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Abstract 
Environmental monitoring indicates that progress towards the goal of environmental sustainability in many 

cases is slow, non-existing or negative. Indicators that use environmental carrying capacity references to 

evaluate whether anthropogenic systems are, or will potentially be, environmentally sustainable are 

therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as 

incomplete coverage of environmental interferences, varying data quality and varying or insufficient spatial 

resolution. The purpose of this article is to demonstrate that Life Cycle Assessment (LCA) can potentially 

reduce or eliminate these shortcomings.  

We developed a generic mathematical framework for the use of carrying capacity as environmental 

sustainability reference in spatially resolved life cycle impact assessment models and applied this 

framework to the LCA impact category terrestrial acidification. In this application carrying capacity was 

expressed as acid deposition (eq. mol H+·ha-1·year-1) and derived from two complementary pH related 

thresholds. A geochemical steady-state model was used to calculate a carrying capacity corresponding to 

these thresholds for 99,515 spatial units worldwide. Carrying capacities were coupled with deposition 

factors from a global deposition model to calculate characterisation factors (CF), which expresses space 

integrated occupation of carrying capacity (ha∙year) per kg emission. Principles for calculating the 

entitlement to carrying capacity of anthropogenic systems were then outlined, and the logic of considering 

a studied system environmentally sustainable if its indicator score (carrying capacity occupation) does not 

exceed its carrying capacity entitlement was demonstrated. The developed CFs and entitlement calculation 

principles were applied to a case study evaluating emission scenarios for personal residential electricity 

consumption supplied by production from 45 US coal fired electricity plant. 

Median values of derived CFs are 0.16-0.19 ha·year·kg-1 for common acidifying compounds. CFs are 

generally highest in Northern Europe, Canada and Alaska due to the low carrying capacity of soils in these 

regions. Differences in indicator scores of the case study emission scenarios are to a larger extent driven by 

variations in pollution intensities of electricity plants than by spatial variations in CFs. None of the 45 

emission scenarios could be considered environmentally sustainable when using the relative contribution 

to GDP or the grandfathering (proportionality to past emissions) valuation principles to calculating carrying 

capacity entitlements. It is argued that CFs containing carrying capacity references are complementary to 

existing CFs in supporting decisions aimed at simultaneously reducing environmental interferences 

efficiently and maintaining or achieving environmental sustainability. 
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We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators 

of environmental sustainability. Further research should focus on quantifying uncertainties related to 

choices in indicator design and on reducing uncertainties effectively. 

Keywords:  

LCA; Terrestrial acidification; Carrying capacity; characterisation factors; entitlement 

1 Introduction 
During the last decades the number of sustainability indicators and their use in decision-making has greatly 

increased (Hak et al., 2012; Singh et al., 2012). Many such indicators rank the sustainability of 

anthropogenic systems. For instance Switzerland ranked highest and Somalia lowest in the 2014 

Environmental Performance Index of countries (Hsu et al., 2014). Another example is Greenpeace’s Guide 

to Greener Electronics (2012b;2012a), which ranks 16 large electronics companies. Here we term indicators 

used for ranking relative environmental sustainability indicators (RESI) because indicator scores of studied 

anthropogenic systems are relative because they are evaluated by comparison to indicator scores of one or 

more reference systems, chosen specifically to match the nature or function of the studied system. While 

RESI can reveal how the sustainability performance of system X compare to that of a chosen reference 

system, it cannot evaluate whether system X can be considered sustainable on an absolute scale (Moldan 

et al., 2012). This limitation is very problematic considering that the state of the environment is declining by 

and large (Steffen et al., 2015; WRI, 2005). Therefore the global economy and its subsystems are in fact 

drifting further away from the goal of environmental sustainability, originally defined as “seek[ing] to 

improve human welfare by protecting the sources of raw materials used for human needs and ensuring 

that the sinks for human wastes are not exceeded, in order to prevent harm to humans” (Goodland 1995). 

This shortcoming of RESI may be addressed by supplementing RESI by indicators containing reference 

values of environmental sustainability (Moldan et al., 2012). We term such indicators absolute 

environmental sustainability indicators (AESI) because the environmental sustainability references are 

absolute, since they are based on characteristics of natural systems independent of the study. While 

ranking of products or systems is also possible in AESI, the environmental sustainability of a system can 

additionally be evaluated on an absolute scale, i.e. answering the question “is system X environmentally 

sustainable or not?” Figure 1 illustrates the difference and complementarity between RESI and AESI.  
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Figure 1: The concepts of relative (a) and absolute (b) environmental sustainability indicators. The ranking of the 

hypothetical system X depends on the chosen reference(s) (a). System X is environmentally unsustainable because 

its environmental interference is higher than the sustainability reference (b).  

The concept of carrying capacity (Sayre, 2008) can be applied in AESI to operationalize and quantify 

references for environmental sustainability as defined by Goodland (1995). Following Bjørn and Hauschild 

(2015) we define carrying capacity as “the maximum sustained environmental interference a natural 

system can withstand without experiencing negative changes in structure or functioning that are difficult or 

impossible to revert.” Here we use “environmental interference” as a generic term for anthropogenic 

changes to any point in an impact pathway (from emission or resource use to ultimate damage). It follows 

that total environmental interferences on natural systems, whether caused by resource uses or emissions, 

can be considered environmentally sustainable if their level is below the affected eco-system’s carrying 

capacity.  

“Footprinting” indicators, that use carrying capacity as sustainability reference value, can be characterized 

as AESI. The popular ecological footprint indicator expresses demands on nature in units of “global 

hectares” and compares this to land availability (termed “biocapacity”) to facilitate an evaluation of 

whether demands are environmentally sustainable (Borucke et al., 2013). This has inspired other footprint 

indicators such as the well-established water footprint (Hoekstra and Mekonnen, 2012) and first generation 

chemical footprints (Bjørn et al., 2014; Zijp et al., 2014). Existing footprinting indicators, however, have 

weaknesses such as: 1) the incomplete coverage of all environmental interferences that are threatening 

environmental sustainability, 2) the varying data sources which are generally crude for assessments at the 

product scale (Huijbregts et al., 2008; Kitzes et al., 2009), 3) the variations in spatial resolution amongst 

footprints1, which can be a source of bias due to the potentially high spatial variability of carrying capacity 

(Bjørn and Hauschild, 2015), and 4) the inconvenience for users that each indicator is made available by 

means of a unique software tool. We believe that the life cycle assessment (LCA) method has the potential 

to overcome these weaknesses of current AESI. 

                                                           
1
 The ecological footprint normalises land demands in the unit “global hectares”, which means that indicator results 

are unaffected by spatial differences in yield, while water- and chemical footprints are spatially resolved to varying 
extents.  

a) 

b) 
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LCA aims to cover all relevant environmental interferences over the life cycle (from raw materials to waste 

management) of a product (or other anthropogenic systems). LCA requires a life cycle inventory (LCI), 

which compiles the physical inputs and outputs (resource uses and emissions) of a product during its life 

cycle, and is commonly based on product system specific data supplemented by a common life cycle 

inventory database of unit processes (e.g. the average electricity generation of a country). LCA uses 

characterisation factors (CFs), which express the relationship between the resource uses or emissions of a 

LCI and measures of resulting environmental interference. CFs are obtained from mathematical 

representations of cause effect-chains that can be spatially resolved and allow the conversion of a LCI into 

indicator scores for a number of mutually exclusive and collectively exhaustive “impact categories” such as 

climate change, eutrophication and eco-toxicity.  

The characteristics of LCA make it potentially suitable for reducing or eliminating the listed weaknesses of 

current AESI. However LCA indicators can be characterized as RESI: Indicator scores are typically used to 

rank the environmental performance of functionally comparable product systems or scenarios, based on 

their potential to, via their emissions or resource uses, create a small change in the level of environmental 

interferences. This small change is either calculated as a marginal change in the known existing level of 

environmental interference or as an approximated linear change in interference within the zone between 0 

and a chosen level of interference (see S1 for a conceptual figure of the two approaches) (Hauschild and 

Huijbregts, 2015). LCA indicators therefore generally do not include carrying capacity as sustainability 

reference values (Castellani and Sala, 2012). To harness the potentials of LCA in AESI, LCA indicators need to 

be modified to quantifying occupations of carrying capacity instead of quantifying small changes in levels of 

environmental interferences. The overall purpose of this article is to provide an initial contribution to this 

development.  

This article aims to 1) develop a generic mathematical expression for calculating spatially resolved 

occupation of carrying capacity for any emissions based LCA impact category, 2) use this method tentatively 

on the terrestrial acidification LCA impact category, 3) demonstrate the applicability of the method in a 

case study, , 4) compare the relevance and complementarity of AESI and RESI in decision support.   

2 Methods 

2.1 Definitions and interpretations 
To support the operationalization of carrying capacity (defined as “the maximum sustained environmental 

interference a natural system can withstand without experiencing negative changes in structure or 

functioning that are difficult or impossible to revert”) we introduce two definitions: 1) control variable: “a 

numerical indicator of the structure and/or functioning of a natural system.”; 2) Threshold: “the maximum 

value of a control variable a natural system can withstand without experiencing negative changes in 

structure and/or functioning that are difficult or impossible to revert.” The carrying capacity is generally 

closer to the cause in an impact pathway than the threshold from which it is derived. Carrying capacity is 

static because it is calculated from a situation where a control variable value equals a threshold value at 

steady state  (Bjørn and Hauschild, 2015). Note that the definitions of threshold and carrying capacity leave 

room for interpretation (what are negative changes and at what point do these become difficult to revert?). 

This interpretative flexibility is intentional as it reflects the ambiguity in the definition of environmental 
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sustainability of Goodland (1995) with respect to preventing “harm to humans”: Humans may be physically 

harmed by a reduction of material eco-system services (e.g. access to clean water) caused by severe 

environmental degradation. According to some, humans may also be harmed culturally and spiritually by 

effects on or disappearance of a single vulnerable species caused by just minor environmental degradation. 

Environmental sustainability can thus be interpreted anthropocentrically or eco-centrically (or somewhere 

in between), which can greatly influence the choice of threshold and resulting quantification of carrying 

capacity. The sensitivity of AESI scores to this interpretation of environmental sustainability and other 

choices is analysed in Bjørn et al. (2015). 

2.2 Characterisation framework 
In LCA characterisation factors (CF) are multiplied with each inventoried emission or resource use (Q) of 

pollutants or resource (x) that contribute to a given impact category and the products are summed to 

calculate the indicator score (IS) for that impact category:  

               (1) 

By integrating carrying capacity as sustainable reference value in CFs, indicator scores can be expressed as 

occupation of carrying capacity. We propose this integration by dividing spatially resolved conventional CF 

constituents by carrying capacity (CC) for any emissions based indicator (aim 1): 

         
                     

    
     (2) 

Here CF (ha*year*kgemitted
-1) is the characterisation factor for substance x emitted within spatial unit i into 

environmental compartment k (air, soil or water). FF is a fate factor linking an emission of pollutant x within 

i into k to its fate typically expressed as a change in concentration or mass in the receiving spatial unit j. XF 

is an exposure factor which accounts for the fraction of pollutant x that species of concern in j are exposed 

to. EF is an effect factor, which calculates the effect increase on these species in j from an increased 

exposure of x. CC is the carrying capacity in j. The metric of CC depends on the metrics of FF, XF and EF and 

differs from one impact category to another. Note that equation 2 applies to indicators of effects on 

species. If indicator scores are expressed closer to the cause of these effects the denominator should only 

contain FF or FF∙XF. When following equation 1 by multiplying CFs with emissions (kg) the indicator score is 

expressing the carrying capacity occupation in a unit of ha∙year, which indicates an area in which carrying 

capacity for a given impact category is occupied for a time. If the time frame during which pollutants are 

emitted is known, the indicator score can be expressed in a unit of ha, which resembles that of the 

ecological footprint method (Borucke et al., 2013).  

Note that our proposed framework is only compatible with indicators for which FF, XF or EF are of a linear 

nature, i.e. that calculate the approximated linear environmental change from an emission within the zone 

between 0 and a chosen level of interference (see S1). Our proposed framework is not compatible with 

marginal CF components because these are derivatives of estimated existing levels of environmental 

interference, while carrying capacity should be independent of existing levels of environmental 

interference (Bjørn and Hauschild, 2015).   
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2.3 Application to terrestrial acidification 
We demonstrate the calculation of proposed characterisation factors for the LCA impact category 

terrestrial acidification, for which no AESI currently exists (aim 2). The spatial derivation was based on the 

only existing global deposition model of Roy et al. (2012) having a 2.0°x2.5° resolution (i.e. composed of 

13,104 grid cells).  

2.3.1 Choice of control variable and threshold 

As a basis for carrying capacity two complementary thresholds of the control variable “soil solution pH” 

were chosen. The first threshold was based on a deviation of natural pH corresponding to the point where 

the numerical decrease in pH starts increasing for every additional quantity of deposition. At this point the 

functioning of the soil ecosystem starts changing as the carbonate buffering system is weakening and 

additional depositions will bring the system close to its chemical pH threshold.2 Based on a screening of pH 

curves modelled with the geochemical steady-state model PROFILE (Warfvinge and Sverdrup, 1992) we 

found that a pH decrease of 0.25, compared to natural pH, generally corresponded well with this point 

where pH starts responding non-linearly to additional depositions (see S2). The second threshold was 

required to take into account naturally acidic soils for which the critical factor threatening ecosystem 

structure is not pH decrease, but rather the mobilisation of toxic aluminium (III) from the buffering of acid 

depositions through reaction with aluminium oxides and hydroxides from clay particles (Sparks, 2002). This 

buffering process occurs in the pH interval 2.8-4.2 and we therefore chose pH 4.2, below which aluminium 

(III) starts to mobilize, as the second threshold.3  In other words, we interpreted environmental 

sustainability, with regards to the interference of acidifying compounds with natural soils, to correspond to 

a situation where natural buffer systems are not weakened and aluminium (III) is not mobilized.  

2.3.2 Calculation of carrying capacity 

The carrying capacity was, inspired by the critical loads concept (Spranger et al., 2004), expressed as a 

critical deposition of acidifying compounds (eq.·ha-1·year-1, where  1 eq refers to 1 mol H+-eq.). The carrying 

capacity was derived for 99,515 spatial units, covering the global terrestrial area (Roy et al., 2012a), by 

running PROFILE in 9 steps gradually increasing depositions of SOX above natural levels for each spatial unit 

until a change of 0.25 pH units or an absolute pH value below 4.2 was reached. Natural depositions were 

modelled based on Tegen and Fung (1994) and Bey et al. (2001) as described in Roy et al. (2012b). The 

design of the 9 steps is explained in S2. We found that 10% of spatial units were for at least one deposition 

step affected by a non-convergence error in PROFILE. For these cells the carrying capacity was 

approximated by neighbouring cells using a kriging function, see S4. Area-weighted averages of the carrying 

capacities of the 99,515 spatial units of PROFILE were used to estimate the carrying capacities of the 13,104 

grid cells of the deposition model of Roy et al. (2012). CFs were then calculated according to equation 2 

                                                           
2
 We did not choose the steepest point of the chemical pH threshold as basis for carrying capacity because this point is 

often 2 pH units or more below natural pH, which represents a pH decrease that few species can tolerate (Azevedo et 
al., 2013) and can therefore not be considered as reference for environmental sustainability.  
3 Our choice of an absolute threshold of 4.2 pH units is in good agreement with a proposal within the critical loads 

framework that a pH of 4 could be used to calculate critical loads for forest soils (Spranger et al., 2004).  
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using atmospheric fate factors (FF, keqdeposited*kgemitted
-1) of Roy et al. (2012)4 and excluding XF and EF in the 

denominator because CC is expressed as a critical deposition: 

       
       

    
    (3) 

2.4 Carrying capacity entitlement  
Our CFs can in principle be used to evaluate whether a society as a whole is environmentally sustainable 

because the indicator score, expressing the area equivalent of fully occupied carrying capacity, from all 

activities of the society can be compared to the actual area of the relevant ecosystem. An individual system 

embedded in society, such as a product, a person or company, can in turn be considered environmentally 

sustainable if it does not occupy more of the total carrying capacity than it can be considered entitled to. 

