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Abstract 

Here, we review 33 life cycle assessment (LCA) studies of thin-film photovoltaic (PV) technologies that have 

had a holistic coverage in their assessments and/or have included ecodesign aspects. Only five of them were 

found to have a comprehensive life cycle and impact coverage, and their analyses highlighted the importance 

of (i) including the entire life cycle of the PV system, in particular the often-omitted disposal stage, and (ii) 

assessing all relevant impact categories and not just climate change or energy requirements to minimise the 

risk of burden-shifting. Out of the 28 studies embracing ecodesign considerations in parts of the PV life cycle, 

the analysis of the eleven of them addressing primary energy demand during module production suggests 

that electricity consumption during the metal deposition processes is a top contributor and should be 

prioritised by PV technology developers. A similar analysis of the ten studies having included the balance of 

system components (BOS) in the assessments showed that these contribute significantly to most 

environmental impact categories. Beyond recommending that stakeholders in the PV field rely on LCA to 

support decision-making and to guide scientific research and technological development, we strongly 

advocate LCA practitioners to include the entire PV system, including the BOS, to identify ecodesign 

opportunities without risking potential burden-shifting across the different parts of the system and across 

impact categories. 

 

Keywords: eco-design; life cycle assessment; photovoltaics; thin film 

 

1. Introduction 

Low-carbon energy technologies are essential to support climate change mitigation strategies and address 

rapid growth of global electricity demand. According to the International Energy Agency’s (IEA) BLUE Map 
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scenario, wide-scale deployment of low-carbon technologies is needed in order to meet electricity demands 

in 2050 while cutting greenhouse gas (GHG) emissions from power generation by 76% compared to 2007 [1]. 

Renewable energy sources are expected to contribute significantly to this effort with the BLUE Map scenario 

suggesting an increase in the combined share of solar, wind and hydropower from 16.5% of total electricity 

generation in 2010 to 39% in 2050. With respect to photovoltaics (PV), the global installed capacity of 135 

GW in 2013 is envisioned to rise to 1721 GW by 2030 and 4674 GW by 2050 according to the High Renewables 

scenario planned by the IEA in its 2014 technology roadmap for solar photovoltaic energy [2]. These projected 

PV installed capacities could profitably be integrated onto building structures, where they could form mini-

grids and sustain self-production and self-consumption. In particular, a deployment in urban areas not only 

onto residential buildings but also onto other types of buildings, e.g. offices or supermarkets, could bring a 

good match between the demand and the daytime supply of electricity [3]. 

In Europe, which has pioneered the deployment of photovoltaics, PV technologies are expected to contribute 

to the European Union’s (EU) energy efficiency targets by improving the energy performance of the building 

sector (Directive 2012/27/EU). There is a growing consensus that building-integrated photovoltaic (BIPV) 

systems will play a major role for achieving EU’s target for nearly zero-energy buildings (NZEB) [4]. In addition 

to generating electricity, BIPV systems perform building envelope functions by replacing building elements, 

e.g. windows, tiles, shingles and blinds. It is therefore important to account fully for these multi-

functionalities when estimating financial and environmental costs and benefits. In this regard, a distinction 

between wafer-based and thin-film PV technologies is necessary as the latter presents significant advantages 

over the former in BIPV applications, such as lower weight and lower installation costs as well as improved 

flexibility and optical semi-transparency [5,6].  

In that context, it is important to ensure that such development and deployment of the PV technologies be 

made with as low environmental impacts as possible [7,8]. A number of studies have thus warned against 

risks posed by the global deployment of PV systems at the terawatt scale of installed capacity, e.g. the 

pressure on critical materials like rare earth metals from different solar cell technologies [6,9–11]. To address 

these environmental problems in a holistic manner, life cycle assessment (LCA) can be used. LCA is a decision-

support tool that enables the quantification of all relevant environmental impacts throughout a system’s life 

cycle from raw materials extraction through manufacturing and use/operation of the system up to its end-

of-life, according to ISO 14040/14044:2006 standards [12,13]. It is conducted iteratively through four phases: 

goal and scope definition; life cycle inventory (LCI) analysis; life cycle impact assessment (LCIA); and, 

interpretation [13]. LCA has been widely used for investigating the environmental impact of PV technologies, 

and LCA practitioners were recently provided with methodological guidance issued by the IEA [14]. Until now, 

LCA applications to PV technologies have mainly had two purposes: (i) to document environmental 

performances of specific technologies and compare them to other renewable and non-renewable energy 

systems; and (ii) to identify environmental hotspots and guide scientific research and technological 

development.  

