by these genes are mainly located at 

membrane (262 proteins) and extracellular region (45 proteins). 

Specifically, increasing environmental sensing and signal transduction related activity in 

early stationary phase involved a number of gene sets found in both databases. This implies 

that cells may be more sensitive to and tightly regulated upon environmental changes, for 

example media and process conditions in early stationary phase than in early growth phase. 

Another interesting point we found is that protein trafficking and secretion were more active 

in early stationary phase with regard to in early growth phase, as a large set of genes involved 

in this activity were up-regulated. Therefore, we suggest that the cellular machinery in 

relation to protein secretion was more active for cells in early stationary phase than in early 

growth phase. In contrast to that, genes in the gene sets regarding glycosylation related 

activity are very few, although they were shown to be up-regulated (Figure 5).   
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Taking one step more, we further specifically analyzed the proteome involved in the secretion 

machinery (Table SXI), nucleotide sugar synthesis pathway (Table SXII) and biosynthesis 

pathway of N-glycans (Table SXIII).  

The relative activation of secretion machinery during the early stationary phase has been 

demonstrated in (Table SXI). We found that 12 proteins were up-regulated in early stationary 

phase within our cut-off criteria. Out of the 12 proteins three (XP_007653021, 

XP_003499981 and XP_003512468) are directly related to protein transport in the cell and 

three (XP_003504664, XP_003501071 and XP_003507839) are responsible for protein 

folding. In contrast, only seven proteins were up-regulated in early growth phase within the 

cut-off criteria. Interestingly, three of them were heat-shock proteins (HSP), which may 

reflect the effect of temperature shift during the culture. It is also worth to mention that many 

of the HSPs are glycosylated (Baycin-Hizal et al. 2012), and the glycosylation of them might 

compete with recombinant protein glycosylation. 

In the nucleotide sugar synthesis pathway, Proteins XP_007612718, NP_001233687 and 

XP_003515993 that are responsible for UDP-Glc and UDP-Gal biosynthesis were slightly 

up-regulated in early stationary phase (Table SXII). The expressions of NP_001233638 and 

XP_003514714 that can direct UDP-GlcNAc to UDP-GalNAc and N-Acetyl-D-

mannosamine (ManNAc), respectively, were higher in early stationary phase. These results 

are in agreement with the findings above (Figure 5) that genes involved in nucleotide sugar 

metabolism were generally up-regulated in early stationary phase. 

Regarding the biosynthesis pathway of N-glycans (Table SXIII), three proteins 

(XP_003500143, XP_003500900, XP_003508783) that are responsible for initiation of N-

glycosylation in the ER were slightly up-regulated during early stationary phase. Very 

interestingly, the expression of only two protein α-mannosidase II (XP_003499415) and 
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GnT1 (NP_001230909) involved in glycan maturation in Golgi apparatus were slightly 

higher during early stationary phase. 

Taken together, the essential causal link between producing the more processed glycans in 

early growth phase than in early stationary phase could be narrowed down to the following 

two possibilities: Firstly, it may be attributed to the overall capabilities of protein secretion 

machinery from early growth phase to early stationary phase in the cells gradually exceeding 

the capability of protein glycosylation machinery that is specifically responsible for glycan 

maturation (indicated by the proteomics data and the data of intervals day 0-5 and day 5-9 in 

Figure S2). Secondly, it is also possible that the activities of enzymes that raise GlcNac and 

Gal occupancy may be reduced due to certain environmental change and/or physiological 

response (e.g. temperature shift and/or pH gradient across the network of ER and Golgi 

apparatus) of the cells with the cultivation duration increased. 