Carrying capacity entitlement is a normative concept because it depends on the perceived value of a 

studied system relative to those of “competing systems” that rely on occupying carrying capacity in the 

same area where the studied system occupies carrying capacity. Therefore environmental sustainability 

references for individual anthropogenic systems embedded in society are inherently normative. Below we 

outline three steps in deriving and applying these  environmental sustainability references 

2.4.1 Identify competing systems 

Ideally competing systems would be identified by combining a source-receptor fate model with a spatially 

differentiated emission inventory covering all anthropogenic systems of society in a chosen reference year: 

The fate model would first identify the spatial units affected by emissions of the studied system. The fate 

model would then identify all the systems of the societal total emission inventory whose emissions affect 

the spatial units previously identified. These systems would be labeled competing systems because they 

rely on occupying parts of the same carrying capacity as the studied system for their functioning. Note that 

the group of competing systems is potentially unique for each affected spatial unit (of which there may be 

thousands). This is impractical to operate with and therefore three simplifications are introduced: 1) a cut-

off criterion is established whereby only spatial units receiving above a specified share of emissions from 

the studied system (e.g. 0.1%) are considered (the territory of these spatial units are termed Taffected and its 

area is termed Aaffected), 2) all emissions that occur within Taffected are, in this part of the AESI, assumed to 

occur in the spatial unit where the emission from the studied system occurs and thus assumed to have the 

same fate, 3) it is assumed that no emissions within Taffected leave Taffected and that no emissions from outside 

enters. These three simplifications are visually presented in Figure 2. 

 

                                                           
4
 The fate factors of Roy et al. (2012) were expressed in kgdeposited*kgemitted

-1
. For this study kgdeposited was converted to 

keqdeposited by division by the molecular weight of the emissions and multiplication by the electrical charges of their 
corresponding ions, following Posch et al. (2008).   
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SS, X1, 
X2, X3

X3X2

X1

Simplification 1: 
Reduced geographical 
boundary

Simplification 2: 
Same fate

Simplification 3: 
Closed system

 
Figure 2: Illustration of three simplifications for identifying competing systems (X1-X3) of a studied system (SS) 

located in the middle grid cell and affecting 13 grid cells above an arbitrary emission distribution threshold. These 

13 grid cells make up Taffected and have the area Aaffected. The dotted arrows indicate a change in location of X1-X3.   

 

The consequence of the simplifications is that only one carrying capacity entitlement needs to be calculated 

for each emission location of a studied system and that the group of competing systems is the same for all 

anthropogenic systems within Taffected. The simplifications can be defended in situations where potential 

competing systems are rather homogenously distributed in space and have emissions of similar magnitude. 

When this is not the case it may be more appropriate to follow the ideal approach outlined above to 

identifying competing systems. 

2.4.2 Quantify relative value of studied system 

The perceived value of a studied system relative to identified systems competing for carrying capacity in 

the same territory may be quantified using different valuation principles, such as  1) relative contribution to 

GDP,  or 2) “grandfathering” where the relative value of a system is considered proportional to its relative 

indicator score in a chosen past reference year (i.e. if total carrying capacity was exceeded in the reference 

year, the indicator scores of all systems in that reference year should be reduced by the percentage that is 

needed to reduce the total indicator score below the total carrying capacity. The perceived relative value of 

a studied system may be expressed as a value factor (VF) between 0 and 1 of the total value (i.e. the sum of 

the perceived value of the studied system and those of competing systems).  

2.4.3 Calculate carrying capacity entitlement and compare to AESI score    

The time-integrated area in which carrying capacity can be entitled to a studied system (Aentitled, in ha∙year) 

can be calculated by multiplying Aaffected for the studied system by the duration of the emissions (t) and the 

value factor (VF) for each emissions location (i): 

                                  (4) 

If Aentitled exceeds the AESI score of a studied system for one or more emission locations (i) the studied 

system cannot be considered environmentally sustainable.   
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2.5 Case study 
We applied the derived CFs to emissions caused by the electricity production from one randomly selected 

coal fired electricity plant in each of 45 states of contiguous United States5 in 2010. For each of the 

electricity plants we calculated an emission inventory corresponding to the residential electricity 

consumption of an average inhabitant in the concerned state in the year 2010. The case study provided a 

vehicle for demonstrating the use of the proposed indicator for terrestrial acidification on 45 scenarios of 

realistic residential electricity consumption in a hypothetical situation where this is entirely fuelled by coal 

(aim 3).6 We use the term “scenario” to stress that we are not attempting to model the actual situation. 

The case study also allows for discussing the relevance of LCA-supported AESI compared to using LCA to 

rank environmental performance (aim 4).  

State specific per capita annual residential electricity consumption was obtained from the US Department 

of Energy (DoE, 2015) and used to define the quantities of electricity produced (P) by each of 45 power 

plants (i) to meet the demand by an average inhabitant. Power plant specific emissions intensities (EI) 

expressing emissions of SOX and NOX (x) per kWh of generated electricity were obtained from the eGRID 

database of the US EPA (2014), which contains data on a total of 541 US coal fired electricity plants in 45 

states.7 EI was multiplied by P to obtain the emissions (Q) of SOX and NOX per power plant (i). Indicator 

scores (IS) for each power plant were hence, following equation 1, calculated as: 

                                              (5) 

Here CFi,k is the characterisation factor derived for pollutant x (SOX or NOX) for the grid cell in which power 

plant i is located.  

Indicator scores were evaluated by comparing them to carrying capacity entitlements calculated following 

the simplified approach outlined above: We used the fate model of Roy et al. (2012) to identify spatial units 

receiving depositions caused by emissions of the different power plants. This global model predicts that all 

its 13,104 grid cells receives a share of an emission from any of the power plants (Roy et al., 2012b). 

However, most grid cells receive a very small share. For identifying competing systems we therefore used a 

cut-off value of 0.1% deposition of an emission. This resulted in an affected territory (Taffected) for each i in 

which around 70% of an emission deposits (depending on the pollutant and i).8 Aaffected (the area of Taffected) 

for all i and both pollutant were found to be approximately equivalent to the area of the entire contiguous 

United States. Since all power plants are located in contiguous United States there is a great geographical 

overlap between Taffected of the 45 emission scenario locations. This overlap justified the additional 

simplification of assigning the terrestrial contiguous United States a common Taffected and its area, 

765,300,400ha (USCB, 2012), a common Aaffected for all i. Competing systems for all i are consequently all 

systems that emit acidifying compounds to air within the contiguous United States.  

                                                           
5
 The contiguous United States consists of the 48 adjoining U.S. states plus Washington, D.C. (federal district). 

6
 In reality residential electricity use is supplied by various energy technologies that, due to an integrated federal grid, 

may be located far away (i.e. in another state) than the location of consumption.  
7
 The states of Maine, Rhode Island and Vermont were not covered by the eGRID database of coal fired electricity 

plants, presumably because they have none.   
8
 The remaining share of an emission, on average 30%, deposits on grid cells receiving less than 0.1% of the emission 

and accumulates in high altitude, near the stratosphere.   
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In quantifying the value factors (VF) of the 45 studied emissions scenarios two alternative valuations were 

applied to explore the sensitivity of case study outcomes to this form of value judgment. The first valuation 

was based on the relative contribution to GDP, estimated by dividing personal or household expenditure on 

a studied product or service by pre-tax income. In 2009 (no data for 2010) an average US household spent 

2.0% of its pre-tax income on residential electricity (ACCCE, 2014). The relative contribution to GDP 

valuation principle thus grants residential electricity consumption a value of 0.02 relative to all 

anthropogenic systems within Taffected. The alternative valuation was based on the grandfathering principle, 

according to which US residential electricity consumption is entitled to maintain its past share of total 

environmental interferences. In 2010 38% of US total electricity consumption was consumed by the 

residential sector (IEA, 2012), meaning that 38% of environmental interferences from total electricity 

consumption could be attributed to the residential sector. We could not obtain the share of environmental 

interference taken up by total electricity consumption of the total US environmental interference with 

respect to terrestrial acidification. We therefore approximated this share by the corresponding share in 

EU27, where in 2010 23% of total environmental interferences was presumably taken up by electricity 

production.9 Our use of the grandfathering valuation principle thus grants residential electricity 

consumption in the US a tentative value of 9% (38% of 23%) relative to all anthropogenic systems within 

Taffected.  

Since both valuation principles were applied to average residential electricity consumption in the US, the 

value factors for the 45 scenarios are the same (i.e. not calculated specifically for each emissions scenario, 

although this is in theory possible) and can be calculated by dividing the nationwide relative values with the 

population of contiguous United States (306,675,006 in 2010 (USCB, 2015)). Aentitled was subsequently 

calculated for the alternative valuation principles following equation 4: 

Relative contribution to GDP: 

                                               
    

           
               (6) 

Grandfathering: 

                                               
    

           
              (7) 

The two alternative Aentitlted were compared to the indicator scores of the 45 scenarios to evaluate which of 

them could be considered environmentally sustainable. We then compared the spatial variation in each of 

the components of equation 5, including the CF components of equation 3, to analyse the sensitivity of 

indicator scores of the 45 scenarios to each of these components. As a basis for discussing the relevance of 

AESI compared to RESI we furthermore compared the CFs of the 45 power plant locations with 

corresponding CFs of Roy et al. (2014). 

                                                           
9
 Environmental interferences were calculated using the tentative CFs for terrestrial acidification developed in this 

study (average of the 45 emission locations) on the emission inventory for EU27 of EMEP (2015). The sector 
“Combustion in energy and transformation industries (stationary sources)” of the EMEP inventory was assumed to 
cover electricity production only.  
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3 Results  

3.1 Carrying capacities and characterisation factors 

Estimated carrying capacities (CC) ranged from less than 100 eq.·ha-1·year-1 to more than 4000 eq.·ha-1·year-

1 with a median value around 500 eq.·ha-1·year-1. The global distribution is shown in S5. Numerical CFs for 

all 13,104 grid cells for NOX, SOX and NHX are available in a spreadsheet in S6, from which they may be 

exported to LCA software such as GaBi (Thinkstep, 2015) or Simapro (PRé, 2015) and thereby linked to LCI 

databases such as EcoInvent (2015). CFs for SOX ranged from less than 0.0054 ha·year·kg-1 (10th percentile) 

to more than 0.41 ha·year·kg-1 (90th percentile) with a median value of 0.16 ha·year·kg-1  (when excluding 

CFs for locations in the open sea, which are generally close to 0). In absolute terms the median CF for SOX 

can be interpreted as 1 kg SOX emitted occupying the carrying capacity of 0.048 hectares (corresponding to 

a square with 22m sides) for 1 year. Figure 3 shows the distribution of CFs for all global locations of NOX, 

SOX and NHX. 
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Figure 3: Global distribution of CFs for NOX (a), SOX (b) and NHX (c) 

 

It can be seen that CFs are generally highest in Northern Europe, Canada and Alaska, which is caused by the 

relatively low carrying capacity of soils in these regions (see S5). The highest CFs for NOX, SOX and NHX 

corresponds to emission locations in Canada (latitude 55°; longitude -112.5°), Denmark/Sweden (latitude 

55°, longitude 12.5°) and Alaska (latitude 65°, longitude -157.5°) respectively. It can also be seen that local 

differences in CFs (e.g. between neighbouring cells) are lowest for NOX, higher for SOX and highest for NHX. 

This is because the share of an emission that deposits in or close to the emission cell is largest for NHX, 

b) SOx 

c) NHx 
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smaller for SOX and smallest for NOX.10 In other words, local differences in carrying capacity have a much 

larger influence on CFs for NHX than for NOX. This observation was also made by Huijbregts et al. (2000) for 

the spatial pattern of European CFs based on the critical loads concept (Spranger et al., 2004).  

3.2 Case study 

Table 1 shows the input parameters for equation 5 and indicator scores for the 45 emission scenarios.  

Table 1: Input parameters for equation 5, indicator scores and comparison to two carrying capacity entitlements for 

45 scenarios in the reference year 2010.  
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Alabama Barry 7425 1 0.50 37 1.11 26 0.23 38 0.24 37 2.81 29 

Arkansas White Bluff 6584 8 1.31 18 2.36 22 0.24 36 0.24 34 5.85 19 

Arizona Coronado 5060 23 1.83 16 1.70 24 0.16 44 0.17 44 2.92 28 

California Stockton Cogen 2337 45 0.14 45 0.68 35 0.13 45 0.12 45 0.23 45 

Colorado Rawhide 3587 37 0.73 30 0.35 39 0.31 25 0.36 6 1.28 39 

Connecticut Bridgeport Station 3655 36 0.70 31 0.94 30 0.38 8 0.34 10 2.16 32 

Delaware 
NRG Energy Center 
Dover 5295 20 2.32 9 5.24 9 0.35 13 0.31 19 12.87 10 

Florida Big Bend 6489 11 0.48 38 0.96 29 0.34 17 0.44 3 3.85 25 

Georgia Bowen 6338 12 0.28 41 0.30 40 0.33 22 0.32 16 1.20 40 

Iowa 
Walter Scott Jr 
Energy Center 4572 29 0.59 34 1.09 27 0.31 26 0.27 26 2.29 31 

Idaho 
Amalgamated Sugar 
LLC Nampa 5180 21 3.53 4 11.60 4 0.28 30 0.27 28 21.26 5 

Illinois 
John Deere 
Harvester Works 3783 35 3.80 3 20.56 2 0.33 19 0.28 24 26.89 2 

Indiana 
Sagamore Plant 
Cogeneration 5402 19 2.58 6 11.00 5 0.30 27 0.25 31 18.87 7 

Kansas 
Tecumseh Energy 
Center 5014 24 1.34 17 3.17 16 0.27 32 0.24 36 5.64 20 

Kentucky Ghent 6703 7 0.57 35 0.82 31 0.30 28 0.27 27 2.64 30 

Louisiana Dolet Hills 7190 2 0.91 27 4.10 10 0.20 40 0.21 39 7.56 15 

Massachusetts Salem Harbor 3266 42 0.87 29 4.01 11 0.33 21 0.29 23 4.68 23 

Maryland 
Morgantown 
Generating Plant 5002 25 0.24 42 0.67 36 0.33 18 0.31 18 1.43 37 

Michigan Belle River 3511 38 0.99 25 2.74 18 0.40 5 0.34 9 4.72 22 

                                                           
10

 The deposition patterns vary between emissions cells due to meteorological variations. Yet, a strong tendency of 
deposition shares close to the emission of NHX being largest, of SOX being smaller, and of NOX being smallest was 
observed in deposition model of P.-O. Roy et al. (2012). E.g. for an emissions cell in Minnesota 35% of a NHX emission 
deposits within the emission cell and 42% within the emission cell and the four neighboring cells, while the 
corresponding numbers for SOX are 20% and 26% and for NOX are 8% and 15% respectively (see also Figure 3). 
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Minnesota Virginia 4231 33 1.85 14 1.34 25 0.54 1 0.55 1 7.36 16 

Missouri 
Southwest Power 
Station 6222 14 0.70 32 2.61 21 0.26 33 0.25 30 5.16 21 

Mississippi Henderson 6793 5 5.81 2 6.43 8 0.24 36 0.24 34 20.11 6 

Montana Lewis & Clark 4591 28 2.16 10 2.71 20 0.39 7 0.32 17 8.08 12 

North Carolina Mayo 6502 10 0.35 39 1.00 28 0.37 12 0.35 8 3.09 26 

North Dakota Antelope Valley 6518 9 1.86 13 2.12 23 0.41 4 0.34 11 9.67 11 

Nebraska Platte 5523 17 1.93 12 3.81 13 0.26 34 0.24 33 7.93 14 

New 
Hampshire Schiller 3408 40 1.18 24 3.88 12 0.47 2 0.46 2 8.03 13 

New Jersey 
Chambers 
Cogeneration LP 3444 39 0.55 36 0.82 32 0.35 13 0.31 19 1.53 36 