The ecodesign of energy-related products is a crucial factor in the EU strategy on Integrated Product Policy 

(Directive 2009/125/EC). It is seen as an effective tool to improve energy efficiency as well as support 

industrial competitiveness and innovation by promoting the better environmental performance of products 

throughout the Internal Market. According to the Directive, ecodesign of energy-related products such as PV 

modules is defined as the ‘integration of environmental aspects into product design with the aim of 
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improving the environmental performance of the product throughout its whole life cycle’. The current work 

relates to the latter purpose of utilising LCA as a tool for ecodesign, with a focus on BIPV applications and 

thus thin-film PV systems. 

Until now, most review papers of LCA studies covering thin-film PV technologies have limited their focus to 

collecting results on GHG emissions and energy-related indicators such as cumulative energy demand (CED) 

and energy payback-time (EPBT), and comparing performances among different PV and renewable 

technologies [15–23]. Table S.1 illustrates those limitations, also in relation to the technological scope and 

thin-film PV coverage. Only a few review papers go beyond this scope, and consider other environmental 

impact categories (LCA term for classes representing environmental issues of concern e.g. climate change, 

land use, resource depletion) [24–27] or examine contributions of specific system components to the total 

environmental burden [28,29].  

Overall, existing review papers lack a systematic consideration of all possible environmental issues (beyond 

climate change), and an explicit description of which processes or parts of the PV life cycle were considered  

by the LCA studies under review. These considerations are critical within the LCA methodological framework. 

Only by considering all environmental impact categories and the entire PV life cycle, including the often-

omitted disposal stage, the shifting of a potential environmental burden from one life cycle stage to another 

or from one environmental problem to another can be identified and possibly avoided [12]. Otherwise, 

potential trade-offs might be missed, and environmental burden-shifting might take place, e.g. focusing on 

reducing GHG emissions while inadvertently increasing other nonetheless relevant impacts [30]. Examples of 

such relevant impacts include damages to ecosystems and human health caused by emissions of toxic 

substances or metal depletion, e.g. rare earth metals [31–33]. Finally, most review papers in the scientific 

literature lack an ecodesign perspective, where the identification of the so-called environmental hotspots, 

i.e. life cycle stages, system components or processes where the largest impacts stem from, are rarely 

associated with ecodesign recommendations relevant to PV technology developers. 

The purpose of this study is therefore to address these gaps. Taking all studies addressing relevant impact 

categories throughout the entire life cycle of the PV systems, including the often-omitted disposal stage, we 

aim to investigate how results of past LCA studies of thin-film PVs can be used to identify bottlenecks and 

opportunities for technological improvement and mitigation of environmental impacts. Also, by identifying 

and critically reviewing ecodesign aspects of LCA studies across thin-film technologies, we aim to highlight 

the value of using LCA as a strategic decision-support tool to guide scientific research and technological 

development [31], and not just document the environmental performance of the system under study. The 

intended audience of our work includes both thin-film PV technology developers and LCA experts. We believe 

that effective ecodesign of thin-film PV requires a collaborative effort and expertise in both fields, according 

to international standards of environmentally conscious design for electrical and electronic products that 

stipulate that “environmentally conscious design requires collaboration and contributions of all stakeholders 

along the supply chain” [34]. 

2. Methods 

2.1. Technological  scope  

The review scope includes LCA studies of thin-film photovoltaic technologies suitable for building integration, 

and excludes concentrated PV systems and product-integrated PVs. Studies that examined multifunctional 
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systems with combined results such as green roofs, solar houses, and water desalination systems were 

deemed outside the scope of this study and were thus disregarded. Thin-film photovoltaic technologies 

include commercial technologies, cadmium telluride (CdTe), copper indium gallium diselenide (Cu(In, Ga) Se2 

or CIGS), as well as amorphous and nanocrystalline silicon (a-Si and nc-Si); and, emerging technologies, 

copper zinc tin sulphide (Cu2ZnSnS4 or CZTS), zinc phosphide (Zn3P2), perovskite solar cells (PSC), organic 

photovoltaics (OPV), dye-sensitized solar cells (DSSC), quantum dot photovoltaics (QDPV), and gallium 

arsenide (GaAs) were included as thin-film despite requirement for wafers as templates for crystal growth 

[6].  

2.2. Collection of studies 

Only scientific journal papers written in English and published from 2000 and onwards were considered in 

the review. A screening step using the Scopus database (http://www.scopus.com/) was used and 

complemented by a check for citing and cited papers of all relevant papers with case studies and reviews of 

LCA applied to thin-film PV (see also Table S.1). An additional screening step was made using Google Scholar 

(https://scholar.google.com/) to identify more recent literature published until mid-2015.  

2.3. Analysis and classification of studies 

The collected studies were evaluated with respect to the extent of their coverage of the PV life cycle, the 

range of the included environmental impact categories, and the inclusion of ecodesign recommendations. 

