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Fault Diagnosis of Active Magnetic Bearings
based on Gaussian GLRT Detector

Leon Nagel1, Roberto Galeazzi1, Andreas J. Voigt2 and Ilmar F. Santos3

Abstract— Active magnetic bearings are progressively re-
placing conventional bearings in many industrial applications,
particularly in the energy sector. Magnetic bearings have many
advantages such as contactless support and clean operation;
however their use poses also some challenges connected to their
inherent open loop instability. Occurrence of faults in one or
more components of an active magnetic bearing may lead to
loss of control of the rotor. Timely detection and isolation of
faults in an active magnetic bearing could prevent hazardous
system’s behaviours by enabling proper reconfiguration of
the control system. A structural model of the bearing-rotor
system is presented and used to perform a detectability and
isolability analysis of faults in the magnetic actuator. Structural
detectability and group-wise isolability is concluded for single
and multiple faults in the actuator. A Gaussian generalized
likelihood ratio test is proposed for detecting faults striking the
electromagnet. The detector is capable to detect and isolate the
occurrence of faults in e.g. the windings of bearing by tracking
changes in the mean value of a Gaussian distribution. The
statistical distribution of the residuals in non faulty condition
is characterized by experimental data of a full-scale bearing-
rotor system. Verification of the detection performance is done
through simulated data of a nonlinear model of the magnetic
bearing calibrated against the real system.

Index Terms— Actuator fault diagnosis; Gaussian distribu-
tion; Generalized likelihood ratio test; Active magnetic bearing

I. INTRODUCTION

Within the last three decades the use of Active Mag-
netic Bearings (AMBs) as the primary bearing elements in
industrial rotating machinery has seen a steady increase.
Particularly in the energy sector AMBs are often favoured
over conventional bearing elements in pumps, compressors
and energy storage flywheels, due to their many favourable
attributes. In AMB operations the shaft is levitated in a
magnetic field generated by an array of electromagnetic
actuators controlled through feedback of the shaft position
measured by appropriate transducers [15].

An AMB is essentially a mechatronic machine element
supporting a shaft without mechanical contact entailing low
bearing losses and facilitating high rotational velocities.
AMBs are ideal for employment in contamination sensitive
application as no lubrication system is required and their
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high level of controllability enables AMBs to be used for
real time identification and diagnostics purposes [14].

Despite the many advantages of AMBs over conventional
bearing elements, challenges do arise in their application.
Operating an AMB based rotordynamic system is a complex
endeavour and requires expert knowledge within a multitude
of fields. Additionally, AMBs suffer from a relative low
load carrying capacity compared to e.g. conventional journal
bearings [14]. Furthermore, a major challenge with AMB
operation is attributed to the fact that AMBs are active
support elements requiring reliable performance of a number
of subsystems for safe operation [15].

The electromagnetic actuator of the AMB is one such
subsystem. If an actuator fails at high shaft rotational ve-
locities, the shaft will consequently drop onto the AMB
backup bearings potentially damaging the AMB system [15].
Therefore timely detection of actuator and sensor faults in
AMB are of primary importance to enable any control system
reconfiguration and preserve system stability.

A comprehensive study of fault scenarios for AMBs is
provided in [5] where faults are categorized by type, effect
and feasibility of fault tolerance. From the study of these
scenarios three fault categories emerge that are not related
to the rotor and are not dependent on physical redundancy
for fault tolerant behaviour: actuator faults & failures; sensor
faults & failures; software errors.

Of the three categories, actuator and sensor faults can
be analysed and mitigated using structural analysis and
analytical redundancy relations (ARR). Much attention have
been devoted to sensor faults, see e.g. [4], [5], [12], [13],
[16]. To ensure fault tolerance with respect to the AMBs
both sensor and actuator faults must be mitigated.