New Mexico Four Corners 3270 41 2.53 7 0.72 34 0.19 42 0.19 42 2.05 33 

Nevada TS Power Plant 4295 32 0.20 43 0.19 45 0.20 39 0.20 41 0.33 44 

New York AES Greenidge LLC 2627 44 0.93 26 0.75 33 0.40 6 0.36 5 1.70 35 

Ohio Muskingum River 4522 30 1.21 22 13.36 3 0.37 9 0.33 12 22.91 4 

Oklahoma Hugo 6300 13 0.89 28 2.82 17 0.19 41 0.20 40 4.67 24 

Oregon Boardman 4909 26 1.97 11 3.44 15 0.29 29 0.26 29 7.13 17 

Pennsylvania 
G F Weaton Power 
Station 4345 31 1.29 19 2.73 19 0.37 9 0.33 12 5.97 18 

South Carolina 
US DOE Savannah 
River Site (D Area) 7085 4 12.90 1 36.24 1 0.35 15 0.35 7 120.97 1 

South Dakota Big Stone 5672 16 3.46 5 3.52 14 0.42 3 0.37 4 15.66 8 

Tennessee Bull Run 7109 3 0.29 40 0.21 43 0.32 23 0.31 21 1.11 41 

Texas Oak Grove 5431 18 0.62 33 0.56 37 0.17 43 0.18 43 1.10 42 

Utah Huntington 3183 43 1.23 21 0.46 38 0.24 35 0.24 32 1.31 38 

Virginia 
Altavista Power 
Station 6038 15 1.27 20 0.19 44 0.35 16 0.33 15 3.04 27 

Washington 
Transalta Centralia 
Generation 5178 22 1.20 23 0.27 41 0.27 31 0.23 38 1.99 34 

Wisconsin Nelson Dewey 3918 34 2.35 8 10.25 6 0.33 19 0.28 24 14.47 9 

West Virginia Kammer 6711 6 1.85 15 8.55 7 0.37 9 0.33 12 23.48 3 

Wyoming Wygen III 4835 27 0.20 44 0.26 42 0.32 24 0.29 22 0.67 43 

3.2.1 Absolute interpretation of results 

Indicator scores varied 2 orders of magnitude from a minimum of 0.23 ha∙year to a maximum of 121 

ha∙year for a power plant located in California and South Carolina respectively. This means that the 

equivalent production of annual residential electricity use in 2010 occupies carrying capacities of between 

0.23 ha and 121 ha of land for 1 year depending on the scenario. These areas are abstract because they 

cannot be empirically observed as special pieces of land somehow dedicated to absorbing acidifying 

emissions. Instead results should be interpreted as space integrated carrying capacity occupation, which is 

driven by carrying capacities in grid cells on which large shares of emissions deposit. Note that indicator 

results hold no information on the extent to which an emission occupy the carrying capacity of the 

individual grid cells that are affected by its depositions.11 Table 1 shows that none of the 45 scenarios could 

be considered environmentally sustainable when using any of the two valuation principles because these 

require indicator scores to be below 0.050 ha∙year (relative contribution to GDP principle) or 0.22 ha∙year 

                                                           
11

 In a hypothetical example where carrying capacities of 4 grid cells of 1ha are each occupied by 10%, 20%, 80% and 
130% from depositions of an emission, the aggregated result would be 2.4ha (0.1*1 ha+0.2*1 ha+0.80*1 ha+1.3*1 
ha). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

15 
 

(grandfathering principle). The scenario in California would, however, only require a slight reduction in 

indicator score (0.01 ha∙year) to be considered environmentally sustainable from the application of the 

grandfathering perspective. Note that some of the scenarios may be considered environmentally 

sustainable by the use of other valuation principles than the two used in this study. If, for example, value 

factors had instead been derived from relative contribution to meeting human needs, a relatively high 

carrying capacity would perhaps be entitled to residential electricity, since it enables people to meet 

essential needs, such as heating and cooking (although residential electricity certainly can be used for 

meeting less essential needs too). 

3.2.2 Spatial variations 

Since the indicator score is directly proportional to all input parameters (equation 5), results are equally 

sensitive to variations of all input parameters, i.e. a doubling of any parameter will lead to a doubling of 

indicator results. From Table 1 it can be seen that the input parameter showing the strongest relative 

variation in the case study is the emission intensity (factors of almost 200 and 100 difference from smallest 

to largest for SOX and NOX respectively) The cause of this variation is likely differences in flue gas cleaning 

systems, and for SOX also differences in the sulfur content of the coal (Henriksson et al., 2014). By contrast 

the state specific annual per capita residential electricity consumption (P) varies by a factor of 3, while CFs 

vary by a factor of 5 and 4 for SOX and NOX. Variations in P and CF thereby have negligible contributions to 

the observed 2 orders of magnitude variations in indicator scores of the 45 scenarios. In other words, to 

achieve a low carrying capacity occupation it is more important to be supplied by a power plant with low 

emission intensities than for the emissions of the power plant to deposit in areas with high carrying 

capacity or to reduce residential electricity consumption, although the latter is the only factor that the 

consumer can easily influence. The power plant located in South Carolina had by far the highest emission 

intensities of both SOX and NOX, which is the reason that the highest indicator score was observed for the 

scenario in this state (see Table 1). The power plant located in California had the 5th lowest average 

emissions intensity of the two pollutants. In combination with the lowest CF for both pollutants and the 

lowest residential electricity consumption this explains why the scenario of California had the lowest 

indicator score (see Table 1).  

 

With regards to the sensitivity of CFs to input parameters, equation 3 in turn shows that CFs are highest 

when depositions concentrate around receiving cells with low carrying capacities. This explains why the 

lowest CFs for both pollutants corresponds to the location of the California power plant for which the 

majority of depositions happens on grid cell with quite high carrying capacities. On the other hand the 

highest average CF is for the power plant in Minnesota for which the majority of depositions happens on 

grid cell with quite low carrying capacities, see Figure 4. 
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Figure 4: Maps of North America containing a) carrying capacities and power plants (stars), and b) deposition shares 

on cells receiving more than 0.1% of SOX emissions from the power plants in California and Minnesota (enlarged 

stars).  

 

a) 

b) 
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3.2.3 Comparison with alternative CFs 

Our CFs express carrying capacity occupation per kg emission and are calculated as acid deposits divided by 

a pH-based carrying capacity integrated over space (see equation 3). In contrast, the CFs of Roy et al. (2014) 

express the marginal increase in concentration of H+-ions in soil solution, compared to modelled existing 

concentrations, per kg emission. These CFs are calculated as acid deposits multiplied by a so-called soil 

sensitivity factor which represents the change in existing soil H+ related to a change in acid deposits 

integrated over space. Our CFs and the CFs of Roy et al. (2014) use the same fate factors for calculating acid 

deposits (Roy et al., 2012b) and thus differ only in the use of carrying capacity versus soil sensitivity factor. 

In Figure 5 we compare the two sets of CFs for the 45 power plant locations. Each set of CF is normalized to 

the CF of the power plants in Illinois, which ranks approximately in the middle of the 45 CFs for all 

pollutants and both studies. 

 

 
a) NOx 
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Figure 5: CFs of this study plotted against CF of Roy et al. (2014) for the 45 power plant locations for NOX, SOX and 

NHX. Each set of CF is normalized to the CF of the power plants in Illinois. State names are written for outliers (in 

grey across pollutants). CFs above the 1:1 line are relatively higher for Roy et al. (2014) than for this study and vice 

versa.   

 

It can be seen that there is some agreement between the two sets of CFs for all pollutants, although the 

agreement appears lower for NHX than the other pollutants. The partial agreement can be explained from 

b) SOx 

c) NHx 
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the common fate factors. Difference in agreement amongst the three pollutants can be explained from 

differences in deposition patterns of pollutants: Due to the relatively large shares of depositions of NHX 

close to the emission cell (see footnote 10) fewer grid cells receive large shares of an NHX emissions than 

for emissions of SOX and NOX. Differences between the relative values of carrying capacities and soil 

sensitivity factors in individual receiving cells will thus have the largest effect for NHX CFs. The range of CFs 

for the 45 power plant locations is for all pollutants larger for Roy et al. (2014) than for this study. This 

trend, which is strongest for NHX (Figure 5c), can be explained from the high range of global soil sensitivity 

factors of 11 orders of magnitude compared to the range of carrying capacities in this study of just 2 orders 

of magnitude (see S5). 

 

Two types of outliers can be seen on the plots of Figure 5. For the first type CFs in this study are relatively 

high, while CFs of Roy et al. (2014) are relatively low. This is the case for the CFs of Minnesota for NHX and 

CFs of Florida for SOX. In these cases the high CFs of this study are driven by relatively low carrying 

capacities in the grid cells receiving large shares of deposition. By comparison corresponding CFs of Roy et 

al. (2014) are moderate or low for Minnesota and Florida because soil sensitivity factors are moderate or 

low in the area receiving large shares of deposition. The observed discrepancies between soil sensitivity 

factors and carrying capacities can be explained from the fact that for some soils a relatively small acid 

deposition reduces the modelled natural pH by 0.25, while a marginal increase in acid deposition, 

compared to the modelled existing deposition, leads to a low marginal pH decrease. See Figure S7b for a 

conceptual pH curve that illustrates this point. This discrepancy between carrying capacity and soil 

sensitivity factor occur for some soils that have low carrying capacities and for which the background acid 

deposition is relatively small. This is the case for the parts of the US Midwest and Canada that receive large 

shares of the depositions from the emission cell of the Minnesota power plant. In these scarcely populated 

areas modelled background depositions of the three pollutants are 1-2 orders of magnitude lower than 

those of the most densely populated part of the US East Coast (data not shown). 

 

Outliers of the second type, i.e. low CFs of this study and high CFs of Roy et al. (2014), can be observed in 

Figure 5c for NHX for the grid cells of the New Hampshire, New York, Georgia and Tennessee power plants. 

In these cases the high CFs of Roy et al. (2014) are driven by high soil sensitivity factors in the emission cell 

and neighboring grid cells. These factors are high because modelled existing depositions are, due to high 

modelled existing depositions, somewhere in the steep interval of the pH curves of the soils, meaning that 

marginal increases in deposition can create high reductions in pH in these grid cells. See Figure S7c for a 

conceptual pH curve. Due to the large variation of soil sensitivity factors (see above), high factors in just a 

few of the grid cells receiving relatively high shares of an emission can to a very large extent drive CF values 

of Roy et al. (2014). By comparison the CFs of this study for the grid cells of the New Hampshire and New 

York power plants are no more than moderate in spite of low to moderate carrying capacities in the vicinity 

of the emission grid cell, because the power plants are close to the sea, meaning that relatively high shares 

of emissions deposits on water.  
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4 Discussion   
We have demonstrated the feasibility of modifying LCA indicators to AESI. Thereby we have shown that LCA 

can potentially solve some of the problems associated with current AESI, such as incomplete coverage of 

impact categories, varying quality of inventory data, varying or insufficient spatial resolution and the 

inconvenience to users of needing different software tools for accessing and using AESI. With point of 

departure in the experiences from the case study, this section discuss differences and complementarities 

between LCA based RESIs and AESI in decision support (aim 4) and proposes a research agenda for the 

support of AESI by LCA. 

4.1 Decision support related to absolute environmental sustainability 
The main characteristic of AESI is that they allow for the assessment of environmental sustainability of 

systems in absolute terms. This information can be useful on many levels. It may for instance quantitatively 

inform various emission reduction scenarios designed by e.g. municipalities, nations and supranational 

organizations with the purpose of achieving environmental sustainability. AESI can thus play similar roles as 

greenhouse gas emissions reduction scenarios, designed to prevent e.g. a temperature increase of 2°C 

(IPCC, 2013; Vuuren et al., 2011), that have been adopted at different governmental levels. Also AESI may 

support individuals motivated to learn what it takes to have an environmentally sustainable life style, i.e. 

one that is associated with environmental interferences that do not exceed the carrying capacity entitled to 

an individual person.  

4.2 Decision support related to ranking 
For a given impact category the ranking of systems or scenarios obtained by an AESI will in principal be 

identical to the ranking obtained by a RESI (relative environmental sustainability indicator) when the impact 

pathway model of the RESI is based on a linear approach (see the introduction section and S1). This is 

because the relationship between RESI and AESI CFs in such cases will be the same across pollutants and 

locations. There will therefore be no conflict between RESI based on the linear approach and AESI when 

used to support decisions where environmental performances of alternative solutions are part of the 

decision criteria. However, when the impact pathway model of a RESI is based on a marginal approach (see 

the introduction section and S1)there may be discrepancies in the relationships between AESI and RESI CFs 

across pollutants and locations, and thus in the ranking of systems or scenarios. This was observed to some 

extent in the case study when comparing the AESI developed in this study to the marginal based RESI of 

Roy et al. (2014) (see Figure 5). Thus, if the aim is to oppose reductions in soil solution pH, as quantified by 

Roy et al. (2014), the optimal solution may be different than the one corresponding to the aim of achieving 

the lowest possible carrying capacity occupation. Given these discrepancies between AESI and marginal 

based RESI, which type of indicator should ideally be used to support decisions related to environmental 

sustainability? The answer, we will argue in the next sub-section, is neither of the two, but both combined.  

4.2.1 Risk of sub-optimization 

If either marginal based RESIs or AESI are used in isolation there is a risk of sub-optimal decision support. In 

the case of marginal based RESIs Huijbregts et al. (2011) argued that quantifying marginal changes in 

environmental interferences can be misleading in cases where changes are small, but existing levels of 

environmental interferences are unacceptably high. For the impact category terrestrial acidification this 

may be the case for receiving cells in which existing depositions are so high that the corresponding existing 

pH is at the lower buffering zone of a pH curve (see Figure S7d and S7e). At this zone additional depositions 
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of hydrogen ions are effectively buffered through reaction with aluminium oxides and hydroxides from clay 

particles. In such cases RESI based CFs will be low and marginal emission increases will thus seem relatively 

unproblematic although the state of the soil ecosystems is highly degraded by existing depositions. Another 

case of sub-optimal decision support is when marginal changes are small and existing levels of 

environmental interferences are low, i.e. far from exceeding thresholds (see Figure S7a). Although a small 

marginal increase in existing levels of environmental interferences can here seem unproblematic for 

environmental sustainability this conclusion is not scalable. The marginal approach thus suffers from a 

freeriding bias, i.e. only “the drop that spills the cup” is blamed for the crossing of a threshold. This is 

especially problematic in situations where the combined environmental pressure is increasing, which has 

for example been the case in large parts of China during the last couple of decades. In such situations CFs 

based on marginal RESIs will potentially be highly time dependent.  

Decisions made only with the aid of AESI can also be suboptimal. For instance they may lead to choices that 

favour systems whose emissions end up in spatial units with high carrying capacity. Such choices can be 

suboptimal because they do not consider emissions of existing or future anthropogenic systems that, 

combined with the additional emissions, risk to exceed carrying capacities in these spatial units. An ideal 

quantification of entitlement would eliminate this risk of sub-optimization because it would take into 

account existing and potential competing systems, but the risk is quite real considering the difficulties of 

carrying out an ideal quantification of entitlement (see Section 2.4). 