Conclusion 

Using the multi-pronged omics-based approaches, we have shown here the effects of glucose 

starvation and culture duration on fed-batch CHO cell culture producing monoclonal 

antibody and the underlying reasons that cause such effects. Glucose starvation at early 

stationary phase of the fed-batch culture exhibited a negative impact on growth, viability, and 

specific productivity of the cells. It was also shown that the changes of glycoforms (increased 

GlcNAc and Gal occupancy) in regard to increased degree of glucose starvation are most 

likely as a result of interplay between the dilution effect associated with change in qp and the 

changed nucleotide sugar metabolism. On the other hand, the effect of culture duration on the 

glycopatterns is dramatic. In general, longer culture duration seems to generate a higher 

abundance of less processed glycan structures. Especially between samples from early growth 

phase (days 2 and 5) and early stationary phase (day 9), the extent of such effect is immense, 

which was thought to be correlated with the fundamental physiological difference between 
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cells in the two phases. For that reason, we took one step further to examine the differences 

between proteome levels in these two phases. We found that the expression of proteins 

regarding cell cycle progression and cell divisions are generally up-regulated in early growth 

phase. On the other hand, expression of proteins that is responsible for regulating cellular 

metabolism, extracellular matrix, apoptosis, protein secretion and glycosylation is generally 

higher in early stationary phase. Very importantly, a large repertoire of proteins concerning 

secretion machinery was generally up-regulated in early stationary phase, whereas only two 

proteins (α-mannosidase II and GnT1) regarding glycan maturation in Golgi apparatus were 

found to be slightly up-regulated. In this way, we gained deeper insight into the culture 

behavior and recombinant protein production on the basis of the molecular features of the 

cells.  From the process control perspective, this proteome information could help discover 

and apply knowledge of cellular functions in response to changes in process conditions, in 

order to explore possiblities of producing recombinant product with optimal productivity and 

quatlity.   

We have not excluded the possibility of cell line specific effects on our data, and ideally 

different cell lines should be further investigated. However, the omics-based analysis 

constitutes a powerful tool for studying the physiological profiles of cells under different 

culture conditions and linking that with the quantity and quality of the recombinant product. 
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 Figure legends 

Figure 1. Comparison of four fed-batch cultures with different levels of glucose starvation. 

Viable cell density, viability and integral of viable cells (IVC) vs. titer are presented in A, B 

and C, respectively. Glucose, lactate and ammonia concentrations in the course of cell culture 

are shown in D, E and F, respectively. The error bars represent the standard deviation 

calculated from duplicate experiments. The average specific production (+) or consumption 

(–) rate of glucose, lactate, glutamine, glutamate and ammonia from day 9 to day 12 were 

calculated as: .  and  are the concentration of nutrients or 

metabolites in the cell culture on day 9 after feeding and on day 12 before feeding, 

respectively. and  are IVC on day 9 and day 12, respectively. Slope 1: from 

day 2 to day 5; slope 2: from day 5 to day 9.   

Figure 2. Intracellular nucleotide sugar analysis. Time course of concentration of 

intracellular nucleotide sugars (UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc) from 

the cell cultures with different levels of glucose starvation were shown. Nucleotide sugar 

synthesis typically starts from degradation of glucose through glycolysis, in which glucose 

converts into glucose-6-phosphate and fructose-6 phosphate. Degradation of intracellular 

glucose generates Glucose-6-phosphate (Glc-6P), which is a critical substrate involved in 
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glycolysis. Glc-6P can further become Fructose-6-pahospate (Fru-6P), which can enter into 

the TCA cycle for energy production, or together with glutamine supply biosynthesis of 

UDP-glucosamine (UDP-GlcNAc) and UDP-galactosamine (UDP-GalNAc.  Alternatively, 

Glc-6P can turn into Glucose-1-phosphate (Glc-1P), which is responsible for generating 

UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal).  In case of glucose starvation, lactate 

can be used as alternative carbon source to drive the TCA cycle. Once lactate is depleted, 

cells will mainly depend on using glutamine and other amino acids to support energy 

production and thus generate NH4+.  