The studies were grouped in two sets described below. 

Set 1 comprises LCA studies that cover the entire PV life cycle, and include more than one impact category. 

Figure 1 illustrates the system boundaries of the entire PV life cycle (cradle to grave) used as reference in the 

review. It encompasses the production stage with all upstream processes, including the resource extractions; 

the use stage including the installation and operation with balance of system components (BOS) such as 

inverters, wiring and support structures; and, the end-of-life stage covering decommission and waste 

management of all materials, including potential recycling. Capital infrastructure, labour work and 

maintenance have been excluded.  

With respect to the impact categories, these include: climate change (CC); ozone depletion (OD); 

photochemical ozone formation (POF), acidification (A); eutrophication (E); terrestrial eutrophication (TE); 

freshwater eutrophication (FE); marine eutrophication (ME); freshwater ecotoxicity (FEC); terrestrial 

ecotoxicity (TEC); human toxicity (HT); human toxicity, cancer effects (HTC); human toxicity, non-cancer 

effects (HTnC); respiratory inorganics (RI); ionising radiation, human health (IR); land use (LU); agricultural 

land occupation (ALO); urban land occupation (ULO); natural land transformation (NLT); water resource 

depletion (WD); resource depletion (RD); metal depletion (MD); fossil depletion (FD); and, solid waste (SW).  

In addition to the above, although CED is not an environmental impact assessment category in LCA terms (i.e. 

energy consumption is not an environmental problem per se), it was regarded as one for the analysis of the 

studies, as explained next. Although LCIA methodological uncertainties should be considered, CED results 

have been shown to correlate well with a number of impact categories, including climate change, resource 

depletion, acidification, eutrophication, photochemical ozone formation, ozone depletion and human 

toxicity, when assessing the environmental performance of energy production [35].  

http://www.scopus.com/
https://scholar.google.com/
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Set 2 has no requirements with respect to the PV life cycle coverage or the environmental impact coverage 

of the studies, and comprises all LCA studies with ecodesign aspects, i.e. studies where authors have used 

their results in order to draw conclusions and make recommendations for further research and development 

of thin-film PV technologies. Set 2 can thus be overlapping with Set 1, provided that studies meet the criteria 

for Set 1 and include an ecodesign focus. 

 

 

Figure 1. System boundaries of a complete PV life cycle (cradle to grave) as considered in this work: 

production stage with all upstream processes; use stage including installation and operation with balance 

of system components (BOS) such as inverters, wiring and support structure; and, end-of-life stage covering 

decommission and waste management of all materials. 
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2.4. Interpretation of study findings 

Set 1 was quantitatively analysed to examine (i) the influence of including the entire life cycle, in particular 

the disposal stage, in the overall environmental burden, and (ii) the importance of covering all relevant 

environmental impact categories to avoid burden-shifting.  

Set 2 was investigated to identify (i) important impact categories to consider in LCA studies of thin-film 

photovoltaics, (ii) hotspots of primary energy demand (PED) at the module level, and (iii) contributions of 

BOS components to environmental burden. Important impact categories were identified by checking 

whether the studies produced normalised LCA results (and assuming equal weighting among impact 

categories). In LCA context, normalisation is performed to better understand the relative magnitude of each 

of the environmental impact results of the system under study, by putting them in perspective with a 

reference situation e.g. impacts associated with the territorial activities of a given region [13]. In practice, 

normalisation transforms each environmental impact indicator score by dividing it by a corresponding 

reference value, the so-called normalisation reference, which reflects the average impact of that reference 

system over a period of time, e.g. annual contribution of an average person in the world to each of the impact 

categories [36].  

3. Results and Discussion 

3.1. Collected LCA studies of thin-film PVs 

A total of 46 papers with LCA studies of thin-film technologies were collected, and a total of 31 studies were 

identified as fulfilling the criteria for Set 1 and/or Set 2 – see Table 1. Fifteen studies were thus disregarded; 

these are documented in Table S.2, available in the Supporting Information. 

Commercial technologies CdTe, CIGS and thin-film Si along with the emerging organic photovoltaics (OPV) 

were largely represented with 11-16 studies per technology (Table 1). Emerging technologies like DSSC, GaAs 

and QDPV were less represented with 2-4 studies per technology. The rapidly evolving technology of 

perovskite solar cells is also included with two recently published studies. Overall, the number of studies has 

increased significantly with two thirds of them published in the period 2011-2015. With regard to LCIA, Eco-

indicator 95/99 [37], CML [38] and ReCiPe [39] were the most commonly used LCIA methodologies among 

the collected LCA studies.  