4.2.2 Combining marginal based RESI and AESI to avoid sub-optimization 

The differences between the AESI and marginal based RESI are not only technical, but in fact also ethical:  

The CFs for terrestrial acidification developed in this study are compatible with decision making grounded 

in rule based ethics according to which a decision is considered “good” if it follows one or more prescribed 

rules that may be either universal or situation-dependent (Ekvall et al., 2005). In AESI the rule is that a 

decision should, whenever possible, lead to anthropogenic systems that do not occupy more carrying 

capacity than they can be considered entitled to. If this is not possible within the decision space, the rule is 

that a decision should lead to the lowest possible carrying capacity occupation amongst alternatives. Thus if 

all societal decisions were to follow these rules a transition towards environmental sustainability would in 

principle happen.12 In contrast, the decision-making that the marginal RESI of Roy et al. (2014) supports is 

grounded in consequential ethics, according to which a decision is “good” if its consequences are better 

than those of alternative(s) (Ekvall et al., 2005). The rule and consequential based ethics are conflicting in 

cases where following the prescribed rule(s) does not lead to the best consequences and vice versa.13   

In real life, decisions are unlikely to be based entirely on either rule or consequential ethics, because 

decisions are often taken in consensus processes and because individuals rarely 100% adhere to a specific 

ethical mindset (Hofstetter, 1998). Therefore the different ethical perspectives of marginal based RESI and 

AESI can be seen as complementary rather than competing. In the case study, our AESI was used to 

                                                           
12

 Note that the only way to guarantee that total carrying capacity is not exceeded by the combined environmental 
interferences of all anthropogenic systems is to (somewhat oxymoronically) ensure that the same valuation principle 
is used to calculate carrying capacity entitlement of all systems. 
13

 Consider the hypothetical situation where a person has the option of saving 5 lives by taking 1 (innocent) life. Doing 
this would lead to the best consequence, compared to inaction, but would also violate the rule of not killing an 
(innocent) person (Thomson, 1976).  
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evaluate the sustainability of the 45 scenarios absolutely and to point to the scenario associated with the 

lowest carrying capacity occupation. The RESI oriented CFs of Roy et al. (2014) could on the other hand 

point to the scenario associated with the lowest marginal increase in environmental interferences. Both 

types of information are valuable in decision processes, which aim to simultaneously reduce existing levels 

of environmental interferences efficiently and maintain, or take steps towards achieving, environmental 

sustainability of society as a whole and of its individual anthropogenic systems.  

4.3 Research agenda on AESI in a life cycle perspective 
This study is intended primarily as a proof of concept and its theme must be expanded upon in future 

research for the proposed modification of LCA to measure environmental sustainability in absolute terms to 

be useful in decision support. Below we outline a few key challenges that deserve academic attention.  

 

The designs of AESI are associated with several choices, to which indicator scores may show different 

degrees of sensitivities. In our modification of the LCA indicator for terrestrial acidification to AESI the 

choices of control variable, threshold value and the use of PROFILE to translate the threshold into carrying 

capacities all have potentially high contribution to uncertainty in indicator scores and efforts to reduce this 

uncertainty should be made (see S9 for an elaboration). Similar choices are unavoidable in any AESI. It is 

therefore important for indicator designers to 1) be aware of these choices and communicate them 

explicitly to users, so they can be considered in the decision support along with the indicator scores, 2) to 

quantify the sensitivity of indicator scores to changes in choices, and 3) to use these quantifications to 

effectively reduce overall uncertainties in indicator scores. As most choices are, at least partially, related to 

value judgement, consensus processes involving e.g. environmental scientists, indicator designers and 

indicator users may be feasible for reducing overall uncertainties.  

 

Uncertainties in LCIs also deserve attention when using AESI. Because many current societies cannot be 

considered environmentally sustainable a key use of AESI is to support transitions towards environmentally 

sustainable societies. Such transitions per definition involve large changes in technologies. For example, 

environmental interferences from energy use are expected to change considerably in many countries over 

the next decades. As a result, environmental interferences of many product systems will also change in the 

future. It is therefore important to carefully evaluate, and if necessary modify, existing LCI unit processes in 

absolute environmental sustainability assessments, which aims to capture the effects of future 

technological transformations (Miller and Keoleian, 2015). 

 

A core characteristic of LCA is that it covers a comprehensive set of impact categories. In this context a 

relevant question is how to aggregate AESI scores from different impact categories. One option is to simply 

add the scores since they can be expressed in the same metric (ha∙year) for all impact categories. However, 

a weighting step may be required as the consequences of exceeding carrying capacities can vary in severity 

between impacts categories. Some factors influencing the severity of exceedance are the social and/or 

economic consequences, the spatial extent and the time required for reversion of damage. In addition, care 

should be taken when attempting to aggregate indicator scores across impact categories, since the 

interaction between different types of environmental interferences within a specific territory is complex 

and not well understood. For some combinations of impact categories additivity between carrying capacity 

occupations may be a good assumption. In other cases, however, a territory that has its carrying capacity 
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100% occupied for one impact category may have unoccupied carrying capacity for other impact 

categories14, which means that simply adding indicator scores across impact categories would overestimate 

the actual area equivalent of carrying capacity occupation. Another challenge related to aggregating 

indicator scores is the need for absolute sustainability references for the LCA impact categories that are not 

related to ecosystems, i.e. those related to human health impacts and depletion of non-renewable 

resources. Carrying capacity does per definition not apply to such impact categories, but other more 

normative sustainability references may be quantified (McElroy et al., 2008).  

 

Another key challenge is how to integrate a carrying capacity entitlement module in LCA software that is 

relevant and requires only a manageable data input by the software user. Ideally the user should only have 

to choose a valuation principle and define the duration of environmental interventions (t) of each emission 

location. The software would then calculate Taffected and Aaffected, identify competing systems and 

subsequently calculate VF to arrive at the carrying capacity entitlement (see equation 4) for each emission 

location and compare this to the corresponding indicator score. This would require the software to be 

equipped with a fate model, calculating Taffected and Aaffected for each emission location, and to be linked to a 

complete spatially derived emission inventory that contains information needed to calculate VF, such as 

contribution to GDP, for each of its anthropogenic systems. For many emissions in a typical product life 

cycle location and duration (t) will be partly or completely unknown. The AESI should therefore be 

equipped with a meaningful default choice for location and duration that is compatible with the calculation 

of carrying capacity entitlement. 

Supporting Information 

Supporting information is available online and contains methodological details and elaboration of results 

and discussions. 
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Abstract 
Environmental monitoring indicates that progress towards the goal of environmental sustainability in many 

cases is slow, non-existing or negative. Indicators that use environmental carrying capacity references to 

evaluate whether anthropogenic systems are, or will potentially be, environmentally sustainable are 

therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as 

incomplete coverage of environmental interferences, varying data quality of inventory data and varying or 

insufficient spatial resolution. The purpose of this article is to demonstrate that Life Cycle Assessment (LCA) 

can potentially reduce or eliminate these shortcomings.  

We developed a generic mathematical framework for the use of carrying capacity as environmental 

sustainability reference in spatially resolved life cycle impact assessment models and applied this 

framework to the LCA impact category terrestrial acidification. In this application carrying capacity was 

expressed as acid deposition (eq. mol H+·ha-1·year-1) and derived from two complementary pH related 

thresholds. A geochemical steady-state model was used to calculate a carrying capacity corresponding to 

these thresholds for 99,515 spatial units worldwide. Carrying capacities were coupled with deposition 

factors from a global deposition model to calculate characterisation factors (CF), which expresses space 

integrated occupation of carrying capacity (ha∙year) per kg emission. Principles for calculating the 

entitlement to carrying capacity of anthropogenic systems were then outlined, and the logic of considering 

it was demonstrated that a studied system can be considered environmentally sustainable if its indicator 

score (carrying capacity occupation) does not exceed its carrying capacity entitlement was demonstrated. 

The developed CFs and entitlement calculation principles were applied to a case study evaluating emission 

scenarios for personal residential electricity consumption supplied by production from 45 US coal fired 

electricity plant. 

Median values of derived CFs are 0.16-0.19 ha·year·kg-1 for common acidifying compounds. CFs are 

generally highest in Northern Europe, Canada and Alaska due to the low carrying capacity of soils in these 

regions. Differences in indicator scores of the case study emission scenarios are to a larger extent driven by 

variations in pollution intensities of electricity plants than by spatial variations in CFs. None of the 45 

emission scenarios could be considered environmentally sustainable when using the relative contribution 
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to GDP or the grandfathering (entitlement proportionality to past emissions) valuation principles to 

calculating carrying capacity entitlements. It is argued that CFs containing carrying capacity references are 

complementary to existing CFs in supporting decisions aimed at simultaneously reducing environmental 

interferences efficiently and maintaining or achieving environmental sustainability. 

We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators 

of environmental sustainability. Further research should focus on quantifying uncertainties related to 

choices in indicator design and on reducing uncertainties effectively by achieving consensus on these 

choices. 

Keywords:  

LCA; Terrestrial acidification; Carrying capacity; characterisation factors; entitlement 

1 Introduction 
During the last decades the number of sustainability indicators and their use in decision-making has greatly 

increased (Hak et al., 2012; Singh et al., 2012). Many such indicators rank the sustainability of 

anthropogenic systems. For instance Switzerland ranked highest and Somalia lowest in the 2014 

Environmental Performance Index of countries (Hsu et al., 2014). Another example is Greenpeace’s Guide 

to Greener Electronics (2012b;2012a), which ranks 16 large electronics companies. Here we term indicators 

used for ranking relative environmental sustainability indicators (RESI) because indicator scores of studied 

anthropogenic systems are relative because they are evaluated by comparison to indicator scores of one or 

more reference systems, chosen specifically to match the nature or function of the studied system. While 

RESI can reveal how the sustainability performance of system X compare to that of a chosen reference 

system, it cannot evaluate whether system X can be considered sustainable on an absolute scale (Moldan 

et al., 2012). This limitation is very problematic considering that the state of the environment is declining by 

and large (Steffen et al., 2015; WRI, 2005). Therefore the global economy and its subsystems are in fact 

drifting further away from the goal of environmental sustainability, originally defined as “seek[ing] to 

improve human welfare by protecting the sources of raw materials used for human needs and ensuring 

that the sinks for human wastes are not exceeded, in order to prevent harm to humans” (Goodland 1995). 

This shortcoming of RESI may be addressed by supplementing RESI by indicators containing reference 

values of environmental sustainability (Moldan et al., 2012). We term such indicators absolute 

environmental sustainability indicators (AESI) because the environmental sustainability references are 

absolute, since they are based on characteristics of natural systems independent of the study. While 

ranking of products or systems is also possible in AESI, the environmental sustainability of a system can 

additionally be evaluated on an absolute scale, i.e. answering the question “is system X environmentally 

sustainable or not?” Figure 1 illustrates the difference and complementarity between RESI and AESI.  
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Figure 1: The concepts of relative (a) and absolute (b) environmental sustainability indicators. The ranking of the 

hypothetical system X depends on the chosen reference(s) (a). System X is environmentally unsustainable because 

its environmental interference is higher than the sustainability reference (b).  

The concept of carrying capacity (Sayre, 2008) can be applied in AESI to operationalize and quantify 

references for environmental sustainability as defined by Goodland (1995). Following Bjørn and Hauschild 

(2015) we define carrying capacity as “the maximum sustained environmental interference a natural 

system can withstand without experiencing negative changes in structure or functioning that are difficult or 

impossible to revert.” Here we use “environmental interference” as a generic term for anthropogenic 

changes to any point in an impact pathway (from emission or resource use to ultimate damage). It follows 

that total environmental interferences on natural systems, whether caused by resource uses or emissions, 

can be considered environmentally sustainable if their level is below the affected eco-system’s carrying 

capacity.  

“Footprinting” indicators, that use carrying capacity as sustainability reference value, can be characterized 

as AESI. The popular ecological footprint indicator expresses demands on nature in units of “global 

hectares” and compares this to land availability (termed “biocapacity”) to facilitate an evaluation of 

whether demands are environmentally sustainable (Borucke et al., 2013). This has inspired other footprint 

indicators such as the well-established water footprint (Hoekstra and Mekonnen, 2012) and first generation 

chemical footprints (Bjørn et al., 2014; Zijp et al., 2014). Existing footprinting indicators, however, have 

weaknesses such as: 1) the incomplete coverage of all environmental interferences that are threatening 

environmental sustainability, 2) the varying data sources which are generally crude for assessments at the 

product scale (Huijbregts et al., 2008; Kitzes et al., 2009), 3) the variations in spatial resolution amongst 

footprints1, which can be a source of bias due to the potentially high spatial variability of carrying capacity 

(Bjørn and Hauschild, 2015), and 4) the inconvenience for users that each indicator is made available by 

means of a unique software tool. We believe that the life cycle assessment (LCA) method has the potential 

to overcome these weaknesses of current AESI. 

                                                           
1
 The ecological footprint normalises land demands in the unit “global hectares”, which means that indicator results 

are unaffected by spatial differences in yield, while water- and chemical footprints are spatially resolved to varying 
extents.  

a) 

b) 
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LCA aims to cover all relevant environmental interferences over the life cycle (from raw materials to waste 

management) of a product (or other anthropogenic systems). LCA requires a life cycle inventory (LCI), 

which compiles the physical inputs and outputs (resource uses and emissions) of a product during its life 

cycle, and is commonly based on product system specific data supplemented by a common life cycle 

inventory database of unit processes (e.g. the average electricity generation of a country). LCA uses 

characterisation factors (CFs), which express the relationship between the resource uses or emissions of a 

LCI and measures of resulting environmental interference. CFs are obtained from mathematical 

representations of cause effect-chains that can be spatially resolved and allow the conversion of a LCI into 

indicator scores for a number of mutually exclusive and collectively exhaustive “impact categories” such as 

climate change, eutrophication and eco-toxicity.  

The characteristics of LCA make it potentially suitable for reducing or eliminating the listed weaknesses of 

current AESI. However LCA indicators can be characterized as RESI: Indicator scores are typically used to 

rank the environmental performance of functionally comparable product systems or scenarios, based on 

their potential to, via their emissions or resource uses, create a small change in the level of environmental 

interferences. This small change is either calculated as a marginal change in the known existing level of 

environmental interference or as an approximated linear change in interference within the zone between 0 

and a chosen level of interference (see S1 for a conceptual figure of the two approaches) (Hauschild and 

Huijbregts, 2015). LCA indicators therefore generally do not include carrying capacity as sustainability 

reference values (Castellani and Sala, 2012). To harness the potentials of LCA in AESI, LCA indicators need to 

be modified to quantifying occupations of carrying capacity instead of quantifying small changes in levels of 

environmental interferences. The overall purpose of this article is to provide an initial contribution to this 

development.  

This article aims to 1) develop a generic mathematical expression for calculating spatially resolved 

occupation of carrying capacity for any emissions based LCA impact category, 2) use this method tentatively 

on the terrestrial acidification LCA impact category, 3) demonstrate the applicability of the method in a 

case study, , 4) compare the relevance and complementarity of AESI and RESI in decision support.   

2 Methods 

2.1 Definitions and interpretations 
To support the operationalization of carrying capacity (defined as “the maximum sustained environmental 

interference a natural system can withstand without experiencing negative changes in structure or 

functioning that are difficult or impossible to revert”) we introduce two definitions: 1) control variable: “a 

numerical indicator of the structure and/or functioning of a natural system.”; 2) Threshold: “the maximum 

value of a control variable a natural system can withstand without experiencing negative changes in 

structure and/or functioning that are difficult or impossible to revert.” The carrying capacity is generally 

closer to the cause in an impact pathway than the threshold from which it is derived. Carrying capacity is 

static because it is calculated from a situation where a control variable value equals a threshold value at 

steady state  (Bjørn and Hauschild, 2015). Note that the definitions of threshold and carrying capacity leave 

room for interpretation (what are negative changes and at what point do these become difficult to revert?). 

This interpretative flexibility is intentional as it reflects the ambiguity in the definition of environmental 
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sustainability of Goodland (1995) with respect to preventing “harm to humans”: Humans may be physically 

harmed by a reduction of material eco-system services (e.g. access to clean water) caused by severe 

environmental degradation. According to some, humans may also be harmed culturally and spiritually by 

effects on or disappearance of a single vulnerable species caused by just minor environmental degradation. 

Environmental sustainability can thus be interpreted anthropocentrically or eco-centrically (or somewhere 

in between), which can greatly influence the choice of threshold and resulting quantification of carrying 

capacity. The sensitivity of AESI scores to this interpretation of environmental sustainability and other 

choices is analysed in Bjørn et al. (2015). 