A. Contributions and novelty

The paper offers two main contributions with respect to
existing literature: first structural analyis is used to perform a
detectability and isolability analysis of the faults in an AMB
based rotor system focusing on the actuation part. Structural
detectability and group-wise isolability is concluded for sin-
gle and multiple faults in the actuator. Second, based on the
statistical analysis of residuals generated through measured
data a generalized likelihood ratio test (GLRT) for Gaussian
random variables is presented for the detection of faults in
the electromagnets. Due to the presence of correlation in
the residuals the detection threshold is empirically selected
based on the statistical characterization of the output of the
detector. The detector is shown capable to detect and isolate
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TABLE I: Test facility specifications

Shaft length 860 mm
Shaft assembly mass 69 kg
First bending mode @ 550 Hz
Rotational velocity range 0 − 10 krpm

AMB Stator outer diameter 300 mm
AMB rotor outer diameter 150 mm
Nominal radial air gap 0.5 mm
Number of poles 8

Max. load capacity (per AMB) 7500 N
Bias current range 4 to 10 A

the occurrence of faults in the AMB by tracking mean value
changes. Validation of the detection capabilities is performed
through simulated data of a nonlinear model of the AMB
calibrated against the real system.

B. Experimental set-up

The test facility utilized in this study is shown in Fig. 1. It
is designed to enable component level experimental identi-
fication of rotordynamic properties of turbomachinery seals
subdued to multiphase flow conditions. A detailed descrip-
tion can be found in [17].

Figure 1a shows a CAD rendering providing an overview
of the facility and its fundamental elements. The hub com-
ponents of the test facility are the two radial AMBs, the
shaft and the drive unit. The radial AMBs provides contact
free radial support of the shaft, which is driven by the
drive unit while the shaft is axially supported by a flexible
coupling between the drive unit and the shaft itself. The
shaft is considered rigid in the operational range of the
test facility with its first flexible mode at fn,1 = 550 Hz.
The AMBs are of the eight pole heteropolar type with the
four electromagnets per bearing arranged into two actuator
pairs that can be controlled individually by employing e.g.
a decentralized PID control scheme. The actuators are tilted
45◦ with respects to the global reference frame so that the
gravitational load of the shaft is compensated for by both
actuators in each bearing. The basic specification of the test
facility are summarized in Table I.

II. MATHEMATICAL MODEL

The AMB-rotor system consists of three major elements:
the drive unit, the active magnetic bearings and the rotor. In
the following only the latter two are analysed in order to
derive a dynamical model of the system. The drive unit is
implicitly considered by assuming that the rotor shaft rotates
at an angular velocity Ω.

A. Magnetic bearing

The central element of an AMB is the actuator that
consists of an arbitrary array of electromagnets connected to
power amplifiers. The electromagnets are paired and work in
opposition such that forces of either sign can be generated.
The actuator converts the desired force commands provided
by the control system into actual forces applied to the rotor.

AMB A AMB B

Shaft

Drive
unit

(a) CAD rendering providing test facility overview

(b) Zoom view of test facility showing AMBs and shaft

Fig. 1: Illustration of the test facility

Models of the power amplifier and of the electromagnets
are presented in the following to outline the fundamental
working principles of an AMB.

1) Amplifier: Each opposing pair of electromagnets is
connected to two power amplifiers responsible of delivering
the needed current to the coil windings in response to a com-
manded control voltage. Several models of power amplifiers
for AMBs have been discussed in literature mainly differing
for the presence or not of the coil current feedback [15].

In the available test-rig the power amplifiers were provided
by a third party supplier and no information about the
internal structure of the amplification stages is available.
Therefore the amplifiers’ dynamics has been identified ex-
perimentally and the first order model

Gj(s) =
i(s)

ic(s)
=

κj
τpjs+ 1

j = 1, . . . , 4. (1)

was deemed suitable within the operational range of the
bearing-rotor system. ic is the control current (commanded
by the control system) and i is the current delivered by the
amplifier. In (1) κj and τpj denote the gain and time constant
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s0 = 0.5 mm and bias current i0 = 4 A. The shaded grey
area identifies the range of the control current i within which
the physical test-rig was operated in stationary conditions.

identified for each amplifier.
2) Bearing electromagnets: Each magnetic bearing of the

rotor dynamical system shown in Fig. 1 consists of 8 control-
lable electromagnets configured in differential pairs, which
approximate the characteristics of a horseshoe electromagnet.

The electromagnet generates an attraction force that is
proportional to the square of the coil current i, and inversely
proportional to the square of the air gap s between the
bearing and the rotor, that is

f(s, i) = k
i2

s2
cosα (2)

where k = 1/4µ0 n
2Aa is the magnetic constant with µ0

being the permeability of vacuum, n the number of windings
and Aa the projected area of the electromagnetic poles.
The term cosα keeps into account that for radial magnetic
bearings the forces generated by both electromagnetic poles
affect the rotor at an angle α = 22.5◦.