As Table 1 shows, only five out of the 46 total collected studies fulfil criteria for Set 1, thus indicating that 

there is a strong need for practitioners to improve their practice when applying LCA both in terms of the life 

cycle stage and the impact coverage (see Section 3.2). A number of 28 studies were found to consider 

ecodesign aspects, and thus fulfil criteria for Set 2, where OPV technology dominates with 11 studies. 

Analyses of the 31 studies meeting Set 1 and Set 2 criteria are addressed in the subsequent sections. 

In the following, results are not distinguished among the various thin-film PV technologies based on maturity 

level, as we try to present a holistic view of the thin-film PV field, and because there was not always a sizeable 

sample of LCA studies per technology for a consistent analysis across the paper. Nevertheless, we specify the 

type of thin-film PV technology, both in text and all the tables, to render our findings more transparent.   
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Table 1 
Retrieved LCA studies of thin-film PV technologies differentiated into the 2 predefined sets (total of 33 studies). 

LCA study 
Publication 
year  

Thin-film technology 
Life cycle stage coveragea Multi-impact 

assessment 
coverageb 

Ecodesign 
aspectsc Production Use End of life 

Set 1 – Full life cycle and multi-impact assessment coverage (5 studies)d 
Held and Ilg [40] 2011 CdTe ● ● ● ● ● 
Carnevale et al. [41] 2014 CdTe, CIS ● ● ● ● ◌ 
Serrano-Luján et al. [42] 2015 CdTe ● ● ● ● ◌ 
Ng and Mithraratne [43] 2014 a-Si, a-Si/nc-Si ● ● ● ● ◌ 
Espinosa et al. [31] 2015 OPV ● ● ● ● ● 
Set 2 – Ecodesign considerations (28 studies)d   
Kato et al. [44] 2001 CdTe ● ● ◌ ◌ ● 
Raugei et al. [45] 2007 CdTe, CIS ● ● ◌ ● ● 
Kim and Fthenakis [46] 2011 a-Si, a-Si/nc-Si ● ◌ ◌ ◌ ● 
van der Meulen and Alsema [47] 2011 a-Si, a-Si/nc-Si ● ● ● ◌ ● 
Held and Ilg [40] 2011 CdTe ● ● ● ● ● 
Mohr et al. [48] 2013 a-Si/nc-Si ● ● ◌ ● ● 
Kim et al. [49] 2014 CdTe ● ● ◌ ◌ ● 
Bergesen et al. [50] 2014 CdTe, CIGS ● ● ◌ ● ● 
Collier et al. [51] 2014 CdTe, CIGS, CZTS, Zn3P2 ● ◌ ◌ ● ● 
Espinosa et al. [52] 2015 Perovskites ● ◌ ◌ ● ● 
Gong et al. [53] 2015 Perovskites ● ◌ ● ● ● 
Roes et al. [54] 2009 OPV ● ● ◌ ● ● 
Garcia-Valverde et al. [55] 2010 OPV ● ◌ ◌ ◌ ● 
Espinosa et al. [56] 2011 OPV ● ◌ ◌ ◌ ● 
Espinosa et al. [57] 2012 OPV ● ◌ ◌ ◌ ● 
Espinosa et al. [58] 2012 OPV ● ◌ ◌ ● ● 
Emmott et al. [59] 2012 OPV ● ◌ ◌ ◌ ● 
Anctil et al. [60] 2013 OPV ● ◌ ◌ ◌ ● 
Espinosa and Krebs [61] 2014 OPV ● ◌ ◌ ● ● 
Espinosa et al. [62] 2014 OPV ● ● ◌ ● ● 
Søndergaard et al. [63] 2014 OPV ● ◌ ● ● ● 
Espinosa et al. [31] 2015 OPV ● ● ● ● ● 
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Greijer et al. [64] 2001 DSSC ● ◌  ◌ ● 
Parisi et al. [65] 2014 DSSC ● ● ◌ ● ● 
Şengül and Theis [66] 2011 QDPV ● ● ◌ ● ● 
Meijer et al. [67] 2003 GaInP ● ◌ ◌ ● ● 
Mohr et al. [68] 2007 GaAs, GaInP/GaAs ● ◌ ◌ ● ● 
Mohr et al. [69] 2009 GaInP/GaAs ● ● ◌ ● ● 

a Life cycle stage coverage: (●) =  included in the study; (◌) excluded from the study or not transparently reported (not sufficiently to assess life cycle 
coverage).   
b Multi-impact assessment coverage: (●) = at least two impact categories considered; (◌) less than two (including none if only emissions considered). 
c Ecodesign aspects: (●) =  interpretation of LCA results for guiding research and technological development; (◌) no ecodesign aspects. 
d See section 2.3 for classification of studies into Set 1 and Set 2.  
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3.2. Importance of full life cycle and multi-impact coverage  

This section examines the five studies matching Set 1 criteria to determine (i) the influence of including the 

entire PV life cycle, particularly the disposal stage, on the LCA results across impact categories, and (ii) the 

importance of covering the whole spectrum of environmental impacts. Out of these five studies, two of them 

cover CdTe, one study addresses both CdTe and CIS, one thin-film Si and one OPV technologies. They embrace 

installed systems across Europe as well as Singapore and China. Among them, two studies describe existing 

systems, and two refer to BIPV systems.  