2.2 Characterisation framework 
In LCA characterisation factors (CF) are multiplied with each inventoried emission or resource use (Q) of 

pollutants or resource (x) that contribute to a given impact category and the products are summed to 

calculate the indicator score (IS) for that impact category:  

               (1) 

By integrating carrying capacity as sustainable reference value in CFs, indicator scores can be expressed as 

occupation of carrying capacity. We propose this integration by dividing spatially resolved conventional CF 

constituents by carrying capacity (CC) for any emissions based indicator (aim 1): 

         
                     

    
     (2) 

Here CF (ha*year*kgemitted
-1) is the characterisation factor for substance x emitted within spatial unit i into 

environmental compartment k (air, soil or water). FF is a fate factor linking an emission of pollutant x within 

i into k to its fate typically expressed as a change in concentration or mass in the receiving spatial unit j. XF 

is an exposure factor which accounts for the fraction of pollutant x that species of concern in j are exposed 

to. EF is an effect factor, which calculates the effect increase on these species in j from an increased 

exposure of x. CC is the carrying capacity in j. The metric of CC depends on the metrics of FF, XF and EF and 

differs from one impact category to another. Note that equation 2 applies to indicators of effects on 

species. If indicator scores are expressed closer to the cause of these effects the denominator should only 

contain FF or FF∙XF. When following equation 1 by multiplying CFs with emissions (kg) the indicator score is 

expressing the carrying capacity occupation in a unit of ha∙year, which indicates an area in which carrying 

capacity for a given impact category is occupied for a time. If the time frame during which pollutants are 

emitted is known, the indicator score can be expressed in a unit of ha, which resembles that of the 

ecological footprint method (Borucke et al., 2013).  

Note that our proposed framework is only compatible with indicators for which FF, XF or EF are of a linear 

nature, i.e. that calculate the approximated linear environmental change from an emission within the zone 

between 0 and a chosen level of interference (see S1). Our proposed framework is not compatible with 

marginal CF components because these are derivatives of estimated existing levels of environmental 

interference, while carrying capacity should be independent of existing levels of environmental 

interference (Bjørn and Hauschild, 2015).   
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2.3 Application to terrestrial acidification 
We demonstrate the calculation of proposed characterisation factors for the LCA impact category 

terrestrial acidification, for which no AESI currently exists (aim 2). The spatial derivation was based on the 

only existing global deposition model of Roy et al. (2012) having a 2.0°x2.5° resolution (i.e. composed of 

13,104 grid cells).  

2.3.1 Choice of control variable and threshold 

As a basis for carrying capacity two complementary thresholds of the control variable “soil solution pH” 

were chosen. The first threshold was based on a deviation of natural pH corresponding to the point where 

the numerical decrease in pH starts increasing for every additional quantity of deposition. At this point the 

functioning of the soil ecosystem starts changing as the carbonate buffering system is weakening and 

additional depositions will bring the system close to its chemical pH threshold.2 Based on a screening of pH 

curves modelled with the geochemical steady-state model PROFILE (Warfvinge and Sverdrup, 1992) we 

found that a pH decrease of 0.25, compared to natural pH, generally corresponded well with this point 

where pH starts responding non-linearly to additional depositions (see S2). The second threshold was 

required to take into account naturally acidic soils for which the critical factor threatening ecosystem 

structure is not pH decrease, but rather the mobilisation of toxic aluminium (III) from the buffering of acid 

depositions through reaction with aluminium oxides and hydroxides from clay particles (Sparks, 2002). This 

buffering process occurs in the pH interval 2.8-4.2 and we therefore chose pH 4.2, below which aluminium 

(III) starts to mobilize, as the second threshold.3  In other words, we interpreted environmental 

sustainability, with regards to the interference of acidifying compounds with natural soils, to correspond to 

a situation where natural buffer systems are not weakened and aluminium (III) is not mobilized.  

2.3.2 Calculation of carrying capacity 

The carrying capacity was, inspired by the critical loads concept (Spranger et al., 2004), expressed as a 

critical deposition of acidifying compounds (eq.·ha-1·year-1, where  1 eq refers to 1 mol H+-eq.). The carrying 

capacity was derived for 99,515 spatial units, covering the global terrestrial area (Roy et al., 2012a), by 

running PROFILE in 9 steps gradually increasing depositions of SOX above natural levels for each spatial unit 

until a change of 0.25 pH units or an absolute pH value below 4.2 was reached. Natural depositions were 

modelled based on Tegen and Fung (1994) and Bey et al. (2001) as described in Roy et al. (2012b). The 

design of the 9 steps is explained in S2. We found that 10% of spatial units were for at least one deposition 

step affected by a non-convergence error in PROFILE. For these cells the carrying capacity was 

approximated by neighbouring cells using a kriging function, see S4. Area-weighted averages of the carrying 

capacities of the 99,515 spatial units of PROFILE were used to estimate the carrying capacities of the 13,104 

grid cells of the deposition model of Roy et al. (2012). CFs were then calculated according to equation 2 

                                                           
2
 We did not choose the steepest point of the chemical pH threshold as basis for carrying capacity because this point is 

often 2 pH units or more below natural pH, which represents a pH decrease that few species can tolerate (Azevedo et 
al., 2013) and can therefore not be considered as reference for environmental sustainability.  
3 Our choice of an absolute threshold of 4.2 pH units is in good agreement with a proposal within the critical loads 

framework that a pH of 4 could be used to calculate critical loads for forest soils (Spranger et al., 2004).  
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using atmospheric fate factors (FF, keqdeposited*kgemitted
-1) of Roy et al. (2012)4 and excluding XF and EF in the 

denominator because CC is expressed as a critical deposition: 

       
       

    
    (3) 

2.4 Carrying capacity entitlement  
Our CFs can in principle be used to evaluate whether a society as a whole is environmentally sustainable 

because the indicator score, expressing the area equivalent of fully occupied carrying capacity, from all 

activities of the society can be compared to the actual area of the relevant ecosystem. An individual system 

embedded in society, such as a product, a person or company, can in turn be considered environmentally 

sustainable if it does not occupy more of the total carrying capacity than it can be considered entitled to. 

Carrying capacity entitlement is a normative concept because it depends on the perceived value of a 

studied system relative to those of “competing systems” that rely on occupying carrying capacity in the 

same area where the studied system occupies carrying capacity. Therefore environmental sustainability 

references for individual anthropogenic systems embedded in society are inherently normative. Below we 

outline three steps in deriving and applying these  environmental sustainability references 

2.4.1 Identify competing systems 

Ideally competing systems would be identified by combining a source-receptor fate model with a spatially 

differentiated emission inventory covering all anthropogenic systems of society in a chosen reference year: 

The fate model would first identify the spatial units affected by emissions of the studied system. The fate 

model would then identify all the systems of the societal total emission inventory whose emissions affect 

the spatial units previously identified. These systems would be labeled competing systems because they 

rely on occupying parts of the same carrying capacity as the studied system for their functioning. Note that 

the group of competing systems is potentially unique for each affected spatial unit (of which there may be 

thousands). This is impractical to operate with and therefore three simplifications are introduced: 1) a cut-

off criterion is established whereby only spatial units receiving above a specified share of emissions from 

the studied system (e.g. 0.1%) are considered (the territory of these spatial units are termed Taffected and its 

area is termed Aaffected), 2) all emissions that occur within Taffected are, in this part of the AESI, assumed to 

occur in the spatial unit where the emission from the studied system occurs and thus assumed to have the 

same fate, 3) it is assumed that no emissions within Taffected leave Taffected and that no emissions from outside 

enters. These three simplifications are visually presented in Figure 2. 

 

                                                           
4
 The fate factors of Roy et al. (2012) were expressed in kgdeposited*kgemitted

-1
. For this study kgdeposited was converted to 

keqdeposited by division by the molecular weight of the emissions and multiplication by the electrical charges of their 
corresponding ions, following Posch et al. (2008).   
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SS, X1, 
X2, X3

X3X2

X1

Simplification 1: 
Reduced geographical 
boundary

Simplification 2: 
Same fate

Simplification 3: 
Closed system

 
Figure 2: Illustration of three simplifications for identifying competing systems (X1-X3) of a studied system (SS) 

located in the middle grid cell and affecting 13 grid cells above an arbitrary emission distribution threshold. These 

13 grid cells make up Taffected and have the area Aaffected. The dotted arrows indicate a change in location of X1-X3.   

 

The consequence of the simplifications is that only one carrying capacity entitlement needs to be calculated 

for each emission location of a studied system and that the group of competing systems is the same for all 

anthropogenic systems within Taffected. The simplifications can be defended in situations where potential 

competing systems are rather homogenously distributed in space and have emissions of similar magnitude. 

When this is not the case it may be more appropriate to follow the ideal approach outlined above to 

identifying competing systems. 

2.4.2 Quantify relative value of studied system 

The perceived value of a studied system relative to identified systems competing for carrying capacity in 

the same territory may be quantified using different valuation principles, such as  1) relative contribution to 

GDP,  or 2) “grandfathering” where the relative value of a system is considered proportional to its relative 

indicator score in a chosen past reference year (i.e. if total carrying capacity was exceeded in the reference 

year, the indicator scores of all systems in that reference year should be reduced by the percentage that is 

needed to reduce the total indicator score below the total carrying capacity. The perceived relative value of 

a studied system may be expressed as a value factor (VF) between 0 and 1 of the total value (i.e. the sum of 

the perceived value of the studied system and those of competing systems).  

2.4.3 Calculate carrying capacity entitlement and compare to AESI score    

The time-integrated area in which carrying capacity can be entitled to a studied system (Aentitled, in ha∙year) 

can be calculated by multiplying Aaffected for the studied system by the duration of the emissions (t) and the 

value factor (VF) for each emissions location (i): 

                                  (4) 

If Aentitled exceeds the AESI score of a studied system for one or more emission locations (i) the studied 

system cannot be considered environmentally sustainable.   
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2.5 Case study 
We applied the derived CFs to emissions caused by the electricity production from one randomly selected 

coal fired electricity plant in each of 45 states of contiguous United States5 in 2010. For each of the 

electricity plants we calculated an emission inventory corresponding to the residential electricity 

consumption of an average inhabitant in the concerned state in the year 2010. The case study provided a 

vehicle for demonstrating the use of the proposed indicator for terrestrial acidification on 45 scenarios of 

realistic residential electricity consumption in a hypothetical situation where this is entirely supplied fuelled 

by coal (aim 3).6 We use the term “scenario” to stress that we are not attempting to model the actual 

situation. The case study also allows for discussing the relevance of LCA-supported AESI compared to using 

LCA to rank environmental performance (aim 4).  

State specific annual per capita annual residential electricity consumption was obtained from the US 

Department of Energy (DoE, 2015) and used to define the quantities of electricity produced (P) by each of 

45 power plants (i) to meet the demand byfor an average inhabitant. Power plant specific emissions 

intensities (EI) expressing emissions of SOX and NOX (x) per kWh of generated electricity were obtained 

from the eGRID database of the US EPA (2014), which contains data on a total of 541 US coal fired 

electricity plants in 45 states.7 EI was multiplied by P to obtain the emissions (Q) of SOX and NOX per power 

plant (i). Indicator scores (IS) for each power plant were hence, following equation 1, calculated as: 

                                              (5) 

Here CFi,k is the characterisation factor derived for pollutant x (SOX or NOX) for the grid cell in which power 

plant i is located.  

Indicator scores were evaluated by comparing them to carrying capacity entitlements established 

calculated following the simplified approach outlined above: We used the fate model of Roy et al. (2012) to 

identify spatial units receiving depositions caused by emissions of the different power plants. This global 

model predicts that all its 13,104 grid cells of the global model receives a share of an emission from any of 

the power plants (Roy et al., 2012b). However, most grid cells receive a very small share. For identifying 

competing systems we therefore used a cut-off value of 0.1% deposition of an emission. This resulted in an 

affected territory (Taffected) for each i in which around 70% of an emission deposits (depending on the 

pollutant and i).8 Aaffected (the area of Taffected) for all i and both pollutant are were found to be approximately 

equivalent to the area of the entire contiguous United States. Since all power plants are located in 

contiguous United States there is a great geographical overlap between Taffected of the 45 emission scenario 

locations. This overlap justified the additional simplification of assigning the terrestrial area of contiguous 

United States , 765,300,400ha (USCB, 2012), a common Taffected and its area, 765,300,400ha (USCB, 2012), a 

                                                           
5
 The contiguous United States consists of the 48 adjoining U.S. states plus Washington, D.C. (federal district). 

6
 In reality residential electricity use is supplied by various energy technologies that, due to an integrated federal grid, 

may be located far away (i.e. in another state) than the location of consumption.  
7
 The states of Maine, Rhode Island and Vermont were not covered by the eGRID database of coal fired electricity 

plants, presumably because they have none.   
8
 The remaining share of an emission, on average 30%, deposits on grid cells receiving less than 0.1% of the emission 

and accumulates in high altitude, near the stratosphere.   
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common Aaffected   for all i. Competing systems for all i are consequently all systems that emit acidifying 

compounds to air within the contiguous United States.  

In quantifying the value factors (VF) of the 45 studied emissions scenarios two alternative valuations were 

applied to explore the sensitivity of case study outcomes to this form of value judgment. The first valuation 

was based on the relative contribution to GDP, estimated by dividing personal or household expenditure on 

a studied product or service by pre-tax income. In 2009 (no data for 2010) an average US household spent 

2.0% of its pre-tax income on residential electricity (ACCCE, 2014). The relative contribution to GDP 

valuation principle thus grants residential electricity consumption a value of 0.02 relative to all other 

anthropogenic systems within Taffected. The alternative valuation was based on the   grandfathering principle, 

according to which US residential electricity consumption is entitled to maintain its past share of total 

environmental interferences. In 2010 38% of US total electricity consumption was consumed by the 

residential sector (IEA, 2012), meaning that 38% of environmental interferences from total electricity 

consumption could be attributed to the residential sector. We could not obtain the share of environmental 

interference with respect to terrestrial acidification taken up by total electricity consumption of the total 

US environmental interference with respect to terrestrial acidification. We therefore approximated this 

share by the corresponding share in EU27, where in 2010 23% of total environmental interferences was 

presumably taken up by electricity production.9. Our use of the grandfathering valuation principle thus 

grants residential electricity consumption in the US a tentative value of 9% (38% of 23%) relative to all 

other anthropogenic systems within Taffected.  

Since both valuation principles were applied to average residential electricity consumption in the US, the 

value factors for the 45 scenarios are the same (i.e. not calculated specifically for each emissions scenario, 

although this is in theory possible) and can be calculated by dividing the nationwide relative values with the 

US population of contiguous United States (306,675,006 312,245,116 in 2010 (UNDESAUSCB, 20152)). 

Aentitled was subsequently calculated for the alternative valuation principles following equation 4: 

Relative contribution to GDP: 

                                               
    

                      
                 (6) 

Grandfathering: 

                                               
    

                      
               (7) 

The two alternative Aentitlted were compared to the indicator scores of the 45 scenarios to evaluate which of 

them could be considered environmentally sustainable. We then compared the spatial variation in each of 

the components of equation 5, including the CF components of equation 3, to analyse the sensitivity of 

indicator scores of the 45 scenarios to each of these components. As a basis for discussing the relevance of 

                                                           
9
 Environmental interferences were calculated using the tentative CFs for terrestrial acidification developed in this 

study (average of the 45 emission locations) on the emission inventory for EU27 of EMEP (2015). The sector 
“Combustion in energy and transformation industries (stationary sources)” of the EMEP inventory was assumed to 
cover electricity production only.  
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AESI compared to RESI we furthermore compared the CFs of the 45 power plant locations with 

corresponding CFs of Roy et al. (2014). 