Due to the differential pair configuration an AMB is
capable of generating concomitantly attractive and repulsive
forces. The common mode of operation is the so-called
differential mode where one electromagnet is driven with the
sum of the bias current i0 and the control current i, while
the opposing electromagnet is driven by the difference of the
two currents. The total magnetic force is then given by

f(∆s, i) = k

(
(i0 + i)2

(s0 −∆s)2
− (i0 − i)2

(s0 + ∆s)2

)
cosα (3)

where s0 is the nominal air gap when the rotor is levitated,
and ∆s is the deviation from the nominal position.

Figure 2 shows the theoretical force-current characteristic
of the magnetic bearings of the test-rig, with a nominal air
gap s0 = 0.5 mm and a bias current i0 = 4 A. The figure
shows that for up to ±25% variation of the control current
i the magnetic force f is mostly a linear function of the
current also for large displacements ∆s.

Sensor AMB A AMB B

Y

Γ

X

β

yA

xA

yB

xB

Fig. 3: Illustration of the major elements in a rotor-bearing
system with the different coordinate systems used. The coordinate
system of the AMBs have been rotated 45 ◦ counter clockwise for
illustration purposes.

B. Rotor-bearing model

The dynamical model of the rotor-bearing system is devel-
oped based on Lagrangian mechanics [6], [15]. It is devel-
oped in the actuation frame with reference to the geometric
centre of the rotor. This choice results into simplified parity
relations as shown in Section III. Figure 3 shows the different
reference systems and relevant variables.

Let q = [x, y, β,Γ]T the vector of generalized coordinates
that express the linear and angular displacements around the
geometrical centre of the rotor, as shown in Fig. 3. The rotor
dynamics in vectorial form is given by

Mq̈ + ΩGq̇ = F(qAMB, i) + Fd (4)

where M is the mass-inertia matrix, G is the gyroscopic
matrix and Ω is the shaft rotational speed. The general-
ized forces and moments acting on the rotor includes two
contributions: the vector of electromagnetic forces/moments
F(qAMB, i) = [fxA , fxB , fyA , fyB ]T function of qAMB =
[xA, xB , yA, yB ]T – the rotor linear displacements within
the AMBs – and i = [ixA , ixB , iyA , iyB ]T – the individual
control currents of each electromagnets –; the vector of
external forces/moments Fd due to disturbances such as the
gravitational pull Fg and mass unbalance Fu. The gravita-
tional pull is given by Fg = 1/

√
2[mg,mg, 0, 0]T with m

being the total mass of the rotor shaft and g the gravity
constant. The mass unbalance disturbance arises when the
rotor shaft rotates at an angular velocity Ω due to a misalign-
ment between the centre of mass and the geometric centre of
the rotor. It is modelled as Fu = Ω2mee[sin Ω, cos Ω, 0, 0]T

where me is the added mass and e is the distance between
the geometric centre and the centre of mass.

Remark 1: Throughout the work it is assumed that the
rotor is at rest (Ω = 0 rad/sec) hence the effect of mass
unbalance is not consider further. However its magnitude
can be estimated a-priori through identification procedures
and hence be pre-compensated for. It is worth noting that
changes to the misalignment may occur due to wear and tear
of the machinery during operations, which may result into
signatures in the residuals used for condition monitoring.

The dynamics of the rotor-bearing system (4) is now
transformed into the bearing coordinates qAMB by means
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of the similarity transformation qAMB = Tb
rq where the

matrix Tb
r is defined in (26). The model then reads

q̈AMB = −ΩNq̇AMB + J (F(qAMB, i) + Fd) (5)

where N , (MTr
b)
−1GTb

r, J , (MTb
r)
−1 and Tb

r =
(Tr

b)
−1. The constant matrices N and J have the structure

N =


0 0 N13 N14

0 0 N23 N24

N31 N32 0 0
N41 N42 0 0

 (6)

J =


J11 J12 0 0
J21 J22 0 0
0 0 J33 J34
0 0 J43 J44

 , Ji,jJi,j+1 ≤ 0 (7)

C. Measurement model

The position of the rotor in the radial plane is measured
through four displacement sensors, which however are not
collocated with the actuators. The rotor position at the
AMBs’ location can be then computed through the similarity
transformation Ts

r as shown in (28). In addition to the rotor
position, measurements of the control currents at the input
and output of the power amplifiers are also available. The
measurement vector is then given by

y = [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12]T

= [xA, xB , yA, yB , ixA , ixB , iyA , iyB ,

ixA,c , ixB,c , iyA,c , iyB,c ]
T (8)

D. Model verification

The model (1), (3), (5) is central for the structural de-
tectability and isolability of faults carried out in Section III
and further for the generation of the residuals to be used
by the detection scheme. Hence it is essential to verify its
capability to reproduce the dynamical behaviours exhibited
by the real physical system.