Figure 3. Glycoprofiles of mAbs produced from the cell cultures with different levels of 

glucose starvation.  (A) Mannose 5, (B) A1G0F, (C) G1F and (D) G2F 

Figure 4. Fraction of mAb glycoforms secreted before and during glucose limitation. The 

fraction of the Man5 (A), A1G0F (B), G0F (C), G1F (D) and G2F (E) glycoforms are 

presented for the intervals before (5 to 9d) and after (9 to 12d) of glucose limitation. Each bar 

represents the different conditions of glucose limitation during the day 9 to 12 period: NGS, 

LGS, HGS and SGS. The values shown correspond to means for duplicate (n=2) cultures and 

statistical analysis was performed as described in the materials and methods. The criteria for 

significant differences are: * for p<0.05, ** for p<0.01 and *** for p<0.001. 

Figure 5. Enrichment map based on gene set enrichment analysis of comparative proteomics. 

The analysis has been done using (A) functional database and (B) gene ontology database, 

respectively.  All enriched gene sets are represented as dots. The size of the dot indicates the 

size of the gene set. Red dot signifies the genes in that gene set is generally up-regulated in 

early growth phase (on day 2) of the fed-batch culture, whereas blue dot stands for general 

up-regulation of the genes in early stationary phase (on day 9). Overlapped genes between the 

two gene sets were shown as green line. The thickness of the green light represents the size of 
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the overlapped genes. Further clustering of the enriched gene sets based on their descriptions 

was indicated using light blue circles.  
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Table I. Culture performance and mAb production under glucose starvations. * Control. 

Process 

name 
Description Glutamine Glutamate Lactate NH4+ 

Culture 

process 

mAb 

production 

NGS* No glucose starvation Not consumed Highly consumed 
Almost not 

consumed 
Consumed Uninterrupted Uninterrupted 

LGS Low glucose starvation Consumed Highly consumed 
Consumed and 

depleted 
Produced Uninterrupted Reduced 

HGS High glucose starvation Highly consumed Consumed 
Highly consumed 

and depleted 

Highly 

produced 
Early-ended Highly reduced 

SGS Severe glucose starvation Highly consumed Consumed 
Highly consumed 

and depleted 

Extremely 

produced 
Early-ended 

Extremely 

reduced 
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Table II. Fraction of total mAb secreted during each time interval and for all glucose 

limitation cases. The values for qp (pg/cell/day) for each case and interval are presented in 

the parentheses. 

 

 

 

 

 

 

 

Time interval NGS LGS HGS SGS 

0 to 5d 

8.7% ± 0.6% 

(7.54 ± 0.80) 

11.9% ± 0.7% 

(7.60 ± 0.68) 

17.1% ± 1.4% 

(8.02 ± 0.71) 

19.2% ± 0.3% 

(7.99 ± 0.05)  

5 to 9d 

31.9% ± 2.4% 

(11.45 ± 0.44)  

46.7% ± 0.5% 

(11.86 ± 0.14) 

60.3% ± 4.7% 

(11.25 ± 0.85) 

65.6% ± 0.2% 

(11.09 ± 0.30) 

9 to 12d 

34.5% ± 2.1% 

(12.13 ± 1.23)  

35.5% ± 1.6% 

(9.14 ± 0.18) 

22.6% ± 3.2% 

(6.74 ± 0.93) 

15.2% ± 0.5% 

(4.33 ± 0.22)  

12 to 14d 

24.9% ± 0.3% 

(12.45 ± 0.46)  

5.9% ± 1.8% 

(2.90 ± 1.27)  

------ ------ 
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Table III. Up and down regulated proteins on day 2 comparing to day 9 gene ontology 

database using leading-edge analysis. H: Human; M: Mouse; E: Eukaryote; C: CHO; R: 

Rat. 
#
overlapped genes in Table IV.  