Taking the five studies from Set 1, and quantifying the influence of the disposal stage on the LCA results of 

each system, it is observed that an LCA study might produce considerably different results for some impact 

categories if it disregarded the disposal stage – see Table 2. For example, taking the study by Espinosa et al. 

[31] and recalculating the LCA results of an OPV system excluding the disposal stage (recycling scenario), the 

original LCA results, which included the disposal stage, were found to be significantly lower. With the 

exception of respiratory inorganics impacts, which were higher by 51%, the original LCA results were 

observed to be lower than the recalculated results by 36-91% in the 15 considered impact categories (see 

Table 2).  

These findings demonstrate the risk of bias in the LCA results when studies omit the disposal stage, and the 

severe implications for PV technology developers, as highlighted below. Most importantly, when omitting 

the disposal stage (or any part of the PV life cycle) the shifting of environmental burden between life cycle 

stages cannot be identified, and thus prevented, e.g. when PV technology developers take measures to 

reduce environmental impacts during the production stage, and might inadvertently increase environmental 

impacts in the disposal stage. In addition, if an LCA study disregards the disposal stage of the PV system, there 

are no opportunities to assess possible decreases of environmental impacts e.g. by considering recycling 

instead of landfilling or incineration, as shown above [31]. Unfortunately, the disposal stage is nearly 

systematically dismissed in LCA studies of thin-film PVs, as illustrated in the overviews of studies in Set 2 

(Table 1) and disregarded studies (see Table S.2).  

It is therefore strongly recommended that future studies should include this stage and a fortiori should 

include the entire PV life cycle to ensure that the conclusions and support provided to stakeholders are 

reliable. In cases where modelling of the system’s end-of-life is a challenging task especially for emerging 

technologies where data might be scarce or non-existing [51,52,65], a number of studies can provide 

guidance for LCA practitioners on how to handle such a prospective approach, and how to account for 

uncertainties, e.g. by use of sensitivity scenarios [70,71].  
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Table 2                                                                         
Importance of complete life cycle coverage (4 studies).  

LCA  
study 

Technology 
[scenario] 

Impact resultsa (%) 

PED CC OD POF A 
E 

FEC HTC HTnC RI IR LU WD RD SW 
FE ME TE 

Results  including end of life compared to results excluding end of life 

[40] CdTe - 97 - 95 96 
94 

- - - - - - - - - 
- - - 

[31] 
OPV 
[recycling]  

- 64 9 47 43 
- 

32 40 31 151 59 34 47 28 - 
42 42 32 

 
OPV 
[incineration] 

- 94 64 95 94 
- 

100 99 100 198 107 78 71 100 - 
96 98 100 

[43] a-Si, a-Si/nc-Si grb - - - - 
- 

- - - - - - - - - 
- - - 

Results with end-of-life recycling compared to results with end-of-life landfilling 

[41]c CdTe 101 102 101 101 102 
99 

- 150 94 102 - - - - 10 
- - - 

 CIS 102 102 103 102 103 
103 

- 249 113 105 - - - - 9 
- - - 

[42] CdTe [BIPV] 98 95 - - - 
- 

- - - - - - - - - 
- - - 

 
CdTe 
[ground-
mounted] 

94 93 - - - 
- 

- - - - - - - - - 
- - - 

a See Section 2.3 for description of impact categories.  
b Graphical representation of results is provided but numerical data are not available. 
c The authors do not report characterised impact results stemming from the PV life cycles (except for SW); instead, they present scores with negative 

values reflecting the avoided impacts compared to the Italian electricity generation mix. 
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Equally important to considering the entire PV life cycle, LCA studies must include all environmental impact 

categories to identify the most problematic ones, and avoid burden-shifting from one impact category to 

another e.g. decreasing the climate change impacts from greenhouse gas emissions while increasing other 

nonetheless relevant impacts such as impacts exerted by toxic emissions or metal depletion [30]. Revisiting 

the studies of Set 1, Table 3 presents comparisons of different analysed scenarios in each LCA study to show 

how LCA studies fail to capture possible positive or negative effects on other environmental problems, when 

they limit their scope of impact assessment categories to climate change. The empty cells of Table 3 illustrate 

how the decision of LCA practitioners and PV technology developers to focus on climate change impacts, in 

essence, effects a disregard for potential impact of the PV system on other environmental problems. Two 

illustrative examples from Table 3 are given below.   