The model coefficients were identified using closed-loop
system identification techniques. Figure 4 shows the rotor
position xA in correspondence of the AMB A for both the
simulated and real system: the model tends to overpredict
the magnitude of the response; however from the close-up
it is noticeable that the overall dynamic behaviour is well
reproduced.

It is concluded that the model is representative of the true
system and hence simulated data can be used to characterize
the statistical distributions of the residuals to be monitored
by the detector.

III. DETECTABILITY AND ISOLABILITY OF FAULTS IN
ACTIVE MAGNETIC BEARINGS

To assess the possibility of detecting and isolating faults
occurring in AMB based rotor systems a structural model
is set-up and utilized to determine analytical redundancy
relations. Those are then scrutinized to evaluate detectability
and isolability of faults specifically occurring in the major
components of the AMB: the amplifier and the electro-
magnet. Sensor faults are not consider here; however the

Fig. 4: Plot of the sensor output of xA for comparison of
step response for the simulated system and the real system.

structural model can be used to extend the analysis towards
this end.

A. Structural analysis

To assess the detectability and isolability properties of
AMBs towards faults occurring in the amplifiers and in
the electromagnets the structural analysis is performed [3,
Chapter 5].

First the system variables are grouped into the set of
measured variables K =

{
ixA,c , ixB,c , iyA,c , iyB,c , ixB , iyA ,

ixA , iyB , xA, xB , yA, yB} and the set of unknown variables
X = {ẋA, ẋB , ẏA, ẏB , ẍA, ẍB , ÿA, ÿB}. The nonlinear sys-
tem (5) together with the model of the amplifiers (1) is
then used to construct the incidence matrix whose analysis
through the ranking algorithm [3, Chapter 5] provides the
following nonlinear analytical redundancy relations

r1 = ÿ1 + ΩN13ẏ3 + ΩN14ẏ4 (9)
− J11kxAfxA(y5, y1)− J12kxBfxB (y6, y2)

r2 = ÿ2 + ΩN23 ẏ3 + ΩN24 ẏ4 (10)
− J21kxAfxA(y5, y1)− J22kxBfxB (y6, y2)

r3 = ÿ3 + ΩN31ẏ1 + ΩN32ẏ2 (11)
− J33kyAfyA(y7, y3)− J34kyBfyB (y8, y4)

r4 = ÿ4 + ΩN41ẏ1 + ΩN42ẏ2 (12)
− J43kyAfyA(y7, y3)− J44kyBfyB (y8, y4)

r5 = ẏ5 + τpy5 − κy9 (13)
r6 = ẏ6 + τpy6 − κy10 (14)
r7 = ẏ7 + τpy7 − κy11 (15)
r8 = ẏ8 + τpy8 − κy12 (16)

where the constants Ni,j and Ji,j are the entries of the
matrices N and J.

B. Fault detectability and isolability

In the following analysis the concepts of structural de-
tectability, structural isolability and strong detectability have
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to be understood in the sense of [3, Lemma 5.1, Lemma 5.2,
Deinition 6.2].

Faults in the amplifiers and electromagnets are defined
as parametric changes of the amplification gain and of the
magnetic force gain, that is e.g.

kxA = k0,xA (1−∆kxA) (17)
κ = κ0 (1−∆κ) (18)

where ∆kxA and ∆κ vary between zero (no fault) and
one (complete failure). Then rewriting the faults in additive
form, the fault sensitivity analysis is performed as shown in
Table II, where “S” addresses the strong detectability of the
fault fi in the residual rj .

TABLE II: Fault sensitivity analysis

f1 f2 f3 f4 f5 f6 f7 f8
r1 S S
r2 S S
r3 S S
r4 S S
r5 S
r6 S
r7 S
r8 S

Table II shows that all faults are structurally detectable,
but faults in the electromagnets are not structurally isolable.
However the force contributions in each of the residuals (9)-
(12) have opposite sign due to Ji,jJi,j+1 ≤ 0. This entails
that the fault groups {f1, f2} and {f3, f4} have different
signatures in the residuals {r1, r2} and {r3, r4} when the
direction of change is taken into account.