3 Results  

3.1 Carrying capacities and characterisation factors 

Estimated carrying capacities (CC) ranged from less than 100 eq.·ha-1·year-1 to more than 4000 eq.·ha-1·year-

1 with a median value around 500 eq.·ha-1·year-1. The global distribution is shown in S5. Numerical CFs for 

all 13,104 grid cells for NOX, SOX and NHX are available in a spreadsheet in S6, from which they may be 

exported to LCA software such as GaBi (Thinkstep, 2015) or Simapro (PRé, 2015) and thereby linked to LCI 

databases such as EcoInvent (2015). CFs for SOX ranged from less than 0.0054 ha·year·kg-1 (10th percentile) 

to more than 0.41 ha·year·kg-1 (90th percentile) with a median value of 0.16 ha·year·kg-1  (when excluding 

CFs for locations in the open sea, which are generally close to 0). In absolute terms the median CF for SOX 

can be interpreted as 1 kg SOX emitted occupying the carrying capacity of 0.048 hectares (corresponding to 

a square with 22m sides) for 1 year. Figure 3 shows the distribution of CFs for all global locations of NOX, 

SOX and NHX. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) NOx 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12 
 

 
 

 

 
  

 

Figure 3: Global distribution of CFs for NOX (a), SOX (b) and NHX (c) 

 

It can be seen that CFs are generally highest in Northern Europe, Canada and Alaska, which is caused by the 

relatively low carrying capacity of soils in these regions (see S5). The highest CFs for NOX, SOX and NHX 

corresponds to emission locations in Canada (latitude 55°; longitude -112.5°), Denmark/Sweden (latitude 

55°, longitude 12.5°) and Alaska (latitude 65°, longitude -157.5°) respectively. It can also be seen that local 

differences in CFs (e.g. between neighbouring cells) are lowest for NOX, higher for SOX and highest for NHX. 

This is because the share of an emission that deposits in or close to the emission cell is largest for NHX, 

b) SOx 

c) NHx 
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smaller for SOX and smallest for NOX.10 In other words, local differences in carrying capacity have a much 

larger influence on CFs for NHX than for NOX. This observation was also made by Huijbregts et al. (2000) for 

the spatial pattern of European CFs based on the critical loads concept (Spranger et al., 2004).  

3.2 Case study 

Table 1 shows the input parameters for equation 5 and indicator scores for the 45 emission scenarios.  

Table 1: Input parameters for equation 5, indicator scores and comparison to two carrying capacity entitlements for 

45 scenarios in the reference year 2010.  
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Alabama Barry 7425 1 0.50 37 1.11 26 0.23 38 0.24 37 2.81 29 

Arkansas White Bluff 6584 8 1.31 18 2.36 22 0.24 36 0.24 34 5.85 19 

Arizona Coronado 5060 23 1.83 16 1.70 24 0.16 44 0.17 44 2.92 28 

California Stockton Cogen 2337 45 0.14 45 0.68 35 0.13 45 0.12 45 0.23 45 

Colorado Rawhide 3587 37 0.73 30 0.35 39 0.31 25 0.36 6 1.28 39 

Connecticut Bridgeport Station 3655 36 0.70 31 0.94 30 0.38 8 0.34 10 2.16 32 

Delaware 
NRG Energy Center 
Dover 5295 20 2.32 9 5.24 9 0.35 13 0.31 19 12.87 10 

Florida Big Bend 6489 11 0.48 38 0.96 29 0.34 17 0.44 3 3.85 25 

Georgia Bowen 6338 12 0.28 41 0.30 40 0.33 22 0.32 16 1.20 40 

Iowa 
Walter Scott Jr 
Energy Center 4572 29 0.59 34 1.09 27 0.31 26 0.27 26 2.29 31 

Idaho 
Amalgamated Sugar 
LLC Nampa 5180 21 3.53 4 11.60 4 0.28 30 0.27 28 21.26 5 

Illinois 
John Deere 
Harvester Works 3783 35 3.80 3 20.56 2 0.33 19 0.28 24 26.89 2 

Indiana 
Sagamore Plant 
Cogeneration 5402 19 2.58 6 11.00 5 0.30 27 0.25 31 18.87 7 

Kansas 
Tecumseh Energy 
Center 5014 24 1.34 17 3.17 16 0.27 32 0.24 36 5.64 20 

Kentucky Ghent 6703 7 0.57 35 0.82 31 0.30 28 0.27 27 2.64 30 

Louisiana Dolet Hills 7190 2 0.91 27 4.10 10 0.20 40 0.21 39 7.56 15 

Massachusetts Salem Harbor 3266 42 0.87 29 4.01 11 0.33 21 0.29 23 4.68 23 

Maryland 
Morgantown 
Generating Plant 5002 25 0.24 42 0.67 36 0.33 18 0.31 18 1.43 37 

Michigan Belle River 3511 38 0.99 25 2.74 18 0.40 5 0.34 9 4.72 22 

                                                           
10

 The deposition patterns vary between emissions cells due to meteorological variations. Yet, a strong tendency of 
deposition shares close to the emission of NHX being largest, of SOX being smaller, and of NOX being smallest was 
observed in deposition model of P.-O. Roy et al. (2012). E.g. for an emissions cell in Minnesota 35% of a NHX emission 
deposits within the emission cell and 42% within the emission cell and the four neighboring cells, while the 
corresponding numbers for SOX are 20% and 26% and for NOX are 8% and 15% respectively (see also Figure 3). 
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Minnesota Virginia 4231 33 1.85 14 1.34 25 0.54 1 0.55 1 7.36 16 

Missouri 
Southwest Power 
Station 6222 14 0.70 32 2.61 21 0.26 33 0.25 30 5.16 21 

Mississippi Henderson 6793 5 5.81 2 6.43 8 0.24 36 0.24 34 20.11 6 

Montana Lewis & Clark 4591 28 2.16 10 2.71 20 0.39 7 0.32 17 8.08 12 

North Carolina Mayo 6502 10 0.35 39 1.00 28 0.37 12 0.35 8 3.09 26 

North Dakota Antelope Valley 6518 9 1.86 13 2.12 23 0.41 4 0.34 11 9.67 11 

Nebraska Platte 5523 17 1.93 12 3.81 13 0.26 34 0.24 33 7.93 14 

New 
Hampshire Schiller 3408 40 1.18 24 3.88 12 0.47 2 0.46 2 8.03 13 

New Jersey 
Chambers 
Cogeneration LP 3444 39 0.55 36 0.82 32 0.35 13 0.31 19 1.53 36 

New Mexico Four Corners 3270 41 2.53 7 0.72 34 0.19 42 0.19 42 2.05 33 

Nevada TS Power Plant 4295 32 0.20 43 0.19 45 0.20 39 0.20 41 0.33 44 

New York AES Greenidge LLC 2627 44 0.93 26 0.75 33 0.40 6 0.36 5 1.70 35 

Ohio Muskingum River 4522 30 1.21 22 13.36 3 0.37 9 0.33 12 22.91 4 

Oklahoma Hugo 6300 13 0.89 28 2.82 17 0.19 41 0.20 40 4.67 24 

Oregon Boardman 4909 26 1.97 11 3.44 15 0.29 29 0.26 29 7.13 17 

Pennsylvania 
G F Weaton Power 
Station 4345 31 1.29 19 2.73 19 0.37 9 0.33 12 5.97 18 

South Carolina 
US DOE Savannah 
River Site (D Area) 7085 4 12.90 1 36.24 1 0.35 15 0.35 7 120.97 1 

South Dakota Big Stone 5672 16 3.46 5 3.52 14 0.42 3 0.37 4 15.66 8 

Tennessee Bull Run 7109 3 0.29 40 0.21 43 0.32 23 0.31 21 1.11 41 

Texas Oak Grove 5431 18 0.62 33 0.56 37 0.17 43 0.18 43 1.10 42 

Utah Huntington 3183 43 1.23 21 0.46 38 0.24 35 0.24 32 1.31 38 

Virginia 
Altavista Power 
Station 6038 15 1.27 20 0.19 44 0.35 16 0.33 15 3.04 27 

Washington 
Transalta Centralia 
Generation 5178 22 1.20 23 0.27 41 0.27 31 0.23 38 1.99 34 

Wisconsin Nelson Dewey 3918 34 2.35 8 10.25 6 0.33 19 0.28 24 14.47 9 

West Virginia Kammer 6711 6 1.85 15 8.55 7 0.37 9 0.33 12 23.48 3 

Wyoming Wygen III 4835 27 0.20 44 0.26 42 0.32 24 0.29 22 0.67 43 

3.2.1 Absolute interpretation of results 

Indicator scores varied 2 orders of magnitude from a minimum of 0.23 ha∙year to a maximum of 121 

ha∙year for a power plant located in California and South Carolina respectively. This means that the 

equivalent production of annual residential electricity use in 2010 occupies carrying capacities of between 

0.23 ha and 121 ha of land for 1 year depending on the scenario. These areas are abstract because they 

cannot be empirically observed as special pieces of land somehow dedicated to absorbing acidifying 

emissions. Instead results should be interpreted as space integrated carrying capacity occupation, which is 

driven by carrying capacities in grid cells on which large shares of emissions deposit. Note that indicator 

results hold no information on the extent to which an emission occupy the carrying capacity of the 

individual grid cells that are affected by its depositions.11 Table 1 shows that none of the 45 scenarios could 

be considered environmentally sustainable when using any of the two valuation principles because these 

require indicator scores to be below 0.049 050 ha∙year (relative contribution to GDP principle) or 0.221 

                                                           
11

 In a hypothetical example where carrying capacities of 4 grid cells of 1ha are each occupied by 10%, 20%, 80% and 
130% from depositions of an emission, the aggregated result would be 2.4ha (0.1*1 ha+0.2*1 ha+0.80*1 ha+1.3*1 
ha). 
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ha∙year (grandfathering principle). The scenario in California would, however, only require a slight 

reduction in indicator score (0.012 ha∙year) to be considered environmentally sustainable from the 

application of the grandfathering perspective. Note that some of the scenarios may be considered 

environmentally sustainable by the use of other valuation principles than the two used in this study. If, for 

example, value factors had instead been derived from relative contribution to meeting human needs, a 

relatively high carrying capacity would perhaps be entitled to residential electricity, since it enables people 

to meet essential needs, such as heating and cooking (although residential electricity certainly can be used 

for meeting less essential needs too). 

3.2.2 Spatial variations 

Since the indicator score is directly proportional to all input parameters (equation 5), results are equally 

sensitive to variations of all input parameters, i.e. a doubling of any parameter will lead to a doubling of 

indicator results. From Table 1 it can be seen that the input parameter showing the strongest relative 

variation in the case study is the emission intensity (factors of almost 200 and 100 difference from smallest 

to largest for SOX and NOX respectively) The cause of this variation is likely differences in flue gas cleaning 

systems, and for SOX also differences in the sulfur content of the coal (Henriksson et al., 2014). By contrast 

the state specific annual per capita residential electricity consumption (P) varies by a factor of 3, while CFs 

vary by a factor of 5 and 4 for SOX and NOX. Variations in P and CF thereby have negligible contributions to 

the observed 2 orders of magnitude variations in indicator scores of the 45 scenarios. In other words, to 

achieve a low carrying capacity occupation it is more important to be supplied by a power plant with low 

emission intensities than for the emissions of the power plant to deposit in areas with high carrying 

capacity or to reduce residential electricity consumption, although the latter is the only factor that the 

consumer can easily influence. The power plant located in South Carolina had by far the highest emission 

intensities of both SOX and NOX, which is the reason that the highest indicator score was observed for the 

scenario in this state (see Table 1). The power plant located in California had the 5th lowest average 

emissions intensity of the two pollutants. In combination with the lowest CF for both pollutants and the 

lowest residential electricity consumption this explains why the scenario of California had the lowest 

indicator score (see Table 1).  

 

With regards to the sensitivity of CFs to input parameters, equation 3 in turn shows that CFs are highest 

when depositions concentrate around receiving cells with low carrying capacities. This explains why the 

lowest CFs for both pollutants corresponds to the location of the California power plant for which the 

majority of depositions happens on grid cell with quite high carrying capacities. On the other hand the 

highest average CF is for the power plant in Minnesota for which the majority of depositions happens on 

grid cell with quite low carrying capacities, see Figure 4. 
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Figure 4: Maps of North America containing a) carrying capacities and power plants (stars), and b) deposition shares 

on cells receiving more than 0.1% of SOX emissions from the power plants in California and Minnesota (enlarged 

stars).  

 

a) 

b) 
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3.2.3 Comparison with alternative CFs 

Our CFs express carrying capacity occupation per kg emission and are calculated as acid deposits divided by 

a pH-based carrying capacity integrated over space (see equation 3). In contrast, the CFs of Roy et al. (2014) 

express the marginal increase in concentration of H+-ions in soil solution, compared to modelled existing 

concentrations, per kg emission. These CFs are calculated as acid deposits multiplied by a so-called soil 

sensitivity factor which represents the change in existing soil H+ related to a change in acid deposits 

integrated over space. Our CFs and the CFs of Roy et al. (2014) use the same fate factors for calculating acid 

deposits (Roy et al., 2012b) and thus differ only in the use of carrying capacity versus soil sensitivity factor. 

In Figure 5 we compare the two sets of CFs for the 45 power plant locations. Each set of CF is normalized to 

the CF of the power plants in Illinois, which ranks approximately in the middle of the 45 CFs for all 

pollutants and both studies. 

 

 
a) NOx 
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Figure 5: CFs of this study plotted against CF of Roy et al. (2014) for the 45 power plant locations for NOX, SOX and 

NHX. Each set of CF is normalized to the CF of the power plants in Illinois. State names are written for outliers (in 

grey across pollutants). CFs above the 1:1 line are relatively higher for Roy et al. (2014) than for this study and vice 

versa.   

 

It can be seen that there is some agreement between the two sets of CFs for all pollutants, although the 

agreement appears lower for NHX than the other pollutants. The partial agreement can be explained from 

b) SOx 

c) NHx 
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the common fate factors. Difference in agreement amongst the three pollutants can be explained from 

differences in deposition patterns of pollutants: Due to the relatively large shares of depositions of NHX 

close to the emission cell (see footnote 10) fewer grid cells receive large shares of an NHX emissions than 

for emissions of SOX and NOX. Differences between the relative values of carrying capacities and soil 

sensitivity factors in individual receiving cells will thus have the largest effect for NHX CFs. The range of CFs 

for the 45 power plant locations is for all pollutants larger for Roy et al. (2014) than for this study. This 

trend, which is strongest for NHX (Figure 5c), can be explained from the high range of global soil sensitivity 

factors of 11 orders of magnitude compared to the range of carrying capacities in this study of just 2 orders 

of magnitude (see S5). 

 

Two types of outliers can be seen on the plots of Figure 5. For the first type CFs in this study are relatively 

high, while CFs of Roy et al. (2014) are relatively low. This is the case for the CFs of Minnesota for NHX and 

CFs of Florida for SOX. In these cases the high CFs of this study are driven by relatively low carrying 

capacities in the grid cells receiving large shares of deposition. By comparison corresponding CFs of Roy et 

al. (2014) are moderate or low for Minnesota and Florida because soil sensitivity factors are moderate or 

low in the area receiving large shares of deposition. The observed discrepancies between soil sensitivity 

factors and carrying capacities can be explained from the fact that for some soils a relatively small acid 

deposition reduces the modelled natural pH by 0.25, while a marginal increase in acid deposition, 

compared to the modelled existing deposition, leads to a low marginal pH decrease. See Figure S7b for a 

conceptual pH curve that illustrates this point. This discrepancy between carrying capacity and soil 

sensitivity factor occur for some soils that have low carrying capacities and for which the background acid 

deposition is relatively small. This is the case for the parts of the US Midwest and Canada that receive large 

shares of the depositions from the emission cell of the Minnesota power plant. In these scarcely populated 

areas modelled background depositions of the three pollutants are 1-2 orders of magnitude lower than 

those of the most densely populated part of the US East Coast (data not shown). 

 

Outliers of the second type, i.e. low CFs of this study and high CFs of Roy et al. (2014), can be observed in 

Figure 5c for NHX for the grid cells of the New Hampshire, New York, Georgia and Tennessee power plants. 