CHO RefSeq Gene Symbol Log2ratio 
Cells 

studied 
Function Reference 

Up-regulated 

   

  

NP_001233667 TOP2A 1.82 H Transcription, DNA replication (Belluti et al. 2013) 

XP_003501907 KPNA2 # 1.63 H Cell proliferation, cell cycle (Huang et al. 2013) 

XP_003510169 KIF22 # 1.61 H Cell mitosis, cell cycle (Yu et al. 2014) 

XP_003504632 UBE2C # 1.55 H Ubiquitylation, cell cycle (Mocciaro and Rape 2012) 

XP_003499794 DNMT1 1.53 H  DNA replication (Shimamura and Ishikawa 2008) 

XP_003500203 LIG1 # 1.39 H DNA repair, DNA replication (Ferrari et al. 2003) 

XP_003504365 HMGB2 1.36 H DNA repair (Nagaki et al. 1998) 

XP_003499302 KIF1A 1.33 M  Axonal transport (Okada et al. 1995) 

XP_003509164 KIF4A # 1.32 H Cell mitosis (Mazumdar et al. 2004) 

XP_003500277 MCM2 # 1.25 E DNA replication (Bell and Dutta 2002) 

Down-regulated 

   

  

XP_003510318 LGALS1 -1.22 H, M Apoptosis (Scott and Weinberg 2002) 

XP_003510519 ANXA1 # -1.27 H, C Apoptosis; protein productivity (Meleady et al. 2011; Wu et al. 2000) 

XP_003500109 LGALS3 -1.30 H Apoptosis (Nakahara et al. 2005) 

XP_003515030 COL5A2 # -1.44 R Extracellular matrix regulation  (Liu et al. 2010) 

XP_003500579 PLTP # -1.51 H, C Lipid transfer (Vuletic et al. 2009) 

XP_003504285 COL7A1 # -1.63 R Extracellular matrix regulation (Liu et al. 2010) 

XP_003496178 MMP12 -1.69 C Extracellular matrix regulation (Sandberg et al. 2006) 

XP_003515352 FCGRT -1.71 H IgG binding and protection (Story et al. 1994) 

XP_003514816 VAMP3 # -1.74 H Protein secretion (Kean et al. 2009) 

XP_003503110 PLG # -1.75 C Extracellular matrix regulation (Rossignol et al. 2004) 
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Table IV. Up and down regulated proteins on day 2 comparing to day 9 found in 

functional database using leading-edge analysis. H: Human; M: Mouse; E: Eukaryote; C: 

CHO; 
#
overlapped genes in Table III. 

CHO RefSeq Gene Symbol Log2ratio 
Cells 

studied 
Function Reference 

Up-regulated 

   

  

XP_003501907 KPNA2 # 

Same as in table III 

XP_003510169 KIF22 # 

XP_003504632 UBE2C # 

XP_003500203 LIG1 # 

XP_003509164 KIF4A # 

XP_003500277 MCM2 # 

XP_003509175 MCM3 1.25 E DNA replication (Bell and Dutta 2002) 

XP_003506293 DUT 1.25 H DNA replication (McIntosh et al. 1992) 

XP_003498829 EIF5 1.15 R Translation initiation (Si et al. 1996) 

XP_003512004 MCM5 1.14 E DNA replication (Bell and Dutta 2002) 

Down-regulated 

   

  

XP_003498026 CTSB -1.22 H Apoptosis, (Bruneel et al. 2005) 

XP_003502412 IDUA -1.22 H Glycosaminoglycan  metabolism (Bie et al. 2013) 

XP_003515581 ABCA4 -1.22 M Phospholipid translocation (Weng et al. 1999) 

NP_001233729 NEU1 -1.26 C Glycosylation (Chee Furng Wong et al. 2005) 

XP_003510519 ANXA1 # 

Same as in table III 

XP_003515030 COL5A2 # 

XP_003500579 PLTP # 

XP_003504285 COL7A1 # 

XP_003514816 VAMP3 # 

XP_003503110 PLG # 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 