Therefore a diagnostic system capable of estimating the
direction of change will achieve both detectability and isola-
bility of all faults. The estimation of direction will further
facilitate detection of group wise simultaneous faults for the
two groups {f1, f3} and {f2, f4}.

Due to the challenges in isolating faults occurring in
the electromagnet this scenario is investigated further and
a diagnostic system is designed based on statistical change
detection theory.

IV. DETECTOR DESIGN AND ANALYSIS

Statistical change detection is a consolidated discipline
when the systems to be monitored are linear and the vari-
ations to be tracked are described as Gaussian stochastic
process [1], [2], [11]. The problem complexity considerably
increases when nonlinear systems are object of the moni-
toring and the processes involved are timewise correlated
and/or non-Gaussian. Statistical tests can be derived but
analytical methods may fall short in determining thresholds
that fulfil the desired probability of detection and false
alarms. Examples of condition monitoring systems tailored
for such complex scenarios can be found in [7]–[9], [18].

To design a monitoring system able to detect occurrence of
electromagnet faults, the statistical distribution of the resid-
uals {r1, r2, r3, r4} is first determined in healthy and faulty
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Fig. 5: Probability plot of the residual r1 computed using
simulated data (left) and measured data (right) in healthy
conditions. The residual is clearly Gaussian distributed.

conditions. Once the distributions are known the statistical
test can be designed. The likelihood ratio test is one of the
most applied methods because it maximizes the detection
probability given the desired false alarm probability [11,
Chapter 6].

Since the parameters of the statistical distribution in faulty
conditions depend on the unknown magnitude of the fault
they are themselves a-priori unknown. Hence the GLRT is
employed because it relies on the real time computation of
the maximum likelihood estimate (MLE) of the parameters.

A. Residuals analysis in healthy and faulty conditions

The statistical distributions of the residuals {r1, r2, r3, r4}
in healthy and faulty conditions are now analysed. For the
healthy case simulated and measured data are utilized to
generated the residuals. For the faulty case only simulated
data are available.

Figure 5 shows the probability plot of the residual r1
computed using both simulated data (r1,s - left plot) and
measured data (r1,m - right plot). The residual is clearly
Gaussian distributed. Residuals {r2, r3, r4} share the same
statistical characteristics. This result was not anticipated due
to the presence of the nonlinear magnetic force components
fxA and fxB entering the residual equation (9), which were
expected to distort the Gaussian nature of the noise affecting
the measurements.

In stationary conditions the horizontal {xA, xB} and ver-
tical {yA, yB} displacements of the AMBs range between
±0.5µm giving rise to control current variations of up to
0.2 A around the bias current i0. According to force-current
characteristic shown in Fig. 2 the magnetic force generated
by the electromagnet is clearly linear in this operational
range. Therefore the small variations around the equilibrium
position of the rotor largely attenuate the nonlinear phenom-
ena giving rise to a Gaussian distributed residual.

Simulated data for three different magnitudes of faults in
kxA are used to characterize the distribution of the residuals
{r1, r2, r3, r4} in faulty conditions. Figure 6 shows that the
type of distributions does not change upon occurrence of
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Fig. 6: Probability plot of the residual r1 computed using
simulated data for three different magnitudes of the fault
∆kxa = {5%, 10%, 20%}. The residual is clearly Gaussian
distributed with evident change in mean value.
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Fig. 7: Sampled autocorrelation for residual r1 based on
measured data. The residual is clearly correlated.

faults; however the mean value of the Gaussian distribution
is clearly affected by the fault and it is proportional to its
magnitude. Table III reports the mean value and the variance
of the Gaussian distributions fitted to the residual r1 in
healthy and faulty conditions based on simulated data. It
is concluded that changes in mean value provide a clear
measure of the presence of faults in the electromagnet.

TABLE III: Gaussian distribution parameters

Healthy Faulty

∆kxA = 5% ∆kxA = 10% ∆kxA = 20%

µN 0 -0.41 -0.86 -1.93
σN 0.07 0.07 0.07 0.07

Before proceeding with the design of the statistical test
the autocorrelation of the residuals is investigated, as shown
in Fig. 7. The residual is clearly correlated since the sampled
autocorrelation Rr1,m(τ) lies outside the 95% confidence
interval. This is not surprising as the rotor-bearing system
operates in closed-loop by means of decentralized PID
regulators, which through the control current introduces
correlation in the system outputs.