In these cases the high CFs of Roy et al. (2014) are driven by high soil sensitivity factors in the emission cell 

and neighboring grid cells. These factors are high because modelled existing depositions are, due to high 

modelled existing depositions, somewhere in the steep interval of the pH curves of the soils, meaning that 

marginal increases in deposition can create high reductions in pH in these grid cells. See Figure S7c for a 

conceptual pH curve. Due to the large variation of soil sensitivity factors (see above), high factors in just a 

few of the grid cells receiving relatively high shares of an emission can to a very large extent drive CF values 

of Roy et al. (2014). By comparison the CFs of this study for the grid cells of the New Hampshire and New 

York power plants are no more than moderate in spite of low to moderate carrying capacities in the vicinity 

of the emission grid cell, because the power plants are close to the sea, meaning that relatively high shares 

of emissions deposits on water.  
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4 Discussion   
We have demonstrated the feasibility of modifying LCA indicators to AESI. Thereby we have shown that LCA 

can potentially solve some of the problems associated with current AESI, such as incomplete coverage of 

impact categories, varying quality of inventory data, varying or insufficient spatial resolution and the 

inconvenience to users of needing different software tools for accessing and using AESI. With point of 

departure in the experiences from the case study, this section discuss differences and complementarities 

between LCA based RESIs and AESI in decision support (aim 4) and proposes a research agenda for the 

support of AESI by LCA. 

4.1 Decision support related to absolute environmental sustainability 
The main characteristic of AESI is that they allow for the assessment of environmental sustainability of 

systems in absolute terms. This information can be useful on many levels. It may for instance quantitatively 

inform various emission reduction scenarios designed by e.g. municipalities, nations and supranational 

organizations with the purpose of achieving environmental sustainability. AESI can thus play similar roles as 

greenhouse gas emissions reduction scenarios, designed to prevent e.g. a temperature increase of 2°C 

(IPCC, 2013; Vuuren et al., 2011), that have been adopted at different governmental levels. Also AESI may 

support individuals motivated to learn what it takes to have an environmentally sustainable life style, i.e. 

one that is associated with environmental interferences that do not exceed the carrying capacity entitled to 

an individual person.  

4.2 Decision support related to ranking 
For a given impact category the ranking of systems or scenarios obtained by an AESI will in principal be 

identical to the ranking obtained by a RESI (relative environmental sustainability indicator) when the impact 

pathway model of the RESI is based on a linear approach (see the introduction section and S1). This is 

because the relationship between RESI and AESI CFs in such cases will be the same across pollutants and 

locations. There will therefore be no conflict between RESI based on the linear approach and AESI when 

used to support decisions where environmental performances of alternative solutions are part of the 

decision criteria. However, when the impact pathway model of a RESI is based on a marginal approach (see 

the introduction section and S1)there may be discrepancies in the relationships between AESI and RESI CFs 

across pollutants and locations, and thus in the ranking of systems or scenarios. This was observed to some 

extent in the case study when comparing the AESI developed in this study to the marginal based RESI of 

Roy et al. (2014) (see Figure 5). Thus, if the aim is to oppose reductions in soil solution pH, as quantified by 

Roy et al. (2014), the optimal solution may be different than the one corresponding to the aim of achieving 

the lowest possible carrying capacity occupation. Given these discrepancies between AESI and marginal 

based RESI, which type of indicator should ideally be used to support decisions related to environmental 

sustainability? The answer, we will argue in the next sub-section, is neither of the two, but both combined.  

4.2.1 Risk of sub-optimization 

If either marginal based RESIs or AESI are used in isolation there is a risk of sub-optimal decision support. In 

the case of marginal based RESIs Huijbregts et al. (2011) argued that quantifying marginal changes in 

environmental interferences can be misleading in cases where changes are small, but existing levels of 

environmental interferences are unacceptably high. For the impact category terrestrial acidification this 

may be the case for receiving cells in which existing depositions are so high that the corresponding existing 

pH is at the lower buffering zone of a pH curve (see Figure S7d and S7e). At this zone additional depositions 
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of hydrogen ions are effectively buffered through reaction with aluminium oxides and hydroxides from clay 

particles. In such cases RESI based CFs will be low and marginal emission increases will thus seem relatively 

unproblematic although the state of the soil ecosystems is highly degraded by existing depositions. Another 

case of sub-optimal decision support is when marginal changes are small and existing levels of 

environmental interferences are low, i.e. far from exceeding thresholds (see Figure S7a). Although a small 

marginal increase in existing levels of environmental interferences can here seem unproblematic for 

environmental sustainability this conclusion is not scalable. The marginal approach thus suffers from a 

freeriding bias, i.e. only “the drop that spills the cup” is blamed for the crossing of a threshold. This is 

especially problematic in situations where the combined environmental pressure is increasing, which has 

for example been the case in large parts of China during the last couple of decades. In such situations CFs 

based on marginal RESIs will potentially be highly time dependent.  

Decisions made only with the aid of AESI can also be suboptimal. For instance they may lead to choices that 

favour systems whose emissions end up in spatial units with high carrying capacity. Such choices can be 

suboptimal because they do not consider emissions of existing or future anthropogenic systems that, 

combined with the additional emissions, risk to exceed carrying capacities in these spatial units. An ideal 

quantification of entitlement would eliminate this risk of sub-optimization because it would take into 

account existing and potential competing systems, but the risk is quite real considering the difficulties of 

carrying out an ideal quantification of entitlement (see Section 2.4). 

4.2.2 Combining marginal based RESI and AESI to avoid sub-optimization 

The differences between the AESI and marginal based RESI are not only technical, but in fact also ethical:  

The CFs for terrestrial acidification developed in this study are compatible with decision making grounded 

in rule based ethics according to which a decision is considered “good” if it follows one or more prescribed 

rules that may be either universal or situation-dependent (Ekvall et al., 2005). In AESI the rule is that a 

decision should, whenever possible, lead to anthropogenic systems that do not occupy more carrying 

capacity than they can be considered entitled to. If this is not possible within the decision space, the rule is 

that a decision should lead to the lowest possible carrying capacity occupation amongst alternatives. Thus if 

all societal decisions were to follow these rules a transition towards environmental sustainability would in 

principle happen.12 In contrast, the decision-making that the marginal RESI of Roy et al. (2014) supports is 

grounded in consequential ethics, according to which a decision is “good” if its consequences are better 

than those of alternative(s) (Ekvall et al., 2005). The rule and consequential based ethics are conflicting in 

cases where following the prescribed rule(s) does not lead to the best consequences and vice versa.13   

In real life, decisions are unlikely to be based entirely on either rule or consequential ethics, because 

decisions are often taken in consensus processes and because individuals rarely 100% adhere to a specific 

ethical mindset (Hofstetter, 1998). Therefore the different ethical perspectives of marginal based RESI and 

AESI can be seen as complementary rather than competing. In the case study, our AESI was used to 

                                                           
12

 Note that the only way to guarantee that total carrying capacity is not exceeded by the combined environmental 
interferences of all anthropogenic systems is to (somewhat oxymoronically) ensure that the same valuation principle 
is used to calculate carrying capacity entitlement of all systems. 
13

 Consider the hypothetical situation where a person has the option of saving 5 lives by taking 1 (innocent) life. Doing 
this would lead to the best consequence, compared to inaction, but would also violate the rule of not killing an 
(innocent) person (Thomson, 1976).  
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evaluate the sustainability of the 45 scenarios absolutely and to point to the scenario associated with the 

lowest carrying capacity occupation. The RESI oriented CFs of Roy et al. (2014) could on the other hand 

point to the scenario associated with the lowest marginal increase in environmental interferences. Both 

types of information are valuable in decision processes, which aim to simultaneously reduce existing levels 

of environmental interferences efficiently and maintain, or take steps towards achieving, environmental 

sustainability of society as a whole and of its individual anthropogenic systems.  

4.3 Research agenda on AESI in a life cycle perspective 
This study is intended primarily as a proof of concept and its theme must be expanded upon in future 

research for the proposed modification of LCA to measure environmental sustainability in absolute terms to 

be useful in decision support. Below we outline a few key challenges that deserve academic attention.  

 

The designs of AESI are associated with several choices, to which indicator scores may show different 

degrees of sensitivities. In our modification of the LCA indicator for terrestrial acidification to AESI the 

choices of control variable, threshold value and the use of PROFILE to translate the threshold into carrying 

capacities all have potentially high contribution to uncertainty in indicator scores and efforts to reduce this 

uncertainty should be made (see S9 for an elaboration). Similar choices are unavoidable in any AESI. It is 

therefore important for indicator designers to 1) be aware of these choices and communicate them 

explicitly to users, so they can be considered in the decision support along with the indicator scores, 2) to 

quantify the sensitivity of indicator scores to changes in choices, and 3) to use these quantifications to 

effectively reduce overall uncertainties in indicator scores. As most choices are, at least partially, related to 

value judgement, consensus processes involving e.g. environmental scientists, indicator designers and 

indicator users may be feasible for reducing overall uncertainties.  

 

Uncertainties in LCIs also deserve attention when using AESI. Because many current societies cannot be 

considered environmentally sustainable a key use of AESI is to support transitions towards environmentally 

sustainable societies. Such transitions per definition involve large changes in technologies. For example, 

environmental interferences from energy use are expected to change considerably in many countries over 

the next decades. As a result, environmental interferences of many product systems will also change in the 

future. It is therefore important to carefully evaluate, and if necessary modify, existing LCI unit processes in 

absolute environmental sustainability assessments, which aims to capture the effects of future 

technological transformations (Miller and Keoleian, 2015). 

 

A core characteristic of LCA is that it covers a comprehensive set of impact categories. In this context a 

relevant question is how to aggregate AESI scores from different impact categories. One option is to simply 

add the scores since they can be expressed in the same metric (ha∙year) for all impact categories. However, 

a weighting step may be required as the consequences of exceeding carrying capacities can vary in severity 

between impacts categories. Some factors influencing the severity of exceedance are the social and/or 

economic consequences, the spatial extent and the time required for reversion of damage. In addition, care 

should be taken when attempting to aggregate indicator scores across impact categories, since the 

interaction between different types of environmental interferences within a specific territory is complex 

and not well understood. For some combinations of impact categories additivity between carrying capacity 

occupations may be a good assumption. In other cases, however, a territory that has its carrying capacity 
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100% occupied for one impact category may have unoccupied carrying capacity for other impact 

categories14, which means that simply adding indicator scores across impact categories would overestimate 

the actual area equivalent of carrying capacity occupation. Another challenge related to aggregating 

indicator scores is the need for absolute sustainability references for the LCA impact categories that are not 

related to ecosystems, i.e. those related to human health impacts and depletion of non-renewable 

resources. Carrying capacity does per definition not apply to such impact categories, but other more 

normative sustainability references may be quantified (McElroy et al., 2008).  

 

Another key challenge is how to integrate a carrying capacity entitlement module in LCA software that is 

relevant and requires only a manageable data input by the software user. Ideally the user should only have 

to choose a valuation principle and define the duration of environmental interventions (t) of each emission 

location. The software would then calculate Taffected and Aaffected, identify competing systems and 

subsequently calculate VF to arrive at the carrying capacity entitlement (see equation 4) for each emission 

location and compare this to the corresponding indicator score. This would require the software to be 

equipped with a fate model, calculating Taffected and Aaffected for each emission location, and to be linked to a 

complete spatially derived emission inventory that contains information needed to calculate VF, such as 

contribution to GDP, for each of its anthropogenic systems. For many emissions in a typical product life 

cycle location and duration (t) will be partly or completely unknown. The AESI should therefore be 

equipped with a meaningful default choice for location and duration that is compatible with the calculation 

of carrying capacity entitlement. 

Supporting Information 

Supporting information is available online and contains methodological details and elaboration of results 

and discussions. 

5 References 
ACCCE, 2014. Energy Cost Impacts on American Families, 2001-2014. American Coalition for Clean Coal 

Electricity 
Azevedo, L.B., van Zelm, R., Hendriks, a J., Bobbink, R., Huijbregts, M. a J., 2013. Global assessment of the 

effects of terrestrial acidification on plant species richness. Environ. Pollut. 174, 10–5.  
Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q.B., Liu, H.G.Y., Mickley, L.J., 

Schultz, M.G., 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model 
description and evaluation. J. Geophys. Res. 106, 23073–23095. 

Bjørn, A., Diamond, M., Birkved, M., Hauschild, M.Z., 2014. Chemical footprint method for improved 
communication of freshwater ecotoxicity impacts in the context of ecological limits. Environ. Sci. 
Technol. 48, 13253–13262.  

Bjørn, A., Hauschild, M.Z., 2015. Introducing carrying capacity based normalization in LCA: framework and 
development of references at midpoint level. Int. J. Life cycle Assess. 20, 1005–1018. 

Bjørn, A., Richardson, K., Hauschild, M.Z., 2015. Environmentally sustainable or not? Managing and 
reducing indicator uncertainties. Ecol. Indic. In review.  

                                                           
14

 This situation will for example occur when carrying capacities are derived from a threshold of affected species and 
when the species that are most sensitive to one type of environmental interferences (e.g. acidification) are different 
than the species that are most sensitive to another type (e.g. chemicals with eco-toxicity potentials). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 
 

Borucke, M., Moore, D., Cranston, G., Gracey, K., Iha, K., Larson, J., Lazarus, E., Morales, J.C., Wackernagel, 
M., Galli, A., 2013. Accounting for demand and supply of the biosphere’s regenerative capacity: The 
National Footprint Accounts' underlying methodology and framework. Ecol. Indic. 24, 518–533.  

Castellani, V., Sala, S., 2012. Ecological Footprint and Life Cycle Assessment in the sustainability assessment 
of tourism activities. Ecol. Indic. 16, 135–147.  

DoE, 2015. Clean Energy in My State [WWW Document]. Department of Energy. URL 
http://apps1.eere.energy.gov/states/ 

Ecoinvent, 2015. Ecoinvent version 3 [WWW Document]. URL http://www.ecoinvent.org/  
Ekvall, T., Tillman, A.-M., Molander, S., 2005. Normative ethics and methodology for life cycle assessment. 

J. Clean. Prod. 13, 1225–1234. 
EMEP, 2015. Emissions as used in EMEP models [WWW Document]. WebDab - EMEP database. The 

European Monitoring and Evaluation Programme. URL 
http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/emissions_emepmodels/ 

EPA, 2014. Ninth edition with year 2010 data (Version 1.0) [WWW Document]. eGRID. Environmental 
Protection Agency. URL http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 

Goodland, R., 1995. The Concept of Environmental Sustainability. Annu. Rev. Ecol. Syst. 26, 1–24. 
Greenpeace, 2012a. Scorecard. Greenpeace. 
Greenpeace, 2012b. Guide to Greener Electronics - Ranking Criteria Explained: August 2012, v. 18 onwards. 

Greenpeace 
Hak, T., Moldan, B., Dahl, A.L., 2012. Editorial. Ecol. Indic. 17, 1–3. 
Hauschild, M.Z., Huijbregts, M.A.J., 2015. Life Cycle Impact Assessment. Springer Netherlands. 
Henriksson, P.J.G., Zhang, W., Guinée, J.B., 2014. Updated unit process data for coal-based energy in China 

including parameters for overall dispersions. Int. J. Life Cycle Assess. 20, 185–195.  
Hoekstra, A.Y., Mekonnen, M.M., 2012. The water footprint of humanity. Proc. Natl. Acad. Sci. U. S. A. 109, 

3232-3237.  
Hofstetter, P., 1998. Perspectives in life cycle impact assessment : A structures approach to combine 

models of the technosphere, ecosphere and valuesphere. Kluwer Academic Publishers. 
Hsu, A., Emerson, J., Levy, M., Sherbinin, A. de, Johnson, L., Malik, O., Schwartz, J., Jaiteh, M., 2014. The 

2014 Environmental Performance Index. New Haven, CT. 
Huijbregts, M. A. J., Hellweg, S., Frischknecht, R., Hungerbühler, K., Hendriks, a. J., 2008. Ecological footprint 

accounting in the life cycle assessment of products. Ecol. Econ. 64, 798–807.  
Huijbregts, M. A. J., Schöpp, W., Verkuijlen, E., Heijungs, R., Reijnders, L., 2000. Spatially Explicit 

Characterization of Acidifying and Eutrophying Air Pollution in Life-Cycle Assessment. J. Ind. Ecol. 4, 
75–92. 