For example, Serrano-Luján et al. [42] compare the environmental impacts of two CdTe PV systems with that 

associated with Spain’s average electricity mix, and find them lower by ca. 60-90% for 9 categories (see Table 

3). In contrast, metal depletion impact results for those two systems are found to be higher than the impact 

results of Spain’s average electricity mix. The authors tracked the causes of such increase to the high use of 

copper, lead and steel for the CdTe modules and the BOS structure [42].   

Likewise, in the study by Ng and Mithraratne on thin-film Si systems [43], when the authors examine a 

scenario of moving module manufacturing from Japan to Singapore, PED decreases by 36%, while climate 

change impacts increase by 9% – see Table 3. The authors attribute the decrease of energy consumption to 

elimination of transport needs, and the increase of climate change impacts to the higher GHGs emission rate 

of Singapore’s electricity mix compared to that of Japan’s [43]. Therefore, GHGs emissions increase in total 

even though energy consumption decreases, in contrast to what one might expect. However, effects on other 

impact categories, either positive or negative, cannot be ascertained since the authors only consider PED and 

CC.  

These findings highlight the importance of multi-impact coverage beyond climate change or energy-related 

indicators, which a large number of studies only consider in their assessments (18 out of the total 46 collected 

studies in this review – see Set 2 in Table 1 and Table S.2 in SI). Therefore, researchers and technology 

developers in the field of photovoltaics are recommended to encompass all impact categories to identify 

possible trade-offs, and provide adequate support to stakeholders such that decisions can be taken on an 

informed basis.  
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Table 3 
Importance of multi-impact coverage (5 studies). 

LCA 
study 

Technology 
[scenario] 

Impact resultsa (%) 

PED CC OD POF A 
E 

FEC HTC HTnC RI IR 
LU 

WD 
RD 

SW 
FE ME TE ALO ULO NLT MD FD 

[40]b CdTe -  4 - 3 2 
3 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

[41]c CdTe 101 102 101 101 102 
99 

- 150 94 102 - 
- 

- 
- 

10 
- - - - - - - - 

 CIS 102 102 103 102 103 
103 

- 249 113 105 - 
- 

- 
- 

9 
- - - - - - - - 

[43]d 
a-Si  
[scenario 2] 

64 109 - - - 
- 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

 
a-Si/nc-Si 
[scenario 2] 

45 25 - - - 
- 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

 
a-Si/nc-Si 
[scenario 2] 

47 28 - - - 
- 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

 
a-Si/nc-Si 
[scenario 2] 

46 27 - - - 
- 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

 
a-Si  
[scenario 2] 

56 
-

131 
- - - 

- 
- - - - - 

- 
- 

- 
- 

- - - - - - - - 

 
a-Si  
[scenario 2] 

81 -8 - - - 
- 

- - - - - 
- 

- 
- 

- 
- - - - - - - - 

[42]e 
[Spain’s el. 
mix] 

- 100 100 100 100 
- 

- - - - - 
- 

100 
- 

- 
100 100 100 100 <10 100 <40 100 

 CdTe [BIPV] - <20 <10 <20 <20 
- 

- - - - - 
- - - 

<30 
- 

- 
<90 <30 <40 <100 <10 <20 100 <20 

 
CdTe 
[ground-
mounted] 

- <20 <10 <20 <20 
- 

- - - - - 
- 

<20 
- 

- 
<90 <20 <30 <90 100 <10 <90 <10 

[31]f 
OPV 
[incineration] 

- 147 711 200 219 
- 

310 244 327 132 213 
234 

152 
352 

- 
313 234 229 - - - - - 

 OPV [PVC] - 72 96 88 93 - 99 92 62 89 98 99 167 100 - 
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 97 64 47 - - - - - 
a See Section 2.3 for description of impact categories. 
b Results are compared to impacts associated with Portugal’s electricity mix. 
c Results with end-of-life recycling are compared to results with end-of-life landfilling. The authors do not report characterised impact results 
stemming from the PV life cycles (except for SW); instead, they present scores with negative values reflecting the avoided impacts compared to the 
Italian electricity generation mix. 
d Results are compared to base case scenario and original manufacturing location (module 1: Japan, module 2, 3, 4 and 6: Taiwan, and module 5: 
Germany). For scenario 2, all modules are manufactured in Singapore i.e. eliminating transport and assuming Singapore’s electricity mix.   
e Results of BIPV and ground-mounted systems are compared with impacts associated with Spain’s electricity mix. The authors present graphical 
results, not numerical data, thus results are indexed, here, to highest result for every category, and presented with approximate values (<). 
f Results for the ‘incineration’ scenario are compared to the baseline scenario which assumes end-of-life recycling. Results for the ‘PVC’ scenario 
represent a choice of PVC as insulation material compared to baseline scenario with PET insulation material. 
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3.3. LCA studies with ecodesign aspects 

This section examines Set 2, which comprises studies providing insights into ecodesign aspects – see Table 1. 