Based on this analysis the detector must monitor unknown
changes in mean value of a correlated Gaussian distributed
signal. The detector is then based on the generalized like-
lihood ratio test for Gaussian random variables. Since no
information about the correlation structure is available the

design is performed assuming that the residual samples are
independent and identically distributed (IID). However the
assumption of being independent does not hold, therefore the
detection threshold cannot be analytically computed based
on asymptotic analysis of the test statistics [11, Chapter 6].
The threshold is then empirically computed based on the
distribution of the detector output.

Remark 2: Another approach to overcome the correlation
of the residuals is to use a whitening filter, which on the other
hand may change the nature of the original distribution.

B. Generalized Likelihood Ratio Test for Gaussian Dis-
tributed Random Variables

The residual ri(k), i = 1, . . . , 4, is modelled as a Gaussian
random process with mean value µr and standard deviation
σr. The detection problem is to distinguish between the
hypotheses [11, Chapter 6]

H0 : µr = µ0 for ri(k), j −N + 1 ≤ k ≤ N
H1 : µr 6= µ0 for ri(k), j −N + 1 ≤ k ≤ N

A Neyman-Pearson detector decides the hypothesis H1 if the
GLRT exceeds a threshold γ, that is

L(r) =
p(ri; µ̂r,H1)

p(ri;µ0,H0)
> γ (19)

where ri = [ri(j−N+1), ri(j−N+2), . . . , ri(N)]. Under
the hypothesis that ri(k) are IID and considering that the
residual is Gaussian distributed then (19) results in

L(r) =
(2πσ2

r)−N/2 exp
(
−
∑N
k=j−N+1

(r(k)−µ̂r)2
2σ2
r

)
(2πσ2

r)−N/2 exp
(
−
∑N
k=j−N+1

(r(k)−µ0)2

2σ2
r

) (20)

so that the log-likelihood ratio becomes

L(r) =
N

2σ2
r

(µ̂2
r − µ2

0) (21)

where µ̂r is the MLE of µr under the hypothesis H1 [10,
Chapter 7]. Hence the detector decides H1 if

g(k) : µ̂2
r > γ′ (22)

where γ′ = µ2
0 + 2N−1σ2

r ln γ.

C. Threshold selection

The threshold γ is empirically determined by analysing
the statistical distribution of the detector output under the
hypothesis H0.

Figure 8 shows the probability plot of the test statistics
g(k) based on residual r1 in non-faulty condition computed
both with simulated and measured data. The behaviour of
g(k) is well described by the Inverse Gaussian distribution
whose cumulative distribution (CDF) function is

P (g;H0) = Φ

(√
λg
g

(
g

µg
− 1

))

+ e
2λg
µg Φ

(
−

√
λg
g

(
g

µg
+ 1

))
(23)
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Fig. 8: Probability plot of test statistics g(k) under the
hypothesis H0 for simulated and measured data. In both
cases the Inverse Gaussian distribution provides the best fit
of the detector output.

where Φ(·) is the cumulative distribution function of the
Gaussian distribution, µg is the mean and λg is the scale.

Therefore given a desired probability of false alarm PFA
the threshold γ is numerically computed from

PFA =

∫
{g:g>γ}

p(g;H0) dg (24)

or equivalently by

1− PFA = P (γ;H0)⇒ γ = P−1(1− PFA) . (25)

For the given system a month interval between false
alarms is deemed acceptable. With an update rate of the
GLRT of 0.3 ms a probability of false alarm equivalent to
PFA ≈ 10−10 is to be achieved, which results in the threshold
being set to γ = 24.13.

V. DETECTION PERFORMANCE VERIFICATION

The proposed method for diagnosis of faults in the elec-
tromagnets of AMBs is now tested to verify its detection
capabilities. The testing is performed through simulated data
since at the time of verification no faulty data were available.

Faults are injected into the simulation model presented
in Section II and model responses are utilized to feed the
residuals, which in turn are monitored by the Gaussian
GLRT. To match as close as possible the behaviour of the
true system, sampling (Fs = 3.3 kHz) and quantization (16
bit resolution) of the simulated model responses have been
introduced.