Huijbregts, M.A.J., Hellweg, S., Hertwich, E., 2011. Do We Need a Paradigm Shift in Life Cycle Impact 
Assessment ? Environ. Sci. Technol. 45, 3833–3834. 

IEA, 2012. Electricity Information - IEA Statistics. International Energy Agency. 
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 

Kitzes, J., Galli, A., Bagliani, M., Barrett, J., Dige, G., Ede, S., Erb, K., Giljum, S., Haberl, H., Hails, C., Jolia-
Ferrier, L., Jungwirth, S., Lenzen, M., Lewis, K., Loh, J., Marchettini, N., Messinger, H., Milne, K., Moles, 
R., Monfreda, C., Moran, D., Nakano, K., Pyhälä, A., Rees, W., Simmons, C., Wackernagel, M., Wada, Y., 
Walsh, C., Wiedmann, T., 2009. A research agenda for improving national Ecological Footprint 
accounts. Ecol. Econ. 68, 1991–2007. 

McElroy, M.W., Jorna, R.J., Engelen, J. Van, 2008. Sustainability Quotients and the Social Footprint. 
Corporate Social Responsibility and Environment Management 234, 223–234. 

Miller, S. a, Keoleian, G. a, 2015. Framework for analyzing transformative technologies in life cycle 
assessment. Environ. Sci. Technol. 49, 3067–75.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

25 
 

Moldan, B., Janoušková, S., Hák, T., 2012. How to understand and measure environmental sustainability: 
Indicators and targets. Ecol. Indic. 17, 4–13.  

Posch, M., Seppälä, J., Hettelingh, J.-P., Johansson, M., Margni, M., Jolliet, O., 2008. The role of atmospheric 
dispersion models and ecosystem sensitivity in the determination of characterisation factors for 
acidifying and eutrophying emissions in LCIA. Int. J. Life Cycle Assess. 13, 477–486.  

PRé, 2015. SimaPro - World’s Leading LCA Software [WWW Document]. URL http://www.pre-
sustainability.com/simapro 

Roy, P.-O., Azevedo, L.B., Margni, M., van Zelm, R., Deschênes, L., Huijbregts, M.A.J., 2014. Characterization 
factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and 
uncertainty. Sci. Total Environ. 500-501C, 270–276. 

Roy, P.-O., Deschênes, L., Margni, M., 2012a. Life Cycle Impact Assessment of Terrestrial Acidification: 
Modeling Spatially Explicit Soil Sensitivity at the Global Scale. Environ. Sci. Technol. 46, 8270–8278. 

Roy, P.-O., Huijbregts, M., Deschênes, L., Margni, M., 2012b. Spatially-differentiated atmospheric source–
receptor relationships for nitrogen oxides, sulfur oxides and ammonia emissions at the global scale for 
life cycle impact assessment. Atmos. Environ. 62, 74–81. 

Sayre, N.F., 2008. The genesis, history, and limits of carrying capacity. Ann. Assoc. Am. Geogr. 98, 120–134.  
Singh, R.K., Murty, H.R., Gupta, S.K., Dikshit, a. K., 2012. An overview of sustainability assessment 

methodologies. Ecol. Indic. 15, 281–299. 
Sparks, D.S., 2002. Environmental Soil Chemistry, 2nd ed. Academic Press. 
Spranger, T., Lorenz, U., Gregor, H.-D., 2004. Manual on methodologies and criteria for Modelling and 

Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. Federal Environmental 
Agency (Umweltbundesamt), Berlin. 

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., 
de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., 
Reyers, B., Sorlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. 
Science 347(6223).Tegen, I., Fung, I., 1994. Modeling of mineral dust in the atmosphere: Sources, 
transport, and optical thickness. J. Geophys. Res. 99, 22897–22914. 

Thinkstep, 2015. GaBi LCA Software [WWW Document]. URL http://www.thinkstep.com/software/gabi-lca/  
Thomson, J.J., 1976. Killing, letting die, and the trolley problem. Monist 59, 204–217. 
UNDESA, 2012. Total Population - Both Sexes, United Nations Department of Economic and Social Affairs 

[WWW Document]. World Population Prospects. 2012 Revis. URL http://esa.un.org/wpp/Excel-
Data/population.htm 

USCB, 2012. United States Summary: 2010, Population and Housing Unit Counts, 2010 Census of Population 
and Housing. United States Census Bureau.  

USCB, 2015. Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2014. U.S. Census Bureau, 
Population Division [WWF Document]. URL 
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2014_PEPAN
NRES&src=pt  

Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., 
Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The 
representative concentration pathways: an overview. Clim. Change 109, 5–31. 

Warfvinge, P., Sverdrup, H., 1992. Calculating critical loads of acid deposition with PROFILE - A steady-state 
soil chemistry model. Water, Air, Soil Pollut. 63, 119–143. 

WRI, 2005. Millennium Ecosystem Assessment: Ecosystems and human well-being. Synthesis. Island Press, 
World Resources Institute, Washington, DC. 

Zijp, M.C., Posthuma, L., van de Meent, D., 2014. Definition and Applications of a Versatile Chemical 
Pollution Footprint Methodology. Environ. Sci. Technol. 48, 10588–10597. 

 



Figure 3a
Click here to download high resolution image

http://ees.elsevier.com/ecolind/download.aspx?id=215721&guid=5238cb67-c5d8-4ade-b8d0-2e3425dc3280&scheme=1


Figure 3b
Click here to download high resolution image

http://ees.elsevier.com/ecolind/download.aspx?id=215722&guid=b3783d20-7add-4607-867c-1af5a8b3d97f&scheme=1


Figure 3c
Click here to download high resolution image

http://ees.elsevier.com/ecolind/download.aspx?id=215723&guid=ca95d34d-240c-4765-bcc4-a76f34e73b87&scheme=1


Figure 4a
Click here to download high resolution image

http://ees.elsevier.com/ecolind/download.aspx?id=215724&guid=0e63f159-721b-499e-a543-b15ec0ac725e&scheme=1


Figure 4b
Click here to download high resolution image

http://ees.elsevier.com/ecolind/download.aspx?id=215725&guid=1ff7b84f-5224-478d-a440-42697cb84be3&scheme=1


SS, X1, 
X2, X3

X3X2

X1

Simplification 1: 
Reduced geographical 
boundary

Simplification 2: 
Same fate

Simplification 3: 
Closed system

Figure 2



1 
 

Supporting information 

A proposal to measure absolute environmental sustainability in Life 
Cycle Assessment  

Anders Bjørn1, Manuele Margni2, Pierre-Olivier Roy2, Cécile Bulle3 and Michael Zwicky 
Hauschild1 

1
The Technical University of Denmark, Produktionstorvet, Building 424, 2800 Kgs. Lyngby, Denmark 

2
CIRAIG, Polytechnique Montréal, 2500, chemin Polytechnique, H3T 1J4, Montréal (QC), Canada 

3
CIRAIG, Ecole des Sciences de la Gestion, Université du Québec à Montréal, 315, rue Sainte-Catherine 

Est, H2X 3X2, Montréal (QC), Canada 
E-mail contact : anbjo@dtu.dk   

 

 

Contents 
1. Linear and marginal approaches in LCA indicators ................................................................................... 2 

2. pH thresholds ............................................................................................................................................ 3 

3. Design of deposition steps ........................................................................................................................ 5 

4. Kringing function ....................................................................................................................................... 6 

5. Additional results ....................................................................................................................................... 8 

6. Characterisation factors .......................................................................................................................... 10 

7. Conceptual pH curves .............................................................................................................................. 11 

8. Key choices in the AESI for terrestrial acidification ................................................................................. 14 

9. References ............................................................................................................................................... 15 

 

 

  

Supplementary Material



2 
 

1. Linear and marginal approaches in LCA indicators 
 

Figure S1.1 shows the two different approaches to calculating small changes in environmental interference 

from small changes in emissions and resource use.  
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Figure S1.1: Linear and marginal approach in LCA indicators for a cause-effect curve. 
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2. pH thresholds  
To determine a pH threshold the pH for 70 random grid cells was simulated using PROFILE in a sequence of 

71 steps. In the first step only grid specific natural depositions, from e.g. lightning, eruptive and non-

eruptive volcanoes, were modelled based on Tegen & Fung (1994) and Bey et al. (2009). In the subsequent 

70 steps the average background deposition of SOX (approx. 0.1 keq/ha/year) was increased by a factor of 5 

for each step so that the average background deposition of SOX increase was by a factor 350 at the final 

step 70. 

Figure S2.1 shows the simulated pH variations for three representative receiving grid cells according to an 

increase of deposition above the natural deposition. Depositions corresponding to a pH decrease of 0.25 

and an absolute minimum pH of 4 are indicated. 
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Figure S2.1: pH variations of receiving environment grid cell according to an increase of deposition of SOX above 

natural emissions for three representative receiving grid cells. Carrying capacities (CC) corresponding to a pH 

decrease of 0.25 and an absolute minimum pH of 4 are indicated.  
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3. Design of deposition steps 
Carrying capacity (eq.*ha-1*year-1) was calculated for the 70 random grid cells presented in S2 based on the 

71 deposition steps. 1 eq refers to 1 mol H+-eq. From this the distribution presented in Figure S3.1 was 

obtained. 

   

Figure S3.1: Threshold distribution for the 71 steps increasing deposition above natural emissions by a factor of 0 to 

350 . 1 keq refers to 1000 mol H+-eq. 

It appear that the distribution of carrying capacities in all grid cells may be best be described by a log 

normal distribution, since the highest frequency of carrying capacities are just above 0 and a long tail in the 

distribution can be observed as depositions are increased. In designing the deposition steps we aimed for a 

uniform distribution of grid cell carrying capacities, in other words ≈10% falling into each interval. We did 

not carry out more than 9 steps due to the computational capacity required to model pH for 99,515 cells in 

each deposition step. This lead to the carrying capacity intervals and values used in CF calculations shown in 

table S3.1: 

Table S3.1: Deposition intervals 

Step Carrying capacity interval Carrying capacity used for CF calculations 

# eq*ha
-1

*year
-1

 eq*ha
-1

*year
-1

 

1 <100 50 

2 100-200 150 

3 200-300 250 

4 300-400 350 

5 400-600 500 

6 600-1200 900 

7 1200-2000 1600 

8 2000-2800 2400 

9 2800-4000 3400 

NA >4000 5000 
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4. Kringing function 
The function is presented in a Matlab script below 

 

%%% Prepare an excel sheet with latitude and longitude coordinates in column 1 and 2, and CC_min, 

CC_max and CC_default in column 3, 4 and 5 

%%% Flag the non-convergence error by the number 1E8 

%%% Load the excel sheet 

file=xlsread('pathname',1); 

%%% Identifies erroneous cells 

X=find(file(:,3)==1E8); 

Y=find(file(:,4)==1E8); 

Z=find(file(:,5)==1E8); 

it=1; 

while it<=size(X,1) 

    %%% identify the areas that are closest to the ones that you need to correct 

    U=find(file(:,1)>file(X(it),1)-0.5 & file(:,1)<file(X(it),1)+0.5 &... 

        file(:,2)>file(X(it),2)-0.5 & file(:,2)<file(X(it),2)+0.5); 

     

    eval(it)=size(U,1); 

    ver=find(file(U,5)<1E8); 

    verif(it)=size(ver,1); 

     

    comp=1; 

    while verif(it)<1 

         

        U=find(file(:,1)>file(X(it),1)-comp & file(:,1)<file(X(it),1)+comp &... 

            file(:,2)>file(X(it),2)-comp & file(:,2)<file(X(it),2)+comp); 
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        ver=find(file(U,5)<1E8); 

        verif(it)=size(ver,1); 

        comp=comp+1; 

    end 

 

   garde1=file(U,3); % TMin 

   garde2=file(U,4); % Tmax 

   garde3=file(U,5); % Tmoyen 

   p=find(garde1<1E8); 

   q=find(garde2<1E8); 

   r=find(garde3<1E8); 

      

   %%% calculate the median without the cells without the ones which are erroneous  

   file(X(it),3)=median(garde1(q)); 

   file(Y(it),4)=median(garde2(q)); 

   file(Z(it),5)=median(garde3(q)); 

    it=it+1 

end 

 

ok=zeros(99515,1); 

ok(X)=1; 

 

final=[file,ok];  
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5. Additional results 
Figure S5.1 shows the global distribution of carrying capacity. By comparison the soil sensitivity factors (SF) 

of Roy & Desche (2012) for NOX, SOX and NHX are shown in Figures S5.2-S5.4.  

 
Figure S5.1: Carrying capacity. 

 

 
Figure S5.2: Soil sensitivity factors (SF) of Roy & Desche (2012) for NOX. 
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 Figure S5.3: Soil sensitivity factors (SF) of Roy & Desche (2012) for SOX. 

 

 Figure S5.4: Soil sensitivity factors (SF) of Roy & Desche (2012) for NHX.  
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6. Characterisation factors 
See Excel sheet for CFs for SOX, NOX and NHX. The GIS coordinates correspond to the lower left corner of 

grid cells.  
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7. Conceptual pH curves 
Figure S7 shows conceptual pH curves related to the derivation of soil sensitivity factors and carrying 

capacities for 5 cases, which varies with respect to natural pH (manmade deposition = 0) and level of 

modelled existing deposition. 
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Figure S7. Response in pH to deposition for 5 cases combining values of natural pH and baseline depositions. Soil 

sensitivity factors (SF) and carrying capacities (CC) are categorized accordingly.  
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8. Key choices in the AESI for terrestrial acidification 
In our modification of the indicator of Roy et al. (2014) we chose two complementary threshold values 

based on the two points of the pH curve where the carbonate buffering system starts weakening and 

where the mobilisation of aluminium starts to occur. As environmental sustainability references other pH 

related threshold values could be applied, for example by taking the pH sensitivity of vegetation into 

account, as proposed in the critical loads concept (Spranger et al. 2004). We could also have applied a 

control variable more directly related to the sensitivities of ecosystems, such as “potentially disappeared 

fraction of species” (PDF), which is a common damage indicator in LCA. In this case a corresponding 

threshold value of a sustainable minimum level of species diversity should be chosen. The change in 

indicator score from changing choices of control variable and threshold value is important to quantify in the 

effort of managing and reducing overall uncertainties in indicator scores. 

We furthermore calculated a substance generic carrying capacity from simulation of pH responses to 

increasing depositions of SOX. However depositions of similar quantities of H+ equivalents can cause 

different responses in pH for nitrogen containing pollutants (NOX and NHX) than for SOX due to the effect of 

nitrogen uptake processes in vegetation across soils. To reduce the uncertainty introduced by calculating 

substance generic carrying capacity, simulations of pH response to stepwise increasing depositions of NOX 

and NHX should be carried out in the same manner as they were done for SOX here.  

 

Thirdly, due to the approach of determining carrying capacities from simulated pH responses to stepwise 

increases of deposition, the range of carrying capacity values was in fact determined by the carrying 

capacity values assigned to grid cells for which threshold were crossed at the first deposition step and grid 

cells for which thresholds were not crossed at deposition step 9. In this study the former was assigned a 

value of 50 eq*ha-1*year-1 (the middle of the 0-100 eq*ha-1*year-1 interval in which the actual carrying 

capacity lies according to PROFILE) and the latter an arbitrary value of 5000 eq*ha-1*year-1 (the deposition 

at step 9 was 4000 eq*ha-1*year-1). The sensitivity of CFs to the assignment of minimum and maximum 

carrying capacities could be easily tested. If large uncertainties should be reduced by obtaining more 

realistic minimum and maximum carrying capacity values from additional simulations in PROFILE.  
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