Tables S.3 – S.9 in Supporting Information, which are grouped by technology, present further details of the 

studies including a brief summary of their key findings. It shall be mentioned that the analyses of these 

studies in the following subsections are associated with important uncertainties due to the fact that many of 

them do not encompass full coverage of neither the life cycle of the systems nor the relevant environmental 

impacts. As demonstrated in Section 3.2, such malpractice might lead to biased results and hence not reliable 

conclusions (see Section 3.2). 

3.3.1. Important impact categories for thin-film PV  

As explained in Section 2.4, normalisation can provide useful support for interpreting and communicating 

the results of an LCA study [36]. For example, in the context of electricity generation, Laurent et al. [8] have 

presented a ‘sectorial normalisation’ approach that takes LCA results of electricity generation at the global 

scale as normalisation references. This approach can be used to identify which environmental impacts are 

higher than the global electricity generation average, and should be prioritised by technology developers [8].  

Taking Set 2 and screening it for studies that performed normalisation of impact results, 10 studies were 

identified [31,50,52,58,61–63,65,67,68]. Assuming equal weighting of the impact categories, toxic impacts 

and resource depletion tend to dominate the impact results. All these LCA studies, with the exception of 

Bergesen et al. [50], perform normalisation based on the normalisation step integrated in the LCIA method 

used, i.e. using normalisation references provided by the method developer. Bergesen et al. [50] take the 

impacts associated with the average 2010 US electricity mix as a normalisation reference, which is 

comparable to the approach applied by Laurent et al. [8]. 

However, in spite of such relatively wide application, caution is needed when interpreting normalised results. 

Because of an incomplete coverage in LCIs and LCIA methods of the thousands of chemicals potentially being 

released to environment as a result of human activities, normalised impact results for a number of impact 

categories, in particular the toxicity-related impacts, tend to be overestimated [36,72]. Therefore, LCA 

practitioners should: (i) take into account such methodological uncertainties associated with normalisation 

references, and the existence of possible biases in their results when they use the normalisation step; (ii) 

make sure that the choice of the normalisation reference reflects the specific goal and scope of their study 

(e.g. geographical scope of the system should be captured within the scope of the reference situation); and, 

(iii) carefully relate the obtained normalised results to the analysed system and its context [36].  

3.3.2.  Hotspots of primary energy demand at the module level  

We did not identify a sufficient number of studies having performed hotspot analyses per impact category 

to make a consistent analysis. However, a number of 15 studies (covering 18 analysed scenarios) conducted 

hotspot analyses based on primary energy demand to identify where the largest energy demand originated 

within the production of thin-film modules – see Table 4. Primary energy demand was observed to be mainly 

affected by electricity-demanding processes rather than materials with high-embedded energy. Across 

technologies, these are mainly metal deposition processes with vacuum conditions and high temperatures 

such as ITO sputtering and layer deposition. Only a few studies were found to identify materials with 

embedded energy as hotspots with the highest contribution to energy demand. These include Al as 
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encapsulation or framing material. In metal-free or ITO-free technologies, main contributors to energy 

demand are plastics: PET as substrate and encapsulation barriers.  
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Table 4 
Top contributor of primary energy demand at module level classifying between either electricity-intensive processes or energy embedded in materials 

(15 studies).   

LCA study Technology [scenario] 
Top contributor of primary energy demand 

Module component 
Electricity-intensive process 

Embedded energy  
in material  

[44] CdTe  Al Frame  
[51] CdTe, Zn3P2 Substrate cleaning in heated ultrasonic  

bath cleaning and drying with N2 
 Substrate 

CIGS Co-evaporation of Cu, In, Ga  
and selenisation 

 Active layer 

CZTS Co-sputtering of Cu, Zn, Sn  
and sulphurisation  

 Active layer 

[46] a-Si/nc-Si PECVDa  Active layer 
[48] a-Si/nc-Si PECVDa  Active layer 
[53]  PSC [TiO2]  Au Back electrode 