Verification of the detection performance through simula-
tion study is deemed to be relevant and reliable since the sta-
tistical characterization of residuals computed on measured
and simulated data performed in Section IV-A resulted in
the same distribution type although with different values of
parameters.

A. Study case analysis

The selected case study is a change in the electromagnetic
constant k that is lowered by an amount ∆k. This decrease
has been simulated for kxA and kxB , thereby simulating
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Fig. 9: Time series of the residuals r1 - r2 when the AMB
A is subject to a fault of magnitude 20% affecting kxA (left
plot) and when the AMB B is subject to a fault of magnitude
20% affecting kxB (right plot).

Fig. 10: Detection of fault f1 with magnitude ∆kxA = 20 %
by monitoring of residual r1 through the Gaussian GLRT
detector.

faults in AMB A and B. Figure 9 depicts the residuals r1
- r2 around the fault injection time t = 10 s for a fault of
magnitude ∆k = 20%.

It is seen that for faults f1 and f2, different signatures can
be observed in the two residuals r1 and r2. This leads to
isolatability of the fault by mean value estimation. This was
also concluded in Section III-B.

The fault detection of three different fault amplitudes
has been investigated, namely a decrease in the magnetic
coefficient of 5 %, 10 % and 20 %. In all three cases the
fault is quickly detected, and through mean value estimation
is also isolated. Figure 10 shows the detection performance
for a decrease in magnetic coefficient kxA by 20 % by
monitoring residual r1. The detection times TD for the three
different fault scenarios are listed in Table IV.

TABLE IV: GLRT detection time

Fault Magnitudes

∆kxA = 5% ∆kxA = 10% ∆kxA = 20%

TD [ms] 2.6 2 1.7

VI. CONCLUSIONS

The paper focused on fault diagnosis of active magnetic
bearings subject to faults in the actuation. Based on a com-
prehensive mathematical model of the different subsystems
an AMB based rotor system consists of, structural analysis
was performed to highlight the general detectability and
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isolability properties of the system when subject to actuator
faults. The analysis pointed out that all faults in the AMBs
are structurally detectable and that full isolability can also be
achieved by including an estimate of the direction of change
in the diagnostic system.

The paper has further analysed the occurrence of faults
in the electromagnets and a statistical characterization of the
relevant residuals was performed based both on simulated
and measured data from a full scale test-rig. Residuals
were Gaussian distributed both in healthy and faulty cases;
further occurrence of faults resulted in changes of the mean
value of the distribution. Based on this analysis a Gaussian
GLRT detector for changes in mean was utilized to diagnose
the presence of faults in the electromagnets. Due to the
correlated nature of the residuals, thresholds for detection
were empirically computed based on the analysis of the
GLRT output in non-faulty conditions.

The detection scheme performance was evaluated through
simulated case studies by injecting faults of different magni-
tudes. The numerical analysis showed that fast and accurate
detection of faults in the AMB’s electromagnets can be
achieved.

APPENDIX

A. Similarity Transformations
The actuators forces are expressed in terms of the vector

qAMB = [xA, xB , yA, yB ]T with xA and xB denoting the x
coordinate of bearing A and B, respectively.

The coordinate transformation from q to qAMB is

Tb
r ,


1 0 a 0
1 0 b 0
0 1 0 a
0 1 0 b

 (26)

and is derived based on trigonometric and first order approx-
imations of sin and cos functions, with a and b being the
longitudinal distances from the rotor centre to the bearings.
Thus the relationship between the coordinates referencing the
shaft geometrical centre and the actuators is q = Tr

bqAMB.
The measured rotor position by the displacement sensors

is yDS = qDS +η, where qDS = [xA,sxB,syA,syB,s]
T is the

vector of rotor displacements in the radial plane at the sensor
location and η is white Gaussian noise.

The coordinate transformation from qDS to qAMB is given
by the combination of two similarity transformations. The
output vector qDS can be expressed in terms of the general-
ized coordinates q, that is qDS = Ts

rq where Ts
r is given by

Ts
r ,


1 0 c 0
1 0 d 0
0 1 0 c
0 1 0 d

 (27)

whit c and d being the longitudinal distances of the sensors
from the rotor centre. Then the rotor position in the actuation
frame is given by

yAMB = qAMB = Tb
rq = Tb

rT
r
sqDS

= Tb
rT

r
s(yDS − η) (28)
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