PSC [ZnO] ITO sputtering  Transparent electrode 
[55] OPV N2 glove box   Active layer, back electrode, encapsulation 
[56] OPV ITO sputtering  Transparent electrode 
[57] OPV Al/Cr sputtering   Back electrode 
[58] OPV [ITO-free]  PET film Substrate and encapsulation barriers 
[59] OPV PEDOT:PSS slot-die coating and drying  Hole-transport layer 
[60] OPV ITO sputtering   Transparent electrode 
[61] OPV [ITO-free]  PET film Substrate and encapsulation barriers 
[66] QDPV  Al, ETFEb, EVAc Encapsulation  
[67] GaAs MOVPEd  Cell stack 
[68] GaAs MOVPEd   Cell stack 

a Plasma-enhanced chemical vapour deposition 
b Ethylene tetrafluoroethylene  
c Ethyl vinyl acetate 
d Metal-organic vapour phase epitaxy 
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3.3.3.  Contribution of BOS components to environmental impacts 

A number of 10 studies from Set 2 investigated the contribution of BOS components to the environmental 

burden [31,40,45,47–50,54,62,66] – see Table S.10. BOS components comprise a large variety of 

components, such as electrical equipment, e.g. inverters and cabling, support structures or mounting 

materials. Across technologies, contribution of BOS to environmental impacts was found to be significant, 

ranging from 3% to 95% depending on the impact category. With respect to climate change, ranges between 

31-45% can be observed taking as examples the two studies with cradle-to-grave system boundaries [31,40]. 

These findings demonstrate the significant influence of BOS components on the environmental performance 

across impact categories and especially on climate change. The detailed analysis of BOS components in LCA 

studies can be expected to be even more relevant in the future. In pursuit of NZEB targets and cost savings, 

BIPV applications will thus involve replacement of building envelope materials, including customisation and 

aesthetic improvements [5]. In such contexts, it is important that the thin-film PV system is assessed together 

with its building framework. 

Technology developers are therefore recommended to extend their ecodesign focus beyond the sole 

consideration of the thin-film PV modules, and include the BOS components as well. Not doing so may still 

induce continuous environmental improvements of the thin-film PV modules, but may also lead the 

environmental performances of the entire system reach a plateau (as the contribution of BOS components 

remains unchanged) or increase if impacts of the BOS components increase as a result of newly developed 

thin-film PV technologies.  

4. Conclusions and recommendations 

This work extends the scope of available literature that has mostly focused on GHG emissions and energy-

related indicators to document environmental performance of thin-film PV systems. A total number of 31 

LCA studies of thin-film PV technologies were reviewed to investigate opportunities for technological 

improvements and mitigation of environmental impacts. Only five studies were found to consider the 

complete PV life cycle, and present results for more than one environmental problem. Analyses of these 

studies highlighted the risk of shifting environmental burden from one life cycle stage to another or from one 

environmental problem to another as well as missed opportunities to improve the environmental 

performance, when LCA studies (i) omit the disposal stage, or (ii) limit their scope of environmental impact 

assessment to climate change. Based on our findings, we address LCA practitioners and PV technology 

developers to stress the importance of considering (i) the entire PV life cycle, including the often omitted 

disposal stage, and (ii) potential impacts to all environmental problems not only climate change or energy-

related indicators, so that possible trade-offs can be identified and assessed.     

A number of 28 LCA studies were brought into focus for having utilised LCA as an ecodesign tool. Their 

analysis demonstrates how thin-film PV stakeholders can benefit from LCA to guide scientific research and 

technological development. Although great caution should be exercised when interpreting normalised LCA 

results, findings among 10 studies indicate that PV technology developers should carefully consider toxicity-

related and resource depletion impacts. Hotspot analyses of the primary energy demand at module level in 

15 studies pointed out to large impacts stemming from electricity consumption during metal deposition 

processes with requirements for vacuum environment and high temperatures; stakeholders in thin-film PV 

should therefore closely monitor these processes. Despite the fact that only one third of the reviewed studies 
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have included them in their assessments, the BOS components were found to have a large contribution to 

the total environmental burden of the PV systems for many environmental impacts. We therefore strongly 

recommend LCA practitioners and PV technology developers to systematically include the BOS components 

in their assessments to optimise the environmental performances of the PV systems, and avoid any burden-

shifting from the PV modules to the BOS.  

Future research work can widen the focus beyond research scientists and technology developers. Initiatives 

to develop formal environmental (as well as health and safety) performance ratings for the photovoltaic 

industry [73] indicate how information about the environmental performance of PV systems is becoming 

more valuable to a wider circle of stakeholders including end users, PV installers and financial investors. Since 

their choices could potentially have significant influence on the PV market, future work can consider how 

these stakeholders could be better informed from a holistic perspective based on LCA findings.  
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